crc32.c revision 1.5 1 1.5 christos /* $NetBSD: crc32.c,v 1.5 2017/01/10 01:27:41 christos Exp $ */
2 1.1 christos
3 1.1 christos /* crc32.c -- compute the CRC-32 of a data stream
4 1.5 christos * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler
5 1.1 christos * For conditions of distribution and use, see copyright notice in zlib.h
6 1.1 christos *
7 1.1 christos * Thanks to Rodney Brown <rbrown64 (at) csc.com.au> for his contribution of faster
8 1.1 christos * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
9 1.1 christos * tables for updating the shift register in one step with three exclusive-ors
10 1.1 christos * instead of four steps with four exclusive-ors. This results in about a
11 1.1 christos * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
12 1.1 christos */
13 1.1 christos
14 1.5 christos /* @(#) $Id: crc32.c,v 1.5 2017/01/10 01:27:41 christos Exp $ */
15 1.1 christos
16 1.1 christos /*
17 1.1 christos Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
18 1.1 christos protection on the static variables used to control the first-use generation
19 1.1 christos of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
20 1.1 christos first call get_crc_table() to initialize the tables before allowing more than
21 1.1 christos one thread to use crc32().
22 1.5 christos
23 1.5 christos DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
24 1.1 christos */
25 1.1 christos
26 1.1 christos #ifdef MAKECRCH
27 1.1 christos # include <stdio.h>
28 1.1 christos # ifndef DYNAMIC_CRC_TABLE
29 1.1 christos # define DYNAMIC_CRC_TABLE
30 1.1 christos # endif /* !DYNAMIC_CRC_TABLE */
31 1.1 christos #endif /* MAKECRCH */
32 1.1 christos
33 1.1 christos #include "zutil.h" /* for STDC and FAR definitions */
34 1.1 christos
35 1.1 christos #define local static
36 1.1 christos
37 1.4 dsl #if defined(__NetBSD__) && defined(_STANDALONE)
38 1.4 dsl #define NOBYFOUR
39 1.4 dsl #define DYNAMIC_CRC_TABLE
40 1.4 dsl #endif
41 1.4 dsl
42 1.5 christos /* Definitions for doing the crc four data bytes at a time. */
43 1.5 christos #if !defined(NOBYFOUR) && defined(Z_U4)
44 1.3 uwe # define BYFOUR
45 1.5 christos #endif
46 1.1 christos #ifdef BYFOUR
47 1.1 christos local unsigned long crc32_little OF((unsigned long,
48 1.5 christos const unsigned char FAR *, z_size_t));
49 1.1 christos local unsigned long crc32_big OF((unsigned long,
50 1.5 christos const unsigned char FAR *, z_size_t));
51 1.1 christos # define TBLS 8
52 1.1 christos #else
53 1.1 christos # define TBLS 1
54 1.1 christos #endif /* BYFOUR */
55 1.1 christos
56 1.1 christos /* Local functions for crc concatenation */
57 1.1 christos local unsigned long gf2_matrix_times OF((unsigned long *mat,
58 1.1 christos unsigned long vec));
59 1.1 christos local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
60 1.5 christos local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
61 1.5 christos
62 1.1 christos
63 1.1 christos #ifdef DYNAMIC_CRC_TABLE
64 1.1 christos
65 1.1 christos local volatile int crc_table_empty = 1;
66 1.5 christos local z_crc_t FAR crc_table[TBLS][256];
67 1.1 christos local void make_crc_table OF((void));
68 1.1 christos #ifdef MAKECRCH
69 1.5 christos local void write_table OF((FILE *, const z_crc_t FAR *));
70 1.1 christos #endif /* MAKECRCH */
71 1.1 christos /*
72 1.1 christos Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
73 1.1 christos x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
74 1.1 christos
75 1.1 christos Polynomials over GF(2) are represented in binary, one bit per coefficient,
76 1.1 christos with the lowest powers in the most significant bit. Then adding polynomials
77 1.1 christos is just exclusive-or, and multiplying a polynomial by x is a right shift by
78 1.1 christos one. If we call the above polynomial p, and represent a byte as the
79 1.1 christos polynomial q, also with the lowest power in the most significant bit (so the
80 1.1 christos byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
81 1.1 christos where a mod b means the remainder after dividing a by b.
82 1.1 christos
83 1.1 christos This calculation is done using the shift-register method of multiplying and
84 1.1 christos taking the remainder. The register is initialized to zero, and for each
85 1.1 christos incoming bit, x^32 is added mod p to the register if the bit is a one (where
86 1.1 christos x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
87 1.1 christos x (which is shifting right by one and adding x^32 mod p if the bit shifted
88 1.1 christos out is a one). We start with the highest power (least significant bit) of
89 1.1 christos q and repeat for all eight bits of q.
90 1.1 christos
91 1.1 christos The first table is simply the CRC of all possible eight bit values. This is
92 1.1 christos all the information needed to generate CRCs on data a byte at a time for all
93 1.1 christos combinations of CRC register values and incoming bytes. The remaining tables
94 1.1 christos allow for word-at-a-time CRC calculation for both big-endian and little-
95 1.1 christos endian machines, where a word is four bytes.
96 1.1 christos */
97 1.1 christos local void make_crc_table()
98 1.1 christos {
99 1.5 christos z_crc_t c;
100 1.1 christos int n, k;
101 1.5 christos z_crc_t poly; /* polynomial exclusive-or pattern */
102 1.1 christos /* terms of polynomial defining this crc (except x^32): */
103 1.1 christos static volatile int first = 1; /* flag to limit concurrent making */
104 1.1 christos static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
105 1.1 christos
106 1.1 christos /* See if another task is already doing this (not thread-safe, but better
107 1.1 christos than nothing -- significantly reduces duration of vulnerability in
108 1.1 christos case the advice about DYNAMIC_CRC_TABLE is ignored) */
109 1.1 christos if (first) {
110 1.1 christos first = 0;
111 1.1 christos
112 1.1 christos /* make exclusive-or pattern from polynomial (0xedb88320UL) */
113 1.5 christos poly = 0;
114 1.5 christos for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
115 1.5 christos poly |= (z_crc_t)1 << (31 - p[n]);
116 1.1 christos
117 1.1 christos /* generate a crc for every 8-bit value */
118 1.1 christos for (n = 0; n < 256; n++) {
119 1.5 christos c = (z_crc_t)n;
120 1.1 christos for (k = 0; k < 8; k++)
121 1.1 christos c = c & 1 ? poly ^ (c >> 1) : c >> 1;
122 1.1 christos crc_table[0][n] = c;
123 1.1 christos }
124 1.1 christos
125 1.1 christos #ifdef BYFOUR
126 1.1 christos /* generate crc for each value followed by one, two, and three zeros,
127 1.1 christos and then the byte reversal of those as well as the first table */
128 1.1 christos for (n = 0; n < 256; n++) {
129 1.1 christos c = crc_table[0][n];
130 1.5 christos crc_table[4][n] = ZSWAP32(c);
131 1.1 christos for (k = 1; k < 4; k++) {
132 1.1 christos c = crc_table[0][c & 0xff] ^ (c >> 8);
133 1.1 christos crc_table[k][n] = c;
134 1.5 christos crc_table[k + 4][n] = ZSWAP32(c);
135 1.1 christos }
136 1.1 christos }
137 1.1 christos #endif /* BYFOUR */
138 1.1 christos
139 1.1 christos crc_table_empty = 0;
140 1.1 christos }
141 1.1 christos else { /* not first */
142 1.1 christos /* wait for the other guy to finish (not efficient, but rare) */
143 1.1 christos while (crc_table_empty)
144 1.1 christos ;
145 1.1 christos }
146 1.1 christos
147 1.1 christos #ifdef MAKECRCH
148 1.1 christos /* write out CRC tables to crc32.h */
149 1.1 christos {
150 1.1 christos FILE *out;
151 1.1 christos
152 1.1 christos out = fopen("crc32.h", "w");
153 1.1 christos if (out == NULL) return;
154 1.1 christos fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
155 1.1 christos fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
156 1.5 christos fprintf(out, "local const z_crc_t FAR ");
157 1.1 christos fprintf(out, "crc_table[TBLS][256] =\n{\n {\n");
158 1.1 christos write_table(out, crc_table[0]);
159 1.1 christos # ifdef BYFOUR
160 1.1 christos fprintf(out, "#ifdef BYFOUR\n");
161 1.1 christos for (k = 1; k < 8; k++) {
162 1.1 christos fprintf(out, " },\n {\n");
163 1.1 christos write_table(out, crc_table[k]);
164 1.1 christos }
165 1.1 christos fprintf(out, "#endif\n");
166 1.1 christos # endif /* BYFOUR */
167 1.1 christos fprintf(out, " }\n};\n");
168 1.1 christos fclose(out);
169 1.1 christos }
170 1.1 christos #endif /* MAKECRCH */
171 1.1 christos }
172 1.1 christos
173 1.1 christos #ifdef MAKECRCH
174 1.1 christos local void write_table(out, table)
175 1.1 christos FILE *out;
176 1.5 christos const z_crc_t FAR *table;
177 1.1 christos {
178 1.1 christos int n;
179 1.1 christos
180 1.1 christos for (n = 0; n < 256; n++)
181 1.5 christos fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ",
182 1.5 christos (unsigned long)(table[n]),
183 1.1 christos n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
184 1.1 christos }
185 1.1 christos #endif /* MAKECRCH */
186 1.1 christos
187 1.1 christos #else /* !DYNAMIC_CRC_TABLE */
188 1.1 christos /* ========================================================================
189 1.1 christos * Tables of CRC-32s of all single-byte values, made by make_crc_table().
190 1.1 christos */
191 1.1 christos #include "crc32.h"
192 1.1 christos #endif /* DYNAMIC_CRC_TABLE */
193 1.1 christos
194 1.1 christos /* =========================================================================
195 1.1 christos * This function can be used by asm versions of crc32()
196 1.1 christos */
197 1.5 christos const z_crc_t FAR * ZEXPORT get_crc_table()
198 1.1 christos {
199 1.1 christos #ifdef DYNAMIC_CRC_TABLE
200 1.1 christos if (crc_table_empty)
201 1.1 christos make_crc_table();
202 1.1 christos #endif /* DYNAMIC_CRC_TABLE */
203 1.5 christos return (const z_crc_t FAR *)crc_table;
204 1.1 christos }
205 1.1 christos
206 1.1 christos /* ========================================================================= */
207 1.1 christos #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
208 1.1 christos #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
209 1.1 christos
210 1.1 christos /* ========================================================================= */
211 1.5 christos unsigned long ZEXPORT crc32_z(crc, buf, len)
212 1.1 christos unsigned long crc;
213 1.1 christos const unsigned char FAR *buf;
214 1.5 christos z_size_t len;
215 1.1 christos {
216 1.1 christos if (buf == Z_NULL) return 0UL;
217 1.1 christos
218 1.1 christos #ifdef DYNAMIC_CRC_TABLE
219 1.1 christos if (crc_table_empty)
220 1.1 christos make_crc_table();
221 1.1 christos #endif /* DYNAMIC_CRC_TABLE */
222 1.1 christos
223 1.1 christos #ifdef BYFOUR
224 1.5 christos if (sizeof(void *) == sizeof(ptrdiff_t)) {
225 1.5 christos z_crc_t endian;
226 1.1 christos
227 1.1 christos endian = 1;
228 1.1 christos if (*((unsigned char *)(&endian)))
229 1.1 christos return crc32_little(crc, buf, len);
230 1.1 christos else
231 1.1 christos return crc32_big(crc, buf, len);
232 1.1 christos }
233 1.1 christos #endif /* BYFOUR */
234 1.1 christos crc = crc ^ 0xffffffffUL;
235 1.1 christos while (len >= 8) {
236 1.1 christos DO8;
237 1.1 christos len -= 8;
238 1.1 christos }
239 1.1 christos if (len) do {
240 1.1 christos DO1;
241 1.1 christos } while (--len);
242 1.1 christos return crc ^ 0xffffffffUL;
243 1.1 christos }
244 1.1 christos
245 1.5 christos /* ========================================================================= */
246 1.5 christos unsigned long ZEXPORT crc32(crc, buf, len)
247 1.5 christos unsigned long crc;
248 1.5 christos const unsigned char FAR *buf;
249 1.5 christos uInt len;
250 1.5 christos {
251 1.5 christos return crc32_z(crc, buf, len);
252 1.5 christos }
253 1.5 christos
254 1.1 christos #ifdef BYFOUR
255 1.1 christos
256 1.5 christos /*
257 1.5 christos This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit
258 1.5 christos integer pointer type. This violates the strict aliasing rule, where a
259 1.5 christos compiler can assume, for optimization purposes, that two pointers to
260 1.5 christos fundamentally different types won't ever point to the same memory. This can
261 1.5 christos manifest as a problem only if one of the pointers is written to. This code
262 1.5 christos only reads from those pointers. So long as this code remains isolated in
263 1.5 christos this compilation unit, there won't be a problem. For this reason, this code
264 1.5 christos should not be copied and pasted into a compilation unit in which other code
265 1.5 christos writes to the buffer that is passed to these routines.
266 1.5 christos */
267 1.5 christos
268 1.1 christos /* ========================================================================= */
269 1.1 christos #define DOLIT4 c ^= *buf4++; \
270 1.1 christos c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
271 1.1 christos crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
272 1.1 christos #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
273 1.1 christos
274 1.1 christos /* ========================================================================= */
275 1.1 christos local unsigned long crc32_little(crc, buf, len)
276 1.1 christos unsigned long crc;
277 1.1 christos const unsigned char FAR *buf;
278 1.5 christos z_size_t len;
279 1.1 christos {
280 1.5 christos register z_crc_t c;
281 1.5 christos register const z_crc_t FAR *buf4;
282 1.1 christos
283 1.5 christos c = (z_crc_t)crc;
284 1.1 christos c = ~c;
285 1.2 christos while (len && ((z_ptrdiff_t)buf & 3)) {
286 1.1 christos c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
287 1.1 christos len--;
288 1.1 christos }
289 1.1 christos
290 1.5 christos buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
291 1.1 christos while (len >= 32) {
292 1.1 christos DOLIT32;
293 1.1 christos len -= 32;
294 1.1 christos }
295 1.1 christos while (len >= 4) {
296 1.1 christos DOLIT4;
297 1.1 christos len -= 4;
298 1.1 christos }
299 1.1 christos buf = (const unsigned char FAR *)buf4;
300 1.1 christos
301 1.1 christos if (len) do {
302 1.1 christos c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
303 1.1 christos } while (--len);
304 1.1 christos c = ~c;
305 1.1 christos return (unsigned long)c;
306 1.1 christos }
307 1.1 christos
308 1.1 christos /* ========================================================================= */
309 1.5 christos #define DOBIG4 c ^= *buf4++; \
310 1.1 christos c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
311 1.1 christos crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
312 1.1 christos #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
313 1.1 christos
314 1.1 christos /* ========================================================================= */
315 1.1 christos local unsigned long crc32_big(crc, buf, len)
316 1.1 christos unsigned long crc;
317 1.1 christos const unsigned char FAR *buf;
318 1.5 christos z_size_t len;
319 1.1 christos {
320 1.5 christos register z_crc_t c;
321 1.5 christos register const z_crc_t FAR *buf4;
322 1.1 christos
323 1.5 christos c = ZSWAP32((z_crc_t)crc);
324 1.1 christos c = ~c;
325 1.2 christos while (len && ((z_ptrdiff_t)buf & 3)) {
326 1.1 christos c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
327 1.1 christos len--;
328 1.1 christos }
329 1.1 christos
330 1.5 christos buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
331 1.1 christos while (len >= 32) {
332 1.1 christos DOBIG32;
333 1.1 christos len -= 32;
334 1.1 christos }
335 1.1 christos while (len >= 4) {
336 1.1 christos DOBIG4;
337 1.1 christos len -= 4;
338 1.1 christos }
339 1.1 christos buf = (const unsigned char FAR *)buf4;
340 1.1 christos
341 1.1 christos if (len) do {
342 1.1 christos c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
343 1.1 christos } while (--len);
344 1.1 christos c = ~c;
345 1.5 christos return (unsigned long)(ZSWAP32(c));
346 1.1 christos }
347 1.1 christos
348 1.1 christos #endif /* BYFOUR */
349 1.1 christos
350 1.1 christos #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
351 1.1 christos
352 1.1 christos /* ========================================================================= */
353 1.1 christos local unsigned long gf2_matrix_times(mat, vec)
354 1.1 christos unsigned long *mat;
355 1.1 christos unsigned long vec;
356 1.1 christos {
357 1.1 christos unsigned long sum;
358 1.1 christos
359 1.1 christos sum = 0;
360 1.1 christos while (vec) {
361 1.1 christos if (vec & 1)
362 1.1 christos sum ^= *mat;
363 1.1 christos vec >>= 1;
364 1.1 christos mat++;
365 1.1 christos }
366 1.1 christos return sum;
367 1.1 christos }
368 1.1 christos
369 1.1 christos /* ========================================================================= */
370 1.1 christos local void gf2_matrix_square(square, mat)
371 1.1 christos unsigned long *square;
372 1.1 christos unsigned long *mat;
373 1.1 christos {
374 1.1 christos int n;
375 1.1 christos
376 1.1 christos for (n = 0; n < GF2_DIM; n++)
377 1.1 christos square[n] = gf2_matrix_times(mat, mat[n]);
378 1.1 christos }
379 1.1 christos
380 1.1 christos /* ========================================================================= */
381 1.5 christos local uLong crc32_combine_(crc1, crc2, len2)
382 1.1 christos uLong crc1;
383 1.1 christos uLong crc2;
384 1.5 christos z_off64_t len2;
385 1.1 christos {
386 1.1 christos int n;
387 1.1 christos unsigned long row;
388 1.1 christos unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
389 1.1 christos unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
390 1.1 christos
391 1.5 christos /* degenerate case (also disallow negative lengths) */
392 1.5 christos if (len2 <= 0)
393 1.1 christos return crc1;
394 1.1 christos
395 1.1 christos /* put operator for one zero bit in odd */
396 1.5 christos odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
397 1.1 christos row = 1;
398 1.1 christos for (n = 1; n < GF2_DIM; n++) {
399 1.1 christos odd[n] = row;
400 1.1 christos row <<= 1;
401 1.1 christos }
402 1.1 christos
403 1.1 christos /* put operator for two zero bits in even */
404 1.1 christos gf2_matrix_square(even, odd);
405 1.1 christos
406 1.1 christos /* put operator for four zero bits in odd */
407 1.1 christos gf2_matrix_square(odd, even);
408 1.1 christos
409 1.1 christos /* apply len2 zeros to crc1 (first square will put the operator for one
410 1.1 christos zero byte, eight zero bits, in even) */
411 1.1 christos do {
412 1.1 christos /* apply zeros operator for this bit of len2 */
413 1.1 christos gf2_matrix_square(even, odd);
414 1.1 christos if (len2 & 1)
415 1.1 christos crc1 = gf2_matrix_times(even, crc1);
416 1.1 christos len2 >>= 1;
417 1.1 christos
418 1.1 christos /* if no more bits set, then done */
419 1.1 christos if (len2 == 0)
420 1.1 christos break;
421 1.1 christos
422 1.1 christos /* another iteration of the loop with odd and even swapped */
423 1.1 christos gf2_matrix_square(odd, even);
424 1.1 christos if (len2 & 1)
425 1.1 christos crc1 = gf2_matrix_times(odd, crc1);
426 1.1 christos len2 >>= 1;
427 1.1 christos
428 1.1 christos /* if no more bits set, then done */
429 1.1 christos } while (len2 != 0);
430 1.1 christos
431 1.1 christos /* return combined crc */
432 1.1 christos crc1 ^= crc2;
433 1.1 christos return crc1;
434 1.1 christos }
435 1.5 christos
436 1.5 christos /* ========================================================================= */
437 1.5 christos uLong ZEXPORT crc32_combine(crc1, crc2, len2)
438 1.5 christos uLong crc1;
439 1.5 christos uLong crc2;
440 1.5 christos z_off_t len2;
441 1.5 christos {
442 1.5 christos return crc32_combine_(crc1, crc2, len2);
443 1.5 christos }
444 1.5 christos
445 1.5 christos uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
446 1.5 christos uLong crc1;
447 1.5 christos uLong crc2;
448 1.5 christos z_off64_t len2;
449 1.5 christos {
450 1.5 christos return crc32_combine_(crc1, crc2, len2);
451 1.5 christos }
452