adler32.c revision 1.1 1 1.1 christos /* $NetBSD: adler32.c,v 1.1 2006/01/14 20:10:24 christos Exp $ */
2 1.1 christos
3 1.1 christos /* adler32.c -- compute the Adler-32 checksum of a data stream
4 1.1 christos * Copyright (C) 1995-2004 Mark Adler
5 1.1 christos * For conditions of distribution and use, see copyright notice in zlib.h
6 1.1 christos */
7 1.1 christos
8 1.1 christos /* @(#) Id */
9 1.1 christos
10 1.1 christos #define ZLIB_INTERNAL
11 1.1 christos #include "zlib.h"
12 1.1 christos
13 1.1 christos #define BASE 65521UL /* largest prime smaller than 65536 */
14 1.1 christos #define NMAX 5552
15 1.1 christos /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
16 1.1 christos
17 1.1 christos #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
18 1.1 christos #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
19 1.1 christos #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
20 1.1 christos #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
21 1.1 christos #define DO16(buf) DO8(buf,0); DO8(buf,8);
22 1.1 christos
23 1.1 christos /* use NO_DIVIDE if your processor does not do division in hardware */
24 1.1 christos #ifdef NO_DIVIDE
25 1.1 christos # define MOD(a) \
26 1.1 christos do { \
27 1.1 christos if (a >= (BASE << 16)) a -= (BASE << 16); \
28 1.1 christos if (a >= (BASE << 15)) a -= (BASE << 15); \
29 1.1 christos if (a >= (BASE << 14)) a -= (BASE << 14); \
30 1.1 christos if (a >= (BASE << 13)) a -= (BASE << 13); \
31 1.1 christos if (a >= (BASE << 12)) a -= (BASE << 12); \
32 1.1 christos if (a >= (BASE << 11)) a -= (BASE << 11); \
33 1.1 christos if (a >= (BASE << 10)) a -= (BASE << 10); \
34 1.1 christos if (a >= (BASE << 9)) a -= (BASE << 9); \
35 1.1 christos if (a >= (BASE << 8)) a -= (BASE << 8); \
36 1.1 christos if (a >= (BASE << 7)) a -= (BASE << 7); \
37 1.1 christos if (a >= (BASE << 6)) a -= (BASE << 6); \
38 1.1 christos if (a >= (BASE << 5)) a -= (BASE << 5); \
39 1.1 christos if (a >= (BASE << 4)) a -= (BASE << 4); \
40 1.1 christos if (a >= (BASE << 3)) a -= (BASE << 3); \
41 1.1 christos if (a >= (BASE << 2)) a -= (BASE << 2); \
42 1.1 christos if (a >= (BASE << 1)) a -= (BASE << 1); \
43 1.1 christos if (a >= BASE) a -= BASE; \
44 1.1 christos } while (0)
45 1.1 christos # define MOD4(a) \
46 1.1 christos do { \
47 1.1 christos if (a >= (BASE << 4)) a -= (BASE << 4); \
48 1.1 christos if (a >= (BASE << 3)) a -= (BASE << 3); \
49 1.1 christos if (a >= (BASE << 2)) a -= (BASE << 2); \
50 1.1 christos if (a >= (BASE << 1)) a -= (BASE << 1); \
51 1.1 christos if (a >= BASE) a -= BASE; \
52 1.1 christos } while (0)
53 1.1 christos #else
54 1.1 christos # define MOD(a) a %= BASE
55 1.1 christos # define MOD4(a) a %= BASE
56 1.1 christos #endif
57 1.1 christos
58 1.1 christos /* ========================================================================= */
59 1.1 christos uLong ZEXPORT adler32(adler, buf, len)
60 1.1 christos uLong adler;
61 1.1 christos const Bytef *buf;
62 1.1 christos uInt len;
63 1.1 christos {
64 1.1 christos unsigned long sum2;
65 1.1 christos unsigned n;
66 1.1 christos
67 1.1 christos /* split Adler-32 into component sums */
68 1.1 christos sum2 = (adler >> 16) & 0xffff;
69 1.1 christos adler &= 0xffff;
70 1.1 christos
71 1.1 christos /* in case user likes doing a byte at a time, keep it fast */
72 1.1 christos if (len == 1) {
73 1.1 christos adler += buf[0];
74 1.1 christos if (adler >= BASE)
75 1.1 christos adler -= BASE;
76 1.1 christos sum2 += adler;
77 1.1 christos if (sum2 >= BASE)
78 1.1 christos sum2 -= BASE;
79 1.1 christos return adler | (sum2 << 16);
80 1.1 christos }
81 1.1 christos
82 1.1 christos /* initial Adler-32 value (deferred check for len == 1 speed) */
83 1.1 christos if (buf == Z_NULL)
84 1.1 christos return 1L;
85 1.1 christos
86 1.1 christos /* in case short lengths are provided, keep it somewhat fast */
87 1.1 christos if (len < 16) {
88 1.1 christos while (len--) {
89 1.1 christos adler += *buf++;
90 1.1 christos sum2 += adler;
91 1.1 christos }
92 1.1 christos if (adler >= BASE)
93 1.1 christos adler -= BASE;
94 1.1 christos MOD4(sum2); /* only added so many BASE's */
95 1.1 christos return adler | (sum2 << 16);
96 1.1 christos }
97 1.1 christos
98 1.1 christos /* do length NMAX blocks -- requires just one modulo operation */
99 1.1 christos while (len >= NMAX) {
100 1.1 christos len -= NMAX;
101 1.1 christos n = NMAX / 16; /* NMAX is divisible by 16 */
102 1.1 christos do {
103 1.1 christos DO16(buf); /* 16 sums unrolled */
104 1.1 christos buf += 16;
105 1.1 christos } while (--n);
106 1.1 christos MOD(adler);
107 1.1 christos MOD(sum2);
108 1.1 christos }
109 1.1 christos
110 1.1 christos /* do remaining bytes (less than NMAX, still just one modulo) */
111 1.1 christos if (len) { /* avoid modulos if none remaining */
112 1.1 christos while (len >= 16) {
113 1.1 christos len -= 16;
114 1.1 christos DO16(buf);
115 1.1 christos buf += 16;
116 1.1 christos }
117 1.1 christos while (len--) {
118 1.1 christos adler += *buf++;
119 1.1 christos sum2 += adler;
120 1.1 christos }
121 1.1 christos MOD(adler);
122 1.1 christos MOD(sum2);
123 1.1 christos }
124 1.1 christos
125 1.1 christos /* return recombined sums */
126 1.1 christos return adler | (sum2 << 16);
127 1.1 christos }
128 1.1 christos
129 1.1 christos /* ========================================================================= */
130 1.1 christos uLong ZEXPORT adler32_combine(adler1, adler2, len2)
131 1.1 christos uLong adler1;
132 1.1 christos uLong adler2;
133 1.1 christos z_off_t len2;
134 1.1 christos {
135 1.1 christos unsigned long sum1;
136 1.1 christos unsigned long sum2;
137 1.1 christos unsigned rem;
138 1.1 christos
139 1.1 christos /* the derivation of this formula is left as an exercise for the reader */
140 1.1 christos rem = (unsigned)(len2 % BASE);
141 1.1 christos sum1 = adler1 & 0xffff;
142 1.1 christos sum2 = rem * sum1;
143 1.1 christos MOD(sum2);
144 1.1 christos sum1 += (adler2 & 0xffff) + BASE - 1;
145 1.1 christos sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
146 1.1 christos if (sum1 > BASE) sum1 -= BASE;
147 1.1 christos if (sum1 > BASE) sum1 -= BASE;
148 1.1 christos if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
149 1.1 christos if (sum2 > BASE) sum2 -= BASE;
150 1.1 christos return sum1 | (sum2 << 16);
151 1.1 christos }
152