blast.c revision 1.1 1 1.1 christos /* $NetBSD: blast.c,v 1.1 2006/01/14 20:10:46 christos Exp $ */
2 1.1 christos
3 1.1 christos /* blast.c
4 1.1 christos * Copyright (C) 2003 Mark Adler
5 1.1 christos * For conditions of distribution and use, see copyright notice in blast.h
6 1.1 christos * version 1.1, 16 Feb 2003
7 1.1 christos *
8 1.1 christos * blast.c decompresses data compressed by the PKWare Compression Library.
9 1.1 christos * This function provides functionality similar to the explode() function of
10 1.1 christos * the PKWare library, hence the name "blast".
11 1.1 christos *
12 1.1 christos * This decompressor is based on the excellent format description provided by
13 1.1 christos * Ben Rudiak-Gould in comp.compression on August 13, 2001. Interestingly, the
14 1.1 christos * example Ben provided in the post is incorrect. The distance 110001 should
15 1.1 christos * instead be 111000. When corrected, the example byte stream becomes:
16 1.1 christos *
17 1.1 christos * 00 04 82 24 25 8f 80 7f
18 1.1 christos *
19 1.1 christos * which decompresses to "AIAIAIAIAIAIA" (without the quotes).
20 1.1 christos */
21 1.1 christos
22 1.1 christos /*
23 1.1 christos * Change history:
24 1.1 christos *
25 1.1 christos * 1.0 12 Feb 2003 - First version
26 1.1 christos * 1.1 16 Feb 2003 - Fixed distance check for > 4 GB uncompressed data
27 1.1 christos */
28 1.1 christos
29 1.1 christos #include <setjmp.h> /* for setjmp(), longjmp(), and jmp_buf */
30 1.1 christos #include "blast.h" /* prototype for blast() */
31 1.1 christos
32 1.1 christos #define local static /* for local function definitions */
33 1.1 christos #define MAXBITS 13 /* maximum code length */
34 1.1 christos #define MAXWIN 4096 /* maximum window size */
35 1.1 christos
36 1.1 christos /* input and output state */
37 1.1 christos struct state {
38 1.1 christos /* input state */
39 1.1 christos blast_in infun; /* input function provided by user */
40 1.1 christos void *inhow; /* opaque information passed to infun() */
41 1.1 christos unsigned char *in; /* next input location */
42 1.1 christos unsigned left; /* available input at in */
43 1.1 christos int bitbuf; /* bit buffer */
44 1.1 christos int bitcnt; /* number of bits in bit buffer */
45 1.1 christos
46 1.1 christos /* input limit error return state for bits() and decode() */
47 1.1 christos jmp_buf env;
48 1.1 christos
49 1.1 christos /* output state */
50 1.1 christos blast_out outfun; /* output function provided by user */
51 1.1 christos void *outhow; /* opaque information passed to outfun() */
52 1.1 christos unsigned next; /* index of next write location in out[] */
53 1.1 christos int first; /* true to check distances (for first 4K) */
54 1.1 christos unsigned char out[MAXWIN]; /* output buffer and sliding window */
55 1.1 christos };
56 1.1 christos
57 1.1 christos /*
58 1.1 christos * Return need bits from the input stream. This always leaves less than
59 1.1 christos * eight bits in the buffer. bits() works properly for need == 0.
60 1.1 christos *
61 1.1 christos * Format notes:
62 1.1 christos *
63 1.1 christos * - Bits are stored in bytes from the least significant bit to the most
64 1.1 christos * significant bit. Therefore bits are dropped from the bottom of the bit
65 1.1 christos * buffer, using shift right, and new bytes are appended to the top of the
66 1.1 christos * bit buffer, using shift left.
67 1.1 christos */
68 1.1 christos local int bits(struct state *s, int need)
69 1.1 christos {
70 1.1 christos int val; /* bit accumulator */
71 1.1 christos
72 1.1 christos /* load at least need bits into val */
73 1.1 christos val = s->bitbuf;
74 1.1 christos while (s->bitcnt < need) {
75 1.1 christos if (s->left == 0) {
76 1.1 christos s->left = s->infun(s->inhow, &(s->in));
77 1.1 christos if (s->left == 0) longjmp(s->env, 1); /* out of input */
78 1.1 christos }
79 1.1 christos val |= (int)(*(s->in)++) << s->bitcnt; /* load eight bits */
80 1.1 christos s->left--;
81 1.1 christos s->bitcnt += 8;
82 1.1 christos }
83 1.1 christos
84 1.1 christos /* drop need bits and update buffer, always zero to seven bits left */
85 1.1 christos s->bitbuf = val >> need;
86 1.1 christos s->bitcnt -= need;
87 1.1 christos
88 1.1 christos /* return need bits, zeroing the bits above that */
89 1.1 christos return val & ((1 << need) - 1);
90 1.1 christos }
91 1.1 christos
92 1.1 christos /*
93 1.1 christos * Huffman code decoding tables. count[1..MAXBITS] is the number of symbols of
94 1.1 christos * each length, which for a canonical code are stepped through in order.
95 1.1 christos * symbol[] are the symbol values in canonical order, where the number of
96 1.1 christos * entries is the sum of the counts in count[]. The decoding process can be
97 1.1 christos * seen in the function decode() below.
98 1.1 christos */
99 1.1 christos struct huffman {
100 1.1 christos short *count; /* number of symbols of each length */
101 1.1 christos short *symbol; /* canonically ordered symbols */
102 1.1 christos };
103 1.1 christos
104 1.1 christos /*
105 1.1 christos * Decode a code from the stream s using huffman table h. Return the symbol or
106 1.1 christos * a negative value if there is an error. If all of the lengths are zero, i.e.
107 1.1 christos * an empty code, or if the code is incomplete and an invalid code is received,
108 1.1 christos * then -9 is returned after reading MAXBITS bits.
109 1.1 christos *
110 1.1 christos * Format notes:
111 1.1 christos *
112 1.1 christos * - The codes as stored in the compressed data are bit-reversed relative to
113 1.1 christos * a simple integer ordering of codes of the same lengths. Hence below the
114 1.1 christos * bits are pulled from the compressed data one at a time and used to
115 1.1 christos * build the code value reversed from what is in the stream in order to
116 1.1 christos * permit simple integer comparisons for decoding.
117 1.1 christos *
118 1.1 christos * - The first code for the shortest length is all ones. Subsequent codes of
119 1.1 christos * the same length are simply integer decrements of the previous code. When
120 1.1 christos * moving up a length, a one bit is appended to the code. For a complete
121 1.1 christos * code, the last code of the longest length will be all zeros. To support
122 1.1 christos * this ordering, the bits pulled during decoding are inverted to apply the
123 1.1 christos * more "natural" ordering starting with all zeros and incrementing.
124 1.1 christos */
125 1.1 christos local int decode(struct state *s, struct huffman *h)
126 1.1 christos {
127 1.1 christos int len; /* current number of bits in code */
128 1.1 christos int code; /* len bits being decoded */
129 1.1 christos int first; /* first code of length len */
130 1.1 christos int count; /* number of codes of length len */
131 1.1 christos int index; /* index of first code of length len in symbol table */
132 1.1 christos int bitbuf; /* bits from stream */
133 1.1 christos int left; /* bits left in next or left to process */
134 1.1 christos short *next; /* next number of codes */
135 1.1 christos
136 1.1 christos bitbuf = s->bitbuf;
137 1.1 christos left = s->bitcnt;
138 1.1 christos code = first = index = 0;
139 1.1 christos len = 1;
140 1.1 christos next = h->count + 1;
141 1.1 christos while (1) {
142 1.1 christos while (left--) {
143 1.1 christos code |= (bitbuf & 1) ^ 1; /* invert code */
144 1.1 christos bitbuf >>= 1;
145 1.1 christos count = *next++;
146 1.1 christos if (code < first + count) { /* if length len, return symbol */
147 1.1 christos s->bitbuf = bitbuf;
148 1.1 christos s->bitcnt = (s->bitcnt - len) & 7;
149 1.1 christos return h->symbol[index + (code - first)];
150 1.1 christos }
151 1.1 christos index += count; /* else update for next length */
152 1.1 christos first += count;
153 1.1 christos first <<= 1;
154 1.1 christos code <<= 1;
155 1.1 christos len++;
156 1.1 christos }
157 1.1 christos left = (MAXBITS+1) - len;
158 1.1 christos if (left == 0) break;
159 1.1 christos if (s->left == 0) {
160 1.1 christos s->left = s->infun(s->inhow, &(s->in));
161 1.1 christos if (s->left == 0) longjmp(s->env, 1); /* out of input */
162 1.1 christos }
163 1.1 christos bitbuf = *(s->in)++;
164 1.1 christos s->left--;
165 1.1 christos if (left > 8) left = 8;
166 1.1 christos }
167 1.1 christos return -9; /* ran out of codes */
168 1.1 christos }
169 1.1 christos
170 1.1 christos /*
171 1.1 christos * Given a list of repeated code lengths rep[0..n-1], where each byte is a
172 1.1 christos * count (high four bits + 1) and a code length (low four bits), generate the
173 1.1 christos * list of code lengths. This compaction reduces the size of the object code.
174 1.1 christos * Then given the list of code lengths length[0..n-1] representing a canonical
175 1.1 christos * Huffman code for n symbols, construct the tables required to decode those
176 1.1 christos * codes. Those tables are the number of codes of each length, and the symbols
177 1.1 christos * sorted by length, retaining their original order within each length. The
178 1.1 christos * return value is zero for a complete code set, negative for an over-
179 1.1 christos * subscribed code set, and positive for an incomplete code set. The tables
180 1.1 christos * can be used if the return value is zero or positive, but they cannot be used
181 1.1 christos * if the return value is negative. If the return value is zero, it is not
182 1.1 christos * possible for decode() using that table to return an error--any stream of
183 1.1 christos * enough bits will resolve to a symbol. If the return value is positive, then
184 1.1 christos * it is possible for decode() using that table to return an error for received
185 1.1 christos * codes past the end of the incomplete lengths.
186 1.1 christos */
187 1.1 christos local int construct(struct huffman *h, const unsigned char *rep, int n)
188 1.1 christos {
189 1.1 christos int symbol; /* current symbol when stepping through length[] */
190 1.1 christos int len; /* current length when stepping through h->count[] */
191 1.1 christos int left; /* number of possible codes left of current length */
192 1.1 christos short offs[MAXBITS+1]; /* offsets in symbol table for each length */
193 1.1 christos short length[256]; /* code lengths */
194 1.1 christos
195 1.1 christos /* convert compact repeat counts into symbol bit length list */
196 1.1 christos symbol = 0;
197 1.1 christos do {
198 1.1 christos len = *rep++;
199 1.1 christos left = (len >> 4) + 1;
200 1.1 christos len &= 15;
201 1.1 christos do {
202 1.1 christos length[symbol++] = len;
203 1.1 christos } while (--left);
204 1.1 christos } while (--n);
205 1.1 christos n = symbol;
206 1.1 christos
207 1.1 christos /* count number of codes of each length */
208 1.1 christos for (len = 0; len <= MAXBITS; len++)
209 1.1 christos h->count[len] = 0;
210 1.1 christos for (symbol = 0; symbol < n; symbol++)
211 1.1 christos (h->count[length[symbol]])++; /* assumes lengths are within bounds */
212 1.1 christos if (h->count[0] == n) /* no codes! */
213 1.1 christos return 0; /* complete, but decode() will fail */
214 1.1 christos
215 1.1 christos /* check for an over-subscribed or incomplete set of lengths */
216 1.1 christos left = 1; /* one possible code of zero length */
217 1.1 christos for (len = 1; len <= MAXBITS; len++) {
218 1.1 christos left <<= 1; /* one more bit, double codes left */
219 1.1 christos left -= h->count[len]; /* deduct count from possible codes */
220 1.1 christos if (left < 0) return left; /* over-subscribed--return negative */
221 1.1 christos } /* left > 0 means incomplete */
222 1.1 christos
223 1.1 christos /* generate offsets into symbol table for each length for sorting */
224 1.1 christos offs[1] = 0;
225 1.1 christos for (len = 1; len < MAXBITS; len++)
226 1.1 christos offs[len + 1] = offs[len] + h->count[len];
227 1.1 christos
228 1.1 christos /*
229 1.1 christos * put symbols in table sorted by length, by symbol order within each
230 1.1 christos * length
231 1.1 christos */
232 1.1 christos for (symbol = 0; symbol < n; symbol++)
233 1.1 christos if (length[symbol] != 0)
234 1.1 christos h->symbol[offs[length[symbol]]++] = symbol;
235 1.1 christos
236 1.1 christos /* return zero for complete set, positive for incomplete set */
237 1.1 christos return left;
238 1.1 christos }
239 1.1 christos
240 1.1 christos /*
241 1.1 christos * Decode PKWare Compression Library stream.
242 1.1 christos *
243 1.1 christos * Format notes:
244 1.1 christos *
245 1.1 christos * - First byte is 0 if literals are uncoded or 1 if they are coded. Second
246 1.1 christos * byte is 4, 5, or 6 for the number of extra bits in the distance code.
247 1.1 christos * This is the base-2 logarithm of the dictionary size minus six.
248 1.1 christos *
249 1.1 christos * - Compressed data is a combination of literals and length/distance pairs
250 1.1 christos * terminated by an end code. Literals are either Huffman coded or
251 1.1 christos * uncoded bytes. A length/distance pair is a coded length followed by a
252 1.1 christos * coded distance to represent a string that occurs earlier in the
253 1.1 christos * uncompressed data that occurs again at the current location.
254 1.1 christos *
255 1.1 christos * - A bit preceding a literal or length/distance pair indicates which comes
256 1.1 christos * next, 0 for literals, 1 for length/distance.
257 1.1 christos *
258 1.1 christos * - If literals are uncoded, then the next eight bits are the literal, in the
259 1.1 christos * normal bit order in th stream, i.e. no bit-reversal is needed. Similarly,
260 1.1 christos * no bit reversal is needed for either the length extra bits or the distance
261 1.1 christos * extra bits.
262 1.1 christos *
263 1.1 christos * - Literal bytes are simply written to the output. A length/distance pair is
264 1.1 christos * an instruction to copy previously uncompressed bytes to the output. The
265 1.1 christos * copy is from distance bytes back in the output stream, copying for length
266 1.1 christos * bytes.
267 1.1 christos *
268 1.1 christos * - Distances pointing before the beginning of the output data are not
269 1.1 christos * permitted.
270 1.1 christos *
271 1.1 christos * - Overlapped copies, where the length is greater than the distance, are
272 1.1 christos * allowed and common. For example, a distance of one and a length of 518
273 1.1 christos * simply copies the last byte 518 times. A distance of four and a length of
274 1.1 christos * twelve copies the last four bytes three times. A simple forward copy
275 1.1 christos * ignoring whether the length is greater than the distance or not implements
276 1.1 christos * this correctly.
277 1.1 christos */
278 1.1 christos local int decomp(struct state *s)
279 1.1 christos {
280 1.1 christos int lit; /* true if literals are coded */
281 1.1 christos int dict; /* log2(dictionary size) - 6 */
282 1.1 christos int symbol; /* decoded symbol, extra bits for distance */
283 1.1 christos int len; /* length for copy */
284 1.1 christos int dist; /* distance for copy */
285 1.1 christos int copy; /* copy counter */
286 1.1 christos unsigned char *from, *to; /* copy pointers */
287 1.1 christos static int virgin = 1; /* build tables once */
288 1.1 christos static short litcnt[MAXBITS+1], litsym[256]; /* litcode memory */
289 1.1 christos static short lencnt[MAXBITS+1], lensym[16]; /* lencode memory */
290 1.1 christos static short distcnt[MAXBITS+1], distsym[64]; /* distcode memory */
291 1.1 christos static struct huffman litcode = {litcnt, litsym}; /* length code */
292 1.1 christos static struct huffman lencode = {lencnt, lensym}; /* length code */
293 1.1 christos static struct huffman distcode = {distcnt, distsym};/* distance code */
294 1.1 christos /* bit lengths of literal codes */
295 1.1 christos static const unsigned char litlen[] = {
296 1.1 christos 11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8,
297 1.1 christos 9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5,
298 1.1 christos 7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12,
299 1.1 christos 8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27,
300 1.1 christos 44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45,
301 1.1 christos 44, 173};
302 1.1 christos /* bit lengths of length codes 0..15 */
303 1.1 christos static const unsigned char lenlen[] = {2, 35, 36, 53, 38, 23};
304 1.1 christos /* bit lengths of distance codes 0..63 */
305 1.1 christos static const unsigned char distlen[] = {2, 20, 53, 230, 247, 151, 248};
306 1.1 christos static const short base[16] = { /* base for length codes */
307 1.1 christos 3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264};
308 1.1 christos static const char extra[16] = { /* extra bits for length codes */
309 1.1 christos 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8};
310 1.1 christos
311 1.1 christos /* set up decoding tables (once--might not be thread-safe) */
312 1.1 christos if (virgin) {
313 1.1 christos construct(&litcode, litlen, sizeof(litlen));
314 1.1 christos construct(&lencode, lenlen, sizeof(lenlen));
315 1.1 christos construct(&distcode, distlen, sizeof(distlen));
316 1.1 christos virgin = 0;
317 1.1 christos }
318 1.1 christos
319 1.1 christos /* read header */
320 1.1 christos lit = bits(s, 8);
321 1.1 christos if (lit > 1) return -1;
322 1.1 christos dict = bits(s, 8);
323 1.1 christos if (dict < 4 || dict > 6) return -2;
324 1.1 christos
325 1.1 christos /* decode literals and length/distance pairs */
326 1.1 christos do {
327 1.1 christos if (bits(s, 1)) {
328 1.1 christos /* get length */
329 1.1 christos symbol = decode(s, &lencode);
330 1.1 christos len = base[symbol] + bits(s, extra[symbol]);
331 1.1 christos if (len == 519) break; /* end code */
332 1.1 christos
333 1.1 christos /* get distance */
334 1.1 christos symbol = len == 2 ? 2 : dict;
335 1.1 christos dist = decode(s, &distcode) << symbol;
336 1.1 christos dist += bits(s, symbol);
337 1.1 christos dist++;
338 1.1 christos if (s->first && dist > s->next)
339 1.1 christos return -3; /* distance too far back */
340 1.1 christos
341 1.1 christos /* copy length bytes from distance bytes back */
342 1.1 christos do {
343 1.1 christos to = s->out + s->next;
344 1.1 christos from = to - dist;
345 1.1 christos copy = MAXWIN;
346 1.1 christos if (s->next < dist) {
347 1.1 christos from += copy;
348 1.1 christos copy = dist;
349 1.1 christos }
350 1.1 christos copy -= s->next;
351 1.1 christos if (copy > len) copy = len;
352 1.1 christos len -= copy;
353 1.1 christos s->next += copy;
354 1.1 christos do {
355 1.1 christos *to++ = *from++;
356 1.1 christos } while (--copy);
357 1.1 christos if (s->next == MAXWIN) {
358 1.1 christos if (s->outfun(s->outhow, s->out, s->next)) return 1;
359 1.1 christos s->next = 0;
360 1.1 christos s->first = 0;
361 1.1 christos }
362 1.1 christos } while (len != 0);
363 1.1 christos }
364 1.1 christos else {
365 1.1 christos /* get literal and write it */
366 1.1 christos symbol = lit ? decode(s, &litcode) : bits(s, 8);
367 1.1 christos s->out[s->next++] = symbol;
368 1.1 christos if (s->next == MAXWIN) {
369 1.1 christos if (s->outfun(s->outhow, s->out, s->next)) return 1;
370 1.1 christos s->next = 0;
371 1.1 christos s->first = 0;
372 1.1 christos }
373 1.1 christos }
374 1.1 christos } while (1);
375 1.1 christos return 0;
376 1.1 christos }
377 1.1 christos
378 1.1 christos /* See comments in blast.h */
379 1.1 christos int blast(blast_in infun, void *inhow, blast_out outfun, void *outhow)
380 1.1 christos {
381 1.1 christos struct state s; /* input/output state */
382 1.1 christos int err; /* return value */
383 1.1 christos
384 1.1 christos /* initialize input state */
385 1.1 christos s.infun = infun;
386 1.1 christos s.inhow = inhow;
387 1.1 christos s.left = 0;
388 1.1 christos s.bitbuf = 0;
389 1.1 christos s.bitcnt = 0;
390 1.1 christos
391 1.1 christos /* initialize output state */
392 1.1 christos s.outfun = outfun;
393 1.1 christos s.outhow = outhow;
394 1.1 christos s.next = 0;
395 1.1 christos s.first = 1;
396 1.1 christos
397 1.1 christos /* return if bits() or decode() tries to read past available input */
398 1.1 christos if (setjmp(s.env) != 0) /* if came back here via longjmp(), */
399 1.1 christos err = 2; /* then skip decomp(), return error */
400 1.1 christos else
401 1.1 christos err = decomp(&s); /* decompress */
402 1.1 christos
403 1.1 christos /* write any leftover output and update the error code if needed */
404 1.1 christos if (err != 1 && s.next && s.outfun(s.outhow, s.out, s.next) && err == 0)
405 1.1 christos err = 1;
406 1.1 christos return err;
407 1.1 christos }
408 1.1 christos
409 1.1 christos #ifdef TEST
410 1.1 christos /* Example of how to use blast() */
411 1.1 christos #include <stdio.h>
412 1.1 christos #include <stdlib.h>
413 1.1 christos
414 1.1 christos #define CHUNK 16384
415 1.1 christos
416 1.1 christos local unsigned inf(void *how, unsigned char **buf)
417 1.1 christos {
418 1.1 christos static unsigned char hold[CHUNK];
419 1.1 christos
420 1.1 christos *buf = hold;
421 1.1 christos return fread(hold, 1, CHUNK, (FILE *)how);
422 1.1 christos }
423 1.1 christos
424 1.1 christos local int outf(void *how, unsigned char *buf, unsigned len)
425 1.1 christos {
426 1.1 christos return fwrite(buf, 1, len, (FILE *)how) != len;
427 1.1 christos }
428 1.1 christos
429 1.1 christos /* Decompress a PKWare Compression Library stream from stdin to stdout */
430 1.1 christos int main(void)
431 1.1 christos {
432 1.1 christos int ret, n;
433 1.1 christos
434 1.1 christos /* decompress to stdout */
435 1.1 christos ret = blast(inf, stdin, outf, stdout);
436 1.1 christos if (ret != 0) fprintf(stderr, "blast error: %d\n", ret);
437 1.1 christos
438 1.1 christos /* see if there are any leftover bytes */
439 1.1 christos n = 0;
440 1.1 christos while (getchar() != EOF) n++;
441 1.1 christos if (n) fprintf(stderr, "blast warning: %d unused bytes of input\n", n);
442 1.1 christos
443 1.1 christos /* return blast() error code */
444 1.1 christos return ret;
445 1.1 christos }
446 1.1 christos #endif
447