Home | History | Annotate | Line # | Download | only in doc
algorithm.txt revision 1.1.1.1.4.2
      1  1.1.1.1.4.2  pgoyette 1. Compression algorithm (deflate)
      2  1.1.1.1.4.2  pgoyette 
      3  1.1.1.1.4.2  pgoyette The deflation algorithm used by gzip (also zip and zlib) is a variation of
      4  1.1.1.1.4.2  pgoyette LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
      5  1.1.1.1.4.2  pgoyette the input data.  The second occurrence of a string is replaced by a
      6  1.1.1.1.4.2  pgoyette pointer to the previous string, in the form of a pair (distance,
      7  1.1.1.1.4.2  pgoyette length).  Distances are limited to 32K bytes, and lengths are limited
      8  1.1.1.1.4.2  pgoyette to 258 bytes. When a string does not occur anywhere in the previous
      9  1.1.1.1.4.2  pgoyette 32K bytes, it is emitted as a sequence of literal bytes.  (In this
     10  1.1.1.1.4.2  pgoyette description, `string' must be taken as an arbitrary sequence of bytes,
     11  1.1.1.1.4.2  pgoyette and is not restricted to printable characters.)
     12  1.1.1.1.4.2  pgoyette 
     13  1.1.1.1.4.2  pgoyette Literals or match lengths are compressed with one Huffman tree, and
     14  1.1.1.1.4.2  pgoyette match distances are compressed with another tree. The trees are stored
     15  1.1.1.1.4.2  pgoyette in a compact form at the start of each block. The blocks can have any
     16  1.1.1.1.4.2  pgoyette size (except that the compressed data for one block must fit in
     17  1.1.1.1.4.2  pgoyette available memory). A block is terminated when deflate() determines that
     18  1.1.1.1.4.2  pgoyette it would be useful to start another block with fresh trees. (This is
     19  1.1.1.1.4.2  pgoyette somewhat similar to the behavior of LZW-based _compress_.)
     20  1.1.1.1.4.2  pgoyette 
     21  1.1.1.1.4.2  pgoyette Duplicated strings are found using a hash table. All input strings of
     22  1.1.1.1.4.2  pgoyette length 3 are inserted in the hash table. A hash index is computed for
     23  1.1.1.1.4.2  pgoyette the next 3 bytes. If the hash chain for this index is not empty, all
     24  1.1.1.1.4.2  pgoyette strings in the chain are compared with the current input string, and
     25  1.1.1.1.4.2  pgoyette the longest match is selected.
     26  1.1.1.1.4.2  pgoyette 
     27  1.1.1.1.4.2  pgoyette The hash chains are searched starting with the most recent strings, to
     28  1.1.1.1.4.2  pgoyette favor small distances and thus take advantage of the Huffman encoding.
     29  1.1.1.1.4.2  pgoyette The hash chains are singly linked. There are no deletions from the
     30  1.1.1.1.4.2  pgoyette hash chains, the algorithm simply discards matches that are too old.
     31  1.1.1.1.4.2  pgoyette 
     32  1.1.1.1.4.2  pgoyette To avoid a worst-case situation, very long hash chains are arbitrarily
     33  1.1.1.1.4.2  pgoyette truncated at a certain length, determined by a runtime option (level
     34  1.1.1.1.4.2  pgoyette parameter of deflateInit). So deflate() does not always find the longest
     35  1.1.1.1.4.2  pgoyette possible match but generally finds a match which is long enough.
     36  1.1.1.1.4.2  pgoyette 
     37  1.1.1.1.4.2  pgoyette deflate() also defers the selection of matches with a lazy evaluation
     38  1.1.1.1.4.2  pgoyette mechanism. After a match of length N has been found, deflate() searches for
     39  1.1.1.1.4.2  pgoyette a longer match at the next input byte. If a longer match is found, the
     40  1.1.1.1.4.2  pgoyette previous match is truncated to a length of one (thus producing a single
     41  1.1.1.1.4.2  pgoyette literal byte) and the process of lazy evaluation begins again. Otherwise,
     42  1.1.1.1.4.2  pgoyette the original match is kept, and the next match search is attempted only N
     43  1.1.1.1.4.2  pgoyette steps later.
     44  1.1.1.1.4.2  pgoyette 
     45  1.1.1.1.4.2  pgoyette The lazy match evaluation is also subject to a runtime parameter. If
     46  1.1.1.1.4.2  pgoyette the current match is long enough, deflate() reduces the search for a longer
     47  1.1.1.1.4.2  pgoyette match, thus speeding up the whole process. If compression ratio is more
     48  1.1.1.1.4.2  pgoyette important than speed, deflate() attempts a complete second search even if
     49  1.1.1.1.4.2  pgoyette the first match is already long enough.
     50  1.1.1.1.4.2  pgoyette 
     51  1.1.1.1.4.2  pgoyette The lazy match evaluation is not performed for the fastest compression
     52  1.1.1.1.4.2  pgoyette modes (level parameter 1 to 3). For these fast modes, new strings
     53  1.1.1.1.4.2  pgoyette are inserted in the hash table only when no match was found, or
     54  1.1.1.1.4.2  pgoyette when the match is not too long. This degrades the compression ratio
     55  1.1.1.1.4.2  pgoyette but saves time since there are both fewer insertions and fewer searches.
     56  1.1.1.1.4.2  pgoyette 
     57  1.1.1.1.4.2  pgoyette 
     58  1.1.1.1.4.2  pgoyette 2. Decompression algorithm (inflate)
     59  1.1.1.1.4.2  pgoyette 
     60  1.1.1.1.4.2  pgoyette 2.1 Introduction
     61  1.1.1.1.4.2  pgoyette 
     62  1.1.1.1.4.2  pgoyette The key question is how to represent a Huffman code (or any prefix code) so
     63  1.1.1.1.4.2  pgoyette that you can decode fast.  The most important characteristic is that shorter
     64  1.1.1.1.4.2  pgoyette codes are much more common than longer codes, so pay attention to decoding the
     65  1.1.1.1.4.2  pgoyette short codes fast, and let the long codes take longer to decode.
     66  1.1.1.1.4.2  pgoyette 
     67  1.1.1.1.4.2  pgoyette inflate() sets up a first level table that covers some number of bits of
     68  1.1.1.1.4.2  pgoyette input less than the length of longest code.  It gets that many bits from the
     69  1.1.1.1.4.2  pgoyette stream, and looks it up in the table.  The table will tell if the next
     70  1.1.1.1.4.2  pgoyette code is that many bits or less and how many, and if it is, it will tell
     71  1.1.1.1.4.2  pgoyette the value, else it will point to the next level table for which inflate()
     72  1.1.1.1.4.2  pgoyette grabs more bits and tries to decode a longer code.
     73  1.1.1.1.4.2  pgoyette 
     74  1.1.1.1.4.2  pgoyette How many bits to make the first lookup is a tradeoff between the time it
     75  1.1.1.1.4.2  pgoyette takes to decode and the time it takes to build the table.  If building the
     76  1.1.1.1.4.2  pgoyette table took no time (and if you had infinite memory), then there would only
     77  1.1.1.1.4.2  pgoyette be a first level table to cover all the way to the longest code.  However,
     78  1.1.1.1.4.2  pgoyette building the table ends up taking a lot longer for more bits since short
     79  1.1.1.1.4.2  pgoyette codes are replicated many times in such a table.  What inflate() does is
     80  1.1.1.1.4.2  pgoyette simply to make the number of bits in the first table a variable, and  then
     81  1.1.1.1.4.2  pgoyette to set that variable for the maximum speed.
     82  1.1.1.1.4.2  pgoyette 
     83  1.1.1.1.4.2  pgoyette For inflate, which has 286 possible codes for the literal/length tree, the size
     84  1.1.1.1.4.2  pgoyette of the first table is nine bits.  Also the distance trees have 30 possible
     85  1.1.1.1.4.2  pgoyette values, and the size of the first table is six bits.  Note that for each of
     86  1.1.1.1.4.2  pgoyette those cases, the table ended up one bit longer than the ``average'' code
     87  1.1.1.1.4.2  pgoyette length, i.e. the code length of an approximately flat code which would be a
     88  1.1.1.1.4.2  pgoyette little more than eight bits for 286 symbols and a little less than five bits
     89  1.1.1.1.4.2  pgoyette for 30 symbols.
     90  1.1.1.1.4.2  pgoyette 
     91  1.1.1.1.4.2  pgoyette 
     92  1.1.1.1.4.2  pgoyette 2.2 More details on the inflate table lookup
     93  1.1.1.1.4.2  pgoyette 
     94  1.1.1.1.4.2  pgoyette Ok, you want to know what this cleverly obfuscated inflate tree actually
     95  1.1.1.1.4.2  pgoyette looks like.  You are correct that it's not a Huffman tree.  It is simply a
     96  1.1.1.1.4.2  pgoyette lookup table for the first, let's say, nine bits of a Huffman symbol.  The
     97  1.1.1.1.4.2  pgoyette symbol could be as short as one bit or as long as 15 bits.  If a particular
     98  1.1.1.1.4.2  pgoyette symbol is shorter than nine bits, then that symbol's translation is duplicated
     99  1.1.1.1.4.2  pgoyette in all those entries that start with that symbol's bits.  For example, if the
    100  1.1.1.1.4.2  pgoyette symbol is four bits, then it's duplicated 32 times in a nine-bit table.  If a
    101  1.1.1.1.4.2  pgoyette symbol is nine bits long, it appears in the table once.
    102  1.1.1.1.4.2  pgoyette 
    103  1.1.1.1.4.2  pgoyette If the symbol is longer than nine bits, then that entry in the table points
    104  1.1.1.1.4.2  pgoyette to another similar table for the remaining bits.  Again, there are duplicated
    105  1.1.1.1.4.2  pgoyette entries as needed.  The idea is that most of the time the symbol will be short
    106  1.1.1.1.4.2  pgoyette and there will only be one table look up.  (That's whole idea behind data
    107  1.1.1.1.4.2  pgoyette compression in the first place.)  For the less frequent long symbols, there
    108  1.1.1.1.4.2  pgoyette will be two lookups.  If you had a compression method with really long
    109  1.1.1.1.4.2  pgoyette symbols, you could have as many levels of lookups as is efficient.  For
    110  1.1.1.1.4.2  pgoyette inflate, two is enough.
    111  1.1.1.1.4.2  pgoyette 
    112  1.1.1.1.4.2  pgoyette So a table entry either points to another table (in which case nine bits in
    113  1.1.1.1.4.2  pgoyette the above example are gobbled), or it contains the translation for the symbol
    114  1.1.1.1.4.2  pgoyette and the number of bits to gobble.  Then you start again with the next
    115  1.1.1.1.4.2  pgoyette ungobbled bit.
    116  1.1.1.1.4.2  pgoyette 
    117  1.1.1.1.4.2  pgoyette You may wonder: why not just have one lookup table for how ever many bits the
    118  1.1.1.1.4.2  pgoyette longest symbol is?  The reason is that if you do that, you end up spending
    119  1.1.1.1.4.2  pgoyette more time filling in duplicate symbol entries than you do actually decoding.
    120  1.1.1.1.4.2  pgoyette At least for deflate's output that generates new trees every several 10's of
    121  1.1.1.1.4.2  pgoyette kbytes.  You can imagine that filling in a 2^15 entry table for a 15-bit code
    122  1.1.1.1.4.2  pgoyette would take too long if you're only decoding several thousand symbols.  At the
    123  1.1.1.1.4.2  pgoyette other extreme, you could make a new table for every bit in the code.  In fact,
    124  1.1.1.1.4.2  pgoyette that's essentially a Huffman tree.  But then you spend too much time
    125  1.1.1.1.4.2  pgoyette traversing the tree while decoding, even for short symbols.
    126  1.1.1.1.4.2  pgoyette 
    127  1.1.1.1.4.2  pgoyette So the number of bits for the first lookup table is a trade of the time to
    128  1.1.1.1.4.2  pgoyette fill out the table vs. the time spent looking at the second level and above of
    129  1.1.1.1.4.2  pgoyette the table.
    130  1.1.1.1.4.2  pgoyette 
    131  1.1.1.1.4.2  pgoyette Here is an example, scaled down:
    132  1.1.1.1.4.2  pgoyette 
    133  1.1.1.1.4.2  pgoyette The code being decoded, with 10 symbols, from 1 to 6 bits long:
    134  1.1.1.1.4.2  pgoyette 
    135  1.1.1.1.4.2  pgoyette A: 0
    136  1.1.1.1.4.2  pgoyette B: 10
    137  1.1.1.1.4.2  pgoyette C: 1100
    138  1.1.1.1.4.2  pgoyette D: 11010
    139  1.1.1.1.4.2  pgoyette E: 11011
    140  1.1.1.1.4.2  pgoyette F: 11100
    141  1.1.1.1.4.2  pgoyette G: 11101
    142  1.1.1.1.4.2  pgoyette H: 11110
    143  1.1.1.1.4.2  pgoyette I: 111110
    144  1.1.1.1.4.2  pgoyette J: 111111
    145  1.1.1.1.4.2  pgoyette 
    146  1.1.1.1.4.2  pgoyette Let's make the first table three bits long (eight entries):
    147  1.1.1.1.4.2  pgoyette 
    148  1.1.1.1.4.2  pgoyette 000: A,1
    149  1.1.1.1.4.2  pgoyette 001: A,1
    150  1.1.1.1.4.2  pgoyette 010: A,1
    151  1.1.1.1.4.2  pgoyette 011: A,1
    152  1.1.1.1.4.2  pgoyette 100: B,2
    153  1.1.1.1.4.2  pgoyette 101: B,2
    154  1.1.1.1.4.2  pgoyette 110: -> table X (gobble 3 bits)
    155  1.1.1.1.4.2  pgoyette 111: -> table Y (gobble 3 bits)
    156  1.1.1.1.4.2  pgoyette 
    157  1.1.1.1.4.2  pgoyette Each entry is what the bits decode as and how many bits that is, i.e. how
    158  1.1.1.1.4.2  pgoyette many bits to gobble.  Or the entry points to another table, with the number of
    159  1.1.1.1.4.2  pgoyette bits to gobble implicit in the size of the table.
    160  1.1.1.1.4.2  pgoyette 
    161  1.1.1.1.4.2  pgoyette Table X is two bits long since the longest code starting with 110 is five bits
    162  1.1.1.1.4.2  pgoyette long:
    163  1.1.1.1.4.2  pgoyette 
    164  1.1.1.1.4.2  pgoyette 00: C,1
    165  1.1.1.1.4.2  pgoyette 01: C,1
    166  1.1.1.1.4.2  pgoyette 10: D,2
    167  1.1.1.1.4.2  pgoyette 11: E,2
    168  1.1.1.1.4.2  pgoyette 
    169  1.1.1.1.4.2  pgoyette Table Y is three bits long since the longest code starting with 111 is six
    170  1.1.1.1.4.2  pgoyette bits long:
    171  1.1.1.1.4.2  pgoyette 
    172  1.1.1.1.4.2  pgoyette 000: F,2
    173  1.1.1.1.4.2  pgoyette 001: F,2
    174  1.1.1.1.4.2  pgoyette 010: G,2
    175  1.1.1.1.4.2  pgoyette 011: G,2
    176  1.1.1.1.4.2  pgoyette 100: H,2
    177  1.1.1.1.4.2  pgoyette 101: H,2
    178  1.1.1.1.4.2  pgoyette 110: I,3
    179  1.1.1.1.4.2  pgoyette 111: J,3
    180  1.1.1.1.4.2  pgoyette 
    181  1.1.1.1.4.2  pgoyette So what we have here are three tables with a total of 20 entries that had to
    182  1.1.1.1.4.2  pgoyette be constructed.  That's compared to 64 entries for a single table.  Or
    183  1.1.1.1.4.2  pgoyette compared to 16 entries for a Huffman tree (six two entry tables and one four
    184  1.1.1.1.4.2  pgoyette entry table).  Assuming that the code ideally represents the probability of
    185  1.1.1.1.4.2  pgoyette the symbols, it takes on the average 1.25 lookups per symbol.  That's compared
    186  1.1.1.1.4.2  pgoyette to one lookup for the single table, or 1.66 lookups per symbol for the
    187  1.1.1.1.4.2  pgoyette Huffman tree.
    188  1.1.1.1.4.2  pgoyette 
    189  1.1.1.1.4.2  pgoyette There, I think that gives you a picture of what's going on.  For inflate, the
    190  1.1.1.1.4.2  pgoyette meaning of a particular symbol is often more than just a letter.  It can be a
    191  1.1.1.1.4.2  pgoyette byte (a "literal"), or it can be either a length or a distance which
    192  1.1.1.1.4.2  pgoyette indicates a base value and a number of bits to fetch after the code that is
    193  1.1.1.1.4.2  pgoyette added to the base value.  Or it might be the special end-of-block code.  The
    194  1.1.1.1.4.2  pgoyette data structures created in inftrees.c try to encode all that information
    195  1.1.1.1.4.2  pgoyette compactly in the tables.
    196  1.1.1.1.4.2  pgoyette 
    197  1.1.1.1.4.2  pgoyette 
    198  1.1.1.1.4.2  pgoyette Jean-loup Gailly        Mark Adler
    199  1.1.1.1.4.2  pgoyette jloup (a] gzip.org          madler (a] alumni.caltech.edu
    200  1.1.1.1.4.2  pgoyette 
    201  1.1.1.1.4.2  pgoyette 
    202  1.1.1.1.4.2  pgoyette References:
    203  1.1.1.1.4.2  pgoyette 
    204  1.1.1.1.4.2  pgoyette [LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
    205  1.1.1.1.4.2  pgoyette Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
    206  1.1.1.1.4.2  pgoyette pp. 337-343.
    207  1.1.1.1.4.2  pgoyette 
    208  1.1.1.1.4.2  pgoyette ``DEFLATE Compressed Data Format Specification'' available in
    209  1.1.1.1.4.2  pgoyette http://tools.ietf.org/html/rfc1951
    210