inftrees.c revision 1.2 1 1.2 christos /* $NetBSD: inftrees.c,v 1.2 2006/01/16 03:23:10 christos Exp $ */
2 1.1 christos
3 1.1 christos /* inftrees.c -- generate Huffman trees for efficient decoding
4 1.1 christos * Copyright (C) 1995-2005 Mark Adler
5 1.1 christos * For conditions of distribution and use, see copyright notice in zlib.h
6 1.1 christos */
7 1.1 christos
8 1.1 christos #include "zutil.h"
9 1.1 christos #include "inftrees.h"
10 1.1 christos
11 1.1 christos #define MAXBITS 15
12 1.1 christos
13 1.1 christos const char inflate_copyright[] =
14 1.1 christos " inflate 1.2.3 Copyright 1995-2005 Mark Adler ";
15 1.1 christos /*
16 1.1 christos If you use the zlib library in a product, an acknowledgment is welcome
17 1.1 christos in the documentation of your product. If for some reason you cannot
18 1.1 christos include such an acknowledgment, I would appreciate that you keep this
19 1.1 christos copyright string in the executable of your product.
20 1.1 christos */
21 1.1 christos
22 1.1 christos /*
23 1.1 christos Build a set of tables to decode the provided canonical Huffman code.
24 1.1 christos The code lengths are lens[0..codes-1]. The result starts at *table,
25 1.1 christos whose indices are 0..2^bits-1. work is a writable array of at least
26 1.1 christos lens shorts, which is used as a work area. type is the type of code
27 1.1 christos to be generated, CODES, LENS, or DISTS. On return, zero is success,
28 1.1 christos -1 is an invalid code, and +1 means that ENOUGH isn't enough. table
29 1.1 christos on return points to the next available entry's address. bits is the
30 1.1 christos requested root table index bits, and on return it is the actual root
31 1.1 christos table index bits. It will differ if the request is greater than the
32 1.1 christos longest code or if it is less than the shortest code.
33 1.1 christos */
34 1.1 christos int inflate_table(type, lens, codes, table, bits, work)
35 1.1 christos codetype type;
36 1.1 christos unsigned short FAR *lens;
37 1.1 christos unsigned codes;
38 1.1 christos code FAR * FAR *table;
39 1.1 christos unsigned FAR *bits;
40 1.1 christos unsigned short FAR *work;
41 1.1 christos {
42 1.1 christos unsigned len; /* a code's length in bits */
43 1.1 christos unsigned sym; /* index of code symbols */
44 1.2 christos unsigned mmin, mmax; /* minimum and maximum code lengths */
45 1.1 christos unsigned root; /* number of index bits for root table */
46 1.1 christos unsigned curr; /* number of index bits for current table */
47 1.1 christos unsigned drop; /* code bits to drop for sub-table */
48 1.1 christos int left; /* number of prefix codes available */
49 1.1 christos unsigned used; /* code entries in table used */
50 1.1 christos unsigned huff; /* Huffman code */
51 1.1 christos unsigned incr; /* for incrementing code, index */
52 1.1 christos unsigned fill; /* index for replicating entries */
53 1.1 christos unsigned low; /* low bits for current root entry */
54 1.1 christos unsigned mask; /* mask for low root bits */
55 1.1 christos code this; /* table entry for duplication */
56 1.1 christos code FAR *next; /* next available space in table */
57 1.1 christos const unsigned short FAR *base; /* base value table to use */
58 1.1 christos const unsigned short FAR *extra; /* extra bits table to use */
59 1.1 christos int end; /* use base and extra for symbol > end */
60 1.1 christos unsigned short count[MAXBITS+1]; /* number of codes of each length */
61 1.1 christos unsigned short offs[MAXBITS+1]; /* offsets in table for each length */
62 1.1 christos static const unsigned short lbase[31] = { /* Length codes 257..285 base */
63 1.1 christos 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
64 1.1 christos 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
65 1.1 christos static const unsigned short lext[31] = { /* Length codes 257..285 extra */
66 1.1 christos 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
67 1.1 christos 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 201, 196};
68 1.1 christos static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
69 1.1 christos 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
70 1.1 christos 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
71 1.1 christos 8193, 12289, 16385, 24577, 0, 0};
72 1.1 christos static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
73 1.1 christos 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
74 1.1 christos 23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
75 1.1 christos 28, 28, 29, 29, 64, 64};
76 1.1 christos
77 1.1 christos /*
78 1.1 christos Process a set of code lengths to create a canonical Huffman code. The
79 1.1 christos code lengths are lens[0..codes-1]. Each length corresponds to the
80 1.1 christos symbols 0..codes-1. The Huffman code is generated by first sorting the
81 1.1 christos symbols by length from short to long, and retaining the symbol order
82 1.1 christos for codes with equal lengths. Then the code starts with all zero bits
83 1.1 christos for the first code of the shortest length, and the codes are integer
84 1.1 christos increments for the same length, and zeros are appended as the length
85 1.1 christos increases. For the deflate format, these bits are stored backwards
86 1.1 christos from their more natural integer increment ordering, and so when the
87 1.1 christos decoding tables are built in the large loop below, the integer codes
88 1.1 christos are incremented backwards.
89 1.1 christos
90 1.1 christos This routine assumes, but does not check, that all of the entries in
91 1.1 christos lens[] are in the range 0..MAXBITS. The caller must assure this.
92 1.1 christos 1..MAXBITS is interpreted as that code length. zero means that that
93 1.1 christos symbol does not occur in this code.
94 1.1 christos
95 1.1 christos The codes are sorted by computing a count of codes for each length,
96 1.1 christos creating from that a table of starting indices for each length in the
97 1.1 christos sorted table, and then entering the symbols in order in the sorted
98 1.1 christos table. The sorted table is work[], with that space being provided by
99 1.1 christos the caller.
100 1.1 christos
101 1.1 christos The length counts are used for other purposes as well, i.e. finding
102 1.1 christos the minimum and maximum length codes, determining if there are any
103 1.1 christos codes at all, checking for a valid set of lengths, and looking ahead
104 1.1 christos at length counts to determine sub-table sizes when building the
105 1.1 christos decoding tables.
106 1.1 christos */
107 1.1 christos
108 1.1 christos /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
109 1.1 christos for (len = 0; len <= MAXBITS; len++)
110 1.1 christos count[len] = 0;
111 1.1 christos for (sym = 0; sym < codes; sym++)
112 1.1 christos count[lens[sym]]++;
113 1.1 christos
114 1.1 christos /* bound code lengths, force root to be within code lengths */
115 1.1 christos root = *bits;
116 1.2 christos for (mmax = MAXBITS; mmax >= 1; mmax--)
117 1.2 christos if (count[mmax] != 0) break;
118 1.2 christos if (root > mmax) root = mmax;
119 1.2 christos if (mmax == 0) { /* no symbols to code at all */
120 1.1 christos this.op = (unsigned char)64; /* invalid code marker */
121 1.1 christos this.bits = (unsigned char)1;
122 1.1 christos this.val = (unsigned short)0;
123 1.1 christos *(*table)++ = this; /* make a table to force an error */
124 1.1 christos *(*table)++ = this;
125 1.1 christos *bits = 1;
126 1.1 christos return 0; /* no symbols, but wait for decoding to report error */
127 1.1 christos }
128 1.2 christos for (mmin = 1; mmin <= MAXBITS; mmin++)
129 1.2 christos if (count[mmin] != 0) break;
130 1.2 christos if (root < mmin) root = mmin;
131 1.1 christos
132 1.1 christos /* check for an over-subscribed or incomplete set of lengths */
133 1.1 christos left = 1;
134 1.1 christos for (len = 1; len <= MAXBITS; len++) {
135 1.1 christos left <<= 1;
136 1.1 christos left -= count[len];
137 1.1 christos if (left < 0) return -1; /* over-subscribed */
138 1.1 christos }
139 1.2 christos if (left > 0 && (type == CODES || mmax != 1))
140 1.1 christos return -1; /* incomplete set */
141 1.1 christos
142 1.1 christos /* generate offsets into symbol table for each length for sorting */
143 1.1 christos offs[1] = 0;
144 1.1 christos for (len = 1; len < MAXBITS; len++)
145 1.1 christos offs[len + 1] = offs[len] + count[len];
146 1.1 christos
147 1.1 christos /* sort symbols by length, by symbol order within each length */
148 1.1 christos for (sym = 0; sym < codes; sym++)
149 1.1 christos if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
150 1.1 christos
151 1.1 christos /*
152 1.1 christos Create and fill in decoding tables. In this loop, the table being
153 1.1 christos filled is at next and has curr index bits. The code being used is huff
154 1.1 christos with length len. That code is converted to an index by dropping drop
155 1.1 christos bits off of the bottom. For codes where len is less than drop + curr,
156 1.1 christos those top drop + curr - len bits are incremented through all values to
157 1.1 christos fill the table with replicated entries.
158 1.1 christos
159 1.1 christos root is the number of index bits for the root table. When len exceeds
160 1.1 christos root, sub-tables are created pointed to by the root entry with an index
161 1.1 christos of the low root bits of huff. This is saved in low to check for when a
162 1.1 christos new sub-table should be started. drop is zero when the root table is
163 1.1 christos being filled, and drop is root when sub-tables are being filled.
164 1.1 christos
165 1.1 christos When a new sub-table is needed, it is necessary to look ahead in the
166 1.1 christos code lengths to determine what size sub-table is needed. The length
167 1.1 christos counts are used for this, and so count[] is decremented as codes are
168 1.1 christos entered in the tables.
169 1.1 christos
170 1.1 christos used keeps track of how many table entries have been allocated from the
171 1.1 christos provided *table space. It is checked when a LENS table is being made
172 1.1 christos against the space in *table, ENOUGH, minus the maximum space needed by
173 1.1 christos the worst case distance code, MAXD. This should never happen, but the
174 1.1 christos sufficiency of ENOUGH has not been proven exhaustively, hence the check.
175 1.1 christos This assumes that when type == LENS, bits == 9.
176 1.1 christos
177 1.1 christos sym increments through all symbols, and the loop terminates when
178 1.2 christos all codes of length mmax, i.e. all codes, have been processed. This
179 1.1 christos routine permits incomplete codes, so another loop after this one fills
180 1.1 christos in the rest of the decoding tables with invalid code markers.
181 1.1 christos */
182 1.1 christos
183 1.1 christos /* set up for code type */
184 1.1 christos switch (type) {
185 1.1 christos case CODES:
186 1.1 christos base = extra = work; /* dummy value--not used */
187 1.1 christos end = 19;
188 1.1 christos break;
189 1.1 christos case LENS:
190 1.1 christos base = lbase;
191 1.1 christos base -= 257;
192 1.1 christos extra = lext;
193 1.1 christos extra -= 257;
194 1.1 christos end = 256;
195 1.1 christos break;
196 1.1 christos default: /* DISTS */
197 1.1 christos base = dbase;
198 1.1 christos extra = dext;
199 1.1 christos end = -1;
200 1.1 christos }
201 1.1 christos
202 1.1 christos /* initialize state for loop */
203 1.1 christos huff = 0; /* starting code */
204 1.1 christos sym = 0; /* starting code symbol */
205 1.2 christos len = mmin; /* starting code length */
206 1.1 christos next = *table; /* current table to fill in */
207 1.1 christos curr = root; /* current table index bits */
208 1.1 christos drop = 0; /* current bits to drop from code for index */
209 1.1 christos low = (unsigned)(-1); /* trigger new sub-table when len > root */
210 1.1 christos used = 1U << root; /* use root table entries */
211 1.1 christos mask = used - 1; /* mask for comparing low */
212 1.1 christos
213 1.1 christos /* check available table space */
214 1.1 christos if (type == LENS && used >= ENOUGH - MAXD)
215 1.1 christos return 1;
216 1.1 christos
217 1.1 christos /* process all codes and make table entries */
218 1.1 christos for (;;) {
219 1.1 christos /* create table entry */
220 1.1 christos this.bits = (unsigned char)(len - drop);
221 1.1 christos if ((int)(work[sym]) < end) {
222 1.1 christos this.op = (unsigned char)0;
223 1.1 christos this.val = work[sym];
224 1.1 christos }
225 1.1 christos else if ((int)(work[sym]) > end) {
226 1.1 christos this.op = (unsigned char)(extra[work[sym]]);
227 1.1 christos this.val = base[work[sym]];
228 1.1 christos }
229 1.1 christos else {
230 1.1 christos this.op = (unsigned char)(32 + 64); /* end of block */
231 1.1 christos this.val = 0;
232 1.1 christos }
233 1.1 christos
234 1.1 christos /* replicate for those indices with low len bits equal to huff */
235 1.1 christos incr = 1U << (len - drop);
236 1.1 christos fill = 1U << curr;
237 1.2 christos mmin = fill; /* save offset to next table */
238 1.1 christos do {
239 1.1 christos fill -= incr;
240 1.1 christos next[(huff >> drop) + fill] = this;
241 1.1 christos } while (fill != 0);
242 1.1 christos
243 1.1 christos /* backwards increment the len-bit code huff */
244 1.1 christos incr = 1U << (len - 1);
245 1.1 christos while (huff & incr)
246 1.1 christos incr >>= 1;
247 1.1 christos if (incr != 0) {
248 1.1 christos huff &= incr - 1;
249 1.1 christos huff += incr;
250 1.1 christos }
251 1.1 christos else
252 1.1 christos huff = 0;
253 1.1 christos
254 1.1 christos /* go to next symbol, update count, len */
255 1.1 christos sym++;
256 1.1 christos if (--(count[len]) == 0) {
257 1.2 christos if (len == mmax) break;
258 1.1 christos len = lens[work[sym]];
259 1.1 christos }
260 1.1 christos
261 1.1 christos /* create new sub-table if needed */
262 1.1 christos if (len > root && (huff & mask) != low) {
263 1.1 christos /* if first time, transition to sub-tables */
264 1.1 christos if (drop == 0)
265 1.1 christos drop = root;
266 1.1 christos
267 1.1 christos /* increment past last table */
268 1.2 christos next += mmin; /* here mmin is 1 << curr */
269 1.1 christos
270 1.1 christos /* determine length of next table */
271 1.1 christos curr = len - drop;
272 1.1 christos left = (int)(1 << curr);
273 1.2 christos while (curr + drop < mmax) {
274 1.1 christos left -= count[curr + drop];
275 1.1 christos if (left <= 0) break;
276 1.1 christos curr++;
277 1.1 christos left <<= 1;
278 1.1 christos }
279 1.1 christos
280 1.1 christos /* check for enough space */
281 1.1 christos used += 1U << curr;
282 1.1 christos if (type == LENS && used >= ENOUGH - MAXD)
283 1.1 christos return 1;
284 1.1 christos
285 1.1 christos /* point entry in root table to sub-table */
286 1.1 christos low = huff & mask;
287 1.1 christos (*table)[low].op = (unsigned char)curr;
288 1.1 christos (*table)[low].bits = (unsigned char)root;
289 1.1 christos (*table)[low].val = (unsigned short)(next - *table);
290 1.1 christos }
291 1.1 christos }
292 1.1 christos
293 1.1 christos /*
294 1.1 christos Fill in rest of table for incomplete codes. This loop is similar to the
295 1.1 christos loop above in incrementing huff for table indices. It is assumed that
296 1.1 christos len is equal to curr + drop, so there is no loop needed to increment
297 1.1 christos through high index bits. When the current sub-table is filled, the loop
298 1.1 christos drops back to the root table to fill in any remaining entries there.
299 1.1 christos */
300 1.1 christos this.op = (unsigned char)64; /* invalid code marker */
301 1.1 christos this.bits = (unsigned char)(len - drop);
302 1.1 christos this.val = (unsigned short)0;
303 1.1 christos while (huff != 0) {
304 1.1 christos /* when done with sub-table, drop back to root table */
305 1.1 christos if (drop != 0 && (huff & mask) != low) {
306 1.1 christos drop = 0;
307 1.1 christos len = root;
308 1.1 christos next = *table;
309 1.1 christos this.bits = (unsigned char)len;
310 1.1 christos }
311 1.1 christos
312 1.1 christos /* put invalid code marker in table */
313 1.1 christos next[huff >> drop] = this;
314 1.1 christos
315 1.1 christos /* backwards increment the len-bit code huff */
316 1.1 christos incr = 1U << (len - 1);
317 1.1 christos while (huff & incr)
318 1.1 christos incr >>= 1;
319 1.1 christos if (incr != 0) {
320 1.1 christos huff &= incr - 1;
321 1.1 christos huff += incr;
322 1.1 christos }
323 1.1 christos else
324 1.1 christos huff = 0;
325 1.1 christos }
326 1.1 christos
327 1.1 christos /* set return parameters */
328 1.1 christos *table += used;
329 1.1 christos *bits = root;
330 1.1 christos return 0;
331 1.1 christos }
332