1 1.1 christos /* inftree9.c -- generate Huffman trees for efficient decoding 2 1.1.1.4 christos * Copyright (C) 1995-2024 Mark Adler 3 1.1 christos * For conditions of distribution and use, see copyright notice in zlib.h 4 1.1 christos */ 5 1.1 christos 6 1.1 christos #include "zutil.h" 7 1.1 christos #include "inftree9.h" 8 1.1 christos 9 1.1 christos #define MAXBITS 15 10 1.1 christos 11 1.1 christos const char inflate9_copyright[] = 12 1.1.1.4 christos " inflate9 1.3.1 Copyright 1995-2024 Mark Adler "; 13 1.1 christos /* 14 1.1 christos If you use the zlib library in a product, an acknowledgment is welcome 15 1.1 christos in the documentation of your product. If for some reason you cannot 16 1.1 christos include such an acknowledgment, I would appreciate that you keep this 17 1.1 christos copyright string in the executable of your product. 18 1.1 christos */ 19 1.1 christos 20 1.1 christos /* 21 1.1 christos Build a set of tables to decode the provided canonical Huffman code. 22 1.1 christos The code lengths are lens[0..codes-1]. The result starts at *table, 23 1.1 christos whose indices are 0..2^bits-1. work is a writable array of at least 24 1.1 christos lens shorts, which is used as a work area. type is the type of code 25 1.1 christos to be generated, CODES, LENS, or DISTS. On return, zero is success, 26 1.1 christos -1 is an invalid code, and +1 means that ENOUGH isn't enough. table 27 1.1 christos on return points to the next available entry's address. bits is the 28 1.1 christos requested root table index bits, and on return it is the actual root 29 1.1 christos table index bits. It will differ if the request is greater than the 30 1.1 christos longest code or if it is less than the shortest code. 31 1.1 christos */ 32 1.1.1.4 christos int inflate_table9(codetype type, unsigned short FAR *lens, unsigned codes, 33 1.1.1.4 christos code FAR * FAR *table, unsigned FAR *bits, 34 1.1.1.4 christos unsigned short FAR *work) { 35 1.1 christos unsigned len; /* a code's length in bits */ 36 1.1 christos unsigned sym; /* index of code symbols */ 37 1.1 christos unsigned min, max; /* minimum and maximum code lengths */ 38 1.1 christos unsigned root; /* number of index bits for root table */ 39 1.1 christos unsigned curr; /* number of index bits for current table */ 40 1.1 christos unsigned drop; /* code bits to drop for sub-table */ 41 1.1 christos int left; /* number of prefix codes available */ 42 1.1 christos unsigned used; /* code entries in table used */ 43 1.1 christos unsigned huff; /* Huffman code */ 44 1.1 christos unsigned incr; /* for incrementing code, index */ 45 1.1 christos unsigned fill; /* index for replicating entries */ 46 1.1 christos unsigned low; /* low bits for current root entry */ 47 1.1 christos unsigned mask; /* mask for low root bits */ 48 1.1 christos code this; /* table entry for duplication */ 49 1.1 christos code FAR *next; /* next available space in table */ 50 1.1 christos const unsigned short FAR *base; /* base value table to use */ 51 1.1 christos const unsigned short FAR *extra; /* extra bits table to use */ 52 1.1 christos int end; /* use base and extra for symbol > end */ 53 1.1 christos unsigned short count[MAXBITS+1]; /* number of codes of each length */ 54 1.1 christos unsigned short offs[MAXBITS+1]; /* offsets in table for each length */ 55 1.1 christos static const unsigned short lbase[31] = { /* Length codes 257..285 base */ 56 1.1 christos 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 57 1.1 christos 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 58 1.1 christos 131, 163, 195, 227, 3, 0, 0}; 59 1.1 christos static const unsigned short lext[31] = { /* Length codes 257..285 extra */ 60 1.1 christos 128, 128, 128, 128, 128, 128, 128, 128, 129, 129, 129, 129, 61 1.1 christos 130, 130, 130, 130, 131, 131, 131, 131, 132, 132, 132, 132, 62 1.1.1.4 christos 133, 133, 133, 133, 144, 203, 77}; 63 1.1 christos static const unsigned short dbase[32] = { /* Distance codes 0..31 base */ 64 1.1 christos 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65 1.1 christos 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 66 1.1 christos 4097, 6145, 8193, 12289, 16385, 24577, 32769, 49153}; 67 1.1 christos static const unsigned short dext[32] = { /* Distance codes 0..31 extra */ 68 1.1 christos 128, 128, 128, 128, 129, 129, 130, 130, 131, 131, 132, 132, 69 1.1 christos 133, 133, 134, 134, 135, 135, 136, 136, 137, 137, 138, 138, 70 1.1 christos 139, 139, 140, 140, 141, 141, 142, 142}; 71 1.1 christos 72 1.1 christos /* 73 1.1 christos Process a set of code lengths to create a canonical Huffman code. The 74 1.1 christos code lengths are lens[0..codes-1]. Each length corresponds to the 75 1.1 christos symbols 0..codes-1. The Huffman code is generated by first sorting the 76 1.1 christos symbols by length from short to long, and retaining the symbol order 77 1.1 christos for codes with equal lengths. Then the code starts with all zero bits 78 1.1 christos for the first code of the shortest length, and the codes are integer 79 1.1 christos increments for the same length, and zeros are appended as the length 80 1.1 christos increases. For the deflate format, these bits are stored backwards 81 1.1 christos from their more natural integer increment ordering, and so when the 82 1.1 christos decoding tables are built in the large loop below, the integer codes 83 1.1 christos are incremented backwards. 84 1.1 christos 85 1.1 christos This routine assumes, but does not check, that all of the entries in 86 1.1 christos lens[] are in the range 0..MAXBITS. The caller must assure this. 87 1.1 christos 1..MAXBITS is interpreted as that code length. zero means that that 88 1.1 christos symbol does not occur in this code. 89 1.1 christos 90 1.1 christos The codes are sorted by computing a count of codes for each length, 91 1.1 christos creating from that a table of starting indices for each length in the 92 1.1 christos sorted table, and then entering the symbols in order in the sorted 93 1.1 christos table. The sorted table is work[], with that space being provided by 94 1.1 christos the caller. 95 1.1 christos 96 1.1 christos The length counts are used for other purposes as well, i.e. finding 97 1.1 christos the minimum and maximum length codes, determining if there are any 98 1.1 christos codes at all, checking for a valid set of lengths, and looking ahead 99 1.1 christos at length counts to determine sub-table sizes when building the 100 1.1 christos decoding tables. 101 1.1 christos */ 102 1.1 christos 103 1.1 christos /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */ 104 1.1 christos for (len = 0; len <= MAXBITS; len++) 105 1.1 christos count[len] = 0; 106 1.1 christos for (sym = 0; sym < codes; sym++) 107 1.1 christos count[lens[sym]]++; 108 1.1 christos 109 1.1 christos /* bound code lengths, force root to be within code lengths */ 110 1.1 christos root = *bits; 111 1.1 christos for (max = MAXBITS; max >= 1; max--) 112 1.1 christos if (count[max] != 0) break; 113 1.1 christos if (root > max) root = max; 114 1.1 christos if (max == 0) return -1; /* no codes! */ 115 1.1 christos for (min = 1; min <= MAXBITS; min++) 116 1.1 christos if (count[min] != 0) break; 117 1.1 christos if (root < min) root = min; 118 1.1 christos 119 1.1 christos /* check for an over-subscribed or incomplete set of lengths */ 120 1.1 christos left = 1; 121 1.1 christos for (len = 1; len <= MAXBITS; len++) { 122 1.1 christos left <<= 1; 123 1.1 christos left -= count[len]; 124 1.1 christos if (left < 0) return -1; /* over-subscribed */ 125 1.1 christos } 126 1.1 christos if (left > 0 && (type == CODES || max != 1)) 127 1.1 christos return -1; /* incomplete set */ 128 1.1 christos 129 1.1 christos /* generate offsets into symbol table for each length for sorting */ 130 1.1 christos offs[1] = 0; 131 1.1 christos for (len = 1; len < MAXBITS; len++) 132 1.1 christos offs[len + 1] = offs[len] + count[len]; 133 1.1 christos 134 1.1 christos /* sort symbols by length, by symbol order within each length */ 135 1.1 christos for (sym = 0; sym < codes; sym++) 136 1.1 christos if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym; 137 1.1 christos 138 1.1 christos /* 139 1.1 christos Create and fill in decoding tables. In this loop, the table being 140 1.1 christos filled is at next and has curr index bits. The code being used is huff 141 1.1 christos with length len. That code is converted to an index by dropping drop 142 1.1 christos bits off of the bottom. For codes where len is less than drop + curr, 143 1.1 christos those top drop + curr - len bits are incremented through all values to 144 1.1 christos fill the table with replicated entries. 145 1.1 christos 146 1.1 christos root is the number of index bits for the root table. When len exceeds 147 1.1 christos root, sub-tables are created pointed to by the root entry with an index 148 1.1 christos of the low root bits of huff. This is saved in low to check for when a 149 1.1 christos new sub-table should be started. drop is zero when the root table is 150 1.1 christos being filled, and drop is root when sub-tables are being filled. 151 1.1 christos 152 1.1 christos When a new sub-table is needed, it is necessary to look ahead in the 153 1.1 christos code lengths to determine what size sub-table is needed. The length 154 1.1 christos counts are used for this, and so count[] is decremented as codes are 155 1.1 christos entered in the tables. 156 1.1 christos 157 1.1 christos used keeps track of how many table entries have been allocated from the 158 1.1.1.2 christos provided *table space. It is checked for LENS and DIST tables against 159 1.1.1.2 christos the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in 160 1.1.1.2 christos the initial root table size constants. See the comments in inftree9.h 161 1.1.1.2 christos for more information. 162 1.1 christos 163 1.1 christos sym increments through all symbols, and the loop terminates when 164 1.1 christos all codes of length max, i.e. all codes, have been processed. This 165 1.1 christos routine permits incomplete codes, so another loop after this one fills 166 1.1 christos in the rest of the decoding tables with invalid code markers. 167 1.1 christos */ 168 1.1 christos 169 1.1 christos /* set up for code type */ 170 1.1 christos switch (type) { 171 1.1 christos case CODES: 172 1.1 christos base = extra = work; /* dummy value--not used */ 173 1.1 christos end = 19; 174 1.1 christos break; 175 1.1 christos case LENS: 176 1.1 christos base = lbase; 177 1.1 christos base -= 257; 178 1.1 christos extra = lext; 179 1.1 christos extra -= 257; 180 1.1 christos end = 256; 181 1.1 christos break; 182 1.1 christos default: /* DISTS */ 183 1.1 christos base = dbase; 184 1.1 christos extra = dext; 185 1.1 christos end = -1; 186 1.1 christos } 187 1.1 christos 188 1.1 christos /* initialize state for loop */ 189 1.1 christos huff = 0; /* starting code */ 190 1.1 christos sym = 0; /* starting code symbol */ 191 1.1 christos len = min; /* starting code length */ 192 1.1 christos next = *table; /* current table to fill in */ 193 1.1 christos curr = root; /* current table index bits */ 194 1.1 christos drop = 0; /* current bits to drop from code for index */ 195 1.1 christos low = (unsigned)(-1); /* trigger new sub-table when len > root */ 196 1.1 christos used = 1U << root; /* use root table entries */ 197 1.1 christos mask = used - 1; /* mask for comparing low */ 198 1.1 christos 199 1.1 christos /* check available table space */ 200 1.1.1.2 christos if ((type == LENS && used >= ENOUGH_LENS) || 201 1.1.1.2 christos (type == DISTS && used >= ENOUGH_DISTS)) 202 1.1 christos return 1; 203 1.1 christos 204 1.1 christos /* process all codes and make table entries */ 205 1.1 christos for (;;) { 206 1.1 christos /* create table entry */ 207 1.1 christos this.bits = (unsigned char)(len - drop); 208 1.1 christos if ((int)(work[sym]) < end) { 209 1.1 christos this.op = (unsigned char)0; 210 1.1 christos this.val = work[sym]; 211 1.1 christos } 212 1.1 christos else if ((int)(work[sym]) > end) { 213 1.1 christos this.op = (unsigned char)(extra[work[sym]]); 214 1.1 christos this.val = base[work[sym]]; 215 1.1 christos } 216 1.1 christos else { 217 1.1 christos this.op = (unsigned char)(32 + 64); /* end of block */ 218 1.1 christos this.val = 0; 219 1.1 christos } 220 1.1 christos 221 1.1 christos /* replicate for those indices with low len bits equal to huff */ 222 1.1 christos incr = 1U << (len - drop); 223 1.1 christos fill = 1U << curr; 224 1.1 christos do { 225 1.1 christos fill -= incr; 226 1.1 christos next[(huff >> drop) + fill] = this; 227 1.1 christos } while (fill != 0); 228 1.1 christos 229 1.1 christos /* backwards increment the len-bit code huff */ 230 1.1 christos incr = 1U << (len - 1); 231 1.1 christos while (huff & incr) 232 1.1 christos incr >>= 1; 233 1.1 christos if (incr != 0) { 234 1.1 christos huff &= incr - 1; 235 1.1 christos huff += incr; 236 1.1 christos } 237 1.1 christos else 238 1.1 christos huff = 0; 239 1.1 christos 240 1.1 christos /* go to next symbol, update count, len */ 241 1.1 christos sym++; 242 1.1 christos if (--(count[len]) == 0) { 243 1.1 christos if (len == max) break; 244 1.1 christos len = lens[work[sym]]; 245 1.1 christos } 246 1.1 christos 247 1.1 christos /* create new sub-table if needed */ 248 1.1 christos if (len > root && (huff & mask) != low) { 249 1.1 christos /* if first time, transition to sub-tables */ 250 1.1 christos if (drop == 0) 251 1.1 christos drop = root; 252 1.1 christos 253 1.1 christos /* increment past last table */ 254 1.1 christos next += 1U << curr; 255 1.1 christos 256 1.1 christos /* determine length of next table */ 257 1.1 christos curr = len - drop; 258 1.1 christos left = (int)(1 << curr); 259 1.1 christos while (curr + drop < max) { 260 1.1 christos left -= count[curr + drop]; 261 1.1 christos if (left <= 0) break; 262 1.1 christos curr++; 263 1.1 christos left <<= 1; 264 1.1 christos } 265 1.1 christos 266 1.1 christos /* check for enough space */ 267 1.1 christos used += 1U << curr; 268 1.1.1.2 christos if ((type == LENS && used >= ENOUGH_LENS) || 269 1.1.1.2 christos (type == DISTS && used >= ENOUGH_DISTS)) 270 1.1 christos return 1; 271 1.1 christos 272 1.1 christos /* point entry in root table to sub-table */ 273 1.1 christos low = huff & mask; 274 1.1 christos (*table)[low].op = (unsigned char)curr; 275 1.1 christos (*table)[low].bits = (unsigned char)root; 276 1.1 christos (*table)[low].val = (unsigned short)(next - *table); 277 1.1 christos } 278 1.1 christos } 279 1.1 christos 280 1.1 christos /* 281 1.1 christos Fill in rest of table for incomplete codes. This loop is similar to the 282 1.1 christos loop above in incrementing huff for table indices. It is assumed that 283 1.1 christos len is equal to curr + drop, so there is no loop needed to increment 284 1.1 christos through high index bits. When the current sub-table is filled, the loop 285 1.1 christos drops back to the root table to fill in any remaining entries there. 286 1.1 christos */ 287 1.1 christos this.op = (unsigned char)64; /* invalid code marker */ 288 1.1 christos this.bits = (unsigned char)(len - drop); 289 1.1 christos this.val = (unsigned short)0; 290 1.1 christos while (huff != 0) { 291 1.1 christos /* when done with sub-table, drop back to root table */ 292 1.1 christos if (drop != 0 && (huff & mask) != low) { 293 1.1 christos drop = 0; 294 1.1 christos len = root; 295 1.1 christos next = *table; 296 1.1 christos curr = root; 297 1.1 christos this.bits = (unsigned char)len; 298 1.1 christos } 299 1.1 christos 300 1.1 christos /* put invalid code marker in table */ 301 1.1 christos next[huff >> drop] = this; 302 1.1 christos 303 1.1 christos /* backwards increment the len-bit code huff */ 304 1.1 christos incr = 1U << (len - 1); 305 1.1 christos while (huff & incr) 306 1.1 christos incr >>= 1; 307 1.1 christos if (incr != 0) { 308 1.1 christos huff &= incr - 1; 309 1.1 christos huff += incr; 310 1.1 christos } 311 1.1 christos else 312 1.1 christos huff = 0; 313 1.1 christos } 314 1.1 christos 315 1.1 christos /* set return parameters */ 316 1.1 christos *table += used; 317 1.1 christos *bits = root; 318 1.1 christos return 0; 319 1.1 christos } 320