enough.c revision 1.1 1 1.1 christos /* enough.c -- determine the maximum size of inflate's Huffman code tables over
2 1.1 christos * all possible valid and complete Huffman codes, subject to a length limit.
3 1.1 christos * Copyright (C) 2007, 2008, 2012 Mark Adler
4 1.1 christos * Version 1.4 18 August 2012 Mark Adler
5 1.1 christos */
6 1.1 christos
7 1.1 christos /* Version history:
8 1.1 christos 1.0 3 Jan 2007 First version (derived from codecount.c version 1.4)
9 1.1 christos 1.1 4 Jan 2007 Use faster incremental table usage computation
10 1.1 christos Prune examine() search on previously visited states
11 1.1 christos 1.2 5 Jan 2007 Comments clean up
12 1.1 christos As inflate does, decrease root for short codes
13 1.1 christos Refuse cases where inflate would increase root
14 1.1 christos 1.3 17 Feb 2008 Add argument for initial root table size
15 1.1 christos Fix bug for initial root table size == max - 1
16 1.1 christos Use a macro to compute the history index
17 1.1 christos 1.4 18 Aug 2012 Avoid shifts more than bits in type (caused endless loop!)
18 1.1 christos Clean up comparisons of different types
19 1.1 christos Clean up code indentation
20 1.1 christos */
21 1.1 christos
22 1.1 christos /*
23 1.1 christos Examine all possible Huffman codes for a given number of symbols and a
24 1.1 christos maximum code length in bits to determine the maximum table size for zilb's
25 1.1 christos inflate. Only complete Huffman codes are counted.
26 1.1 christos
27 1.1 christos Two codes are considered distinct if the vectors of the number of codes per
28 1.1 christos length are not identical. So permutations of the symbol assignments result
29 1.1 christos in the same code for the counting, as do permutations of the assignments of
30 1.1 christos the bit values to the codes (i.e. only canonical codes are counted).
31 1.1 christos
32 1.1 christos We build a code from shorter to longer lengths, determining how many symbols
33 1.1 christos are coded at each length. At each step, we have how many symbols remain to
34 1.1 christos be coded, what the last code length used was, and how many bit patterns of
35 1.1 christos that length remain unused. Then we add one to the code length and double the
36 1.1 christos number of unused patterns to graduate to the next code length. We then
37 1.1 christos assign all portions of the remaining symbols to that code length that
38 1.1 christos preserve the properties of a correct and eventually complete code. Those
39 1.1 christos properties are: we cannot use more bit patterns than are available; and when
40 1.1 christos all the symbols are used, there are exactly zero possible bit patterns
41 1.1 christos remaining.
42 1.1 christos
43 1.1 christos The inflate Huffman decoding algorithm uses two-level lookup tables for
44 1.1 christos speed. There is a single first-level table to decode codes up to root bits
45 1.1 christos in length (root == 9 in the current inflate implementation). The table
46 1.1 christos has 1 << root entries and is indexed by the next root bits of input. Codes
47 1.1 christos shorter than root bits have replicated table entries, so that the correct
48 1.1 christos entry is pointed to regardless of the bits that follow the short code. If
49 1.1 christos the code is longer than root bits, then the table entry points to a second-
50 1.1 christos level table. The size of that table is determined by the longest code with
51 1.1 christos that root-bit prefix. If that longest code has length len, then the table
52 1.1 christos has size 1 << (len - root), to index the remaining bits in that set of
53 1.1 christos codes. Each subsequent root-bit prefix then has its own sub-table. The
54 1.1 christos total number of table entries required by the code is calculated
55 1.1 christos incrementally as the number of codes at each bit length is populated. When
56 1.1 christos all of the codes are shorter than root bits, then root is reduced to the
57 1.1 christos longest code length, resulting in a single, smaller, one-level table.
58 1.1 christos
59 1.1 christos The inflate algorithm also provides for small values of root (relative to
60 1.1 christos the log2 of the number of symbols), where the shortest code has more bits
61 1.1 christos than root. In that case, root is increased to the length of the shortest
62 1.1 christos code. This program, by design, does not handle that case, so it is verified
63 1.1 christos that the number of symbols is less than 2^(root + 1).
64 1.1 christos
65 1.1 christos In order to speed up the examination (by about ten orders of magnitude for
66 1.1 christos the default arguments), the intermediate states in the build-up of a code
67 1.1 christos are remembered and previously visited branches are pruned. The memory
68 1.1 christos required for this will increase rapidly with the total number of symbols and
69 1.1 christos the maximum code length in bits. However this is a very small price to pay
70 1.1 christos for the vast speedup.
71 1.1 christos
72 1.1 christos First, all of the possible Huffman codes are counted, and reachable
73 1.1 christos intermediate states are noted by a non-zero count in a saved-results array.
74 1.1 christos Second, the intermediate states that lead to (root + 1) bit or longer codes
75 1.1 christos are used to look at all sub-codes from those junctures for their inflate
76 1.1 christos memory usage. (The amount of memory used is not affected by the number of
77 1.1 christos codes of root bits or less in length.) Third, the visited states in the
78 1.1 christos construction of those sub-codes and the associated calculation of the table
79 1.1 christos size is recalled in order to avoid recalculating from the same juncture.
80 1.1 christos Beginning the code examination at (root + 1) bit codes, which is enabled by
81 1.1 christos identifying the reachable nodes, accounts for about six of the orders of
82 1.1 christos magnitude of improvement for the default arguments. About another four
83 1.1 christos orders of magnitude come from not revisiting previous states. Out of
84 1.1 christos approximately 2x10^16 possible Huffman codes, only about 2x10^6 sub-codes
85 1.1 christos need to be examined to cover all of the possible table memory usage cases
86 1.1 christos for the default arguments of 286 symbols limited to 15-bit codes.
87 1.1 christos
88 1.1 christos Note that an unsigned long long type is used for counting. It is quite easy
89 1.1 christos to exceed the capacity of an eight-byte integer with a large number of
90 1.1 christos symbols and a large maximum code length, so multiple-precision arithmetic
91 1.1 christos would need to replace the unsigned long long arithmetic in that case. This
92 1.1 christos program will abort if an overflow occurs. The big_t type identifies where
93 1.1 christos the counting takes place.
94 1.1 christos
95 1.1 christos An unsigned long long type is also used for calculating the number of
96 1.1 christos possible codes remaining at the maximum length. This limits the maximum
97 1.1 christos code length to the number of bits in a long long minus the number of bits
98 1.1 christos needed to represent the symbols in a flat code. The code_t type identifies
99 1.1 christos where the bit pattern counting takes place.
100 1.1 christos */
101 1.1 christos
102 1.1 christos #include <stdio.h>
103 1.1 christos #include <stdlib.h>
104 1.1 christos #include <string.h>
105 1.1 christos #include <assert.h>
106 1.1 christos
107 1.1 christos #define local static
108 1.1 christos
109 1.1 christos /* special data types */
110 1.1 christos typedef unsigned long long big_t; /* type for code counting */
111 1.1 christos typedef unsigned long long code_t; /* type for bit pattern counting */
112 1.1 christos struct tab { /* type for been here check */
113 1.1 christos size_t len; /* length of bit vector in char's */
114 1.1 christos char *vec; /* allocated bit vector */
115 1.1 christos };
116 1.1 christos
117 1.1 christos /* The array for saving results, num[], is indexed with this triplet:
118 1.1 christos
119 1.1 christos syms: number of symbols remaining to code
120 1.1 christos left: number of available bit patterns at length len
121 1.1 christos len: number of bits in the codes currently being assigned
122 1.1 christos
123 1.1 christos Those indices are constrained thusly when saving results:
124 1.1 christos
125 1.1 christos syms: 3..totsym (totsym == total symbols to code)
126 1.1 christos left: 2..syms - 1, but only the evens (so syms == 8 -> 2, 4, 6)
127 1.1 christos len: 1..max - 1 (max == maximum code length in bits)
128 1.1 christos
129 1.1 christos syms == 2 is not saved since that immediately leads to a single code. left
130 1.1 christos must be even, since it represents the number of available bit patterns at
131 1.1 christos the current length, which is double the number at the previous length.
132 1.1 christos left ends at syms-1 since left == syms immediately results in a single code.
133 1.1 christos (left > sym is not allowed since that would result in an incomplete code.)
134 1.1 christos len is less than max, since the code completes immediately when len == max.
135 1.1 christos
136 1.1 christos The offset into the array is calculated for the three indices with the
137 1.1 christos first one (syms) being outermost, and the last one (len) being innermost.
138 1.1 christos We build the array with length max-1 lists for the len index, with syms-3
139 1.1 christos of those for each symbol. There are totsym-2 of those, with each one
140 1.1 christos varying in length as a function of sym. See the calculation of index in
141 1.1 christos count() for the index, and the calculation of size in main() for the size
142 1.1 christos of the array.
143 1.1 christos
144 1.1 christos For the deflate example of 286 symbols limited to 15-bit codes, the array
145 1.1 christos has 284,284 entries, taking up 2.17 MB for an 8-byte big_t. More than
146 1.1 christos half of the space allocated for saved results is actually used -- not all
147 1.1 christos possible triplets are reached in the generation of valid Huffman codes.
148 1.1 christos */
149 1.1 christos
150 1.1 christos /* The array for tracking visited states, done[], is itself indexed identically
151 1.1 christos to the num[] array as described above for the (syms, left, len) triplet.
152 1.1 christos Each element in the array is further indexed by the (mem, rem) doublet,
153 1.1 christos where mem is the amount of inflate table space used so far, and rem is the
154 1.1 christos remaining unused entries in the current inflate sub-table. Each indexed
155 1.1 christos element is simply one bit indicating whether the state has been visited or
156 1.1 christos not. Since the ranges for mem and rem are not known a priori, each bit
157 1.1 christos vector is of a variable size, and grows as needed to accommodate the visited
158 1.1 christos states. mem and rem are used to calculate a single index in a triangular
159 1.1 christos array. Since the range of mem is expected in the default case to be about
160 1.1 christos ten times larger than the range of rem, the array is skewed to reduce the
161 1.1 christos memory usage, with eight times the range for mem than for rem. See the
162 1.1 christos calculations for offset and bit in beenhere() for the details.
163 1.1 christos
164 1.1 christos For the deflate example of 286 symbols limited to 15-bit codes, the bit
165 1.1 christos vectors grow to total approximately 21 MB, in addition to the 4.3 MB done[]
166 1.1 christos array itself.
167 1.1 christos */
168 1.1 christos
169 1.1 christos /* Globals to avoid propagating constants or constant pointers recursively */
170 1.1 christos local int max; /* maximum allowed bit length for the codes */
171 1.1 christos local int root; /* size of base code table in bits */
172 1.1 christos local int large; /* largest code table so far */
173 1.1 christos local size_t size; /* number of elements in num and done */
174 1.1 christos local int *code; /* number of symbols assigned to each bit length */
175 1.1 christos local big_t *num; /* saved results array for code counting */
176 1.1 christos local struct tab *done; /* states already evaluated array */
177 1.1 christos
178 1.1 christos /* Index function for num[] and done[] */
179 1.1 christos #define INDEX(i,j,k) (((size_t)((i-1)>>1)*((i-2)>>1)+(j>>1)-1)*(max-1)+k-1)
180 1.1 christos
181 1.1 christos /* Free allocated space. Uses globals code, num, and done. */
182 1.1 christos local void cleanup(void)
183 1.1 christos {
184 1.1 christos size_t n;
185 1.1 christos
186 1.1 christos if (done != NULL) {
187 1.1 christos for (n = 0; n < size; n++)
188 1.1 christos if (done[n].len)
189 1.1 christos free(done[n].vec);
190 1.1 christos free(done);
191 1.1 christos }
192 1.1 christos if (num != NULL)
193 1.1 christos free(num);
194 1.1 christos if (code != NULL)
195 1.1 christos free(code);
196 1.1 christos }
197 1.1 christos
198 1.1 christos /* Return the number of possible Huffman codes using bit patterns of lengths
199 1.1 christos len through max inclusive, coding syms symbols, with left bit patterns of
200 1.1 christos length len unused -- return -1 if there is an overflow in the counting.
201 1.1 christos Keep a record of previous results in num to prevent repeating the same
202 1.1 christos calculation. Uses the globals max and num. */
203 1.1 christos local big_t count(int syms, int len, int left)
204 1.1 christos {
205 1.1 christos big_t sum; /* number of possible codes from this juncture */
206 1.1 christos big_t got; /* value returned from count() */
207 1.1 christos int least; /* least number of syms to use at this juncture */
208 1.1 christos int most; /* most number of syms to use at this juncture */
209 1.1 christos int use; /* number of bit patterns to use in next call */
210 1.1 christos size_t index; /* index of this case in *num */
211 1.1 christos
212 1.1 christos /* see if only one possible code */
213 1.1 christos if (syms == left)
214 1.1 christos return 1;
215 1.1 christos
216 1.1 christos /* note and verify the expected state */
217 1.1 christos assert(syms > left && left > 0 && len < max);
218 1.1 christos
219 1.1 christos /* see if we've done this one already */
220 1.1 christos index = INDEX(syms, left, len);
221 1.1 christos got = num[index];
222 1.1 christos if (got)
223 1.1 christos return got; /* we have -- return the saved result */
224 1.1 christos
225 1.1 christos /* we need to use at least this many bit patterns so that the code won't be
226 1.1 christos incomplete at the next length (more bit patterns than symbols) */
227 1.1 christos least = (left << 1) - syms;
228 1.1 christos if (least < 0)
229 1.1 christos least = 0;
230 1.1 christos
231 1.1 christos /* we can use at most this many bit patterns, lest there not be enough
232 1.1 christos available for the remaining symbols at the maximum length (if there were
233 1.1 christos no limit to the code length, this would become: most = left - 1) */
234 1.1 christos most = (((code_t)left << (max - len)) - syms) /
235 1.1 christos (((code_t)1 << (max - len)) - 1);
236 1.1 christos
237 1.1 christos /* count all possible codes from this juncture and add them up */
238 1.1 christos sum = 0;
239 1.1 christos for (use = least; use <= most; use++) {
240 1.1 christos got = count(syms - use, len + 1, (left - use) << 1);
241 1.1 christos sum += got;
242 1.1 christos if (got == (big_t)0 - 1 || sum < got) /* overflow */
243 1.1 christos return (big_t)0 - 1;
244 1.1 christos }
245 1.1 christos
246 1.1 christos /* verify that all recursive calls are productive */
247 1.1 christos assert(sum != 0);
248 1.1 christos
249 1.1 christos /* save the result and return it */
250 1.1 christos num[index] = sum;
251 1.1 christos return sum;
252 1.1 christos }
253 1.1 christos
254 1.1 christos /* Return true if we've been here before, set to true if not. Set a bit in a
255 1.1 christos bit vector to indicate visiting this state. Each (syms,len,left) state
256 1.1 christos has a variable size bit vector indexed by (mem,rem). The bit vector is
257 1.1 christos lengthened if needed to allow setting the (mem,rem) bit. */
258 1.1 christos local int beenhere(int syms, int len, int left, int mem, int rem)
259 1.1 christos {
260 1.1 christos size_t index; /* index for this state's bit vector */
261 1.1 christos size_t offset; /* offset in this state's bit vector */
262 1.1 christos int bit; /* mask for this state's bit */
263 1.1 christos size_t length; /* length of the bit vector in bytes */
264 1.1 christos char *vector; /* new or enlarged bit vector */
265 1.1 christos
266 1.1 christos /* point to vector for (syms,left,len), bit in vector for (mem,rem) */
267 1.1 christos index = INDEX(syms, left, len);
268 1.1 christos mem -= 1 << root;
269 1.1 christos offset = (mem >> 3) + rem;
270 1.1 christos offset = ((offset * (offset + 1)) >> 1) + rem;
271 1.1 christos bit = 1 << (mem & 7);
272 1.1 christos
273 1.1 christos /* see if we've been here */
274 1.1 christos length = done[index].len;
275 1.1 christos if (offset < length && (done[index].vec[offset] & bit) != 0)
276 1.1 christos return 1; /* done this! */
277 1.1 christos
278 1.1 christos /* we haven't been here before -- set the bit to show we have now */
279 1.1 christos
280 1.1 christos /* see if we need to lengthen the vector in order to set the bit */
281 1.1 christos if (length <= offset) {
282 1.1 christos /* if we have one already, enlarge it, zero out the appended space */
283 1.1 christos if (length) {
284 1.1 christos do {
285 1.1 christos length <<= 1;
286 1.1 christos } while (length <= offset);
287 1.1 christos vector = realloc(done[index].vec, length);
288 1.1 christos if (vector != NULL)
289 1.1 christos memset(vector + done[index].len, 0, length - done[index].len);
290 1.1 christos }
291 1.1 christos
292 1.1 christos /* otherwise we need to make a new vector and zero it out */
293 1.1 christos else {
294 1.1 christos length = 1 << (len - root);
295 1.1 christos while (length <= offset)
296 1.1 christos length <<= 1;
297 1.1 christos vector = calloc(length, sizeof(char));
298 1.1 christos }
299 1.1 christos
300 1.1 christos /* in either case, bail if we can't get the memory */
301 1.1 christos if (vector == NULL) {
302 1.1 christos fputs("abort: unable to allocate enough memory\n", stderr);
303 1.1 christos cleanup();
304 1.1 christos exit(1);
305 1.1 christos }
306 1.1 christos
307 1.1 christos /* install the new vector */
308 1.1 christos done[index].len = length;
309 1.1 christos done[index].vec = vector;
310 1.1 christos }
311 1.1 christos
312 1.1 christos /* set the bit */
313 1.1 christos done[index].vec[offset] |= bit;
314 1.1 christos return 0;
315 1.1 christos }
316 1.1 christos
317 1.1 christos /* Examine all possible codes from the given node (syms, len, left). Compute
318 1.1 christos the amount of memory required to build inflate's decoding tables, where the
319 1.1 christos number of code structures used so far is mem, and the number remaining in
320 1.1 christos the current sub-table is rem. Uses the globals max, code, root, large, and
321 1.1 christos done. */
322 1.1 christos local void examine(int syms, int len, int left, int mem, int rem)
323 1.1 christos {
324 1.1 christos int least; /* least number of syms to use at this juncture */
325 1.1 christos int most; /* most number of syms to use at this juncture */
326 1.1 christos int use; /* number of bit patterns to use in next call */
327 1.1 christos
328 1.1 christos /* see if we have a complete code */
329 1.1 christos if (syms == left) {
330 1.1 christos /* set the last code entry */
331 1.1 christos code[len] = left;
332 1.1 christos
333 1.1 christos /* complete computation of memory used by this code */
334 1.1 christos while (rem < left) {
335 1.1 christos left -= rem;
336 1.1 christos rem = 1 << (len - root);
337 1.1 christos mem += rem;
338 1.1 christos }
339 1.1 christos assert(rem == left);
340 1.1 christos
341 1.1 christos /* if this is a new maximum, show the entries used and the sub-code */
342 1.1 christos if (mem > large) {
343 1.1 christos large = mem;
344 1.1 christos printf("max %d: ", mem);
345 1.1 christos for (use = root + 1; use <= max; use++)
346 1.1 christos if (code[use])
347 1.1 christos printf("%d[%d] ", code[use], use);
348 1.1 christos putchar('\n');
349 1.1 christos fflush(stdout);
350 1.1 christos }
351 1.1 christos
352 1.1 christos /* remove entries as we drop back down in the recursion */
353 1.1 christos code[len] = 0;
354 1.1 christos return;
355 1.1 christos }
356 1.1 christos
357 1.1 christos /* prune the tree if we can */
358 1.1 christos if (beenhere(syms, len, left, mem, rem))
359 1.1 christos return;
360 1.1 christos
361 1.1 christos /* we need to use at least this many bit patterns so that the code won't be
362 1.1 christos incomplete at the next length (more bit patterns than symbols) */
363 1.1 christos least = (left << 1) - syms;
364 1.1 christos if (least < 0)
365 1.1 christos least = 0;
366 1.1 christos
367 1.1 christos /* we can use at most this many bit patterns, lest there not be enough
368 1.1 christos available for the remaining symbols at the maximum length (if there were
369 1.1 christos no limit to the code length, this would become: most = left - 1) */
370 1.1 christos most = (((code_t)left << (max - len)) - syms) /
371 1.1 christos (((code_t)1 << (max - len)) - 1);
372 1.1 christos
373 1.1 christos /* occupy least table spaces, creating new sub-tables as needed */
374 1.1 christos use = least;
375 1.1 christos while (rem < use) {
376 1.1 christos use -= rem;
377 1.1 christos rem = 1 << (len - root);
378 1.1 christos mem += rem;
379 1.1 christos }
380 1.1 christos rem -= use;
381 1.1 christos
382 1.1 christos /* examine codes from here, updating table space as we go */
383 1.1 christos for (use = least; use <= most; use++) {
384 1.1 christos code[len] = use;
385 1.1 christos examine(syms - use, len + 1, (left - use) << 1,
386 1.1 christos mem + (rem ? 1 << (len - root) : 0), rem << 1);
387 1.1 christos if (rem == 0) {
388 1.1 christos rem = 1 << (len - root);
389 1.1 christos mem += rem;
390 1.1 christos }
391 1.1 christos rem--;
392 1.1 christos }
393 1.1 christos
394 1.1 christos /* remove entries as we drop back down in the recursion */
395 1.1 christos code[len] = 0;
396 1.1 christos }
397 1.1 christos
398 1.1 christos /* Look at all sub-codes starting with root + 1 bits. Look at only the valid
399 1.1 christos intermediate code states (syms, left, len). For each completed code,
400 1.1 christos calculate the amount of memory required by inflate to build the decoding
401 1.1 christos tables. Find the maximum amount of memory required and show the code that
402 1.1 christos requires that maximum. Uses the globals max, root, and num. */
403 1.1 christos local void enough(int syms)
404 1.1 christos {
405 1.1 christos int n; /* number of remaing symbols for this node */
406 1.1 christos int left; /* number of unused bit patterns at this length */
407 1.1 christos size_t index; /* index of this case in *num */
408 1.1 christos
409 1.1 christos /* clear code */
410 1.1 christos for (n = 0; n <= max; n++)
411 1.1 christos code[n] = 0;
412 1.1 christos
413 1.1 christos /* look at all (root + 1) bit and longer codes */
414 1.1 christos large = 1 << root; /* base table */
415 1.1 christos if (root < max) /* otherwise, there's only a base table */
416 1.1 christos for (n = 3; n <= syms; n++)
417 1.1 christos for (left = 2; left < n; left += 2)
418 1.1 christos {
419 1.1 christos /* look at all reachable (root + 1) bit nodes, and the
420 1.1 christos resulting codes (complete at root + 2 or more) */
421 1.1 christos index = INDEX(n, left, root + 1);
422 1.1 christos if (root + 1 < max && num[index]) /* reachable node */
423 1.1 christos examine(n, root + 1, left, 1 << root, 0);
424 1.1 christos
425 1.1 christos /* also look at root bit codes with completions at root + 1
426 1.1 christos bits (not saved in num, since complete), just in case */
427 1.1 christos if (num[index - 1] && n <= left << 1)
428 1.1 christos examine((n - left) << 1, root + 1, (n - left) << 1,
429 1.1 christos 1 << root, 0);
430 1.1 christos }
431 1.1 christos
432 1.1 christos /* done */
433 1.1 christos printf("done: maximum of %d table entries\n", large);
434 1.1 christos }
435 1.1 christos
436 1.1 christos /*
437 1.1 christos Examine and show the total number of possible Huffman codes for a given
438 1.1 christos maximum number of symbols, initial root table size, and maximum code length
439 1.1 christos in bits -- those are the command arguments in that order. The default
440 1.1 christos values are 286, 9, and 15 respectively, for the deflate literal/length code.
441 1.1 christos The possible codes are counted for each number of coded symbols from two to
442 1.1 christos the maximum. The counts for each of those and the total number of codes are
443 1.1 christos shown. The maximum number of inflate table entires is then calculated
444 1.1 christos across all possible codes. Each new maximum number of table entries and the
445 1.1 christos associated sub-code (starting at root + 1 == 10 bits) is shown.
446 1.1 christos
447 1.1 christos To count and examine Huffman codes that are not length-limited, provide a
448 1.1 christos maximum length equal to the number of symbols minus one.
449 1.1 christos
450 1.1 christos For the deflate literal/length code, use "enough". For the deflate distance
451 1.1 christos code, use "enough 30 6".
452 1.1 christos
453 1.1 christos This uses the %llu printf format to print big_t numbers, which assumes that
454 1.1 christos big_t is an unsigned long long. If the big_t type is changed (for example
455 1.1 christos to a multiple precision type), the method of printing will also need to be
456 1.1 christos updated.
457 1.1 christos */
458 1.1 christos int main(int argc, char **argv)
459 1.1 christos {
460 1.1 christos int syms; /* total number of symbols to code */
461 1.1 christos int n; /* number of symbols to code for this run */
462 1.1 christos big_t got; /* return value of count() */
463 1.1 christos big_t sum; /* accumulated number of codes over n */
464 1.1 christos code_t word; /* for counting bits in code_t */
465 1.1 christos
466 1.1 christos /* set up globals for cleanup() */
467 1.1 christos code = NULL;
468 1.1 christos num = NULL;
469 1.1 christos done = NULL;
470 1.1 christos
471 1.1 christos /* get arguments -- default to the deflate literal/length code */
472 1.1 christos syms = 286;
473 1.1 christos root = 9;
474 1.1 christos max = 15;
475 1.1 christos if (argc > 1) {
476 1.1 christos syms = atoi(argv[1]);
477 1.1 christos if (argc > 2) {
478 1.1 christos root = atoi(argv[2]);
479 1.1 christos if (argc > 3)
480 1.1 christos max = atoi(argv[3]);
481 1.1 christos }
482 1.1 christos }
483 1.1 christos if (argc > 4 || syms < 2 || root < 1 || max < 1) {
484 1.1 christos fputs("invalid arguments, need: [sym >= 2 [root >= 1 [max >= 1]]]\n",
485 1.1 christos stderr);
486 1.1 christos return 1;
487 1.1 christos }
488 1.1 christos
489 1.1 christos /* if not restricting the code length, the longest is syms - 1 */
490 1.1 christos if (max > syms - 1)
491 1.1 christos max = syms - 1;
492 1.1 christos
493 1.1 christos /* determine the number of bits in a code_t */
494 1.1 christos for (n = 0, word = 1; word; n++, word <<= 1)
495 1.1 christos ;
496 1.1 christos
497 1.1 christos /* make sure that the calculation of most will not overflow */
498 1.1 christos if (max > n || (code_t)(syms - 2) >= (((code_t)0 - 1) >> (max - 1))) {
499 1.1 christos fputs("abort: code length too long for internal types\n", stderr);
500 1.1 christos return 1;
501 1.1 christos }
502 1.1 christos
503 1.1 christos /* reject impossible code requests */
504 1.1 christos if ((code_t)(syms - 1) > ((code_t)1 << max) - 1) {
505 1.1 christos fprintf(stderr, "%d symbols cannot be coded in %d bits\n",
506 1.1 christos syms, max);
507 1.1 christos return 1;
508 1.1 christos }
509 1.1 christos
510 1.1 christos /* allocate code vector */
511 1.1 christos code = calloc(max + 1, sizeof(int));
512 1.1 christos if (code == NULL) {
513 1.1 christos fputs("abort: unable to allocate enough memory\n", stderr);
514 1.1 christos return 1;
515 1.1 christos }
516 1.1 christos
517 1.1 christos /* determine size of saved results array, checking for overflows,
518 1.1 christos allocate and clear the array (set all to zero with calloc()) */
519 1.1 christos if (syms == 2) /* iff max == 1 */
520 1.1 christos num = NULL; /* won't be saving any results */
521 1.1 christos else {
522 1.1 christos size = syms >> 1;
523 1.1 christos if (size > ((size_t)0 - 1) / (n = (syms - 1) >> 1) ||
524 1.1 christos (size *= n, size > ((size_t)0 - 1) / (n = max - 1)) ||
525 1.1 christos (size *= n, size > ((size_t)0 - 1) / sizeof(big_t)) ||
526 1.1 christos (num = calloc(size, sizeof(big_t))) == NULL) {
527 1.1 christos fputs("abort: unable to allocate enough memory\n", stderr);
528 1.1 christos cleanup();
529 1.1 christos return 1;
530 1.1 christos }
531 1.1 christos }
532 1.1 christos
533 1.1 christos /* count possible codes for all numbers of symbols, add up counts */
534 1.1 christos sum = 0;
535 1.1 christos for (n = 2; n <= syms; n++) {
536 1.1 christos got = count(n, 1, 2);
537 1.1 christos sum += got;
538 1.1 christos if (got == (big_t)0 - 1 || sum < got) { /* overflow */
539 1.1 christos fputs("abort: can't count that high!\n", stderr);
540 1.1 christos cleanup();
541 1.1 christos return 1;
542 1.1 christos }
543 1.1 christos printf("%llu %d-codes\n", got, n);
544 1.1 christos }
545 1.1 christos printf("%llu total codes for 2 to %d symbols", sum, syms);
546 1.1 christos if (max < syms - 1)
547 1.1 christos printf(" (%d-bit length limit)\n", max);
548 1.1 christos else
549 1.1 christos puts(" (no length limit)");
550 1.1 christos
551 1.1 christos /* allocate and clear done array for beenhere() */
552 1.1 christos if (syms == 2)
553 1.1 christos done = NULL;
554 1.1 christos else if (size > ((size_t)0 - 1) / sizeof(struct tab) ||
555 1.1 christos (done = calloc(size, sizeof(struct tab))) == NULL) {
556 1.1 christos fputs("abort: unable to allocate enough memory\n", stderr);
557 1.1 christos cleanup();
558 1.1 christos return 1;
559 1.1 christos }
560 1.1 christos
561 1.1 christos /* find and show maximum inflate table usage */
562 1.1 christos if (root > max) /* reduce root to max length */
563 1.1 christos root = max;
564 1.1 christos if ((code_t)syms < ((code_t)1 << (root + 1)))
565 1.1 christos enough(syms);
566 1.1 christos else
567 1.1 christos puts("cannot handle minimum code lengths > root");
568 1.1 christos
569 1.1 christos /* done */
570 1.1 christos cleanup();
571 1.1 christos return 0;
572 1.1 christos }
573