1 1.5 christos /* $NetBSD: inftrees.c,v 1.5 2024/09/22 19:12:27 christos Exp $ */ 2 1.1 christos 3 1.1 christos /* inftrees.c -- generate Huffman trees for efficient decoding 4 1.5 christos * Copyright (C) 1995-2024 Mark Adler 5 1.1 christos * For conditions of distribution and use, see copyright notice in zlib.h 6 1.1 christos */ 7 1.1 christos 8 1.1 christos #include "zutil.h" 9 1.1 christos #include "inftrees.h" 10 1.1 christos 11 1.1 christos #define MAXBITS 15 12 1.1 christos 13 1.1 christos const char inflate_copyright[] = 14 1.5 christos " inflate 1.3.1 Copyright 1995-2024 Mark Adler "; 15 1.1 christos /* 16 1.1 christos If you use the zlib library in a product, an acknowledgment is welcome 17 1.1 christos in the documentation of your product. If for some reason you cannot 18 1.1 christos include such an acknowledgment, I would appreciate that you keep this 19 1.1 christos copyright string in the executable of your product. 20 1.1 christos */ 21 1.1 christos 22 1.1 christos /* 23 1.1 christos Build a set of tables to decode the provided canonical Huffman code. 24 1.1 christos The code lengths are lens[0..codes-1]. The result starts at *table, 25 1.1 christos whose indices are 0..2^bits-1. work is a writable array of at least 26 1.1 christos lens shorts, which is used as a work area. type is the type of code 27 1.1 christos to be generated, CODES, LENS, or DISTS. On return, zero is success, 28 1.1 christos -1 is an invalid code, and +1 means that ENOUGH isn't enough. table 29 1.1 christos on return points to the next available entry's address. bits is the 30 1.1 christos requested root table index bits, and on return it is the actual root 31 1.1 christos table index bits. It will differ if the request is greater than the 32 1.1 christos longest code or if it is less than the shortest code. 33 1.1 christos */ 34 1.5 christos int ZLIB_INTERNAL inflate_table(codetype type, unsigned short FAR *lens, 35 1.5 christos unsigned codes, code FAR * FAR *table, 36 1.5 christos unsigned FAR *bits, unsigned short FAR *work) { 37 1.1 christos unsigned len; /* a code's length in bits */ 38 1.1 christos unsigned sym; /* index of code symbols */ 39 1.2 christos unsigned mmin, mmax; /* minimum and maximum code lengths */ 40 1.1 christos unsigned root; /* number of index bits for root table */ 41 1.1 christos unsigned curr; /* number of index bits for current table */ 42 1.1 christos unsigned drop; /* code bits to drop for sub-table */ 43 1.1 christos int left; /* number of prefix codes available */ 44 1.1 christos unsigned used; /* code entries in table used */ 45 1.1 christos unsigned huff; /* Huffman code */ 46 1.1 christos unsigned incr; /* for incrementing code, index */ 47 1.1 christos unsigned fill; /* index for replicating entries */ 48 1.1 christos unsigned low; /* low bits for current root entry */ 49 1.1 christos unsigned mask; /* mask for low root bits */ 50 1.3 christos code here; /* table entry for duplication */ 51 1.1 christos code FAR *next; /* next available space in table */ 52 1.1 christos const unsigned short FAR *base; /* base value table to use */ 53 1.1 christos const unsigned short FAR *extra; /* extra bits table to use */ 54 1.3 christos unsigned match; /* use base and extra for symbol >= match */ 55 1.1 christos unsigned short count[MAXBITS+1]; /* number of codes of each length */ 56 1.1 christos unsigned short offs[MAXBITS+1]; /* offsets in table for each length */ 57 1.1 christos static const unsigned short lbase[31] = { /* Length codes 257..285 base */ 58 1.1 christos 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 59 1.1 christos 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; 60 1.1 christos static const unsigned short lext[31] = { /* Length codes 257..285 extra */ 61 1.1 christos 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 62 1.5 christos 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 203, 77}; 63 1.1 christos static const unsigned short dbase[32] = { /* Distance codes 0..29 base */ 64 1.1 christos 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 65 1.1 christos 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 66 1.1 christos 8193, 12289, 16385, 24577, 0, 0}; 67 1.1 christos static const unsigned short dext[32] = { /* Distance codes 0..29 extra */ 68 1.1 christos 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 69 1.1 christos 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 70 1.1 christos 28, 28, 29, 29, 64, 64}; 71 1.1 christos 72 1.1 christos /* 73 1.1 christos Process a set of code lengths to create a canonical Huffman code. The 74 1.1 christos code lengths are lens[0..codes-1]. Each length corresponds to the 75 1.1 christos symbols 0..codes-1. The Huffman code is generated by first sorting the 76 1.1 christos symbols by length from short to long, and retaining the symbol order 77 1.1 christos for codes with equal lengths. Then the code starts with all zero bits 78 1.1 christos for the first code of the shortest length, and the codes are integer 79 1.1 christos increments for the same length, and zeros are appended as the length 80 1.1 christos increases. For the deflate format, these bits are stored backwards 81 1.1 christos from their more natural integer increment ordering, and so when the 82 1.1 christos decoding tables are built in the large loop below, the integer codes 83 1.1 christos are incremented backwards. 84 1.1 christos 85 1.1 christos This routine assumes, but does not check, that all of the entries in 86 1.1 christos lens[] are in the range 0..MAXBITS. The caller must assure this. 87 1.1 christos 1..MAXBITS is interpreted as that code length. zero means that that 88 1.1 christos symbol does not occur in this code. 89 1.1 christos 90 1.1 christos The codes are sorted by computing a count of codes for each length, 91 1.1 christos creating from that a table of starting indices for each length in the 92 1.1 christos sorted table, and then entering the symbols in order in the sorted 93 1.1 christos table. The sorted table is work[], with that space being provided by 94 1.1 christos the caller. 95 1.1 christos 96 1.1 christos The length counts are used for other purposes as well, i.e. finding 97 1.1 christos the minimum and maximum length codes, determining if there are any 98 1.1 christos codes at all, checking for a valid set of lengths, and looking ahead 99 1.1 christos at length counts to determine sub-table sizes when building the 100 1.1 christos decoding tables. 101 1.1 christos */ 102 1.1 christos 103 1.1 christos /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */ 104 1.1 christos for (len = 0; len <= MAXBITS; len++) 105 1.1 christos count[len] = 0; 106 1.1 christos for (sym = 0; sym < codes; sym++) 107 1.1 christos count[lens[sym]]++; 108 1.1 christos 109 1.1 christos /* bound code lengths, force root to be within code lengths */ 110 1.1 christos root = *bits; 111 1.2 christos for (mmax = MAXBITS; mmax >= 1; mmax--) 112 1.2 christos if (count[mmax] != 0) break; 113 1.2 christos if (root > mmax) root = mmax; 114 1.2 christos if (mmax == 0) { /* no symbols to code at all */ 115 1.3 christos here.op = (unsigned char)64; /* invalid code marker */ 116 1.3 christos here.bits = (unsigned char)1; 117 1.3 christos here.val = (unsigned short)0; 118 1.3 christos *(*table)++ = here; /* make a table to force an error */ 119 1.3 christos *(*table)++ = here; 120 1.1 christos *bits = 1; 121 1.1 christos return 0; /* no symbols, but wait for decoding to report error */ 122 1.1 christos } 123 1.2 christos for (mmin = 1; mmin <= MAXBITS; mmin++) 124 1.2 christos if (count[mmin] != 0) break; 125 1.2 christos if (root < mmin) root = mmin; 126 1.1 christos 127 1.1 christos /* check for an over-subscribed or incomplete set of lengths */ 128 1.1 christos left = 1; 129 1.1 christos for (len = 1; len <= MAXBITS; len++) { 130 1.1 christos left <<= 1; 131 1.1 christos left -= count[len]; 132 1.1 christos if (left < 0) return -1; /* over-subscribed */ 133 1.1 christos } 134 1.2 christos if (left > 0 && (type == CODES || mmax != 1)) 135 1.1 christos return -1; /* incomplete set */ 136 1.1 christos 137 1.1 christos /* generate offsets into symbol table for each length for sorting */ 138 1.1 christos offs[1] = 0; 139 1.1 christos for (len = 1; len < MAXBITS; len++) 140 1.1 christos offs[len + 1] = offs[len] + count[len]; 141 1.1 christos 142 1.1 christos /* sort symbols by length, by symbol order within each length */ 143 1.1 christos for (sym = 0; sym < codes; sym++) 144 1.1 christos if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym; 145 1.1 christos 146 1.1 christos /* 147 1.1 christos Create and fill in decoding tables. In this loop, the table being 148 1.1 christos filled is at next and has curr index bits. The code being used is huff 149 1.1 christos with length len. That code is converted to an index by dropping drop 150 1.1 christos bits off of the bottom. For codes where len is less than drop + curr, 151 1.1 christos those top drop + curr - len bits are incremented through all values to 152 1.1 christos fill the table with replicated entries. 153 1.1 christos 154 1.1 christos root is the number of index bits for the root table. When len exceeds 155 1.1 christos root, sub-tables are created pointed to by the root entry with an index 156 1.1 christos of the low root bits of huff. This is saved in low to check for when a 157 1.1 christos new sub-table should be started. drop is zero when the root table is 158 1.1 christos being filled, and drop is root when sub-tables are being filled. 159 1.1 christos 160 1.1 christos When a new sub-table is needed, it is necessary to look ahead in the 161 1.1 christos code lengths to determine what size sub-table is needed. The length 162 1.1 christos counts are used for this, and so count[] is decremented as codes are 163 1.1 christos entered in the tables. 164 1.1 christos 165 1.1 christos used keeps track of how many table entries have been allocated from the 166 1.3 christos provided *table space. It is checked for LENS and DIST tables against 167 1.3 christos the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in 168 1.3 christos the initial root table size constants. See the comments in inftrees.h 169 1.3 christos for more information. 170 1.1 christos 171 1.1 christos sym increments through all symbols, and the loop terminates when 172 1.2 christos all codes of length mmax, i.e. all codes, have been processed. This 173 1.1 christos routine permits incomplete codes, so another loop after this one fills 174 1.1 christos in the rest of the decoding tables with invalid code markers. 175 1.1 christos */ 176 1.1 christos 177 1.1 christos /* set up for code type */ 178 1.1 christos switch (type) { 179 1.1 christos case CODES: 180 1.1 christos base = extra = work; /* dummy value--not used */ 181 1.3 christos match = 20; 182 1.1 christos break; 183 1.1 christos case LENS: 184 1.1 christos base = lbase; 185 1.1 christos extra = lext; 186 1.3 christos match = 257; 187 1.1 christos break; 188 1.3 christos default: /* DISTS */ 189 1.1 christos base = dbase; 190 1.1 christos extra = dext; 191 1.3 christos match = 0; 192 1.1 christos } 193 1.1 christos 194 1.1 christos /* initialize state for loop */ 195 1.1 christos huff = 0; /* starting code */ 196 1.1 christos sym = 0; /* starting code symbol */ 197 1.2 christos len = mmin; /* starting code length */ 198 1.1 christos next = *table; /* current table to fill in */ 199 1.1 christos curr = root; /* current table index bits */ 200 1.1 christos drop = 0; /* current bits to drop from code for index */ 201 1.1 christos low = (unsigned)(-1); /* trigger new sub-table when len > root */ 202 1.1 christos used = 1U << root; /* use root table entries */ 203 1.1 christos mask = used - 1; /* mask for comparing low */ 204 1.1 christos 205 1.1 christos /* check available table space */ 206 1.3 christos if ((type == LENS && used > ENOUGH_LENS) || 207 1.3 christos (type == DISTS && used > ENOUGH_DISTS)) 208 1.1 christos return 1; 209 1.1 christos 210 1.1 christos /* process all codes and make table entries */ 211 1.1 christos for (;;) { 212 1.1 christos /* create table entry */ 213 1.3 christos here.bits = (unsigned char)(len - drop); 214 1.3 christos if (work[sym] + 1U < match) { 215 1.3 christos here.op = (unsigned char)0; 216 1.3 christos here.val = work[sym]; 217 1.1 christos } 218 1.3 christos else if (work[sym] >= match) { 219 1.3 christos here.op = (unsigned char)(extra[work[sym] - match]); 220 1.3 christos here.val = base[work[sym] - match]; 221 1.1 christos } 222 1.1 christos else { 223 1.3 christos here.op = (unsigned char)(32 + 64); /* end of block */ 224 1.3 christos here.val = 0; 225 1.1 christos } 226 1.1 christos 227 1.1 christos /* replicate for those indices with low len bits equal to huff */ 228 1.1 christos incr = 1U << (len - drop); 229 1.1 christos fill = 1U << curr; 230 1.2 christos mmin = fill; /* save offset to next table */ 231 1.1 christos do { 232 1.1 christos fill -= incr; 233 1.3 christos next[(huff >> drop) + fill] = here; 234 1.1 christos } while (fill != 0); 235 1.1 christos 236 1.1 christos /* backwards increment the len-bit code huff */ 237 1.1 christos incr = 1U << (len - 1); 238 1.1 christos while (huff & incr) 239 1.1 christos incr >>= 1; 240 1.1 christos if (incr != 0) { 241 1.1 christos huff &= incr - 1; 242 1.1 christos huff += incr; 243 1.1 christos } 244 1.1 christos else 245 1.1 christos huff = 0; 246 1.1 christos 247 1.1 christos /* go to next symbol, update count, len */ 248 1.1 christos sym++; 249 1.1 christos if (--(count[len]) == 0) { 250 1.2 christos if (len == mmax) break; 251 1.1 christos len = lens[work[sym]]; 252 1.1 christos } 253 1.1 christos 254 1.1 christos /* create new sub-table if needed */ 255 1.1 christos if (len > root && (huff & mask) != low) { 256 1.1 christos /* if first time, transition to sub-tables */ 257 1.1 christos if (drop == 0) 258 1.1 christos drop = root; 259 1.1 christos 260 1.1 christos /* increment past last table */ 261 1.2 christos next += mmin; /* here mmin is 1 << curr */ 262 1.1 christos 263 1.1 christos /* determine length of next table */ 264 1.1 christos curr = len - drop; 265 1.1 christos left = (int)(1 << curr); 266 1.2 christos while (curr + drop < mmax) { 267 1.1 christos left -= count[curr + drop]; 268 1.1 christos if (left <= 0) break; 269 1.1 christos curr++; 270 1.1 christos left <<= 1; 271 1.1 christos } 272 1.1 christos 273 1.1 christos /* check for enough space */ 274 1.1 christos used += 1U << curr; 275 1.3 christos if ((type == LENS && used > ENOUGH_LENS) || 276 1.3 christos (type == DISTS && used > ENOUGH_DISTS)) 277 1.1 christos return 1; 278 1.1 christos 279 1.1 christos /* point entry in root table to sub-table */ 280 1.1 christos low = huff & mask; 281 1.1 christos (*table)[low].op = (unsigned char)curr; 282 1.1 christos (*table)[low].bits = (unsigned char)root; 283 1.1 christos (*table)[low].val = (unsigned short)(next - *table); 284 1.1 christos } 285 1.1 christos } 286 1.1 christos 287 1.3 christos /* fill in remaining table entry if code is incomplete (guaranteed to have 288 1.3 christos at most one remaining entry, since if the code is incomplete, the 289 1.3 christos maximum code length that was allowed to get this far is one bit) */ 290 1.3 christos if (huff != 0) { 291 1.3 christos here.op = (unsigned char)64; /* invalid code marker */ 292 1.3 christos here.bits = (unsigned char)(len - drop); 293 1.3 christos here.val = (unsigned short)0; 294 1.3 christos next[huff] = here; 295 1.1 christos } 296 1.1 christos 297 1.1 christos /* set return parameters */ 298 1.1 christos *table += used; 299 1.1 christos *bits = root; 300 1.1 christos return 0; 301 1.1 christos } 302