Home | History | Annotate | Line # | Download | only in zlib
      1      1.1  christos /* adler32.c -- compute the Adler-32 checksum of a data stream
      2  1.1.1.2  christos  * Copyright (C) 1995-2011, 2016 Mark Adler
      3      1.1  christos  * For conditions of distribution and use, see copyright notice in zlib.h
      4      1.1  christos  */
      5      1.1  christos 
      6  1.1.1.3  christos /* @(#) Id */
      7  1.1.1.2  christos 
      8  1.1.1.2  christos #include "zutil.h"
      9      1.1  christos 
     10  1.1.1.2  christos #define BASE 65521U     /* largest prime smaller than 65536 */
     11      1.1  christos #define NMAX 5552
     12      1.1  christos /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
     13      1.1  christos 
     14      1.1  christos #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
     15      1.1  christos #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
     16      1.1  christos #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
     17      1.1  christos #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
     18      1.1  christos #define DO16(buf)   DO8(buf,0); DO8(buf,8);
     19      1.1  christos 
     20  1.1.1.2  christos /* use NO_DIVIDE if your processor does not do division in hardware --
     21  1.1.1.2  christos    try it both ways to see which is faster */
     22      1.1  christos #ifdef NO_DIVIDE
     23  1.1.1.2  christos /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
     24  1.1.1.2  christos    (thank you to John Reiser for pointing this out) */
     25  1.1.1.2  christos #  define CHOP(a) \
     26  1.1.1.2  christos     do { \
     27  1.1.1.2  christos         unsigned long tmp = a >> 16; \
     28  1.1.1.2  christos         a &= 0xffffUL; \
     29  1.1.1.2  christos         a += (tmp << 4) - tmp; \
     30  1.1.1.2  christos     } while (0)
     31  1.1.1.2  christos #  define MOD28(a) \
     32      1.1  christos     do { \
     33  1.1.1.2  christos         CHOP(a); \
     34      1.1  christos         if (a >= BASE) a -= BASE; \
     35      1.1  christos     } while (0)
     36  1.1.1.2  christos #  define MOD(a) \
     37      1.1  christos     do { \
     38  1.1.1.2  christos         CHOP(a); \
     39  1.1.1.2  christos         MOD28(a); \
     40  1.1.1.2  christos     } while (0)
     41  1.1.1.2  christos #  define MOD63(a) \
     42  1.1.1.2  christos     do { /* this assumes a is not negative */ \
     43  1.1.1.2  christos         z_off64_t tmp = a >> 32; \
     44  1.1.1.2  christos         a &= 0xffffffffL; \
     45  1.1.1.2  christos         a += (tmp << 8) - (tmp << 5) + tmp; \
     46  1.1.1.2  christos         tmp = a >> 16; \
     47  1.1.1.2  christos         a &= 0xffffL; \
     48  1.1.1.2  christos         a += (tmp << 4) - tmp; \
     49  1.1.1.2  christos         tmp = a >> 16; \
     50  1.1.1.2  christos         a &= 0xffffL; \
     51  1.1.1.2  christos         a += (tmp << 4) - tmp; \
     52      1.1  christos         if (a >= BASE) a -= BASE; \
     53      1.1  christos     } while (0)
     54      1.1  christos #else
     55      1.1  christos #  define MOD(a) a %= BASE
     56  1.1.1.2  christos #  define MOD28(a) a %= BASE
     57  1.1.1.2  christos #  define MOD63(a) a %= BASE
     58      1.1  christos #endif
     59      1.1  christos 
     60      1.1  christos /* ========================================================================= */
     61  1.1.1.4  christos uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len) {
     62      1.1  christos     unsigned long sum2;
     63      1.1  christos     unsigned n;
     64      1.1  christos 
     65      1.1  christos     /* split Adler-32 into component sums */
     66      1.1  christos     sum2 = (adler >> 16) & 0xffff;
     67      1.1  christos     adler &= 0xffff;
     68      1.1  christos 
     69      1.1  christos     /* in case user likes doing a byte at a time, keep it fast */
     70      1.1  christos     if (len == 1) {
     71      1.1  christos         adler += buf[0];
     72      1.1  christos         if (adler >= BASE)
     73      1.1  christos             adler -= BASE;
     74      1.1  christos         sum2 += adler;
     75      1.1  christos         if (sum2 >= BASE)
     76      1.1  christos             sum2 -= BASE;
     77      1.1  christos         return adler | (sum2 << 16);
     78      1.1  christos     }
     79      1.1  christos 
     80      1.1  christos     /* initial Adler-32 value (deferred check for len == 1 speed) */
     81      1.1  christos     if (buf == Z_NULL)
     82      1.1  christos         return 1L;
     83      1.1  christos 
     84      1.1  christos     /* in case short lengths are provided, keep it somewhat fast */
     85      1.1  christos     if (len < 16) {
     86      1.1  christos         while (len--) {
     87      1.1  christos             adler += *buf++;
     88      1.1  christos             sum2 += adler;
     89      1.1  christos         }
     90      1.1  christos         if (adler >= BASE)
     91      1.1  christos             adler -= BASE;
     92  1.1.1.2  christos         MOD28(sum2);            /* only added so many BASE's */
     93      1.1  christos         return adler | (sum2 << 16);
     94      1.1  christos     }
     95      1.1  christos 
     96      1.1  christos     /* do length NMAX blocks -- requires just one modulo operation */
     97      1.1  christos     while (len >= NMAX) {
     98      1.1  christos         len -= NMAX;
     99      1.1  christos         n = NMAX / 16;          /* NMAX is divisible by 16 */
    100      1.1  christos         do {
    101      1.1  christos             DO16(buf);          /* 16 sums unrolled */
    102      1.1  christos             buf += 16;
    103      1.1  christos         } while (--n);
    104      1.1  christos         MOD(adler);
    105      1.1  christos         MOD(sum2);
    106      1.1  christos     }
    107      1.1  christos 
    108      1.1  christos     /* do remaining bytes (less than NMAX, still just one modulo) */
    109      1.1  christos     if (len) {                  /* avoid modulos if none remaining */
    110      1.1  christos         while (len >= 16) {
    111      1.1  christos             len -= 16;
    112      1.1  christos             DO16(buf);
    113      1.1  christos             buf += 16;
    114      1.1  christos         }
    115      1.1  christos         while (len--) {
    116      1.1  christos             adler += *buf++;
    117      1.1  christos             sum2 += adler;
    118      1.1  christos         }
    119      1.1  christos         MOD(adler);
    120      1.1  christos         MOD(sum2);
    121      1.1  christos     }
    122      1.1  christos 
    123      1.1  christos     /* return recombined sums */
    124      1.1  christos     return adler | (sum2 << 16);
    125      1.1  christos }
    126      1.1  christos 
    127      1.1  christos /* ========================================================================= */
    128  1.1.1.4  christos uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) {
    129  1.1.1.2  christos     return adler32_z(adler, buf, len);
    130  1.1.1.2  christos }
    131  1.1.1.2  christos 
    132  1.1.1.2  christos /* ========================================================================= */
    133  1.1.1.4  christos local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2) {
    134      1.1  christos     unsigned long sum1;
    135      1.1  christos     unsigned long sum2;
    136      1.1  christos     unsigned rem;
    137      1.1  christos 
    138  1.1.1.2  christos     /* for negative len, return invalid adler32 as a clue for debugging */
    139  1.1.1.2  christos     if (len2 < 0)
    140  1.1.1.2  christos         return 0xffffffffUL;
    141  1.1.1.2  christos 
    142      1.1  christos     /* the derivation of this formula is left as an exercise for the reader */
    143  1.1.1.2  christos     MOD63(len2);                /* assumes len2 >= 0 */
    144  1.1.1.2  christos     rem = (unsigned)len2;
    145      1.1  christos     sum1 = adler1 & 0xffff;
    146      1.1  christos     sum2 = rem * sum1;
    147      1.1  christos     MOD(sum2);
    148      1.1  christos     sum1 += (adler2 & 0xffff) + BASE - 1;
    149      1.1  christos     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
    150  1.1.1.2  christos     if (sum1 >= BASE) sum1 -= BASE;
    151  1.1.1.2  christos     if (sum1 >= BASE) sum1 -= BASE;
    152  1.1.1.2  christos     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
    153  1.1.1.2  christos     if (sum2 >= BASE) sum2 -= BASE;
    154      1.1  christos     return sum1 | (sum2 << 16);
    155      1.1  christos }
    156  1.1.1.2  christos 
    157  1.1.1.2  christos /* ========================================================================= */
    158  1.1.1.4  christos uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2) {
    159  1.1.1.2  christos     return adler32_combine_(adler1, adler2, len2);
    160  1.1.1.2  christos }
    161  1.1.1.2  christos 
    162  1.1.1.4  christos uLong ZEXPORT adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2) {
    163  1.1.1.2  christos     return adler32_combine_(adler1, adler2, len2);
    164  1.1.1.2  christos }
    165