inftree9.c revision 1.1.1.4 1 1.1 christos /* inftree9.c -- generate Huffman trees for efficient decoding
2 1.1.1.4 christos * Copyright (C) 1995-2024 Mark Adler
3 1.1 christos * For conditions of distribution and use, see copyright notice in zlib.h
4 1.1 christos */
5 1.1 christos
6 1.1 christos #include "zutil.h"
7 1.1 christos #include "inftree9.h"
8 1.1 christos
9 1.1 christos #define MAXBITS 15
10 1.1 christos
11 1.1 christos const char inflate9_copyright[] =
12 1.1.1.4 christos " inflate9 1.3.1 Copyright 1995-2024 Mark Adler ";
13 1.1 christos /*
14 1.1 christos If you use the zlib library in a product, an acknowledgment is welcome
15 1.1 christos in the documentation of your product. If for some reason you cannot
16 1.1 christos include such an acknowledgment, I would appreciate that you keep this
17 1.1 christos copyright string in the executable of your product.
18 1.1 christos */
19 1.1 christos
20 1.1 christos /*
21 1.1 christos Build a set of tables to decode the provided canonical Huffman code.
22 1.1 christos The code lengths are lens[0..codes-1]. The result starts at *table,
23 1.1 christos whose indices are 0..2^bits-1. work is a writable array of at least
24 1.1 christos lens shorts, which is used as a work area. type is the type of code
25 1.1 christos to be generated, CODES, LENS, or DISTS. On return, zero is success,
26 1.1 christos -1 is an invalid code, and +1 means that ENOUGH isn't enough. table
27 1.1 christos on return points to the next available entry's address. bits is the
28 1.1 christos requested root table index bits, and on return it is the actual root
29 1.1 christos table index bits. It will differ if the request is greater than the
30 1.1 christos longest code or if it is less than the shortest code.
31 1.1 christos */
32 1.1.1.4 christos int inflate_table9(codetype type, unsigned short FAR *lens, unsigned codes,
33 1.1.1.4 christos code FAR * FAR *table, unsigned FAR *bits,
34 1.1.1.4 christos unsigned short FAR *work) {
35 1.1 christos unsigned len; /* a code's length in bits */
36 1.1 christos unsigned sym; /* index of code symbols */
37 1.1 christos unsigned min, max; /* minimum and maximum code lengths */
38 1.1 christos unsigned root; /* number of index bits for root table */
39 1.1 christos unsigned curr; /* number of index bits for current table */
40 1.1 christos unsigned drop; /* code bits to drop for sub-table */
41 1.1 christos int left; /* number of prefix codes available */
42 1.1 christos unsigned used; /* code entries in table used */
43 1.1 christos unsigned huff; /* Huffman code */
44 1.1 christos unsigned incr; /* for incrementing code, index */
45 1.1 christos unsigned fill; /* index for replicating entries */
46 1.1 christos unsigned low; /* low bits for current root entry */
47 1.1 christos unsigned mask; /* mask for low root bits */
48 1.1 christos code this; /* table entry for duplication */
49 1.1 christos code FAR *next; /* next available space in table */
50 1.1 christos const unsigned short FAR *base; /* base value table to use */
51 1.1 christos const unsigned short FAR *extra; /* extra bits table to use */
52 1.1 christos int end; /* use base and extra for symbol > end */
53 1.1 christos unsigned short count[MAXBITS+1]; /* number of codes of each length */
54 1.1 christos unsigned short offs[MAXBITS+1]; /* offsets in table for each length */
55 1.1 christos static const unsigned short lbase[31] = { /* Length codes 257..285 base */
56 1.1 christos 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17,
57 1.1 christos 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115,
58 1.1 christos 131, 163, 195, 227, 3, 0, 0};
59 1.1 christos static const unsigned short lext[31] = { /* Length codes 257..285 extra */
60 1.1 christos 128, 128, 128, 128, 128, 128, 128, 128, 129, 129, 129, 129,
61 1.1 christos 130, 130, 130, 130, 131, 131, 131, 131, 132, 132, 132, 132,
62 1.1.1.4 christos 133, 133, 133, 133, 144, 203, 77};
63 1.1 christos static const unsigned short dbase[32] = { /* Distance codes 0..31 base */
64 1.1 christos 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49,
65 1.1 christos 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073,
66 1.1 christos 4097, 6145, 8193, 12289, 16385, 24577, 32769, 49153};
67 1.1 christos static const unsigned short dext[32] = { /* Distance codes 0..31 extra */
68 1.1 christos 128, 128, 128, 128, 129, 129, 130, 130, 131, 131, 132, 132,
69 1.1 christos 133, 133, 134, 134, 135, 135, 136, 136, 137, 137, 138, 138,
70 1.1 christos 139, 139, 140, 140, 141, 141, 142, 142};
71 1.1 christos
72 1.1 christos /*
73 1.1 christos Process a set of code lengths to create a canonical Huffman code. The
74 1.1 christos code lengths are lens[0..codes-1]. Each length corresponds to the
75 1.1 christos symbols 0..codes-1. The Huffman code is generated by first sorting the
76 1.1 christos symbols by length from short to long, and retaining the symbol order
77 1.1 christos for codes with equal lengths. Then the code starts with all zero bits
78 1.1 christos for the first code of the shortest length, and the codes are integer
79 1.1 christos increments for the same length, and zeros are appended as the length
80 1.1 christos increases. For the deflate format, these bits are stored backwards
81 1.1 christos from their more natural integer increment ordering, and so when the
82 1.1 christos decoding tables are built in the large loop below, the integer codes
83 1.1 christos are incremented backwards.
84 1.1 christos
85 1.1 christos This routine assumes, but does not check, that all of the entries in
86 1.1 christos lens[] are in the range 0..MAXBITS. The caller must assure this.
87 1.1 christos 1..MAXBITS is interpreted as that code length. zero means that that
88 1.1 christos symbol does not occur in this code.
89 1.1 christos
90 1.1 christos The codes are sorted by computing a count of codes for each length,
91 1.1 christos creating from that a table of starting indices for each length in the
92 1.1 christos sorted table, and then entering the symbols in order in the sorted
93 1.1 christos table. The sorted table is work[], with that space being provided by
94 1.1 christos the caller.
95 1.1 christos
96 1.1 christos The length counts are used for other purposes as well, i.e. finding
97 1.1 christos the minimum and maximum length codes, determining if there are any
98 1.1 christos codes at all, checking for a valid set of lengths, and looking ahead
99 1.1 christos at length counts to determine sub-table sizes when building the
100 1.1 christos decoding tables.
101 1.1 christos */
102 1.1 christos
103 1.1 christos /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
104 1.1 christos for (len = 0; len <= MAXBITS; len++)
105 1.1 christos count[len] = 0;
106 1.1 christos for (sym = 0; sym < codes; sym++)
107 1.1 christos count[lens[sym]]++;
108 1.1 christos
109 1.1 christos /* bound code lengths, force root to be within code lengths */
110 1.1 christos root = *bits;
111 1.1 christos for (max = MAXBITS; max >= 1; max--)
112 1.1 christos if (count[max] != 0) break;
113 1.1 christos if (root > max) root = max;
114 1.1 christos if (max == 0) return -1; /* no codes! */
115 1.1 christos for (min = 1; min <= MAXBITS; min++)
116 1.1 christos if (count[min] != 0) break;
117 1.1 christos if (root < min) root = min;
118 1.1 christos
119 1.1 christos /* check for an over-subscribed or incomplete set of lengths */
120 1.1 christos left = 1;
121 1.1 christos for (len = 1; len <= MAXBITS; len++) {
122 1.1 christos left <<= 1;
123 1.1 christos left -= count[len];
124 1.1 christos if (left < 0) return -1; /* over-subscribed */
125 1.1 christos }
126 1.1 christos if (left > 0 && (type == CODES || max != 1))
127 1.1 christos return -1; /* incomplete set */
128 1.1 christos
129 1.1 christos /* generate offsets into symbol table for each length for sorting */
130 1.1 christos offs[1] = 0;
131 1.1 christos for (len = 1; len < MAXBITS; len++)
132 1.1 christos offs[len + 1] = offs[len] + count[len];
133 1.1 christos
134 1.1 christos /* sort symbols by length, by symbol order within each length */
135 1.1 christos for (sym = 0; sym < codes; sym++)
136 1.1 christos if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
137 1.1 christos
138 1.1 christos /*
139 1.1 christos Create and fill in decoding tables. In this loop, the table being
140 1.1 christos filled is at next and has curr index bits. The code being used is huff
141 1.1 christos with length len. That code is converted to an index by dropping drop
142 1.1 christos bits off of the bottom. For codes where len is less than drop + curr,
143 1.1 christos those top drop + curr - len bits are incremented through all values to
144 1.1 christos fill the table with replicated entries.
145 1.1 christos
146 1.1 christos root is the number of index bits for the root table. When len exceeds
147 1.1 christos root, sub-tables are created pointed to by the root entry with an index
148 1.1 christos of the low root bits of huff. This is saved in low to check for when a
149 1.1 christos new sub-table should be started. drop is zero when the root table is
150 1.1 christos being filled, and drop is root when sub-tables are being filled.
151 1.1 christos
152 1.1 christos When a new sub-table is needed, it is necessary to look ahead in the
153 1.1 christos code lengths to determine what size sub-table is needed. The length
154 1.1 christos counts are used for this, and so count[] is decremented as codes are
155 1.1 christos entered in the tables.
156 1.1 christos
157 1.1 christos used keeps track of how many table entries have been allocated from the
158 1.1.1.2 christos provided *table space. It is checked for LENS and DIST tables against
159 1.1.1.2 christos the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
160 1.1.1.2 christos the initial root table size constants. See the comments in inftree9.h
161 1.1.1.2 christos for more information.
162 1.1 christos
163 1.1 christos sym increments through all symbols, and the loop terminates when
164 1.1 christos all codes of length max, i.e. all codes, have been processed. This
165 1.1 christos routine permits incomplete codes, so another loop after this one fills
166 1.1 christos in the rest of the decoding tables with invalid code markers.
167 1.1 christos */
168 1.1 christos
169 1.1 christos /* set up for code type */
170 1.1 christos switch (type) {
171 1.1 christos case CODES:
172 1.1 christos base = extra = work; /* dummy value--not used */
173 1.1 christos end = 19;
174 1.1 christos break;
175 1.1 christos case LENS:
176 1.1 christos base = lbase;
177 1.1 christos base -= 257;
178 1.1 christos extra = lext;
179 1.1 christos extra -= 257;
180 1.1 christos end = 256;
181 1.1 christos break;
182 1.1 christos default: /* DISTS */
183 1.1 christos base = dbase;
184 1.1 christos extra = dext;
185 1.1 christos end = -1;
186 1.1 christos }
187 1.1 christos
188 1.1 christos /* initialize state for loop */
189 1.1 christos huff = 0; /* starting code */
190 1.1 christos sym = 0; /* starting code symbol */
191 1.1 christos len = min; /* starting code length */
192 1.1 christos next = *table; /* current table to fill in */
193 1.1 christos curr = root; /* current table index bits */
194 1.1 christos drop = 0; /* current bits to drop from code for index */
195 1.1 christos low = (unsigned)(-1); /* trigger new sub-table when len > root */
196 1.1 christos used = 1U << root; /* use root table entries */
197 1.1 christos mask = used - 1; /* mask for comparing low */
198 1.1 christos
199 1.1 christos /* check available table space */
200 1.1.1.2 christos if ((type == LENS && used >= ENOUGH_LENS) ||
201 1.1.1.2 christos (type == DISTS && used >= ENOUGH_DISTS))
202 1.1 christos return 1;
203 1.1 christos
204 1.1 christos /* process all codes and make table entries */
205 1.1 christos for (;;) {
206 1.1 christos /* create table entry */
207 1.1 christos this.bits = (unsigned char)(len - drop);
208 1.1 christos if ((int)(work[sym]) < end) {
209 1.1 christos this.op = (unsigned char)0;
210 1.1 christos this.val = work[sym];
211 1.1 christos }
212 1.1 christos else if ((int)(work[sym]) > end) {
213 1.1 christos this.op = (unsigned char)(extra[work[sym]]);
214 1.1 christos this.val = base[work[sym]];
215 1.1 christos }
216 1.1 christos else {
217 1.1 christos this.op = (unsigned char)(32 + 64); /* end of block */
218 1.1 christos this.val = 0;
219 1.1 christos }
220 1.1 christos
221 1.1 christos /* replicate for those indices with low len bits equal to huff */
222 1.1 christos incr = 1U << (len - drop);
223 1.1 christos fill = 1U << curr;
224 1.1 christos do {
225 1.1 christos fill -= incr;
226 1.1 christos next[(huff >> drop) + fill] = this;
227 1.1 christos } while (fill != 0);
228 1.1 christos
229 1.1 christos /* backwards increment the len-bit code huff */
230 1.1 christos incr = 1U << (len - 1);
231 1.1 christos while (huff & incr)
232 1.1 christos incr >>= 1;
233 1.1 christos if (incr != 0) {
234 1.1 christos huff &= incr - 1;
235 1.1 christos huff += incr;
236 1.1 christos }
237 1.1 christos else
238 1.1 christos huff = 0;
239 1.1 christos
240 1.1 christos /* go to next symbol, update count, len */
241 1.1 christos sym++;
242 1.1 christos if (--(count[len]) == 0) {
243 1.1 christos if (len == max) break;
244 1.1 christos len = lens[work[sym]];
245 1.1 christos }
246 1.1 christos
247 1.1 christos /* create new sub-table if needed */
248 1.1 christos if (len > root && (huff & mask) != low) {
249 1.1 christos /* if first time, transition to sub-tables */
250 1.1 christos if (drop == 0)
251 1.1 christos drop = root;
252 1.1 christos
253 1.1 christos /* increment past last table */
254 1.1 christos next += 1U << curr;
255 1.1 christos
256 1.1 christos /* determine length of next table */
257 1.1 christos curr = len - drop;
258 1.1 christos left = (int)(1 << curr);
259 1.1 christos while (curr + drop < max) {
260 1.1 christos left -= count[curr + drop];
261 1.1 christos if (left <= 0) break;
262 1.1 christos curr++;
263 1.1 christos left <<= 1;
264 1.1 christos }
265 1.1 christos
266 1.1 christos /* check for enough space */
267 1.1 christos used += 1U << curr;
268 1.1.1.2 christos if ((type == LENS && used >= ENOUGH_LENS) ||
269 1.1.1.2 christos (type == DISTS && used >= ENOUGH_DISTS))
270 1.1 christos return 1;
271 1.1 christos
272 1.1 christos /* point entry in root table to sub-table */
273 1.1 christos low = huff & mask;
274 1.1 christos (*table)[low].op = (unsigned char)curr;
275 1.1 christos (*table)[low].bits = (unsigned char)root;
276 1.1 christos (*table)[low].val = (unsigned short)(next - *table);
277 1.1 christos }
278 1.1 christos }
279 1.1 christos
280 1.1 christos /*
281 1.1 christos Fill in rest of table for incomplete codes. This loop is similar to the
282 1.1 christos loop above in incrementing huff for table indices. It is assumed that
283 1.1 christos len is equal to curr + drop, so there is no loop needed to increment
284 1.1 christos through high index bits. When the current sub-table is filled, the loop
285 1.1 christos drops back to the root table to fill in any remaining entries there.
286 1.1 christos */
287 1.1 christos this.op = (unsigned char)64; /* invalid code marker */
288 1.1 christos this.bits = (unsigned char)(len - drop);
289 1.1 christos this.val = (unsigned short)0;
290 1.1 christos while (huff != 0) {
291 1.1 christos /* when done with sub-table, drop back to root table */
292 1.1 christos if (drop != 0 && (huff & mask) != low) {
293 1.1 christos drop = 0;
294 1.1 christos len = root;
295 1.1 christos next = *table;
296 1.1 christos curr = root;
297 1.1 christos this.bits = (unsigned char)len;
298 1.1 christos }
299 1.1 christos
300 1.1 christos /* put invalid code marker in table */
301 1.1 christos next[huff >> drop] = this;
302 1.1 christos
303 1.1 christos /* backwards increment the len-bit code huff */
304 1.1 christos incr = 1U << (len - 1);
305 1.1 christos while (huff & incr)
306 1.1 christos incr >>= 1;
307 1.1 christos if (incr != 0) {
308 1.1 christos huff &= incr - 1;
309 1.1 christos huff += incr;
310 1.1 christos }
311 1.1 christos else
312 1.1 christos huff = 0;
313 1.1 christos }
314 1.1 christos
315 1.1 christos /* set return parameters */
316 1.1 christos *table += used;
317 1.1 christos *bits = root;
318 1.1 christos return 0;
319 1.1 christos }
320