inftrees.c revision 1.5 1 1.5 christos /* $NetBSD: inftrees.c,v 1.5 2024/09/22 19:12:27 christos Exp $ */
2 1.1 christos
3 1.1 christos /* inftrees.c -- generate Huffman trees for efficient decoding
4 1.5 christos * Copyright (C) 1995-2024 Mark Adler
5 1.1 christos * For conditions of distribution and use, see copyright notice in zlib.h
6 1.1 christos */
7 1.1 christos
8 1.1 christos #include "zutil.h"
9 1.1 christos #include "inftrees.h"
10 1.1 christos
11 1.1 christos #define MAXBITS 15
12 1.1 christos
13 1.1 christos const char inflate_copyright[] =
14 1.5 christos " inflate 1.3.1 Copyright 1995-2024 Mark Adler ";
15 1.1 christos /*
16 1.1 christos If you use the zlib library in a product, an acknowledgment is welcome
17 1.1 christos in the documentation of your product. If for some reason you cannot
18 1.1 christos include such an acknowledgment, I would appreciate that you keep this
19 1.1 christos copyright string in the executable of your product.
20 1.1 christos */
21 1.1 christos
22 1.1 christos /*
23 1.1 christos Build a set of tables to decode the provided canonical Huffman code.
24 1.1 christos The code lengths are lens[0..codes-1]. The result starts at *table,
25 1.1 christos whose indices are 0..2^bits-1. work is a writable array of at least
26 1.1 christos lens shorts, which is used as a work area. type is the type of code
27 1.1 christos to be generated, CODES, LENS, or DISTS. On return, zero is success,
28 1.1 christos -1 is an invalid code, and +1 means that ENOUGH isn't enough. table
29 1.1 christos on return points to the next available entry's address. bits is the
30 1.1 christos requested root table index bits, and on return it is the actual root
31 1.1 christos table index bits. It will differ if the request is greater than the
32 1.1 christos longest code or if it is less than the shortest code.
33 1.1 christos */
34 1.5 christos int ZLIB_INTERNAL inflate_table(codetype type, unsigned short FAR *lens,
35 1.5 christos unsigned codes, code FAR * FAR *table,
36 1.5 christos unsigned FAR *bits, unsigned short FAR *work) {
37 1.1 christos unsigned len; /* a code's length in bits */
38 1.1 christos unsigned sym; /* index of code symbols */
39 1.2 christos unsigned mmin, mmax; /* minimum and maximum code lengths */
40 1.1 christos unsigned root; /* number of index bits for root table */
41 1.1 christos unsigned curr; /* number of index bits for current table */
42 1.1 christos unsigned drop; /* code bits to drop for sub-table */
43 1.1 christos int left; /* number of prefix codes available */
44 1.1 christos unsigned used; /* code entries in table used */
45 1.1 christos unsigned huff; /* Huffman code */
46 1.1 christos unsigned incr; /* for incrementing code, index */
47 1.1 christos unsigned fill; /* index for replicating entries */
48 1.1 christos unsigned low; /* low bits for current root entry */
49 1.1 christos unsigned mask; /* mask for low root bits */
50 1.3 christos code here; /* table entry for duplication */
51 1.1 christos code FAR *next; /* next available space in table */
52 1.1 christos const unsigned short FAR *base; /* base value table to use */
53 1.1 christos const unsigned short FAR *extra; /* extra bits table to use */
54 1.3 christos unsigned match; /* use base and extra for symbol >= match */
55 1.1 christos unsigned short count[MAXBITS+1]; /* number of codes of each length */
56 1.1 christos unsigned short offs[MAXBITS+1]; /* offsets in table for each length */
57 1.1 christos static const unsigned short lbase[31] = { /* Length codes 257..285 base */
58 1.1 christos 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
59 1.1 christos 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
60 1.1 christos static const unsigned short lext[31] = { /* Length codes 257..285 extra */
61 1.1 christos 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
62 1.5 christos 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 203, 77};
63 1.1 christos static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
64 1.1 christos 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
65 1.1 christos 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
66 1.1 christos 8193, 12289, 16385, 24577, 0, 0};
67 1.1 christos static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
68 1.1 christos 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
69 1.1 christos 23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
70 1.1 christos 28, 28, 29, 29, 64, 64};
71 1.1 christos
72 1.1 christos /*
73 1.1 christos Process a set of code lengths to create a canonical Huffman code. The
74 1.1 christos code lengths are lens[0..codes-1]. Each length corresponds to the
75 1.1 christos symbols 0..codes-1. The Huffman code is generated by first sorting the
76 1.1 christos symbols by length from short to long, and retaining the symbol order
77 1.1 christos for codes with equal lengths. Then the code starts with all zero bits
78 1.1 christos for the first code of the shortest length, and the codes are integer
79 1.1 christos increments for the same length, and zeros are appended as the length
80 1.1 christos increases. For the deflate format, these bits are stored backwards
81 1.1 christos from their more natural integer increment ordering, and so when the
82 1.1 christos decoding tables are built in the large loop below, the integer codes
83 1.1 christos are incremented backwards.
84 1.1 christos
85 1.1 christos This routine assumes, but does not check, that all of the entries in
86 1.1 christos lens[] are in the range 0..MAXBITS. The caller must assure this.
87 1.1 christos 1..MAXBITS is interpreted as that code length. zero means that that
88 1.1 christos symbol does not occur in this code.
89 1.1 christos
90 1.1 christos The codes are sorted by computing a count of codes for each length,
91 1.1 christos creating from that a table of starting indices for each length in the
92 1.1 christos sorted table, and then entering the symbols in order in the sorted
93 1.1 christos table. The sorted table is work[], with that space being provided by
94 1.1 christos the caller.
95 1.1 christos
96 1.1 christos The length counts are used for other purposes as well, i.e. finding
97 1.1 christos the minimum and maximum length codes, determining if there are any
98 1.1 christos codes at all, checking for a valid set of lengths, and looking ahead
99 1.1 christos at length counts to determine sub-table sizes when building the
100 1.1 christos decoding tables.
101 1.1 christos */
102 1.1 christos
103 1.1 christos /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
104 1.1 christos for (len = 0; len <= MAXBITS; len++)
105 1.1 christos count[len] = 0;
106 1.1 christos for (sym = 0; sym < codes; sym++)
107 1.1 christos count[lens[sym]]++;
108 1.1 christos
109 1.1 christos /* bound code lengths, force root to be within code lengths */
110 1.1 christos root = *bits;
111 1.2 christos for (mmax = MAXBITS; mmax >= 1; mmax--)
112 1.2 christos if (count[mmax] != 0) break;
113 1.2 christos if (root > mmax) root = mmax;
114 1.2 christos if (mmax == 0) { /* no symbols to code at all */
115 1.3 christos here.op = (unsigned char)64; /* invalid code marker */
116 1.3 christos here.bits = (unsigned char)1;
117 1.3 christos here.val = (unsigned short)0;
118 1.3 christos *(*table)++ = here; /* make a table to force an error */
119 1.3 christos *(*table)++ = here;
120 1.1 christos *bits = 1;
121 1.1 christos return 0; /* no symbols, but wait for decoding to report error */
122 1.1 christos }
123 1.2 christos for (mmin = 1; mmin <= MAXBITS; mmin++)
124 1.2 christos if (count[mmin] != 0) break;
125 1.2 christos if (root < mmin) root = mmin;
126 1.1 christos
127 1.1 christos /* check for an over-subscribed or incomplete set of lengths */
128 1.1 christos left = 1;
129 1.1 christos for (len = 1; len <= MAXBITS; len++) {
130 1.1 christos left <<= 1;
131 1.1 christos left -= count[len];
132 1.1 christos if (left < 0) return -1; /* over-subscribed */
133 1.1 christos }
134 1.2 christos if (left > 0 && (type == CODES || mmax != 1))
135 1.1 christos return -1; /* incomplete set */
136 1.1 christos
137 1.1 christos /* generate offsets into symbol table for each length for sorting */
138 1.1 christos offs[1] = 0;
139 1.1 christos for (len = 1; len < MAXBITS; len++)
140 1.1 christos offs[len + 1] = offs[len] + count[len];
141 1.1 christos
142 1.1 christos /* sort symbols by length, by symbol order within each length */
143 1.1 christos for (sym = 0; sym < codes; sym++)
144 1.1 christos if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
145 1.1 christos
146 1.1 christos /*
147 1.1 christos Create and fill in decoding tables. In this loop, the table being
148 1.1 christos filled is at next and has curr index bits. The code being used is huff
149 1.1 christos with length len. That code is converted to an index by dropping drop
150 1.1 christos bits off of the bottom. For codes where len is less than drop + curr,
151 1.1 christos those top drop + curr - len bits are incremented through all values to
152 1.1 christos fill the table with replicated entries.
153 1.1 christos
154 1.1 christos root is the number of index bits for the root table. When len exceeds
155 1.1 christos root, sub-tables are created pointed to by the root entry with an index
156 1.1 christos of the low root bits of huff. This is saved in low to check for when a
157 1.1 christos new sub-table should be started. drop is zero when the root table is
158 1.1 christos being filled, and drop is root when sub-tables are being filled.
159 1.1 christos
160 1.1 christos When a new sub-table is needed, it is necessary to look ahead in the
161 1.1 christos code lengths to determine what size sub-table is needed. The length
162 1.1 christos counts are used for this, and so count[] is decremented as codes are
163 1.1 christos entered in the tables.
164 1.1 christos
165 1.1 christos used keeps track of how many table entries have been allocated from the
166 1.3 christos provided *table space. It is checked for LENS and DIST tables against
167 1.3 christos the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
168 1.3 christos the initial root table size constants. See the comments in inftrees.h
169 1.3 christos for more information.
170 1.1 christos
171 1.1 christos sym increments through all symbols, and the loop terminates when
172 1.2 christos all codes of length mmax, i.e. all codes, have been processed. This
173 1.1 christos routine permits incomplete codes, so another loop after this one fills
174 1.1 christos in the rest of the decoding tables with invalid code markers.
175 1.1 christos */
176 1.1 christos
177 1.1 christos /* set up for code type */
178 1.1 christos switch (type) {
179 1.1 christos case CODES:
180 1.1 christos base = extra = work; /* dummy value--not used */
181 1.3 christos match = 20;
182 1.1 christos break;
183 1.1 christos case LENS:
184 1.1 christos base = lbase;
185 1.1 christos extra = lext;
186 1.3 christos match = 257;
187 1.1 christos break;
188 1.3 christos default: /* DISTS */
189 1.1 christos base = dbase;
190 1.1 christos extra = dext;
191 1.3 christos match = 0;
192 1.1 christos }
193 1.1 christos
194 1.1 christos /* initialize state for loop */
195 1.1 christos huff = 0; /* starting code */
196 1.1 christos sym = 0; /* starting code symbol */
197 1.2 christos len = mmin; /* starting code length */
198 1.1 christos next = *table; /* current table to fill in */
199 1.1 christos curr = root; /* current table index bits */
200 1.1 christos drop = 0; /* current bits to drop from code for index */
201 1.1 christos low = (unsigned)(-1); /* trigger new sub-table when len > root */
202 1.1 christos used = 1U << root; /* use root table entries */
203 1.1 christos mask = used - 1; /* mask for comparing low */
204 1.1 christos
205 1.1 christos /* check available table space */
206 1.3 christos if ((type == LENS && used > ENOUGH_LENS) ||
207 1.3 christos (type == DISTS && used > ENOUGH_DISTS))
208 1.1 christos return 1;
209 1.1 christos
210 1.1 christos /* process all codes and make table entries */
211 1.1 christos for (;;) {
212 1.1 christos /* create table entry */
213 1.3 christos here.bits = (unsigned char)(len - drop);
214 1.3 christos if (work[sym] + 1U < match) {
215 1.3 christos here.op = (unsigned char)0;
216 1.3 christos here.val = work[sym];
217 1.1 christos }
218 1.3 christos else if (work[sym] >= match) {
219 1.3 christos here.op = (unsigned char)(extra[work[sym] - match]);
220 1.3 christos here.val = base[work[sym] - match];
221 1.1 christos }
222 1.1 christos else {
223 1.3 christos here.op = (unsigned char)(32 + 64); /* end of block */
224 1.3 christos here.val = 0;
225 1.1 christos }
226 1.1 christos
227 1.1 christos /* replicate for those indices with low len bits equal to huff */
228 1.1 christos incr = 1U << (len - drop);
229 1.1 christos fill = 1U << curr;
230 1.2 christos mmin = fill; /* save offset to next table */
231 1.1 christos do {
232 1.1 christos fill -= incr;
233 1.3 christos next[(huff >> drop) + fill] = here;
234 1.1 christos } while (fill != 0);
235 1.1 christos
236 1.1 christos /* backwards increment the len-bit code huff */
237 1.1 christos incr = 1U << (len - 1);
238 1.1 christos while (huff & incr)
239 1.1 christos incr >>= 1;
240 1.1 christos if (incr != 0) {
241 1.1 christos huff &= incr - 1;
242 1.1 christos huff += incr;
243 1.1 christos }
244 1.1 christos else
245 1.1 christos huff = 0;
246 1.1 christos
247 1.1 christos /* go to next symbol, update count, len */
248 1.1 christos sym++;
249 1.1 christos if (--(count[len]) == 0) {
250 1.2 christos if (len == mmax) break;
251 1.1 christos len = lens[work[sym]];
252 1.1 christos }
253 1.1 christos
254 1.1 christos /* create new sub-table if needed */
255 1.1 christos if (len > root && (huff & mask) != low) {
256 1.1 christos /* if first time, transition to sub-tables */
257 1.1 christos if (drop == 0)
258 1.1 christos drop = root;
259 1.1 christos
260 1.1 christos /* increment past last table */
261 1.2 christos next += mmin; /* here mmin is 1 << curr */
262 1.1 christos
263 1.1 christos /* determine length of next table */
264 1.1 christos curr = len - drop;
265 1.1 christos left = (int)(1 << curr);
266 1.2 christos while (curr + drop < mmax) {
267 1.1 christos left -= count[curr + drop];
268 1.1 christos if (left <= 0) break;
269 1.1 christos curr++;
270 1.1 christos left <<= 1;
271 1.1 christos }
272 1.1 christos
273 1.1 christos /* check for enough space */
274 1.1 christos used += 1U << curr;
275 1.3 christos if ((type == LENS && used > ENOUGH_LENS) ||
276 1.3 christos (type == DISTS && used > ENOUGH_DISTS))
277 1.1 christos return 1;
278 1.1 christos
279 1.1 christos /* point entry in root table to sub-table */
280 1.1 christos low = huff & mask;
281 1.1 christos (*table)[low].op = (unsigned char)curr;
282 1.1 christos (*table)[low].bits = (unsigned char)root;
283 1.1 christos (*table)[low].val = (unsigned short)(next - *table);
284 1.1 christos }
285 1.1 christos }
286 1.1 christos
287 1.3 christos /* fill in remaining table entry if code is incomplete (guaranteed to have
288 1.3 christos at most one remaining entry, since if the code is incomplete, the
289 1.3 christos maximum code length that was allowed to get this far is one bit) */
290 1.3 christos if (huff != 0) {
291 1.3 christos here.op = (unsigned char)64; /* invalid code marker */
292 1.3 christos here.bits = (unsigned char)(len - drop);
293 1.3 christos here.val = (unsigned short)0;
294 1.3 christos next[huff] = here;
295 1.1 christos }
296 1.1 christos
297 1.1 christos /* set return parameters */
298 1.1 christos *table += used;
299 1.1 christos *bits = root;
300 1.1 christos return 0;
301 1.1 christos }
302