1 1.41 kre /* $NetBSD: memalloc.c,v 1.41 2025/05/07 14:01:01 kre Exp $ */ 2 1.15 cgd 3 1.1 cgd /*- 4 1.5 jtc * Copyright (c) 1991, 1993 5 1.5 jtc * The Regents of the University of California. All rights reserved. 6 1.1 cgd * 7 1.1 cgd * This code is derived from software contributed to Berkeley by 8 1.1 cgd * Kenneth Almquist. 9 1.1 cgd * 10 1.1 cgd * Redistribution and use in source and binary forms, with or without 11 1.1 cgd * modification, are permitted provided that the following conditions 12 1.1 cgd * are met: 13 1.1 cgd * 1. Redistributions of source code must retain the above copyright 14 1.1 cgd * notice, this list of conditions and the following disclaimer. 15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 cgd * notice, this list of conditions and the following disclaimer in the 17 1.1 cgd * documentation and/or other materials provided with the distribution. 18 1.28 agc * 3. Neither the name of the University nor the names of its contributors 19 1.1 cgd * may be used to endorse or promote products derived from this software 20 1.1 cgd * without specific prior written permission. 21 1.1 cgd * 22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 1.1 cgd * SUCH DAMAGE. 33 1.1 cgd */ 34 1.1 cgd 35 1.20 christos #include <sys/cdefs.h> 36 1.1 cgd #ifndef lint 37 1.15 cgd #if 0 38 1.16 christos static char sccsid[] = "@(#)memalloc.c 8.3 (Berkeley) 5/4/95"; 39 1.15 cgd #else 40 1.41 kre __RCSID("$NetBSD: memalloc.c,v 1.41 2025/05/07 14:01:01 kre Exp $"); 41 1.15 cgd #endif 42 1.1 cgd #endif /* not lint */ 43 1.1 cgd 44 1.34 kre #include <limits.h> 45 1.34 kre #include <stdarg.h> 46 1.21 christos #include <stdlib.h> 47 1.21 christos #include <unistd.h> 48 1.21 christos 49 1.1 cgd #include "shell.h" 50 1.1 cgd #include "output.h" 51 1.1 cgd #include "memalloc.h" 52 1.1 cgd #include "error.h" 53 1.1 cgd #include "machdep.h" 54 1.1 cgd #include "mystring.h" 55 1.1 cgd 56 1.1 cgd /* 57 1.1 cgd * Like malloc, but returns an error when out of space. 58 1.1 cgd */ 59 1.1 cgd 60 1.1 cgd pointer 61 1.29 matt ckmalloc(size_t nbytes) 62 1.10 cgd { 63 1.19 tls pointer p; 64 1.1 cgd 65 1.22 mycroft p = malloc(nbytes); 66 1.22 mycroft if (p == NULL) 67 1.1 cgd error("Out of space"); 68 1.1 cgd return p; 69 1.1 cgd } 70 1.1 cgd 71 1.1 cgd 72 1.1 cgd /* 73 1.1 cgd * Same for realloc. 74 1.1 cgd */ 75 1.1 cgd 76 1.1 cgd pointer 77 1.26 christos ckrealloc(pointer p, int nbytes) 78 1.10 cgd { 79 1.25 christos p = realloc(p, nbytes); 80 1.25 christos if (p == NULL) 81 1.1 cgd error("Out of space"); 82 1.1 cgd return p; 83 1.1 cgd } 84 1.1 cgd 85 1.1 cgd 86 1.1 cgd /* 87 1.1 cgd * Make a copy of a string in safe storage. 88 1.1 cgd */ 89 1.1 cgd 90 1.1 cgd char * 91 1.27 dsl savestr(const char *s) 92 1.25 christos { 93 1.19 tls char *p; 94 1.1 cgd 95 1.1 cgd p = ckmalloc(strlen(s) + 1); 96 1.1 cgd scopy(s, p); 97 1.1 cgd return p; 98 1.1 cgd } 99 1.1 cgd 100 1.1 cgd 101 1.1 cgd /* 102 1.1 cgd * Parse trees for commands are allocated in lifo order, so we use a stack 103 1.1 cgd * to make this more efficient, and also to avoid all sorts of exception 104 1.1 cgd * handling code to handle interrupts in the middle of a parse. 105 1.12 mycroft * 106 1.12 mycroft * The size 504 was chosen because the Ultrix malloc handles that size 107 1.12 mycroft * well. 108 1.1 cgd */ 109 1.1 cgd 110 1.12 mycroft #define MINSIZE 504 /* minimum size of a block */ 111 1.1 cgd 112 1.1 cgd struct stack_block { 113 1.1 cgd struct stack_block *prev; 114 1.1 cgd char space[MINSIZE]; 115 1.1 cgd }; 116 1.1 cgd 117 1.1 cgd struct stack_block stackbase; 118 1.1 cgd struct stack_block *stackp = &stackbase; 119 1.23 christos struct stackmark *markp; 120 1.1 cgd char *stacknxt = stackbase.space; 121 1.1 cgd int stacknleft = MINSIZE; 122 1.1 cgd int sstrnleft; 123 1.1 cgd 124 1.1 cgd pointer 125 1.26 christos stalloc(int nbytes) 126 1.10 cgd { 127 1.19 tls char *p; 128 1.1 cgd 129 1.24 christos nbytes = SHELL_ALIGN(nbytes); 130 1.12 mycroft if (nbytes > stacknleft) { 131 1.1 cgd int blocksize; 132 1.1 cgd struct stack_block *sp; 133 1.1 cgd 134 1.12 mycroft blocksize = nbytes; 135 1.1 cgd if (blocksize < MINSIZE) 136 1.1 cgd blocksize = MINSIZE; 137 1.1 cgd INTOFF; 138 1.1 cgd sp = ckmalloc(sizeof(struct stack_block) - MINSIZE + blocksize); 139 1.1 cgd sp->prev = stackp; 140 1.1 cgd stacknxt = sp->space; 141 1.1 cgd stacknleft = blocksize; 142 1.1 cgd stackp = sp; 143 1.1 cgd INTON; 144 1.1 cgd } 145 1.33 kre INTOFF; 146 1.1 cgd p = stacknxt; 147 1.12 mycroft stacknxt += nbytes; 148 1.12 mycroft stacknleft -= nbytes; 149 1.33 kre INTON; 150 1.1 cgd return p; 151 1.1 cgd } 152 1.1 cgd 153 1.1 cgd 154 1.1 cgd void 155 1.26 christos stunalloc(pointer p) 156 1.25 christos { 157 1.1 cgd if (p == NULL) { /*DEBUG */ 158 1.1 cgd write(2, "stunalloc\n", 10); 159 1.1 cgd abort(); 160 1.1 cgd } 161 1.1 cgd stacknleft += stacknxt - (char *)p; 162 1.1 cgd stacknxt = p; 163 1.1 cgd } 164 1.1 cgd 165 1.1 cgd 166 1.32 kre /* save the current status of the sh stack */ 167 1.1 cgd void 168 1.26 christos setstackmark(struct stackmark *mark) 169 1.25 christos { 170 1.1 cgd mark->stackp = stackp; 171 1.1 cgd mark->stacknxt = stacknxt; 172 1.1 cgd mark->stacknleft = stacknleft; 173 1.30 kre mark->sstrnleft = sstrnleft; 174 1.23 christos mark->marknext = markp; 175 1.23 christos markp = mark; 176 1.1 cgd } 177 1.1 cgd 178 1.32 kre /* reset the stack mark, and remove it from the list of marks */ 179 1.32 kre void 180 1.32 kre popstackmark(struct stackmark *mark) 181 1.32 kre { 182 1.33 kre INTOFF; 183 1.32 kre markp = mark->marknext; /* delete mark from the list */ 184 1.32 kre rststackmark(mark); /* and reset stack */ 185 1.33 kre INTON; 186 1.32 kre } 187 1.1 cgd 188 1.32 kre /* reset the shell stack to its state recorded in the stack mark */ 189 1.1 cgd void 190 1.32 kre rststackmark(struct stackmark *mark) 191 1.25 christos { 192 1.1 cgd struct stack_block *sp; 193 1.1 cgd 194 1.1 cgd INTOFF; 195 1.1 cgd while (stackp != mark->stackp) { 196 1.32 kre /* delete any recently allocated mem blocks */ 197 1.1 cgd sp = stackp; 198 1.1 cgd stackp = sp->prev; 199 1.1 cgd ckfree(sp); 200 1.1 cgd } 201 1.1 cgd stacknxt = mark->stacknxt; 202 1.1 cgd stacknleft = mark->stacknleft; 203 1.30 kre sstrnleft = mark->sstrnleft; 204 1.1 cgd INTON; 205 1.1 cgd } 206 1.1 cgd 207 1.1 cgd 208 1.1 cgd /* 209 1.1 cgd * When the parser reads in a string, it wants to stick the string on the 210 1.1 cgd * stack and only adjust the stack pointer when it knows how big the 211 1.1 cgd * string is. Stackblock (defined in stack.h) returns a pointer to a block 212 1.1 cgd * of space on top of the stack and stackblocklen returns the length of 213 1.1 cgd * this block. Growstackblock will grow this space by at least one byte, 214 1.1 cgd * possibly moving it (like realloc). Grabstackblock actually allocates the 215 1.1 cgd * part of the block that has been used. 216 1.1 cgd */ 217 1.1 cgd 218 1.1 cgd void 219 1.26 christos growstackblock(void) 220 1.25 christos { 221 1.24 christos int newlen = SHELL_ALIGN(stacknleft * 2 + 100); 222 1.1 cgd 223 1.31 kre INTOFF; 224 1.1 cgd if (stacknxt == stackp->space && stackp != &stackbase) { 225 1.25 christos struct stack_block *oldstackp; 226 1.25 christos struct stackmark *xmark; 227 1.25 christos struct stack_block *sp; 228 1.25 christos 229 1.23 christos oldstackp = stackp; 230 1.1 cgd sp = stackp; 231 1.1 cgd stackp = sp->prev; 232 1.25 christos sp = ckrealloc((pointer)sp, 233 1.25 christos sizeof(struct stack_block) - MINSIZE + newlen); 234 1.1 cgd sp->prev = stackp; 235 1.1 cgd stackp = sp; 236 1.1 cgd stacknxt = sp->space; 237 1.31 kre sstrnleft += newlen - stacknleft; 238 1.1 cgd stacknleft = newlen; 239 1.25 christos 240 1.25 christos /* 241 1.25 christos * Stack marks pointing to the start of the old block 242 1.38 kre * must be relocated to point to the new block 243 1.25 christos */ 244 1.25 christos xmark = markp; 245 1.25 christos while (xmark != NULL && xmark->stackp == oldstackp) { 246 1.25 christos xmark->stackp = stackp; 247 1.25 christos xmark->stacknxt = stacknxt; 248 1.31 kre xmark->sstrnleft += stacknleft - xmark->stacknleft; 249 1.25 christos xmark->stacknleft = stacknleft; 250 1.25 christos xmark = xmark->marknext; 251 1.23 christos } 252 1.1 cgd } else { 253 1.25 christos char *oldspace = stacknxt; 254 1.25 christos int oldlen = stacknleft; 255 1.25 christos char *p = stalloc(newlen); 256 1.25 christos 257 1.25 christos (void)memcpy(p, oldspace, oldlen); 258 1.1 cgd stacknxt = p; /* free the space */ 259 1.17 cgd stacknleft += newlen; /* we just allocated */ 260 1.1 cgd } 261 1.31 kre INTON; 262 1.1 cgd } 263 1.1 cgd 264 1.1 cgd void 265 1.26 christos grabstackblock(int len) 266 1.10 cgd { 267 1.24 christos len = SHELL_ALIGN(len); 268 1.33 kre INTOFF; 269 1.1 cgd stacknxt += len; 270 1.1 cgd stacknleft -= len; 271 1.33 kre INTON; 272 1.1 cgd } 273 1.1 cgd 274 1.1 cgd /* 275 1.26 christos * The following routines are somewhat easier to use than the above. 276 1.1 cgd * The user declares a variable of type STACKSTR, which may be declared 277 1.1 cgd * to be a register. The macro STARTSTACKSTR initializes things. Then 278 1.1 cgd * the user uses the macro STPUTC to add characters to the string. In 279 1.1 cgd * effect, STPUTC(c, p) is the same as *p++ = c except that the stack is 280 1.1 cgd * grown as necessary. When the user is done, she can just leave the 281 1.1 cgd * string there and refer to it using stackblock(). Or she can allocate 282 1.1 cgd * the space for it using grabstackstr(). If it is necessary to allow 283 1.1 cgd * someone else to use the stack temporarily and then continue to grow 284 1.1 cgd * the string, the user should use grabstack to allocate the space, and 285 1.1 cgd * then call ungrabstr(p) to return to the previous mode of operation. 286 1.1 cgd * 287 1.1 cgd * USTPUTC is like STPUTC except that it doesn't check for overflow. 288 1.1 cgd * CHECKSTACKSPACE can be called before USTPUTC to ensure that there 289 1.1 cgd * is space for at least one character. 290 1.1 cgd */ 291 1.1 cgd 292 1.1 cgd char * 293 1.26 christos growstackstr(void) 294 1.25 christos { 295 1.1 cgd int len = stackblocksize(); 296 1.40 kre 297 1.1 cgd growstackblock(); 298 1.1 cgd sstrnleft = stackblocksize() - len - 1; 299 1.1 cgd return stackblock() + len; 300 1.1 cgd } 301 1.1 cgd 302 1.1 cgd /* 303 1.1 cgd * Called from CHECKSTRSPACE. 304 1.1 cgd */ 305 1.1 cgd 306 1.1 cgd char * 307 1.26 christos makestrspace(void) 308 1.25 christos { 309 1.1 cgd int len = stackblocksize() - sstrnleft; 310 1.1 cgd growstackblock(); 311 1.1 cgd sstrnleft = stackblocksize() - len; 312 1.1 cgd return stackblock() + len; 313 1.1 cgd } 314 1.1 cgd 315 1.30 kre /* 316 1.30 kre * Note that this only works to release stack space for reuse 317 1.30 kre * if nothing else has allocated space on the stack since the grabstackstr() 318 1.30 kre * 319 1.30 kre * "s" is the start of the area to be released, and "p" represents the end 320 1.30 kre * of the string we have stored beyond there and are now releasing. 321 1.30 kre * (ie: "p" should be the same as in the call to grabstackstr()). 322 1.30 kre * 323 1.37 andvar * stunalloc(s) and ungrabstackstr(s, p) are almost interchangeable after 324 1.30 kre * a grabstackstr(), however the latter also returns string space so we 325 1.30 kre * can just continue with STPUTC() etc without needing a new STARTSTACKSTR(s) 326 1.30 kre */ 327 1.1 cgd void 328 1.26 christos ungrabstackstr(char *s, char *p) 329 1.25 christos { 330 1.30 kre #ifdef DEBUG 331 1.30 kre if (s < stacknxt || stacknxt + stacknleft < s) 332 1.30 kre abort(); 333 1.30 kre #endif 334 1.1 cgd stacknleft += stacknxt - s; 335 1.1 cgd stacknxt = s; 336 1.1 cgd sstrnleft = stacknleft - (p - s); 337 1.1 cgd } 338 1.34 kre 339 1.34 kre /* 340 1.34 kre * Save the concat of a sequence of strings in stack space 341 1.34 kre * 342 1.34 kre * The first arg (if not NULL) is a pointer to where the final string 343 1.34 kre * length will be returned. 344 1.34 kre * 345 1.34 kre * Remaining args are pointers to strings - sufficient space to hold 346 1.34 kre * the concat of the strings is allocated on the stack, the strings 347 1.36 andvar * are copied into that space, and a pointer to its start is returned. 348 1.35 kre * The arg list is terminated with STSTRC_END. 349 1.34 kre * 350 1.34 kre * Use stunalloc(string) (in proper sequence) to release the string 351 1.34 kre */ 352 1.34 kre char * 353 1.34 kre ststrcat(size_t *lp, ...) 354 1.34 kre { 355 1.34 kre va_list ap; 356 1.34 kre const char *arg; 357 1.34 kre size_t len, tlen = 0, alen[8]; 358 1.34 kre char *str, *nxt; 359 1.34 kre unsigned int n; 360 1.34 kre 361 1.34 kre n = 0; 362 1.34 kre va_start(ap, lp); 363 1.34 kre arg = va_arg(ap, const char *); 364 1.35 kre while (arg != STSTRC_END) { 365 1.34 kre len = strlen(arg); 366 1.34 kre if (n < sizeof(alen)/sizeof(alen[0])) 367 1.34 kre alen[n++] = len; 368 1.34 kre tlen += len; 369 1.34 kre arg = va_arg(ap, const char *); 370 1.34 kre } 371 1.34 kre va_end(ap); 372 1.34 kre 373 1.34 kre if (lp != NULL) 374 1.34 kre *lp = tlen; 375 1.34 kre 376 1.34 kre if (tlen >= INT_MAX) 377 1.34 kre error("ststrcat() over length botch"); 378 1.34 kre str = (char *)stalloc((int)tlen + 1); /* 1 for \0 */ 379 1.35 kre str[tlen] = '\0'; /* in case of no args */ 380 1.34 kre 381 1.34 kre n = 0; 382 1.34 kre nxt = str; 383 1.34 kre va_start(ap, lp); 384 1.34 kre arg = va_arg(ap, const char *); 385 1.35 kre while (arg != STSTRC_END) { 386 1.34 kre if (n < sizeof(alen)/sizeof(alen[0])) 387 1.34 kre len = alen[n++]; 388 1.34 kre else 389 1.34 kre len = strlen(arg); 390 1.34 kre 391 1.34 kre scopy(arg, nxt); 392 1.34 kre nxt += len; 393 1.34 kre 394 1.34 kre arg = va_arg(ap, const char *); 395 1.34 kre } 396 1.34 kre va_end(ap); 397 1.34 kre 398 1.34 kre return str; 399 1.34 kre } 400