memalloc.c revision 1.36 1 1.36 andvar /* $NetBSD: memalloc.c,v 1.36 2022/04/10 09:50:44 andvar Exp $ */
2 1.15 cgd
3 1.1 cgd /*-
4 1.5 jtc * Copyright (c) 1991, 1993
5 1.5 jtc * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Kenneth Almquist.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.28 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 cgd * may be used to endorse or promote products derived from this software
20 1.1 cgd * without specific prior written permission.
21 1.1 cgd *
22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 cgd * SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.20 christos #include <sys/cdefs.h>
36 1.1 cgd #ifndef lint
37 1.15 cgd #if 0
38 1.16 christos static char sccsid[] = "@(#)memalloc.c 8.3 (Berkeley) 5/4/95";
39 1.15 cgd #else
40 1.36 andvar __RCSID("$NetBSD: memalloc.c,v 1.36 2022/04/10 09:50:44 andvar Exp $");
41 1.15 cgd #endif
42 1.1 cgd #endif /* not lint */
43 1.1 cgd
44 1.34 kre #include <limits.h>
45 1.34 kre #include <stdarg.h>
46 1.21 christos #include <stdlib.h>
47 1.21 christos #include <unistd.h>
48 1.21 christos
49 1.1 cgd #include "shell.h"
50 1.1 cgd #include "output.h"
51 1.1 cgd #include "memalloc.h"
52 1.1 cgd #include "error.h"
53 1.1 cgd #include "machdep.h"
54 1.1 cgd #include "mystring.h"
55 1.1 cgd
56 1.1 cgd /*
57 1.1 cgd * Like malloc, but returns an error when out of space.
58 1.1 cgd */
59 1.1 cgd
60 1.1 cgd pointer
61 1.29 matt ckmalloc(size_t nbytes)
62 1.10 cgd {
63 1.19 tls pointer p;
64 1.1 cgd
65 1.22 mycroft p = malloc(nbytes);
66 1.22 mycroft if (p == NULL)
67 1.1 cgd error("Out of space");
68 1.1 cgd return p;
69 1.1 cgd }
70 1.1 cgd
71 1.1 cgd
72 1.1 cgd /*
73 1.1 cgd * Same for realloc.
74 1.1 cgd */
75 1.1 cgd
76 1.1 cgd pointer
77 1.26 christos ckrealloc(pointer p, int nbytes)
78 1.10 cgd {
79 1.25 christos p = realloc(p, nbytes);
80 1.25 christos if (p == NULL)
81 1.1 cgd error("Out of space");
82 1.1 cgd return p;
83 1.1 cgd }
84 1.1 cgd
85 1.1 cgd
86 1.1 cgd /*
87 1.1 cgd * Make a copy of a string in safe storage.
88 1.1 cgd */
89 1.1 cgd
90 1.1 cgd char *
91 1.27 dsl savestr(const char *s)
92 1.25 christos {
93 1.19 tls char *p;
94 1.1 cgd
95 1.1 cgd p = ckmalloc(strlen(s) + 1);
96 1.1 cgd scopy(s, p);
97 1.1 cgd return p;
98 1.1 cgd }
99 1.1 cgd
100 1.1 cgd
101 1.1 cgd /*
102 1.1 cgd * Parse trees for commands are allocated in lifo order, so we use a stack
103 1.1 cgd * to make this more efficient, and also to avoid all sorts of exception
104 1.1 cgd * handling code to handle interrupts in the middle of a parse.
105 1.12 mycroft *
106 1.12 mycroft * The size 504 was chosen because the Ultrix malloc handles that size
107 1.12 mycroft * well.
108 1.1 cgd */
109 1.1 cgd
110 1.12 mycroft #define MINSIZE 504 /* minimum size of a block */
111 1.1 cgd
112 1.1 cgd struct stack_block {
113 1.1 cgd struct stack_block *prev;
114 1.1 cgd char space[MINSIZE];
115 1.1 cgd };
116 1.1 cgd
117 1.1 cgd struct stack_block stackbase;
118 1.1 cgd struct stack_block *stackp = &stackbase;
119 1.23 christos struct stackmark *markp;
120 1.1 cgd char *stacknxt = stackbase.space;
121 1.1 cgd int stacknleft = MINSIZE;
122 1.1 cgd int sstrnleft;
123 1.1 cgd int herefd = -1;
124 1.1 cgd
125 1.1 cgd pointer
126 1.26 christos stalloc(int nbytes)
127 1.10 cgd {
128 1.19 tls char *p;
129 1.1 cgd
130 1.24 christos nbytes = SHELL_ALIGN(nbytes);
131 1.12 mycroft if (nbytes > stacknleft) {
132 1.1 cgd int blocksize;
133 1.1 cgd struct stack_block *sp;
134 1.1 cgd
135 1.12 mycroft blocksize = nbytes;
136 1.1 cgd if (blocksize < MINSIZE)
137 1.1 cgd blocksize = MINSIZE;
138 1.1 cgd INTOFF;
139 1.1 cgd sp = ckmalloc(sizeof(struct stack_block) - MINSIZE + blocksize);
140 1.1 cgd sp->prev = stackp;
141 1.1 cgd stacknxt = sp->space;
142 1.1 cgd stacknleft = blocksize;
143 1.1 cgd stackp = sp;
144 1.1 cgd INTON;
145 1.1 cgd }
146 1.33 kre INTOFF;
147 1.1 cgd p = stacknxt;
148 1.12 mycroft stacknxt += nbytes;
149 1.12 mycroft stacknleft -= nbytes;
150 1.33 kre INTON;
151 1.1 cgd return p;
152 1.1 cgd }
153 1.1 cgd
154 1.1 cgd
155 1.1 cgd void
156 1.26 christos stunalloc(pointer p)
157 1.25 christos {
158 1.1 cgd if (p == NULL) { /*DEBUG */
159 1.1 cgd write(2, "stunalloc\n", 10);
160 1.1 cgd abort();
161 1.1 cgd }
162 1.1 cgd stacknleft += stacknxt - (char *)p;
163 1.1 cgd stacknxt = p;
164 1.1 cgd }
165 1.1 cgd
166 1.1 cgd
167 1.32 kre /* save the current status of the sh stack */
168 1.1 cgd void
169 1.26 christos setstackmark(struct stackmark *mark)
170 1.25 christos {
171 1.1 cgd mark->stackp = stackp;
172 1.1 cgd mark->stacknxt = stacknxt;
173 1.1 cgd mark->stacknleft = stacknleft;
174 1.30 kre mark->sstrnleft = sstrnleft;
175 1.23 christos mark->marknext = markp;
176 1.23 christos markp = mark;
177 1.1 cgd }
178 1.1 cgd
179 1.32 kre /* reset the stack mark, and remove it from the list of marks */
180 1.32 kre void
181 1.32 kre popstackmark(struct stackmark *mark)
182 1.32 kre {
183 1.33 kre INTOFF;
184 1.32 kre markp = mark->marknext; /* delete mark from the list */
185 1.32 kre rststackmark(mark); /* and reset stack */
186 1.33 kre INTON;
187 1.32 kre }
188 1.1 cgd
189 1.32 kre /* reset the shell stack to its state recorded in the stack mark */
190 1.1 cgd void
191 1.32 kre rststackmark(struct stackmark *mark)
192 1.25 christos {
193 1.1 cgd struct stack_block *sp;
194 1.1 cgd
195 1.1 cgd INTOFF;
196 1.1 cgd while (stackp != mark->stackp) {
197 1.32 kre /* delete any recently allocated mem blocks */
198 1.1 cgd sp = stackp;
199 1.1 cgd stackp = sp->prev;
200 1.1 cgd ckfree(sp);
201 1.1 cgd }
202 1.1 cgd stacknxt = mark->stacknxt;
203 1.1 cgd stacknleft = mark->stacknleft;
204 1.30 kre sstrnleft = mark->sstrnleft;
205 1.1 cgd INTON;
206 1.1 cgd }
207 1.1 cgd
208 1.1 cgd
209 1.1 cgd /*
210 1.1 cgd * When the parser reads in a string, it wants to stick the string on the
211 1.1 cgd * stack and only adjust the stack pointer when it knows how big the
212 1.1 cgd * string is. Stackblock (defined in stack.h) returns a pointer to a block
213 1.1 cgd * of space on top of the stack and stackblocklen returns the length of
214 1.1 cgd * this block. Growstackblock will grow this space by at least one byte,
215 1.1 cgd * possibly moving it (like realloc). Grabstackblock actually allocates the
216 1.1 cgd * part of the block that has been used.
217 1.1 cgd */
218 1.1 cgd
219 1.1 cgd void
220 1.26 christos growstackblock(void)
221 1.25 christos {
222 1.24 christos int newlen = SHELL_ALIGN(stacknleft * 2 + 100);
223 1.1 cgd
224 1.31 kre INTOFF;
225 1.1 cgd if (stacknxt == stackp->space && stackp != &stackbase) {
226 1.25 christos struct stack_block *oldstackp;
227 1.25 christos struct stackmark *xmark;
228 1.25 christos struct stack_block *sp;
229 1.25 christos
230 1.23 christos oldstackp = stackp;
231 1.1 cgd sp = stackp;
232 1.1 cgd stackp = sp->prev;
233 1.25 christos sp = ckrealloc((pointer)sp,
234 1.25 christos sizeof(struct stack_block) - MINSIZE + newlen);
235 1.1 cgd sp->prev = stackp;
236 1.1 cgd stackp = sp;
237 1.1 cgd stacknxt = sp->space;
238 1.31 kre sstrnleft += newlen - stacknleft;
239 1.1 cgd stacknleft = newlen;
240 1.25 christos
241 1.25 christos /*
242 1.25 christos * Stack marks pointing to the start of the old block
243 1.25 christos * must be relocated to point to the new block
244 1.25 christos */
245 1.25 christos xmark = markp;
246 1.25 christos while (xmark != NULL && xmark->stackp == oldstackp) {
247 1.25 christos xmark->stackp = stackp;
248 1.25 christos xmark->stacknxt = stacknxt;
249 1.31 kre xmark->sstrnleft += stacknleft - xmark->stacknleft;
250 1.25 christos xmark->stacknleft = stacknleft;
251 1.25 christos xmark = xmark->marknext;
252 1.23 christos }
253 1.1 cgd } else {
254 1.25 christos char *oldspace = stacknxt;
255 1.25 christos int oldlen = stacknleft;
256 1.25 christos char *p = stalloc(newlen);
257 1.25 christos
258 1.25 christos (void)memcpy(p, oldspace, oldlen);
259 1.1 cgd stacknxt = p; /* free the space */
260 1.17 cgd stacknleft += newlen; /* we just allocated */
261 1.1 cgd }
262 1.31 kre INTON;
263 1.1 cgd }
264 1.1 cgd
265 1.1 cgd void
266 1.26 christos grabstackblock(int len)
267 1.10 cgd {
268 1.24 christos len = SHELL_ALIGN(len);
269 1.33 kre INTOFF;
270 1.1 cgd stacknxt += len;
271 1.1 cgd stacknleft -= len;
272 1.33 kre INTON;
273 1.1 cgd }
274 1.1 cgd
275 1.1 cgd /*
276 1.26 christos * The following routines are somewhat easier to use than the above.
277 1.1 cgd * The user declares a variable of type STACKSTR, which may be declared
278 1.1 cgd * to be a register. The macro STARTSTACKSTR initializes things. Then
279 1.1 cgd * the user uses the macro STPUTC to add characters to the string. In
280 1.1 cgd * effect, STPUTC(c, p) is the same as *p++ = c except that the stack is
281 1.1 cgd * grown as necessary. When the user is done, she can just leave the
282 1.1 cgd * string there and refer to it using stackblock(). Or she can allocate
283 1.1 cgd * the space for it using grabstackstr(). If it is necessary to allow
284 1.1 cgd * someone else to use the stack temporarily and then continue to grow
285 1.1 cgd * the string, the user should use grabstack to allocate the space, and
286 1.1 cgd * then call ungrabstr(p) to return to the previous mode of operation.
287 1.1 cgd *
288 1.1 cgd * USTPUTC is like STPUTC except that it doesn't check for overflow.
289 1.1 cgd * CHECKSTACKSPACE can be called before USTPUTC to ensure that there
290 1.1 cgd * is space for at least one character.
291 1.1 cgd */
292 1.1 cgd
293 1.1 cgd char *
294 1.26 christos growstackstr(void)
295 1.25 christos {
296 1.1 cgd int len = stackblocksize();
297 1.1 cgd if (herefd >= 0 && len >= 1024) {
298 1.1 cgd xwrite(herefd, stackblock(), len);
299 1.1 cgd sstrnleft = len - 1;
300 1.1 cgd return stackblock();
301 1.1 cgd }
302 1.1 cgd growstackblock();
303 1.1 cgd sstrnleft = stackblocksize() - len - 1;
304 1.1 cgd return stackblock() + len;
305 1.1 cgd }
306 1.1 cgd
307 1.1 cgd /*
308 1.1 cgd * Called from CHECKSTRSPACE.
309 1.1 cgd */
310 1.1 cgd
311 1.1 cgd char *
312 1.26 christos makestrspace(void)
313 1.25 christos {
314 1.1 cgd int len = stackblocksize() - sstrnleft;
315 1.1 cgd growstackblock();
316 1.1 cgd sstrnleft = stackblocksize() - len;
317 1.1 cgd return stackblock() + len;
318 1.1 cgd }
319 1.1 cgd
320 1.30 kre /*
321 1.30 kre * Note that this only works to release stack space for reuse
322 1.30 kre * if nothing else has allocated space on the stack since the grabstackstr()
323 1.30 kre *
324 1.30 kre * "s" is the start of the area to be released, and "p" represents the end
325 1.30 kre * of the string we have stored beyond there and are now releasing.
326 1.30 kre * (ie: "p" should be the same as in the call to grabstackstr()).
327 1.30 kre *
328 1.30 kre * stunalloc(s) and ungrabstackstr(s, p) are almost interchangable after
329 1.30 kre * a grabstackstr(), however the latter also returns string space so we
330 1.30 kre * can just continue with STPUTC() etc without needing a new STARTSTACKSTR(s)
331 1.30 kre */
332 1.1 cgd void
333 1.26 christos ungrabstackstr(char *s, char *p)
334 1.25 christos {
335 1.30 kre #ifdef DEBUG
336 1.30 kre if (s < stacknxt || stacknxt + stacknleft < s)
337 1.30 kre abort();
338 1.30 kre #endif
339 1.1 cgd stacknleft += stacknxt - s;
340 1.1 cgd stacknxt = s;
341 1.1 cgd sstrnleft = stacknleft - (p - s);
342 1.1 cgd }
343 1.34 kre
344 1.34 kre /*
345 1.34 kre * Save the concat of a sequence of strings in stack space
346 1.34 kre *
347 1.34 kre * The first arg (if not NULL) is a pointer to where the final string
348 1.34 kre * length will be returned.
349 1.34 kre *
350 1.34 kre * Remaining args are pointers to strings - sufficient space to hold
351 1.34 kre * the concat of the strings is allocated on the stack, the strings
352 1.36 andvar * are copied into that space, and a pointer to its start is returned.
353 1.35 kre * The arg list is terminated with STSTRC_END.
354 1.34 kre *
355 1.34 kre * Use stunalloc(string) (in proper sequence) to release the string
356 1.34 kre */
357 1.34 kre char *
358 1.34 kre ststrcat(size_t *lp, ...)
359 1.34 kre {
360 1.34 kre va_list ap;
361 1.34 kre const char *arg;
362 1.34 kre size_t len, tlen = 0, alen[8];
363 1.34 kre char *str, *nxt;
364 1.34 kre unsigned int n;
365 1.34 kre
366 1.34 kre n = 0;
367 1.34 kre va_start(ap, lp);
368 1.34 kre arg = va_arg(ap, const char *);
369 1.35 kre while (arg != STSTRC_END) {
370 1.34 kre len = strlen(arg);
371 1.34 kre if (n < sizeof(alen)/sizeof(alen[0]))
372 1.34 kre alen[n++] = len;
373 1.34 kre tlen += len;
374 1.34 kre arg = va_arg(ap, const char *);
375 1.34 kre }
376 1.34 kre va_end(ap);
377 1.34 kre
378 1.34 kre if (lp != NULL)
379 1.34 kre *lp = tlen;
380 1.34 kre
381 1.34 kre if (tlen >= INT_MAX)
382 1.34 kre error("ststrcat() over length botch");
383 1.34 kre str = (char *)stalloc((int)tlen + 1); /* 1 for \0 */
384 1.35 kre str[tlen] = '\0'; /* in case of no args */
385 1.34 kre
386 1.34 kre n = 0;
387 1.34 kre nxt = str;
388 1.34 kre va_start(ap, lp);
389 1.34 kre arg = va_arg(ap, const char *);
390 1.35 kre while (arg != STSTRC_END) {
391 1.34 kre if (n < sizeof(alen)/sizeof(alen[0]))
392 1.34 kre len = alen[n++];
393 1.34 kre else
394 1.34 kre len = strlen(arg);
395 1.34 kre
396 1.34 kre scopy(arg, nxt);
397 1.34 kre nxt += len;
398 1.34 kre
399 1.34 kre arg = va_arg(ap, const char *);
400 1.34 kre }
401 1.34 kre va_end(ap);
402 1.34 kre
403 1.34 kre return str;
404 1.34 kre }
405 1.34 kre
406