1 1.1 christos /* adler32.c -- compute the Adler-32 checksum of a data stream 2 1.1.1.2 christos * Copyright (C) 1995-2011, 2016 Mark Adler 3 1.1 christos * For conditions of distribution and use, see copyright notice in zlib.h 4 1.1 christos */ 5 1.1 christos 6 1.1.1.3 christos /* @(#) Id */ 7 1.1.1.2 christos 8 1.1.1.2 christos #include "zutil.h" 9 1.1 christos 10 1.1.1.2 christos #define BASE 65521U /* largest prime smaller than 65536 */ 11 1.1 christos #define NMAX 5552 12 1.1 christos /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ 13 1.1 christos 14 1.1 christos #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} 15 1.1 christos #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); 16 1.1 christos #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); 17 1.1 christos #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); 18 1.1 christos #define DO16(buf) DO8(buf,0); DO8(buf,8); 19 1.1 christos 20 1.1.1.2 christos /* use NO_DIVIDE if your processor does not do division in hardware -- 21 1.1.1.2 christos try it both ways to see which is faster */ 22 1.1 christos #ifdef NO_DIVIDE 23 1.1.1.2 christos /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 24 1.1.1.2 christos (thank you to John Reiser for pointing this out) */ 25 1.1.1.2 christos # define CHOP(a) \ 26 1.1.1.2 christos do { \ 27 1.1.1.2 christos unsigned long tmp = a >> 16; \ 28 1.1.1.2 christos a &= 0xffffUL; \ 29 1.1.1.2 christos a += (tmp << 4) - tmp; \ 30 1.1.1.2 christos } while (0) 31 1.1.1.2 christos # define MOD28(a) \ 32 1.1 christos do { \ 33 1.1.1.2 christos CHOP(a); \ 34 1.1 christos if (a >= BASE) a -= BASE; \ 35 1.1 christos } while (0) 36 1.1.1.2 christos # define MOD(a) \ 37 1.1 christos do { \ 38 1.1.1.2 christos CHOP(a); \ 39 1.1.1.2 christos MOD28(a); \ 40 1.1.1.2 christos } while (0) 41 1.1.1.2 christos # define MOD63(a) \ 42 1.1.1.2 christos do { /* this assumes a is not negative */ \ 43 1.1.1.2 christos z_off64_t tmp = a >> 32; \ 44 1.1.1.2 christos a &= 0xffffffffL; \ 45 1.1.1.2 christos a += (tmp << 8) - (tmp << 5) + tmp; \ 46 1.1.1.2 christos tmp = a >> 16; \ 47 1.1.1.2 christos a &= 0xffffL; \ 48 1.1.1.2 christos a += (tmp << 4) - tmp; \ 49 1.1.1.2 christos tmp = a >> 16; \ 50 1.1.1.2 christos a &= 0xffffL; \ 51 1.1.1.2 christos a += (tmp << 4) - tmp; \ 52 1.1 christos if (a >= BASE) a -= BASE; \ 53 1.1 christos } while (0) 54 1.1 christos #else 55 1.1 christos # define MOD(a) a %= BASE 56 1.1.1.2 christos # define MOD28(a) a %= BASE 57 1.1.1.2 christos # define MOD63(a) a %= BASE 58 1.1 christos #endif 59 1.1 christos 60 1.1 christos /* ========================================================================= */ 61 1.1.1.4 christos uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len) { 62 1.1 christos unsigned long sum2; 63 1.1 christos unsigned n; 64 1.1 christos 65 1.1 christos /* split Adler-32 into component sums */ 66 1.1 christos sum2 = (adler >> 16) & 0xffff; 67 1.1 christos adler &= 0xffff; 68 1.1 christos 69 1.1 christos /* in case user likes doing a byte at a time, keep it fast */ 70 1.1 christos if (len == 1) { 71 1.1 christos adler += buf[0]; 72 1.1 christos if (adler >= BASE) 73 1.1 christos adler -= BASE; 74 1.1 christos sum2 += adler; 75 1.1 christos if (sum2 >= BASE) 76 1.1 christos sum2 -= BASE; 77 1.1 christos return adler | (sum2 << 16); 78 1.1 christos } 79 1.1 christos 80 1.1 christos /* initial Adler-32 value (deferred check for len == 1 speed) */ 81 1.1 christos if (buf == Z_NULL) 82 1.1 christos return 1L; 83 1.1 christos 84 1.1 christos /* in case short lengths are provided, keep it somewhat fast */ 85 1.1 christos if (len < 16) { 86 1.1 christos while (len--) { 87 1.1 christos adler += *buf++; 88 1.1 christos sum2 += adler; 89 1.1 christos } 90 1.1 christos if (adler >= BASE) 91 1.1 christos adler -= BASE; 92 1.1.1.2 christos MOD28(sum2); /* only added so many BASE's */ 93 1.1 christos return adler | (sum2 << 16); 94 1.1 christos } 95 1.1 christos 96 1.1 christos /* do length NMAX blocks -- requires just one modulo operation */ 97 1.1 christos while (len >= NMAX) { 98 1.1 christos len -= NMAX; 99 1.1 christos n = NMAX / 16; /* NMAX is divisible by 16 */ 100 1.1 christos do { 101 1.1 christos DO16(buf); /* 16 sums unrolled */ 102 1.1 christos buf += 16; 103 1.1 christos } while (--n); 104 1.1 christos MOD(adler); 105 1.1 christos MOD(sum2); 106 1.1 christos } 107 1.1 christos 108 1.1 christos /* do remaining bytes (less than NMAX, still just one modulo) */ 109 1.1 christos if (len) { /* avoid modulos if none remaining */ 110 1.1 christos while (len >= 16) { 111 1.1 christos len -= 16; 112 1.1 christos DO16(buf); 113 1.1 christos buf += 16; 114 1.1 christos } 115 1.1 christos while (len--) { 116 1.1 christos adler += *buf++; 117 1.1 christos sum2 += adler; 118 1.1 christos } 119 1.1 christos MOD(adler); 120 1.1 christos MOD(sum2); 121 1.1 christos } 122 1.1 christos 123 1.1 christos /* return recombined sums */ 124 1.1 christos return adler | (sum2 << 16); 125 1.1 christos } 126 1.1 christos 127 1.1 christos /* ========================================================================= */ 128 1.1.1.4 christos uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) { 129 1.1.1.2 christos return adler32_z(adler, buf, len); 130 1.1.1.2 christos } 131 1.1.1.2 christos 132 1.1.1.2 christos /* ========================================================================= */ 133 1.1.1.4 christos local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2) { 134 1.1 christos unsigned long sum1; 135 1.1 christos unsigned long sum2; 136 1.1 christos unsigned rem; 137 1.1 christos 138 1.1.1.2 christos /* for negative len, return invalid adler32 as a clue for debugging */ 139 1.1.1.2 christos if (len2 < 0) 140 1.1.1.2 christos return 0xffffffffUL; 141 1.1.1.2 christos 142 1.1 christos /* the derivation of this formula is left as an exercise for the reader */ 143 1.1.1.2 christos MOD63(len2); /* assumes len2 >= 0 */ 144 1.1.1.2 christos rem = (unsigned)len2; 145 1.1 christos sum1 = adler1 & 0xffff; 146 1.1 christos sum2 = rem * sum1; 147 1.1 christos MOD(sum2); 148 1.1 christos sum1 += (adler2 & 0xffff) + BASE - 1; 149 1.1 christos sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; 150 1.1.1.2 christos if (sum1 >= BASE) sum1 -= BASE; 151 1.1.1.2 christos if (sum1 >= BASE) sum1 -= BASE; 152 1.1.1.2 christos if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1); 153 1.1.1.2 christos if (sum2 >= BASE) sum2 -= BASE; 154 1.1 christos return sum1 | (sum2 << 16); 155 1.1 christos } 156 1.1.1.2 christos 157 1.1.1.2 christos /* ========================================================================= */ 158 1.1.1.4 christos uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2) { 159 1.1.1.2 christos return adler32_combine_(adler1, adler2, len2); 160 1.1.1.2 christos } 161 1.1.1.2 christos 162 1.1.1.4 christos uLong ZEXPORT adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2) { 163 1.1.1.2 christos return adler32_combine_(adler1, adler2, len2); 164 1.1.1.2 christos } 165