strlen.S revision 1.4 1 1.1 christos /*
2 1.1 christos * Written by J.T. Conklin <jtc (at) acorntoolworks.com>
3 1.1 christos * Public domain.
4 1.1 christos */
5 1.1 christos
6 1.1 christos #include <machine/asm.h>
7 1.1 christos
8 1.1 christos #if defined(LIBC_SCCS)
9 1.4 dsl RCSID("$NetBSD: strlen.S,v 1.4 2009/07/12 21:00:54 dsl Exp $")
10 1.1 christos #endif
11 1.1 christos
12 1.3 dsl /*
13 1.3 dsl * There are many well known branch-free sequences which are used
14 1.3 dsl * for determining whether a zero-byte is contained within a word.
15 1.3 dsl * These sequences are generally much more efficent than loading
16 1.3 dsl * and comparing each byte individually.
17 1.3 dsl *
18 1.3 dsl * The expression [1,2]:
19 1.3 dsl *
20 1.3 dsl * (1) ~(((x & 0x7f....7f) + 0x7f....7f) | (x | 0x7f....7f))
21 1.3 dsl *
22 1.3 dsl * evaluates to a non-zero value if any of the bytes in the
23 1.3 dsl * original word is zero.
24 1.3 dsl *
25 1.3 dsl * It also has the useful property that bytes in the result word
26 1.3 dsl * that correspond to non-zero bytes in the original word have
27 1.3 dsl * the value 0x00, while bytes corresponding to zero bytes have
28 1.3 dsl * the value 0x80. This allows calculation of the first (and
29 1.3 dsl * last) occurrence of a zero byte within the word (useful for C's
30 1.3 dsl * str* primitives) by counting the number of leading (or
31 1.3 dsl * trailing) zeros and dividing the result by 8. On machines
32 1.3 dsl * without (or with slow) clz() / ctz() instructions, testing
33 1.3 dsl * each byte in the result word for zero is necessary.
34 1.3 dsl *
35 1.3 dsl * This typically takes 4 instructions (5 on machines without
36 1.3 dsl * "not-or") not including those needed to load the constant.
37 1.3 dsl *
38 1.3 dsl *
39 1.3 dsl * The expression:
40 1.3 dsl *
41 1.3 dsl * (2) ((x - 0x01....01) & 0x80....80 & ~x)
42 1.3 dsl *
43 1.3 dsl * evaluates to a non-zero value if any of the bytes in the
44 1.3 dsl * original word is zero.
45 1.3 dsl *
46 1.3 dsl * On little endian machines, the first byte in the result word
47 1.3 dsl * that corresponds to a zero byte in the original byte is 0x80,
48 1.3 dsl * so clz() can be used as above. On big endian machines, and
49 1.3 dsl * little endian machines without (or with a slow) clz() insn,
50 1.3 dsl * testing each byte in the original for zero is necessary.
51 1.3 dsl *
52 1.3 dsl * This typically takes 3 instructions (4 on machines without
53 1.3 dsl * "and with complement") not including those needed to load
54 1.3 dsl * constants.
55 1.3 dsl *
56 1.3 dsl *
57 1.3 dsl * The expression:
58 1.3 dsl *
59 1.3 dsl * (3) ((x - 0x01....01) & 0x80....80)
60 1.3 dsl *
61 1.3 dsl * always evaluates to a non-zero value if any of the bytes in
62 1.3 dsl * the original word is zero or has the top bit set.
63 1.3 dsl * For strings that are likely to only contain 7-bit ascii these
64 1.3 dsl * false positives will be rare.
65 1.3 dsl *
66 1.3 dsl * To account for possible false positives, each byte of the
67 1.3 dsl * original word must be checked when the expression evaluates to
68 1.3 dsl * a non-zero value. However, because it is simpler than those
69 1.3 dsl * presented above, code that uses it will be faster as long as
70 1.3 dsl * the rate of false positives is low.
71 1.3 dsl *
72 1.3 dsl * This is likely, because the the false positive can only occur
73 1.3 dsl * if the most siginificant bit of a byte within the word is set.
74 1.3 dsl * The expression will never fail for typical 7-bit ASCII strings.
75 1.3 dsl *
76 1.3 dsl * This typically takes 2 instructions not including those needed
77 1.3 dsl * to load constants.
78 1.3 dsl *
79 1.3 dsl *
80 1.3 dsl * [1] Henry S. Warren Jr., "Hacker's Delight", Addison-Westley 2003
81 1.3 dsl *
82 1.3 dsl * [2] International Business Machines, "The PowerPC Compiler Writer's
83 1.3 dsl * Guide", Warthman Associates, 1996
84 1.3 dsl */
85 1.3 dsl
86 1.3 dsl #ifdef TEST_STRLEN
87 1.3 dsl ENTRY(test_strlen)
88 1.3 dsl #else
89 1.1 christos ENTRY(strlen)
90 1.3 dsl #endif
91 1.3 dsl movabsq $0x0101010101010101,%r8
92 1.3 dsl
93 1.3 dsl test $7,%dil
94 1.3 dsl movq %rdi,%rax /* Buffer, %rdi unchanged */
95 1.3 dsl movabsq $0x8080808080808080,%r9
96 1.3 dsl jnz 10f /* Jump if misaligned */
97 1.1 christos
98 1.3 dsl _ALIGN_TEXT
99 1.3 dsl 1:
100 1.3 dsl movq (%rax),%rdx /* get bytes to check */
101 1.3 dsl 2:
102 1.3 dsl addq $8,%rax
103 1.3 dsl mov %rdx,%rcx /* save for later check */
104 1.3 dsl subq %r8,%rdx /* alg (3) above first */
105 1.3 dsl not %rcx /* Invert of data */
106 1.3 dsl andq %r9,%rdx
107 1.4 dsl je 1b /* jump if all 0x01-0x80 */
108 1.3 dsl
109 1.4 dsl /* Do check from alg (2) above - loops for 0x81..0xff bytes */
110 1.3 dsl andq %rcx,%rdx
111 1.3 dsl je 1b
112 1.3 dsl
113 1.3 dsl /* Since we are LE, use bit scan for first 0x80 byte */
114 1.3 dsl sub %rdi,%rax /* length to next word */
115 1.3 dsl bsf %rdx,%rdx /* 7, 15, 23 ... 63 */
116 1.3 dsl shr $3,%rdx /* 0, 1, 2 ... 7 */
117 1.3 dsl lea -8(%rax,%rdx),%rax
118 1.1 christos ret
119 1.1 christos
120 1.3 dsl /* Misaligned, read aligned word and make low bytes non-zero */
121 1.1 christos _ALIGN_TEXT
122 1.3 dsl 10:
123 1.3 dsl mov $1,%rsi
124 1.3 dsl mov %al,%cl
125 1.3 dsl and $~7,%al /* start of word with buffer */
126 1.3 dsl and $7,%cl /* offset into word 1..7 */
127 1.3 dsl shl $3,%cl /* bit count 8, 16 .. 56 */
128 1.3 dsl movq (%rax),%rdx /* first data in high bytes */
129 1.3 dsl shl %cl,%rsi
130 1.3 dsl dec %rsi
131 1.3 dsl or %rsi,%rdx /* low bytes now non-zero */
132 1.3 dsl jmp 2b
133 1.1 christos
134 1.3 dsl #ifdef TEST_STRLEN
135 1.3 dsl /* trivial implementation when testing above! */
136 1.3 dsl ENTRY(strlen)
137 1.3 dsl mov %rdi,%rax
138 1.3 dsl 1:
139 1.3 dsl cmpb $0,(%rax)
140 1.3 dsl jz 2f
141 1.3 dsl inc %rax
142 1.3 dsl jmp 1b
143 1.3 dsl 2: sub %rdi,%rax
144 1.1 christos ret
145 1.3 dsl #endif
146