memalloc.c revision 1.41 1 1.41 kre /* $NetBSD: memalloc.c,v 1.41 2025/05/07 14:01:01 kre Exp $ */
2 1.15 cgd
3 1.1 cgd /*-
4 1.5 jtc * Copyright (c) 1991, 1993
5 1.5 jtc * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Kenneth Almquist.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.28 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 cgd * may be used to endorse or promote products derived from this software
20 1.1 cgd * without specific prior written permission.
21 1.1 cgd *
22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 cgd * SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.20 christos #include <sys/cdefs.h>
36 1.1 cgd #ifndef lint
37 1.15 cgd #if 0
38 1.16 christos static char sccsid[] = "@(#)memalloc.c 8.3 (Berkeley) 5/4/95";
39 1.15 cgd #else
40 1.41 kre __RCSID("$NetBSD: memalloc.c,v 1.41 2025/05/07 14:01:01 kre Exp $");
41 1.15 cgd #endif
42 1.1 cgd #endif /* not lint */
43 1.1 cgd
44 1.34 kre #include <limits.h>
45 1.34 kre #include <stdarg.h>
46 1.21 christos #include <stdlib.h>
47 1.21 christos #include <unistd.h>
48 1.21 christos
49 1.1 cgd #include "shell.h"
50 1.1 cgd #include "output.h"
51 1.1 cgd #include "memalloc.h"
52 1.1 cgd #include "error.h"
53 1.1 cgd #include "machdep.h"
54 1.1 cgd #include "mystring.h"
55 1.1 cgd
56 1.1 cgd /*
57 1.1 cgd * Like malloc, but returns an error when out of space.
58 1.1 cgd */
59 1.1 cgd
60 1.1 cgd pointer
61 1.29 matt ckmalloc(size_t nbytes)
62 1.10 cgd {
63 1.19 tls pointer p;
64 1.1 cgd
65 1.22 mycroft p = malloc(nbytes);
66 1.22 mycroft if (p == NULL)
67 1.1 cgd error("Out of space");
68 1.1 cgd return p;
69 1.1 cgd }
70 1.1 cgd
71 1.1 cgd
72 1.1 cgd /*
73 1.1 cgd * Same for realloc.
74 1.1 cgd */
75 1.1 cgd
76 1.1 cgd pointer
77 1.26 christos ckrealloc(pointer p, int nbytes)
78 1.10 cgd {
79 1.25 christos p = realloc(p, nbytes);
80 1.25 christos if (p == NULL)
81 1.1 cgd error("Out of space");
82 1.1 cgd return p;
83 1.1 cgd }
84 1.1 cgd
85 1.1 cgd
86 1.1 cgd /*
87 1.1 cgd * Make a copy of a string in safe storage.
88 1.1 cgd */
89 1.1 cgd
90 1.1 cgd char *
91 1.27 dsl savestr(const char *s)
92 1.25 christos {
93 1.19 tls char *p;
94 1.1 cgd
95 1.1 cgd p = ckmalloc(strlen(s) + 1);
96 1.1 cgd scopy(s, p);
97 1.1 cgd return p;
98 1.1 cgd }
99 1.1 cgd
100 1.1 cgd
101 1.1 cgd /*
102 1.1 cgd * Parse trees for commands are allocated in lifo order, so we use a stack
103 1.1 cgd * to make this more efficient, and also to avoid all sorts of exception
104 1.1 cgd * handling code to handle interrupts in the middle of a parse.
105 1.12 mycroft *
106 1.12 mycroft * The size 504 was chosen because the Ultrix malloc handles that size
107 1.12 mycroft * well.
108 1.1 cgd */
109 1.1 cgd
110 1.12 mycroft #define MINSIZE 504 /* minimum size of a block */
111 1.1 cgd
112 1.1 cgd struct stack_block {
113 1.1 cgd struct stack_block *prev;
114 1.1 cgd char space[MINSIZE];
115 1.1 cgd };
116 1.1 cgd
117 1.1 cgd struct stack_block stackbase;
118 1.1 cgd struct stack_block *stackp = &stackbase;
119 1.23 christos struct stackmark *markp;
120 1.1 cgd char *stacknxt = stackbase.space;
121 1.1 cgd int stacknleft = MINSIZE;
122 1.1 cgd int sstrnleft;
123 1.1 cgd
124 1.1 cgd pointer
125 1.26 christos stalloc(int nbytes)
126 1.10 cgd {
127 1.19 tls char *p;
128 1.1 cgd
129 1.24 christos nbytes = SHELL_ALIGN(nbytes);
130 1.12 mycroft if (nbytes > stacknleft) {
131 1.1 cgd int blocksize;
132 1.1 cgd struct stack_block *sp;
133 1.1 cgd
134 1.12 mycroft blocksize = nbytes;
135 1.1 cgd if (blocksize < MINSIZE)
136 1.1 cgd blocksize = MINSIZE;
137 1.1 cgd INTOFF;
138 1.1 cgd sp = ckmalloc(sizeof(struct stack_block) - MINSIZE + blocksize);
139 1.1 cgd sp->prev = stackp;
140 1.1 cgd stacknxt = sp->space;
141 1.1 cgd stacknleft = blocksize;
142 1.1 cgd stackp = sp;
143 1.1 cgd INTON;
144 1.1 cgd }
145 1.33 kre INTOFF;
146 1.1 cgd p = stacknxt;
147 1.12 mycroft stacknxt += nbytes;
148 1.12 mycroft stacknleft -= nbytes;
149 1.33 kre INTON;
150 1.1 cgd return p;
151 1.1 cgd }
152 1.1 cgd
153 1.1 cgd
154 1.1 cgd void
155 1.26 christos stunalloc(pointer p)
156 1.25 christos {
157 1.1 cgd if (p == NULL) { /*DEBUG */
158 1.1 cgd write(2, "stunalloc\n", 10);
159 1.1 cgd abort();
160 1.1 cgd }
161 1.1 cgd stacknleft += stacknxt - (char *)p;
162 1.1 cgd stacknxt = p;
163 1.1 cgd }
164 1.1 cgd
165 1.1 cgd
166 1.32 kre /* save the current status of the sh stack */
167 1.1 cgd void
168 1.26 christos setstackmark(struct stackmark *mark)
169 1.25 christos {
170 1.1 cgd mark->stackp = stackp;
171 1.1 cgd mark->stacknxt = stacknxt;
172 1.1 cgd mark->stacknleft = stacknleft;
173 1.30 kre mark->sstrnleft = sstrnleft;
174 1.23 christos mark->marknext = markp;
175 1.23 christos markp = mark;
176 1.1 cgd }
177 1.1 cgd
178 1.32 kre /* reset the stack mark, and remove it from the list of marks */
179 1.32 kre void
180 1.32 kre popstackmark(struct stackmark *mark)
181 1.32 kre {
182 1.33 kre INTOFF;
183 1.32 kre markp = mark->marknext; /* delete mark from the list */
184 1.32 kre rststackmark(mark); /* and reset stack */
185 1.33 kre INTON;
186 1.32 kre }
187 1.1 cgd
188 1.32 kre /* reset the shell stack to its state recorded in the stack mark */
189 1.1 cgd void
190 1.32 kre rststackmark(struct stackmark *mark)
191 1.25 christos {
192 1.1 cgd struct stack_block *sp;
193 1.1 cgd
194 1.1 cgd INTOFF;
195 1.1 cgd while (stackp != mark->stackp) {
196 1.32 kre /* delete any recently allocated mem blocks */
197 1.1 cgd sp = stackp;
198 1.1 cgd stackp = sp->prev;
199 1.1 cgd ckfree(sp);
200 1.1 cgd }
201 1.1 cgd stacknxt = mark->stacknxt;
202 1.1 cgd stacknleft = mark->stacknleft;
203 1.30 kre sstrnleft = mark->sstrnleft;
204 1.1 cgd INTON;
205 1.1 cgd }
206 1.1 cgd
207 1.1 cgd
208 1.1 cgd /*
209 1.1 cgd * When the parser reads in a string, it wants to stick the string on the
210 1.1 cgd * stack and only adjust the stack pointer when it knows how big the
211 1.1 cgd * string is. Stackblock (defined in stack.h) returns a pointer to a block
212 1.1 cgd * of space on top of the stack and stackblocklen returns the length of
213 1.1 cgd * this block. Growstackblock will grow this space by at least one byte,
214 1.1 cgd * possibly moving it (like realloc). Grabstackblock actually allocates the
215 1.1 cgd * part of the block that has been used.
216 1.1 cgd */
217 1.1 cgd
218 1.1 cgd void
219 1.26 christos growstackblock(void)
220 1.25 christos {
221 1.24 christos int newlen = SHELL_ALIGN(stacknleft * 2 + 100);
222 1.1 cgd
223 1.31 kre INTOFF;
224 1.1 cgd if (stacknxt == stackp->space && stackp != &stackbase) {
225 1.25 christos struct stack_block *oldstackp;
226 1.25 christos struct stackmark *xmark;
227 1.25 christos struct stack_block *sp;
228 1.25 christos
229 1.23 christos oldstackp = stackp;
230 1.1 cgd sp = stackp;
231 1.1 cgd stackp = sp->prev;
232 1.25 christos sp = ckrealloc((pointer)sp,
233 1.25 christos sizeof(struct stack_block) - MINSIZE + newlen);
234 1.1 cgd sp->prev = stackp;
235 1.1 cgd stackp = sp;
236 1.1 cgd stacknxt = sp->space;
237 1.31 kre sstrnleft += newlen - stacknleft;
238 1.1 cgd stacknleft = newlen;
239 1.25 christos
240 1.25 christos /*
241 1.25 christos * Stack marks pointing to the start of the old block
242 1.38 kre * must be relocated to point to the new block
243 1.25 christos */
244 1.25 christos xmark = markp;
245 1.25 christos while (xmark != NULL && xmark->stackp == oldstackp) {
246 1.25 christos xmark->stackp = stackp;
247 1.25 christos xmark->stacknxt = stacknxt;
248 1.31 kre xmark->sstrnleft += stacknleft - xmark->stacknleft;
249 1.25 christos xmark->stacknleft = stacknleft;
250 1.25 christos xmark = xmark->marknext;
251 1.23 christos }
252 1.1 cgd } else {
253 1.25 christos char *oldspace = stacknxt;
254 1.25 christos int oldlen = stacknleft;
255 1.25 christos char *p = stalloc(newlen);
256 1.25 christos
257 1.25 christos (void)memcpy(p, oldspace, oldlen);
258 1.1 cgd stacknxt = p; /* free the space */
259 1.17 cgd stacknleft += newlen; /* we just allocated */
260 1.1 cgd }
261 1.31 kre INTON;
262 1.1 cgd }
263 1.1 cgd
264 1.1 cgd void
265 1.26 christos grabstackblock(int len)
266 1.10 cgd {
267 1.24 christos len = SHELL_ALIGN(len);
268 1.33 kre INTOFF;
269 1.1 cgd stacknxt += len;
270 1.1 cgd stacknleft -= len;
271 1.33 kre INTON;
272 1.1 cgd }
273 1.1 cgd
274 1.1 cgd /*
275 1.26 christos * The following routines are somewhat easier to use than the above.
276 1.1 cgd * The user declares a variable of type STACKSTR, which may be declared
277 1.1 cgd * to be a register. The macro STARTSTACKSTR initializes things. Then
278 1.1 cgd * the user uses the macro STPUTC to add characters to the string. In
279 1.1 cgd * effect, STPUTC(c, p) is the same as *p++ = c except that the stack is
280 1.1 cgd * grown as necessary. When the user is done, she can just leave the
281 1.1 cgd * string there and refer to it using stackblock(). Or she can allocate
282 1.1 cgd * the space for it using grabstackstr(). If it is necessary to allow
283 1.1 cgd * someone else to use the stack temporarily and then continue to grow
284 1.1 cgd * the string, the user should use grabstack to allocate the space, and
285 1.1 cgd * then call ungrabstr(p) to return to the previous mode of operation.
286 1.1 cgd *
287 1.1 cgd * USTPUTC is like STPUTC except that it doesn't check for overflow.
288 1.1 cgd * CHECKSTACKSPACE can be called before USTPUTC to ensure that there
289 1.1 cgd * is space for at least one character.
290 1.1 cgd */
291 1.1 cgd
292 1.1 cgd char *
293 1.26 christos growstackstr(void)
294 1.25 christos {
295 1.1 cgd int len = stackblocksize();
296 1.40 kre
297 1.1 cgd growstackblock();
298 1.1 cgd sstrnleft = stackblocksize() - len - 1;
299 1.1 cgd return stackblock() + len;
300 1.1 cgd }
301 1.1 cgd
302 1.1 cgd /*
303 1.1 cgd * Called from CHECKSTRSPACE.
304 1.1 cgd */
305 1.1 cgd
306 1.1 cgd char *
307 1.26 christos makestrspace(void)
308 1.25 christos {
309 1.1 cgd int len = stackblocksize() - sstrnleft;
310 1.1 cgd growstackblock();
311 1.1 cgd sstrnleft = stackblocksize() - len;
312 1.1 cgd return stackblock() + len;
313 1.1 cgd }
314 1.1 cgd
315 1.30 kre /*
316 1.30 kre * Note that this only works to release stack space for reuse
317 1.30 kre * if nothing else has allocated space on the stack since the grabstackstr()
318 1.30 kre *
319 1.30 kre * "s" is the start of the area to be released, and "p" represents the end
320 1.30 kre * of the string we have stored beyond there and are now releasing.
321 1.30 kre * (ie: "p" should be the same as in the call to grabstackstr()).
322 1.30 kre *
323 1.37 andvar * stunalloc(s) and ungrabstackstr(s, p) are almost interchangeable after
324 1.30 kre * a grabstackstr(), however the latter also returns string space so we
325 1.30 kre * can just continue with STPUTC() etc without needing a new STARTSTACKSTR(s)
326 1.30 kre */
327 1.1 cgd void
328 1.26 christos ungrabstackstr(char *s, char *p)
329 1.25 christos {
330 1.30 kre #ifdef DEBUG
331 1.30 kre if (s < stacknxt || stacknxt + stacknleft < s)
332 1.30 kre abort();
333 1.30 kre #endif
334 1.1 cgd stacknleft += stacknxt - s;
335 1.1 cgd stacknxt = s;
336 1.1 cgd sstrnleft = stacknleft - (p - s);
337 1.1 cgd }
338 1.34 kre
339 1.34 kre /*
340 1.34 kre * Save the concat of a sequence of strings in stack space
341 1.34 kre *
342 1.34 kre * The first arg (if not NULL) is a pointer to where the final string
343 1.34 kre * length will be returned.
344 1.34 kre *
345 1.34 kre * Remaining args are pointers to strings - sufficient space to hold
346 1.34 kre * the concat of the strings is allocated on the stack, the strings
347 1.36 andvar * are copied into that space, and a pointer to its start is returned.
348 1.35 kre * The arg list is terminated with STSTRC_END.
349 1.34 kre *
350 1.34 kre * Use stunalloc(string) (in proper sequence) to release the string
351 1.34 kre */
352 1.34 kre char *
353 1.34 kre ststrcat(size_t *lp, ...)
354 1.34 kre {
355 1.34 kre va_list ap;
356 1.34 kre const char *arg;
357 1.34 kre size_t len, tlen = 0, alen[8];
358 1.34 kre char *str, *nxt;
359 1.34 kre unsigned int n;
360 1.34 kre
361 1.34 kre n = 0;
362 1.34 kre va_start(ap, lp);
363 1.34 kre arg = va_arg(ap, const char *);
364 1.35 kre while (arg != STSTRC_END) {
365 1.34 kre len = strlen(arg);
366 1.34 kre if (n < sizeof(alen)/sizeof(alen[0]))
367 1.34 kre alen[n++] = len;
368 1.34 kre tlen += len;
369 1.34 kre arg = va_arg(ap, const char *);
370 1.34 kre }
371 1.34 kre va_end(ap);
372 1.34 kre
373 1.34 kre if (lp != NULL)
374 1.34 kre *lp = tlen;
375 1.34 kre
376 1.34 kre if (tlen >= INT_MAX)
377 1.34 kre error("ststrcat() over length botch");
378 1.34 kre str = (char *)stalloc((int)tlen + 1); /* 1 for \0 */
379 1.35 kre str[tlen] = '\0'; /* in case of no args */
380 1.34 kre
381 1.34 kre n = 0;
382 1.34 kre nxt = str;
383 1.34 kre va_start(ap, lp);
384 1.34 kre arg = va_arg(ap, const char *);
385 1.35 kre while (arg != STSTRC_END) {
386 1.34 kre if (n < sizeof(alen)/sizeof(alen[0]))
387 1.34 kre len = alen[n++];
388 1.34 kre else
389 1.34 kre len = strlen(arg);
390 1.34 kre
391 1.34 kre scopy(arg, nxt);
392 1.34 kre nxt += len;
393 1.34 kre
394 1.34 kre arg = va_arg(ap, const char *);
395 1.34 kre }
396 1.34 kre va_end(ap);
397 1.34 kre
398 1.34 kre return str;
399 1.34 kre }
400