Home | History | Annotate | Line # | Download | only in zlib
adler32.c revision 1.1.1.3.8.1
      1          1.1  christos /* adler32.c -- compute the Adler-32 checksum of a data stream
      2      1.1.1.2  christos  * Copyright (C) 1995-2011, 2016 Mark Adler
      3          1.1  christos  * For conditions of distribution and use, see copyright notice in zlib.h
      4          1.1  christos  */
      5          1.1  christos 
      6      1.1.1.3  christos /* @(#) Id */
      7      1.1.1.2  christos 
      8      1.1.1.2  christos #include "zutil.h"
      9          1.1  christos 
     10      1.1.1.2  christos #define BASE 65521U     /* largest prime smaller than 65536 */
     11          1.1  christos #define NMAX 5552
     12          1.1  christos /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
     13          1.1  christos 
     14          1.1  christos #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
     15          1.1  christos #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
     16          1.1  christos #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
     17          1.1  christos #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
     18          1.1  christos #define DO16(buf)   DO8(buf,0); DO8(buf,8);
     19          1.1  christos 
     20      1.1.1.2  christos /* use NO_DIVIDE if your processor does not do division in hardware --
     21      1.1.1.2  christos    try it both ways to see which is faster */
     22          1.1  christos #ifdef NO_DIVIDE
     23      1.1.1.2  christos /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
     24      1.1.1.2  christos    (thank you to John Reiser for pointing this out) */
     25      1.1.1.2  christos #  define CHOP(a) \
     26      1.1.1.2  christos     do { \
     27      1.1.1.2  christos         unsigned long tmp = a >> 16; \
     28      1.1.1.2  christos         a &= 0xffffUL; \
     29      1.1.1.2  christos         a += (tmp << 4) - tmp; \
     30      1.1.1.2  christos     } while (0)
     31      1.1.1.2  christos #  define MOD28(a) \
     32          1.1  christos     do { \
     33      1.1.1.2  christos         CHOP(a); \
     34          1.1  christos         if (a >= BASE) a -= BASE; \
     35          1.1  christos     } while (0)
     36      1.1.1.2  christos #  define MOD(a) \
     37          1.1  christos     do { \
     38      1.1.1.2  christos         CHOP(a); \
     39      1.1.1.2  christos         MOD28(a); \
     40      1.1.1.2  christos     } while (0)
     41      1.1.1.2  christos #  define MOD63(a) \
     42      1.1.1.2  christos     do { /* this assumes a is not negative */ \
     43      1.1.1.2  christos         z_off64_t tmp = a >> 32; \
     44      1.1.1.2  christos         a &= 0xffffffffL; \
     45      1.1.1.2  christos         a += (tmp << 8) - (tmp << 5) + tmp; \
     46      1.1.1.2  christos         tmp = a >> 16; \
     47      1.1.1.2  christos         a &= 0xffffL; \
     48      1.1.1.2  christos         a += (tmp << 4) - tmp; \
     49      1.1.1.2  christos         tmp = a >> 16; \
     50      1.1.1.2  christos         a &= 0xffffL; \
     51      1.1.1.2  christos         a += (tmp << 4) - tmp; \
     52          1.1  christos         if (a >= BASE) a -= BASE; \
     53          1.1  christos     } while (0)
     54          1.1  christos #else
     55          1.1  christos #  define MOD(a) a %= BASE
     56      1.1.1.2  christos #  define MOD28(a) a %= BASE
     57      1.1.1.2  christos #  define MOD63(a) a %= BASE
     58          1.1  christos #endif
     59          1.1  christos 
     60          1.1  christos /* ========================================================================= */
     61  1.1.1.3.8.1  perseant uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len) {
     62          1.1  christos     unsigned long sum2;
     63          1.1  christos     unsigned n;
     64          1.1  christos 
     65          1.1  christos     /* split Adler-32 into component sums */
     66          1.1  christos     sum2 = (adler >> 16) & 0xffff;
     67          1.1  christos     adler &= 0xffff;
     68          1.1  christos 
     69          1.1  christos     /* in case user likes doing a byte at a time, keep it fast */
     70          1.1  christos     if (len == 1) {
     71          1.1  christos         adler += buf[0];
     72          1.1  christos         if (adler >= BASE)
     73          1.1  christos             adler -= BASE;
     74          1.1  christos         sum2 += adler;
     75          1.1  christos         if (sum2 >= BASE)
     76          1.1  christos             sum2 -= BASE;
     77          1.1  christos         return adler | (sum2 << 16);
     78          1.1  christos     }
     79          1.1  christos 
     80          1.1  christos     /* initial Adler-32 value (deferred check for len == 1 speed) */
     81          1.1  christos     if (buf == Z_NULL)
     82          1.1  christos         return 1L;
     83          1.1  christos 
     84          1.1  christos     /* in case short lengths are provided, keep it somewhat fast */
     85          1.1  christos     if (len < 16) {
     86          1.1  christos         while (len--) {
     87          1.1  christos             adler += *buf++;
     88          1.1  christos             sum2 += adler;
     89          1.1  christos         }
     90          1.1  christos         if (adler >= BASE)
     91          1.1  christos             adler -= BASE;
     92      1.1.1.2  christos         MOD28(sum2);            /* only added so many BASE's */
     93          1.1  christos         return adler | (sum2 << 16);
     94          1.1  christos     }
     95          1.1  christos 
     96          1.1  christos     /* do length NMAX blocks -- requires just one modulo operation */
     97          1.1  christos     while (len >= NMAX) {
     98          1.1  christos         len -= NMAX;
     99          1.1  christos         n = NMAX / 16;          /* NMAX is divisible by 16 */
    100          1.1  christos         do {
    101          1.1  christos             DO16(buf);          /* 16 sums unrolled */
    102          1.1  christos             buf += 16;
    103          1.1  christos         } while (--n);
    104          1.1  christos         MOD(adler);
    105          1.1  christos         MOD(sum2);
    106          1.1  christos     }
    107          1.1  christos 
    108          1.1  christos     /* do remaining bytes (less than NMAX, still just one modulo) */
    109          1.1  christos     if (len) {                  /* avoid modulos if none remaining */
    110          1.1  christos         while (len >= 16) {
    111          1.1  christos             len -= 16;
    112          1.1  christos             DO16(buf);
    113          1.1  christos             buf += 16;
    114          1.1  christos         }
    115          1.1  christos         while (len--) {
    116          1.1  christos             adler += *buf++;
    117          1.1  christos             sum2 += adler;
    118          1.1  christos         }
    119          1.1  christos         MOD(adler);
    120          1.1  christos         MOD(sum2);
    121          1.1  christos     }
    122          1.1  christos 
    123          1.1  christos     /* return recombined sums */
    124          1.1  christos     return adler | (sum2 << 16);
    125          1.1  christos }
    126          1.1  christos 
    127          1.1  christos /* ========================================================================= */
    128  1.1.1.3.8.1  perseant uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) {
    129      1.1.1.2  christos     return adler32_z(adler, buf, len);
    130      1.1.1.2  christos }
    131      1.1.1.2  christos 
    132      1.1.1.2  christos /* ========================================================================= */
    133  1.1.1.3.8.1  perseant local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2) {
    134          1.1  christos     unsigned long sum1;
    135          1.1  christos     unsigned long sum2;
    136          1.1  christos     unsigned rem;
    137          1.1  christos 
    138      1.1.1.2  christos     /* for negative len, return invalid adler32 as a clue for debugging */
    139      1.1.1.2  christos     if (len2 < 0)
    140      1.1.1.2  christos         return 0xffffffffUL;
    141      1.1.1.2  christos 
    142          1.1  christos     /* the derivation of this formula is left as an exercise for the reader */
    143      1.1.1.2  christos     MOD63(len2);                /* assumes len2 >= 0 */
    144      1.1.1.2  christos     rem = (unsigned)len2;
    145          1.1  christos     sum1 = adler1 & 0xffff;
    146          1.1  christos     sum2 = rem * sum1;
    147          1.1  christos     MOD(sum2);
    148          1.1  christos     sum1 += (adler2 & 0xffff) + BASE - 1;
    149          1.1  christos     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
    150      1.1.1.2  christos     if (sum1 >= BASE) sum1 -= BASE;
    151      1.1.1.2  christos     if (sum1 >= BASE) sum1 -= BASE;
    152      1.1.1.2  christos     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
    153      1.1.1.2  christos     if (sum2 >= BASE) sum2 -= BASE;
    154          1.1  christos     return sum1 | (sum2 << 16);
    155          1.1  christos }
    156      1.1.1.2  christos 
    157      1.1.1.2  christos /* ========================================================================= */
    158  1.1.1.3.8.1  perseant uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2) {
    159      1.1.1.2  christos     return adler32_combine_(adler1, adler2, len2);
    160      1.1.1.2  christos }
    161      1.1.1.2  christos 
    162  1.1.1.3.8.1  perseant uLong ZEXPORT adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2) {
    163      1.1.1.2  christos     return adler32_combine_(adler1, adler2, len2);
    164      1.1.1.2  christos }
    165