1 1.15 andvar /* $NetBSD: ptree.c,v 1.15 2025/04/25 21:12:31 andvar Exp $ */ 2 1.1 matt 3 1.1 matt /*- 4 1.1 matt * Copyright (c) 2008 The NetBSD Foundation, Inc. 5 1.1 matt * All rights reserved. 6 1.1 matt * 7 1.1 matt * This code is derived from software contributed to The NetBSD Foundation 8 1.1 matt * by Matt Thomas <matt (at) 3am-software.com>. 9 1.1 matt * 10 1.1 matt * Redistribution and use in source and binary forms, with or without 11 1.1 matt * modification, are permitted provided that the following conditions 12 1.1 matt * are met: 13 1.1 matt * 1. Redistributions of source code must retain the above copyright 14 1.1 matt * notice, this list of conditions and the following disclaimer. 15 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 matt * notice, this list of conditions and the following disclaimer in the 17 1.1 matt * documentation and/or other materials provided with the distribution. 18 1.1 matt * 19 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.1 matt * POSSIBILITY OF SUCH DAMAGE. 30 1.1 matt */ 31 1.1 matt 32 1.1 matt #define _PT_PRIVATE 33 1.1 matt 34 1.1 matt #if defined(PTCHECK) && !defined(PTDEBUG) 35 1.1 matt #define PTDEBUG 36 1.1 matt #endif 37 1.1 matt 38 1.1 matt #if defined(_KERNEL) || defined(_STANDALONE) 39 1.1 matt #include <sys/param.h> 40 1.1 matt #include <sys/types.h> 41 1.1 matt #include <sys/systm.h> 42 1.3 jnemeth #include <lib/libkern/libkern.h> 43 1.15 andvar __KERNEL_RCSID(0, "$NetBSD: ptree.c,v 1.15 2025/04/25 21:12:31 andvar Exp $"); 44 1.1 matt #else 45 1.1 matt #include <stddef.h> 46 1.1 matt #include <stdint.h> 47 1.1 matt #include <limits.h> 48 1.1 matt #include <stdbool.h> 49 1.1 matt #include <string.h> 50 1.1 matt #ifdef PTDEBUG 51 1.1 matt #include <assert.h> 52 1.1 matt #define KASSERT(e) assert(e) 53 1.1 matt #else 54 1.12 rillig #define KASSERT(e) do { } while (0) 55 1.1 matt #endif 56 1.15 andvar __RCSID("$NetBSD: ptree.c,v 1.15 2025/04/25 21:12:31 andvar Exp $"); 57 1.1 matt #endif /* _KERNEL || _STANDALONE */ 58 1.1 matt 59 1.1 matt #ifdef _LIBC 60 1.1 matt #include "namespace.h" 61 1.1 matt #endif 62 1.1 matt 63 1.1 matt #ifdef PTTEST 64 1.1 matt #include "ptree.h" 65 1.1 matt #else 66 1.1 matt #include <sys/ptree.h> 67 1.1 matt #endif 68 1.1 matt 69 1.1 matt /* 70 1.9 rmind * This is an implementation of a radix / PATRICIA tree. As in a traditional 71 1.1 matt * patricia tree, all the data is at the leaves of the tree. An N-value 72 1.1 matt * tree would have N leaves, N-1 branching nodes, and a root pointer. Each 73 1.1 matt * branching node would have left(0) and right(1) pointers that either point 74 1.1 matt * to another branching node or a leaf node. The root pointer would also 75 1.1 matt * point to either the first branching node or a leaf node. Leaf nodes 76 1.1 matt * have no need for pointers. 77 1.1 matt * 78 1.1 matt * However, allocation for these branching nodes is problematic since the 79 1.9 rmind * allocation could fail. This would cause insertions to fail for reasons 80 1.9 rmind * beyond the user's control. So to prevent this, in this implementation 81 1.1 matt * each node has two identities: its leaf identity and its branch identity. 82 1.1 matt * Each is separate from the other. Every branch is tagged as to whether 83 1.1 matt * it points to a leaf or a branch. This is not an attribute of the object 84 1.1 matt * but of the pointer to the object. The low bit of the pointer is used as 85 1.5 yamt * the tag to determine whether it points to a leaf or branch identity, with 86 1.1 matt * branch identities having the low bit set. 87 1.9 rmind * 88 1.1 matt * A node's branch identity has one rule: when traversing the tree from the 89 1.1 matt * root to the node's leaf identity, one of the branches traversed will be via 90 1.1 matt * the node's branch identity. Of course, that has an exception: since to 91 1.1 matt * store N leaves, you need N-1 branches. That one node whose branch identity 92 1.1 matt * isn't used is stored as "oddman"-out in the root. 93 1.1 matt * 94 1.1 matt * Branching nodes also has a bit offset and a bit length which determines 95 1.1 matt * which branch slot is used. The bit length can be zero resulting in a 96 1.9 rmind * one-way branch. This happens in two special cases: the root and 97 1.1 matt * interior mask nodes. 98 1.1 matt * 99 1.1 matt * To support longest match first lookups, when a mask node (one that only 100 1.1 matt * match the first N bits) has children who first N bits match the mask nodes, 101 1.1 matt * that mask node is converted from being a leaf node to being a one-way 102 1.1 matt * branch-node. The mask becomes fixed in position in the tree. The mask 103 1.5 yamt * will always be the longest mask match for its descendants (unless they 104 1.1 matt * traverse an even longer match). 105 1.1 matt */ 106 1.1 matt 107 1.1 matt #define NODETOITEM(pt, ptn) \ 108 1.1 matt ((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset)) 109 1.1 matt #define NODETOKEY(pt, ptn) \ 110 1.1 matt ((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset + pt->pt_key_offset)) 111 1.1 matt #define ITEMTONODE(pt, ptn) \ 112 1.1 matt ((pt_node_t *)((uintptr_t)(ptn) + (pt)->pt_node_offset)) 113 1.1 matt 114 1.1 matt #if PTCHECK > 1 115 1.1 matt #define PTREE_CHECK(pt) ptree_check(pt) 116 1.1 matt #else 117 1.12 rillig #define PTREE_CHECK(pt) do { } while (0) 118 1.1 matt #endif 119 1.1 matt 120 1.1 matt static inline bool 121 1.1 matt ptree_matchnode(const pt_tree_t *pt, const pt_node_t *target, 122 1.1 matt const pt_node_t *ptn, pt_bitoff_t max_bitoff, 123 1.1 matt pt_bitoff_t *bitoff_p, pt_slot_t *slots_p) 124 1.1 matt { 125 1.1 matt return (*pt->pt_ops->ptto_matchnode)(NODETOKEY(pt, target), 126 1.6 rmind (ptn != NULL ? NODETOKEY(pt, ptn) : NULL), 127 1.6 rmind max_bitoff, bitoff_p, slots_p, pt->pt_context); 128 1.1 matt } 129 1.1 matt 130 1.1 matt static inline pt_slot_t 131 1.1 matt ptree_testnode(const pt_tree_t *pt, const pt_node_t *target, 132 1.1 matt const pt_node_t *ptn) 133 1.1 matt { 134 1.1 matt const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn); 135 1.1 matt if (bitlen == 0) 136 1.7 matt return PT_SLOT_ROOT; /* mask or root, doesn't matter */ 137 1.1 matt return (*pt->pt_ops->ptto_testnode)(NODETOKEY(pt, target), 138 1.6 rmind PTN_BRANCH_BITOFF(ptn), bitlen, pt->pt_context); 139 1.1 matt } 140 1.1 matt 141 1.1 matt static inline bool 142 1.1 matt ptree_matchkey(const pt_tree_t *pt, const void *key, 143 1.1 matt const pt_node_t *ptn, pt_bitoff_t bitoff, pt_bitlen_t bitlen) 144 1.1 matt { 145 1.1 matt return (*pt->pt_ops->ptto_matchkey)(key, NODETOKEY(pt, ptn), 146 1.6 rmind bitoff, bitlen, pt->pt_context); 147 1.1 matt } 148 1.1 matt 149 1.1 matt static inline pt_slot_t 150 1.1 matt ptree_testkey(const pt_tree_t *pt, const void *key, const pt_node_t *ptn) 151 1.1 matt { 152 1.7 matt const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn); 153 1.7 matt if (bitlen == 0) 154 1.7 matt return PT_SLOT_ROOT; /* mask or root, doesn't matter */ 155 1.6 rmind return (*pt->pt_ops->ptto_testkey)(key, PTN_BRANCH_BITOFF(ptn), 156 1.6 rmind PTN_BRANCH_BITLEN(ptn), pt->pt_context); 157 1.1 matt } 158 1.1 matt 159 1.1 matt static inline void 160 1.1 matt ptree_set_position(uintptr_t node, pt_slot_t position) 161 1.1 matt { 162 1.1 matt if (PT_LEAF_P(node)) 163 1.1 matt PTN_SET_LEAF_POSITION(PT_NODE(node), position); 164 1.1 matt else 165 1.1 matt PTN_SET_BRANCH_POSITION(PT_NODE(node), position); 166 1.1 matt } 167 1.1 matt 168 1.1 matt void 169 1.6 rmind ptree_init(pt_tree_t *pt, const pt_tree_ops_t *ops, void *context, 170 1.6 rmind size_t node_offset, size_t key_offset) 171 1.1 matt { 172 1.1 matt memset(pt, 0, sizeof(*pt)); 173 1.1 matt pt->pt_node_offset = node_offset; 174 1.1 matt pt->pt_key_offset = key_offset; 175 1.6 rmind pt->pt_context = context; 176 1.1 matt pt->pt_ops = ops; 177 1.1 matt } 178 1.1 matt 179 1.1 matt typedef struct { 180 1.1 matt uintptr_t *id_insertp; 181 1.1 matt pt_node_t *id_parent; 182 1.1 matt uintptr_t id_node; 183 1.1 matt pt_slot_t id_parent_slot; 184 1.1 matt pt_bitoff_t id_bitoff; 185 1.1 matt pt_slot_t id_slot; 186 1.1 matt } pt_insertdata_t; 187 1.1 matt 188 1.1 matt typedef bool (*pt_insertfunc_t)(pt_tree_t *, pt_node_t *, pt_insertdata_t *); 189 1.1 matt 190 1.1 matt /* 191 1.1 matt * Move a branch identify from src to dst. The leaves don't care since 192 1.1 matt * nothing for them has changed. 193 1.1 matt */ 194 1.2 matt /*ARGSUSED*/ 195 1.1 matt static uintptr_t 196 1.1 matt ptree_move_branch(pt_tree_t * const pt, pt_node_t * const dst, 197 1.1 matt const pt_node_t * const src) 198 1.1 matt { 199 1.1 matt KASSERT(PTN_BRANCH_BITLEN(src) == 1); 200 1.1 matt /* set branch bitlen and bitoff in one step. */ 201 1.1 matt dst->ptn_branchdata = src->ptn_branchdata; 202 1.1 matt PTN_SET_BRANCH_POSITION(dst, PTN_BRANCH_POSITION(src)); 203 1.1 matt PTN_COPY_BRANCH_SLOTS(dst, src); 204 1.1 matt return PTN_BRANCH(dst); 205 1.1 matt } 206 1.1 matt 207 1.1 matt #ifndef PTNOMASK 208 1.1 matt static inline uintptr_t * 209 1.1 matt ptree_find_branch(pt_tree_t * const pt, uintptr_t branch_node) 210 1.1 matt { 211 1.1 matt pt_node_t * const branch = PT_NODE(branch_node); 212 1.1 matt pt_node_t *parent; 213 1.1 matt 214 1.1 matt for (parent = &pt->pt_rootnode;;) { 215 1.1 matt uintptr_t *nodep = 216 1.1 matt &PTN_BRANCH_SLOT(parent, ptree_testnode(pt, branch, parent)); 217 1.1 matt if (*nodep == branch_node) 218 1.1 matt return nodep; 219 1.1 matt if (PT_LEAF_P(*nodep)) 220 1.1 matt return NULL; 221 1.1 matt parent = PT_NODE(*nodep); 222 1.1 matt } 223 1.1 matt } 224 1.1 matt 225 1.1 matt static bool 226 1.1 matt ptree_insert_leaf_after_mask(pt_tree_t * const pt, pt_node_t * const target, 227 1.1 matt pt_insertdata_t * const id) 228 1.1 matt { 229 1.1 matt const uintptr_t target_node = PTN_LEAF(target); 230 1.1 matt const uintptr_t mask_node = id->id_node; 231 1.1 matt pt_node_t * const mask = PT_NODE(mask_node); 232 1.1 matt const pt_bitlen_t mask_len = PTN_MASK_BITLEN(mask); 233 1.1 matt 234 1.1 matt KASSERT(PT_LEAF_P(mask_node)); 235 1.1 matt KASSERT(PTN_LEAF_POSITION(mask) == id->id_parent_slot); 236 1.1 matt KASSERT(mask_len <= id->id_bitoff); 237 1.1 matt KASSERT(PTN_ISMASK_P(mask)); 238 1.1 matt KASSERT(!PTN_ISMASK_P(target) || mask_len < PTN_MASK_BITLEN(target)); 239 1.1 matt 240 1.1 matt if (mask_node == PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode)) { 241 1.1 matt KASSERT(id->id_parent != mask); 242 1.1 matt /* 243 1.1 matt * Nice, mask was an oddman. So just set the oddman to target. 244 1.1 matt */ 245 1.1 matt PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = target_node; 246 1.1 matt } else { 247 1.1 matt /* 248 1.1 matt * We need to find out who's pointing to mask's branch 249 1.1 matt * identity. We know that between root and the leaf identity, 250 1.1 matt * we must traverse the node's branch identity. 251 1.1 matt */ 252 1.1 matt uintptr_t * const mask_nodep = ptree_find_branch(pt, PTN_BRANCH(mask)); 253 1.1 matt KASSERT(mask_nodep != NULL); 254 1.1 matt KASSERT(*mask_nodep == PTN_BRANCH(mask)); 255 1.1 matt KASSERT(PTN_BRANCH_BITLEN(mask) == 1); 256 1.1 matt 257 1.1 matt /* 258 1.1 matt * Alas, mask was used as a branch. Since the mask is becoming 259 1.1 matt * a one-way branch, we need make target take over mask's 260 1.1 matt * branching responsibilities. Only then can we change it. 261 1.1 matt */ 262 1.1 matt *mask_nodep = ptree_move_branch(pt, target, mask); 263 1.1 matt 264 1.1 matt /* 265 1.1 matt * However, it's possible that mask's parent is itself. If 266 1.1 matt * that's true, update the insert point to use target since it 267 1.1 matt * has taken over mask's branching duties. 268 1.1 matt */ 269 1.1 matt if (id->id_parent == mask) 270 1.1 matt id->id_insertp = &PTN_BRANCH_SLOT(target, 271 1.1 matt id->id_parent_slot); 272 1.1 matt } 273 1.1 matt 274 1.1 matt PTN_SET_BRANCH_BITLEN(mask, 0); 275 1.1 matt PTN_SET_BRANCH_BITOFF(mask, mask_len); 276 1.1 matt 277 1.1 matt PTN_BRANCH_ROOT_SLOT(mask) = target_node; 278 1.1 matt PTN_BRANCH_ODDMAN_SLOT(mask) = PT_NULL; 279 1.1 matt PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT); 280 1.1 matt PTN_SET_BRANCH_POSITION(mask, id->id_parent_slot); 281 1.1 matt 282 1.1 matt /* 283 1.1 matt * Now that everything is done, to make target visible we need to 284 1.1 matt * change mask from a leaf to a branch. 285 1.1 matt */ 286 1.1 matt *id->id_insertp = PTN_BRANCH(mask); 287 1.1 matt PTREE_CHECK(pt); 288 1.1 matt return true; 289 1.1 matt } 290 1.1 matt 291 1.2 matt /*ARGSUSED*/ 292 1.1 matt static bool 293 1.1 matt ptree_insert_mask_before_node(pt_tree_t * const pt, pt_node_t * const target, 294 1.1 matt pt_insertdata_t * const id) 295 1.1 matt { 296 1.1 matt const uintptr_t node = id->id_node; 297 1.1 matt pt_node_t * const ptn = PT_NODE(node); 298 1.1 matt const pt_slot_t mask_len = PTN_MASK_BITLEN(target); 299 1.1 matt const pt_bitlen_t node_mask_len = PTN_MASK_BITLEN(ptn); 300 1.1 matt 301 1.1 matt KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(ptn)); 302 1.1 matt KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(ptn)); 303 1.1 matt KASSERT(PTN_ISMASK_P(target)); 304 1.1 matt 305 1.1 matt /* 306 1.1 matt * If the node we are placing ourself in front is a mask with the 307 1.1 matt * same mask length as us, return failure. 308 1.1 matt */ 309 1.1 matt if (PTN_ISMASK_P(ptn) && node_mask_len == mask_len) 310 1.1 matt return false; 311 1.1 matt 312 1.1 matt PTN_SET_BRANCH_BITLEN(target, 0); 313 1.1 matt PTN_SET_BRANCH_BITOFF(target, mask_len); 314 1.1 matt 315 1.1 matt PTN_BRANCH_SLOT(target, PT_SLOT_ROOT) = node; 316 1.1 matt *id->id_insertp = PTN_BRANCH(target); 317 1.1 matt 318 1.1 matt PTN_SET_BRANCH_POSITION(target, id->id_parent_slot); 319 1.1 matt ptree_set_position(node, PT_SLOT_ROOT); 320 1.1 matt 321 1.1 matt PTREE_CHECK(pt); 322 1.1 matt return true; 323 1.1 matt } 324 1.1 matt #endif /* !PTNOMASK */ 325 1.1 matt 326 1.2 matt /*ARGSUSED*/ 327 1.1 matt static bool 328 1.1 matt ptree_insert_branch_at_node(pt_tree_t * const pt, pt_node_t * const target, 329 1.1 matt pt_insertdata_t * const id) 330 1.1 matt { 331 1.1 matt const uintptr_t target_node = PTN_LEAF(target); 332 1.1 matt const uintptr_t node = id->id_node; 333 1.1 matt const pt_slot_t other_slot = id->id_slot ^ PT_SLOT_OTHER; 334 1.1 matt 335 1.1 matt KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(PT_NODE(node))); 336 1.1 matt KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(PT_NODE(node))); 337 1.1 matt KASSERT((node == pt->pt_root) == (id->id_parent == &pt->pt_rootnode)); 338 1.1 matt #ifndef PTNOMASK 339 1.1 matt KASSERT(!PTN_ISMASK_P(target) || id->id_bitoff <= PTN_MASK_BITLEN(target)); 340 1.1 matt #endif 341 1.1 matt KASSERT(node == pt->pt_root || PTN_BRANCH_BITOFF(id->id_parent) + PTN_BRANCH_BITLEN(id->id_parent) <= id->id_bitoff); 342 1.1 matt 343 1.1 matt PTN_SET_BRANCH_BITOFF(target, id->id_bitoff); 344 1.1 matt PTN_SET_BRANCH_BITLEN(target, 1); 345 1.1 matt 346 1.1 matt PTN_BRANCH_SLOT(target, id->id_slot) = target_node; 347 1.1 matt PTN_BRANCH_SLOT(target, other_slot) = node; 348 1.1 matt *id->id_insertp = PTN_BRANCH(target); 349 1.1 matt 350 1.1 matt PTN_SET_LEAF_POSITION(target, id->id_slot); 351 1.1 matt ptree_set_position(node, other_slot); 352 1.1 matt 353 1.1 matt PTN_SET_BRANCH_POSITION(target, id->id_parent_slot); 354 1.1 matt PTREE_CHECK(pt); 355 1.1 matt return true; 356 1.1 matt } 357 1.1 matt 358 1.1 matt static bool 359 1.1 matt ptree_insert_leaf(pt_tree_t * const pt, pt_node_t * const target, 360 1.1 matt pt_insertdata_t * const id) 361 1.1 matt { 362 1.1 matt const uintptr_t leaf_node = id->id_node; 363 1.1 matt pt_node_t * const leaf = PT_NODE(leaf_node); 364 1.1 matt #ifdef PTNOMASK 365 1.1 matt const bool inserting_mask = false; 366 1.1 matt const bool at_mask = false; 367 1.1 matt #else 368 1.1 matt const bool inserting_mask = PTN_ISMASK_P(target); 369 1.1 matt const bool at_mask = PTN_ISMASK_P(leaf); 370 1.1 matt const pt_bitlen_t leaf_masklen = PTN_MASK_BITLEN(leaf); 371 1.1 matt const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target); 372 1.1 matt #endif 373 1.1 matt pt_insertfunc_t insertfunc = ptree_insert_branch_at_node; 374 1.1 matt bool matched; 375 1.1 matt 376 1.1 matt /* 377 1.1 matt * In all likelyhood we are going simply going to insert a branch 378 1.1 matt * where this leaf is which will point to the old and new leaves. 379 1.1 matt */ 380 1.1 matt KASSERT(PT_LEAF_P(leaf_node)); 381 1.1 matt KASSERT(PTN_LEAF_POSITION(leaf) == id->id_parent_slot); 382 1.1 matt matched = ptree_matchnode(pt, target, leaf, UINT_MAX, 383 1.1 matt &id->id_bitoff, &id->id_slot); 384 1.1 matt if (__predict_false(!inserting_mask)) { 385 1.1 matt /* 386 1.1 matt * We aren't inserting a mask nor is the leaf a mask, which 387 1.1 matt * means we are trying to insert a duplicate leaf. Can't do 388 1.1 matt * that. 389 1.1 matt */ 390 1.1 matt if (!at_mask && matched) 391 1.1 matt return false; 392 1.1 matt 393 1.1 matt #ifndef PTNOMASK 394 1.1 matt /* 395 1.1 matt * We are at a mask and the leaf we are about to insert 396 1.1 matt * is at or beyond the mask, we need to convert the mask 397 1.1 matt * from a leaf to a one-way branch interior mask. 398 1.1 matt */ 399 1.1 matt if (at_mask && id->id_bitoff >= leaf_masklen) 400 1.1 matt insertfunc = ptree_insert_leaf_after_mask; 401 1.1 matt #endif /* PTNOMASK */ 402 1.1 matt } 403 1.1 matt #ifndef PTNOMASK 404 1.1 matt else { 405 1.1 matt /* 406 1.1 matt * We are inserting a mask. 407 1.1 matt */ 408 1.1 matt if (matched) { 409 1.1 matt /* 410 1.1 matt * If the leaf isn't a mask, we obviously have to 411 1.1 matt * insert the new mask before non-mask leaf. If the 412 1.1 matt * leaf is a mask, and the new node has a LEQ mask 413 1.1 matt * length it too needs to inserted before leaf (*). 414 1.1 matt * 415 1.1 matt * In other cases, we place the new mask as leaf after 416 1.1 matt * leaf mask. Which mask comes first will be a one-way 417 1.1 matt * branch interior mask node which has the other mask 418 1.1 matt * node as a child. 419 1.1 matt * 420 1.1 matt * (*) ptree_insert_mask_before_node can detect a 421 1.1 matt * duplicate mask and return failure if needed. 422 1.1 matt */ 423 1.1 matt if (!at_mask || target_masklen <= leaf_masklen) 424 1.1 matt insertfunc = ptree_insert_mask_before_node; 425 1.1 matt else 426 1.1 matt insertfunc = ptree_insert_leaf_after_mask; 427 1.1 matt } else if (at_mask && id->id_bitoff >= leaf_masklen) { 428 1.1 matt /* 429 1.1 matt * If the new mask has a bit offset GEQ than the leaf's 430 1.1 matt * mask length, convert the left to a one-way branch 431 1.1 matt * interior mask and make that point to the new [leaf] 432 1.1 matt * mask. 433 1.1 matt */ 434 1.1 matt insertfunc = ptree_insert_leaf_after_mask; 435 1.1 matt } else { 436 1.1 matt /* 437 1.1 matt * The new mask has a bit offset less than the leaf's 438 1.1 matt * mask length or if the leaf isn't a mask at all, the 439 1.1 matt * new mask deserves to be its own leaf so we use the 440 1.1 matt * default insertfunc to do that. 441 1.1 matt */ 442 1.1 matt } 443 1.1 matt } 444 1.1 matt #endif /* PTNOMASK */ 445 1.1 matt 446 1.1 matt return (*insertfunc)(pt, target, id); 447 1.1 matt } 448 1.1 matt 449 1.1 matt static bool 450 1.1 matt ptree_insert_node_common(pt_tree_t *pt, void *item) 451 1.1 matt { 452 1.1 matt pt_node_t * const target = ITEMTONODE(pt, item); 453 1.1 matt #ifndef PTNOMASK 454 1.1 matt const bool inserting_mask = PTN_ISMASK_P(target); 455 1.1 matt const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target); 456 1.1 matt #endif 457 1.1 matt pt_insertfunc_t insertfunc; 458 1.1 matt pt_insertdata_t id; 459 1.1 matt 460 1.1 matt /* 461 1.8 matt * If this node already exists in the tree, return failure. 462 1.8 matt */ 463 1.8 matt if (target == PT_NODE(pt->pt_root)) 464 1.8 matt return false; 465 1.8 matt 466 1.8 matt /* 467 1.1 matt * We need a leaf so we can match against. Until we get a leaf 468 1.1 matt * we having nothing to test against. 469 1.1 matt */ 470 1.1 matt if (__predict_false(PT_NULL_P(pt->pt_root))) { 471 1.1 matt PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PTN_LEAF(target); 472 1.1 matt PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(target); 473 1.1 matt PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT); 474 1.1 matt PTREE_CHECK(pt); 475 1.1 matt return true; 476 1.1 matt } 477 1.1 matt 478 1.1 matt id.id_bitoff = 0; 479 1.1 matt id.id_parent = &pt->pt_rootnode; 480 1.1 matt id.id_parent_slot = PT_SLOT_ROOT; 481 1.1 matt id.id_insertp = &PTN_BRANCH_ROOT_SLOT(id.id_parent); 482 1.1 matt for (;;) { 483 1.1 matt pt_bitoff_t branch_bitoff; 484 1.1 matt pt_node_t * const ptn = PT_NODE(*id.id_insertp); 485 1.1 matt id.id_node = *id.id_insertp; 486 1.1 matt 487 1.1 matt /* 488 1.8 matt * If this node already exists in the tree, return failure. 489 1.8 matt */ 490 1.8 matt if (target == ptn) 491 1.8 matt return false; 492 1.8 matt 493 1.8 matt /* 494 1.1 matt * If we hit a leaf, try to insert target at leaf. We could 495 1.1 matt * have inlined ptree_insert_leaf here but that would have 496 1.1 matt * made this routine much harder to understand. Trust the 497 1.1 matt * compiler to optimize this properly. 498 1.1 matt */ 499 1.1 matt if (PT_LEAF_P(id.id_node)) { 500 1.1 matt KASSERT(PTN_LEAF_POSITION(ptn) == id.id_parent_slot); 501 1.1 matt insertfunc = ptree_insert_leaf; 502 1.1 matt break; 503 1.1 matt } 504 1.1 matt 505 1.1 matt /* 506 1.1 matt * If we aren't a leaf, we must be a branch. Make sure we are 507 1.1 matt * in the slot we think we are. 508 1.1 matt */ 509 1.1 matt KASSERT(PT_BRANCH_P(id.id_node)); 510 1.1 matt KASSERT(PTN_BRANCH_POSITION(ptn) == id.id_parent_slot); 511 1.1 matt 512 1.1 matt /* 513 1.1 matt * Where is this branch? 514 1.1 matt */ 515 1.1 matt branch_bitoff = PTN_BRANCH_BITOFF(ptn); 516 1.1 matt 517 1.1 matt #ifndef PTNOMASK 518 1.1 matt /* 519 1.1 matt * If this is a one-way mask node, its offset must equal 520 1.1 matt * its mask's bitlen. 521 1.1 matt */ 522 1.1 matt KASSERT(!(PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) || PTN_MASK_BITLEN(ptn) == branch_bitoff); 523 1.1 matt 524 1.1 matt /* 525 1.1 matt * If we are inserting a mask, and we know that at this point 526 1.1 matt * all bits before the current bit offset match both the target 527 1.1 matt * and the branch. If the target's mask length is LEQ than 528 1.1 matt * this branch's bit offset, then this is where the mask needs 529 1.1 matt * to added to the tree. 530 1.1 matt */ 531 1.1 matt if (__predict_false(inserting_mask) 532 1.1 matt && (PTN_ISROOT_P(pt, id.id_parent) 533 1.1 matt || id.id_bitoff < target_masklen) 534 1.1 matt && target_masklen <= branch_bitoff) { 535 1.1 matt /* 536 1.1 matt * We don't know about the bits (if any) between 537 1.1 matt * id.id_bitoff and the target's mask length match 538 1.1 matt * both the target and the branch. If the target's 539 1.1 matt * mask length is greater than the current bit offset 540 1.1 matt * make sure the untested bits match both the target 541 1.1 matt * and the branch. 542 1.1 matt */ 543 1.1 matt if (target_masklen == id.id_bitoff 544 1.1 matt || ptree_matchnode(pt, target, ptn, target_masklen, 545 1.1 matt &id.id_bitoff, &id.id_slot)) { 546 1.1 matt /* 547 1.1 matt * The bits matched, so insert the mask as a 548 1.1 matt * one-way branch. 549 1.1 matt */ 550 1.1 matt insertfunc = ptree_insert_mask_before_node; 551 1.1 matt break; 552 1.1 matt } else if (id.id_bitoff < branch_bitoff) { 553 1.1 matt /* 554 1.1 matt * They didn't match, so create a normal branch 555 1.1 matt * because this mask needs to a be a new leaf. 556 1.1 matt */ 557 1.1 matt insertfunc = ptree_insert_branch_at_node; 558 1.1 matt break; 559 1.1 matt } 560 1.1 matt } 561 1.1 matt #endif /* PTNOMASK */ 562 1.1 matt 563 1.1 matt /* 564 1.1 matt * If we are skipping some bits, verify they match the node. 565 1.1 matt * If they don't match, it means we have a leaf to insert. 566 1.1 matt * Note that if we are advancing bit by bit, we'll skip 567 1.1 matt * doing matchnode and walk the tree bit by bit via testnode. 568 1.1 matt */ 569 1.1 matt if (id.id_bitoff < branch_bitoff 570 1.1 matt && !ptree_matchnode(pt, target, ptn, branch_bitoff, 571 1.1 matt &id.id_bitoff, &id.id_slot)) { 572 1.1 matt KASSERT(id.id_bitoff < branch_bitoff); 573 1.1 matt insertfunc = ptree_insert_branch_at_node; 574 1.1 matt break; 575 1.1 matt } 576 1.1 matt 577 1.1 matt /* 578 1.1 matt * At this point, all bits before branch_bitoff are known 579 1.1 matt * to match the target. 580 1.1 matt */ 581 1.1 matt KASSERT(id.id_bitoff >= branch_bitoff); 582 1.1 matt 583 1.1 matt /* 584 1.11 andvar * Descend the tree one level. 585 1.1 matt */ 586 1.1 matt id.id_parent = ptn; 587 1.1 matt id.id_parent_slot = ptree_testnode(pt, target, id.id_parent); 588 1.1 matt id.id_bitoff += PTN_BRANCH_BITLEN(id.id_parent); 589 1.1 matt id.id_insertp = &PTN_BRANCH_SLOT(id.id_parent, id.id_parent_slot); 590 1.1 matt } 591 1.1 matt 592 1.1 matt /* 593 1.1 matt * Do the actual insertion. 594 1.1 matt */ 595 1.1 matt return (*insertfunc)(pt, target, &id); 596 1.1 matt } 597 1.1 matt 598 1.1 matt bool 599 1.1 matt ptree_insert_node(pt_tree_t *pt, void *item) 600 1.1 matt { 601 1.1 matt pt_node_t * const target = ITEMTONODE(pt, item); 602 1.1 matt 603 1.1 matt memset(target, 0, sizeof(*target)); 604 1.1 matt return ptree_insert_node_common(pt, target); 605 1.1 matt } 606 1.1 matt 607 1.1 matt #ifndef PTNOMASK 608 1.1 matt bool 609 1.1 matt ptree_insert_mask_node(pt_tree_t *pt, void *item, pt_bitlen_t mask_len) 610 1.1 matt { 611 1.1 matt pt_node_t * const target = ITEMTONODE(pt, item); 612 1.1 matt pt_bitoff_t bitoff = mask_len; 613 1.1 matt pt_slot_t slot; 614 1.1 matt 615 1.1 matt memset(target, 0, sizeof(*target)); 616 1.1 matt KASSERT(mask_len == 0 || (~PT__MASK(PTN_MASK_BITLEN) & mask_len) == 0); 617 1.1 matt /* 618 1.1 matt * Only the first <mask_len> bits can be non-zero. 619 1.1 matt * All other bits must be 0. 620 1.1 matt */ 621 1.1 matt if (!ptree_matchnode(pt, target, NULL, UINT_MAX, &bitoff, &slot)) 622 1.1 matt return false; 623 1.1 matt PTN_SET_MASK_BITLEN(target, mask_len); 624 1.1 matt PTN_MARK_MASK(target); 625 1.1 matt return ptree_insert_node_common(pt, target); 626 1.1 matt } 627 1.1 matt #endif /* !PTNOMASH */ 628 1.1 matt 629 1.1 matt void * 630 1.9 rmind ptree_find_filtered_node(pt_tree_t *pt, const void *key, pt_filter_t filter, 631 1.1 matt void *filter_arg) 632 1.1 matt { 633 1.1 matt #ifndef PTNOMASK 634 1.1 matt pt_node_t *mask = NULL; 635 1.1 matt #endif 636 1.1 matt bool at_mask = false; 637 1.1 matt pt_node_t *ptn, *parent; 638 1.1 matt pt_bitoff_t bitoff; 639 1.1 matt pt_slot_t parent_slot; 640 1.1 matt 641 1.1 matt if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode))) 642 1.1 matt return NULL; 643 1.1 matt 644 1.1 matt bitoff = 0; 645 1.1 matt parent = &pt->pt_rootnode; 646 1.1 matt parent_slot = PT_SLOT_ROOT; 647 1.1 matt for (;;) { 648 1.1 matt const uintptr_t node = PTN_BRANCH_SLOT(parent, parent_slot); 649 1.1 matt const pt_slot_t branch_bitoff = PTN_BRANCH_BITOFF(PT_NODE(node)); 650 1.1 matt ptn = PT_NODE(node); 651 1.1 matt 652 1.1 matt if (PT_LEAF_P(node)) { 653 1.1 matt #ifndef PTNOMASK 654 1.1 matt at_mask = PTN_ISMASK_P(ptn); 655 1.1 matt #endif 656 1.1 matt break; 657 1.1 matt } 658 1.1 matt 659 1.1 matt if (bitoff < branch_bitoff) { 660 1.1 matt if (!ptree_matchkey(pt, key, ptn, bitoff, branch_bitoff - bitoff)) { 661 1.1 matt #ifndef PTNOMASK 662 1.1 matt if (mask != NULL) 663 1.1 matt return NODETOITEM(pt, mask); 664 1.1 matt #endif 665 1.1 matt return NULL; 666 1.1 matt } 667 1.1 matt bitoff = branch_bitoff; 668 1.1 matt } 669 1.1 matt 670 1.1 matt #ifndef PTNOMASK 671 1.1 matt if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0 672 1.1 matt && (!filter 673 1.1 matt || (*filter)(filter_arg, NODETOITEM(pt, ptn), 674 1.1 matt PT_FILTER_MASK))) 675 1.1 matt mask = ptn; 676 1.1 matt #endif 677 1.1 matt 678 1.1 matt parent = ptn; 679 1.1 matt parent_slot = ptree_testkey(pt, key, parent); 680 1.1 matt bitoff += PTN_BRANCH_BITLEN(parent); 681 1.1 matt } 682 1.1 matt 683 1.1 matt KASSERT(PTN_ISROOT_P(pt, parent) || PTN_BRANCH_BITOFF(parent) + PTN_BRANCH_BITLEN(parent) == bitoff); 684 1.1 matt if (!filter || (*filter)(filter_arg, NODETOITEM(pt, ptn), at_mask ? PT_FILTER_MASK : 0)) { 685 1.1 matt #ifndef PTNOMASK 686 1.1 matt if (PTN_ISMASK_P(ptn)) { 687 1.1 matt const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn); 688 1.1 matt if (bitoff == PTN_MASK_BITLEN(ptn)) 689 1.1 matt return NODETOITEM(pt, ptn); 690 1.1 matt if (ptree_matchkey(pt, key, ptn, bitoff, mask_len - bitoff)) 691 1.1 matt return NODETOITEM(pt, ptn); 692 1.1 matt } else 693 1.1 matt #endif /* !PTNOMASK */ 694 1.1 matt if (ptree_matchkey(pt, key, ptn, bitoff, UINT_MAX)) 695 1.1 matt return NODETOITEM(pt, ptn); 696 1.1 matt } 697 1.1 matt 698 1.1 matt #ifndef PTNOMASK 699 1.1 matt /* 700 1.1 matt * By virtue of how the mask was placed in the tree, 701 1.1 matt * all nodes descended from it will match it. But the bits 702 1.1 matt * before the mask still need to be checked and since the 703 1.1 matt * mask was a branch, that was done implicitly. 704 1.1 matt */ 705 1.1 matt if (mask != NULL) { 706 1.1 matt KASSERT(ptree_matchkey(pt, key, mask, 0, PTN_MASK_BITLEN(mask))); 707 1.1 matt return NODETOITEM(pt, mask); 708 1.1 matt } 709 1.1 matt #endif /* !PTNOMASK */ 710 1.1 matt 711 1.1 matt /* 712 1.1 matt * Nothing matched. 713 1.1 matt */ 714 1.1 matt return NULL; 715 1.1 matt } 716 1.1 matt 717 1.1 matt void * 718 1.1 matt ptree_iterate(pt_tree_t *pt, const void *item, pt_direction_t direction) 719 1.1 matt { 720 1.1 matt const pt_node_t * const target = ITEMTONODE(pt, item); 721 1.1 matt uintptr_t node, next_node; 722 1.1 matt 723 1.1 matt if (direction != PT_ASCENDING && direction != PT_DESCENDING) 724 1.1 matt return NULL; 725 1.1 matt 726 1.1 matt node = PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode); 727 1.1 matt if (PT_NULL_P(node)) 728 1.1 matt return NULL; 729 1.1 matt 730 1.1 matt if (item == NULL) { 731 1.1 matt pt_node_t * const ptn = PT_NODE(node); 732 1.1 matt if (direction == PT_ASCENDING 733 1.1 matt && PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) 734 1.1 matt return NODETOITEM(pt, ptn); 735 1.1 matt next_node = node; 736 1.1 matt } else { 737 1.1 matt #ifndef PTNOMASK 738 1.1 matt uintptr_t mask_node = PT_NULL; 739 1.1 matt #endif /* !PTNOMASK */ 740 1.1 matt next_node = PT_NULL; 741 1.1 matt while (!PT_LEAF_P(node)) { 742 1.1 matt pt_node_t * const ptn = PT_NODE(node); 743 1.1 matt pt_slot_t slot; 744 1.1 matt #ifndef PTNOMASK 745 1.1 matt if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) { 746 1.1 matt if (ptn == target) 747 1.1 matt break; 748 1.1 matt if (direction == PT_DESCENDING) { 749 1.1 matt mask_node = node; 750 1.1 matt next_node = PT_NULL; 751 1.1 matt } 752 1.1 matt } 753 1.1 matt #endif /* !PTNOMASK */ 754 1.1 matt slot = ptree_testnode(pt, target, ptn); 755 1.1 matt node = PTN_BRANCH_SLOT(ptn, slot); 756 1.1 matt if (direction == PT_ASCENDING) { 757 1.4 lukem if (slot != (pt_slot_t)((1 << PTN_BRANCH_BITLEN(ptn)) - 1)) 758 1.1 matt next_node = PTN_BRANCH_SLOT(ptn, slot + 1); 759 1.1 matt } else { 760 1.1 matt if (slot > 0) { 761 1.1 matt #ifndef PTNOMASK 762 1.1 matt mask_node = PT_NULL; 763 1.1 matt #endif /* !PTNOMASK */ 764 1.1 matt next_node = PTN_BRANCH_SLOT(ptn, slot - 1); 765 1.1 matt } 766 1.1 matt } 767 1.1 matt } 768 1.1 matt if (PT_NODE(node) != target) 769 1.1 matt return NULL; 770 1.1 matt #ifndef PTNOMASK 771 1.1 matt if (PT_BRANCH_P(node)) { 772 1.1 matt pt_node_t *ptn = PT_NODE(node); 773 1.1 matt KASSERT(PTN_ISMASK_P(PT_NODE(node)) && PTN_BRANCH_BITLEN(PT_NODE(node)) == 0); 774 1.1 matt if (direction == PT_ASCENDING) { 775 1.1 matt next_node = PTN_BRANCH_ROOT_SLOT(ptn); 776 1.1 matt ptn = PT_NODE(next_node); 777 1.1 matt } 778 1.1 matt } 779 1.1 matt /* 780 1.1 matt * When descending, if we countered a mask node then that's 781 1.1 matt * we want to return. 782 1.1 matt */ 783 1.1 matt if (direction == PT_DESCENDING && !PT_NULL_P(mask_node)) { 784 1.1 matt KASSERT(PT_NULL_P(next_node)); 785 1.1 matt return NODETOITEM(pt, PT_NODE(mask_node)); 786 1.1 matt } 787 1.1 matt #endif /* !PTNOMASK */ 788 1.1 matt } 789 1.1 matt 790 1.1 matt node = next_node; 791 1.1 matt if (PT_NULL_P(node)) 792 1.1 matt return NULL; 793 1.1 matt 794 1.1 matt while (!PT_LEAF_P(node)) { 795 1.1 matt pt_node_t * const ptn = PT_NODE(node); 796 1.1 matt pt_slot_t slot; 797 1.1 matt if (direction == PT_ASCENDING) { 798 1.1 matt #ifndef PTNOMASK 799 1.1 matt if (PT_BRANCH_P(node) 800 1.1 matt && PTN_ISMASK_P(ptn) 801 1.1 matt && PTN_BRANCH_BITLEN(ptn) == 0) 802 1.1 matt return NODETOITEM(pt, ptn); 803 1.1 matt #endif /* !PTNOMASK */ 804 1.1 matt slot = PT_SLOT_LEFT; 805 1.1 matt } else { 806 1.1 matt slot = (1 << PTN_BRANCH_BITLEN(ptn)) - 1; 807 1.1 matt } 808 1.1 matt node = PTN_BRANCH_SLOT(ptn, slot); 809 1.1 matt } 810 1.1 matt return NODETOITEM(pt, PT_NODE(node)); 811 1.1 matt } 812 1.1 matt 813 1.1 matt void 814 1.1 matt ptree_remove_node(pt_tree_t *pt, void *item) 815 1.1 matt { 816 1.1 matt pt_node_t * const target = ITEMTONODE(pt, item); 817 1.1 matt const pt_slot_t leaf_slot = PTN_LEAF_POSITION(target); 818 1.1 matt const pt_slot_t branch_slot = PTN_BRANCH_POSITION(target); 819 1.1 matt pt_node_t *ptn, *parent; 820 1.1 matt uintptr_t node; 821 1.1 matt uintptr_t *removep; 822 1.1 matt uintptr_t *nodep; 823 1.1 matt pt_bitoff_t bitoff; 824 1.1 matt pt_slot_t parent_slot; 825 1.1 matt #ifndef PTNOMASK 826 1.1 matt bool at_mask; 827 1.1 matt #endif 828 1.1 matt 829 1.1 matt if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode))) { 830 1.1 matt KASSERT(!PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode))); 831 1.1 matt return; 832 1.1 matt } 833 1.1 matt 834 1.1 matt bitoff = 0; 835 1.1 matt removep = NULL; 836 1.1 matt nodep = NULL; 837 1.1 matt parent = &pt->pt_rootnode; 838 1.1 matt parent_slot = PT_SLOT_ROOT; 839 1.1 matt for (;;) { 840 1.1 matt node = PTN_BRANCH_SLOT(parent, parent_slot); 841 1.1 matt ptn = PT_NODE(node); 842 1.1 matt #ifndef PTNOMASK 843 1.1 matt at_mask = PTN_ISMASK_P(ptn); 844 1.1 matt #endif 845 1.1 matt 846 1.1 matt if (PT_LEAF_P(node)) 847 1.1 matt break; 848 1.1 matt 849 1.1 matt /* 850 1.1 matt * If we are at the target, then we are looking at its branch 851 1.1 matt * identity. We need to remember who's pointing at it so we 852 1.1 matt * stop them from doing that. 853 1.1 matt */ 854 1.1 matt if (__predict_false(ptn == target)) { 855 1.1 matt KASSERT(nodep == NULL); 856 1.1 matt #ifndef PTNOMASK 857 1.1 matt /* 858 1.1 matt * Interior mask nodes are trivial to get rid of. 859 1.1 matt */ 860 1.1 matt if (at_mask && PTN_BRANCH_BITLEN(ptn) == 0) { 861 1.1 matt PTN_BRANCH_SLOT(parent, parent_slot) = 862 1.1 matt PTN_BRANCH_ROOT_SLOT(ptn); 863 1.1 matt KASSERT(PT_NULL_P(PTN_BRANCH_ODDMAN_SLOT(ptn))); 864 1.1 matt PTREE_CHECK(pt); 865 1.1 matt return; 866 1.1 matt } 867 1.1 matt #endif /* !PTNOMASK */ 868 1.1 matt nodep = &PTN_BRANCH_SLOT(parent, parent_slot); 869 1.1 matt KASSERT(*nodep == PTN_BRANCH(target)); 870 1.1 matt } 871 1.1 matt /* 872 1.1 matt * We need also need to know who's pointing at our parent. 873 1.1 matt * After we remove ourselves from our parent, he'll only 874 1.1 matt * have one child and that's unacceptable. So we replace 875 1.15 andvar * the pointer to the parent with our abandoned sibling. 876 1.1 matt */ 877 1.1 matt removep = &PTN_BRANCH_SLOT(parent, parent_slot); 878 1.1 matt 879 1.1 matt /* 880 1.1 matt * Descend into the tree. 881 1.1 matt */ 882 1.1 matt parent = ptn; 883 1.1 matt parent_slot = ptree_testnode(pt, target, parent); 884 1.1 matt bitoff += PTN_BRANCH_BITLEN(parent); 885 1.1 matt } 886 1.1 matt 887 1.1 matt /* 888 1.1 matt * We better have found that the leaf we are looking for is target. 889 1.1 matt */ 890 1.1 matt if (target != ptn) { 891 1.1 matt KASSERT(target == ptn); 892 1.1 matt return; 893 1.1 matt } 894 1.1 matt 895 1.1 matt /* 896 1.1 matt * If we didn't encounter target as branch, then target must be the 897 1.1 matt * oddman-out. 898 1.1 matt */ 899 1.1 matt if (nodep == NULL) { 900 1.1 matt KASSERT(PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) == PTN_LEAF(target)); 901 1.1 matt KASSERT(nodep == NULL); 902 1.1 matt nodep = &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode); 903 1.1 matt } 904 1.1 matt 905 1.1 matt KASSERT((removep == NULL) == (parent == &pt->pt_rootnode)); 906 1.1 matt 907 1.1 matt /* 908 1.1 matt * We have to special remove the last leaf from the root since 909 1.1 matt * the only time the tree can a PT_NULL node is when it's empty. 910 1.1 matt */ 911 1.1 matt if (__predict_false(PTN_ISROOT_P(pt, parent))) { 912 1.1 matt KASSERT(removep == NULL); 913 1.1 matt KASSERT(parent == &pt->pt_rootnode); 914 1.1 matt KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode)); 915 1.1 matt KASSERT(*nodep == PTN_LEAF(target)); 916 1.1 matt PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PT_NULL; 917 1.1 matt PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PT_NULL; 918 1.1 matt return; 919 1.1 matt } 920 1.1 matt 921 1.1 matt KASSERT((parent == target) == (removep == nodep)); 922 1.1 matt if (PTN_BRANCH(parent) == PTN_BRANCH_SLOT(target, PTN_BRANCH_POSITION(parent))) { 923 1.1 matt /* 924 1.1 matt * The pointer to the parent actually lives in the target's 925 1.1 matt * branch identity. We can't just move the target's branch 926 1.1 matt * identity since that would result in the parent pointing 927 1.15 andvar * to its own branch identity and that's forbidden. 928 1.1 matt */ 929 1.1 matt const pt_slot_t slot = PTN_BRANCH_POSITION(parent); 930 1.1 matt const pt_slot_t other_slot = slot ^ PT_SLOT_OTHER; 931 1.1 matt const pt_bitlen_t parent_bitlen = PTN_BRANCH_BITLEN(parent); 932 1.1 matt 933 1.1 matt KASSERT(PTN_BRANCH_BITOFF(target) < PTN_BRANCH_BITOFF(parent)); 934 1.1 matt 935 1.1 matt /* 936 1.1 matt * This gets so confusing. The target's branch identity 937 1.1 matt * points to the branch identity of the parent of the target's 938 1.1 matt * leaf identity: 939 1.1 matt * 940 1.1 matt * TB = { X, PB = { TL, Y } } 941 1.1 matt * or TB = { X, PB = { TL } } 942 1.1 matt * 943 1.1 matt * So we can't move the target's branch identity to the parent 944 1.1 matt * because that would corrupt the tree. 945 1.1 matt */ 946 1.1 matt if (__predict_true(parent_bitlen > 0)) { 947 1.1 matt /* 948 1.1 matt * The parent is a two-way branch. We have to have 949 1.14 andvar * do to this change in two steps to keep internally 950 1.1 matt * consistent. First step is to copy our sibling from 951 1.1 matt * our parent to where we are pointing to parent's 952 1.14 andvar * branch identity. This remove all references to his 953 1.1 matt * branch identity from the tree. We then simply make 954 1.1 matt * the parent assume the target's branching duties. 955 1.1 matt * 956 1.1 matt * TB = { X, PB = { Y, TL } } --> PB = { X, Y }. 957 1.1 matt * TB = { X, PB = { TL, Y } } --> PB = { X, Y }. 958 1.1 matt * TB = { PB = { Y, TL }, X } --> PB = { Y, X }. 959 1.1 matt * TB = { PB = { TL, Y }, X } --> PB = { Y, X }. 960 1.1 matt */ 961 1.1 matt PTN_BRANCH_SLOT(target, slot) = 962 1.1 matt PTN_BRANCH_SLOT(parent, parent_slot ^ PT_SLOT_OTHER); 963 1.1 matt *nodep = ptree_move_branch(pt, parent, target); 964 1.1 matt PTREE_CHECK(pt); 965 1.1 matt return; 966 1.1 matt } else { 967 1.1 matt /* 968 1.1 matt * If parent was a one-way branch, it must have been 969 1.1 matt * mask which pointed to a single leaf which we are 970 1.1 matt * removing. This means we have to convert the 971 1.1 matt * parent back to a leaf node. So in the same 972 1.1 matt * position that target pointed to parent, we place 973 1.1 matt * leaf pointer to parent. In the other position, 974 1.1 matt * we just put the other node from target. 975 1.1 matt * 976 1.1 matt * TB = { X, PB = { TL } } --> PB = { X, PL } 977 1.1 matt */ 978 1.1 matt KASSERT(PTN_ISMASK_P(parent)); 979 1.1 matt KASSERT(slot == ptree_testnode(pt, parent, target)); 980 1.1 matt PTN_BRANCH_SLOT(parent, slot) = PTN_LEAF(parent); 981 1.1 matt PTN_BRANCH_SLOT(parent, other_slot) = 982 1.1 matt PTN_BRANCH_SLOT(target, other_slot); 983 1.1 matt PTN_SET_LEAF_POSITION(parent,slot); 984 1.1 matt PTN_SET_BRANCH_BITLEN(parent, 1); 985 1.1 matt } 986 1.1 matt PTN_SET_BRANCH_BITOFF(parent, PTN_BRANCH_BITOFF(target)); 987 1.1 matt PTN_SET_BRANCH_POSITION(parent, PTN_BRANCH_POSITION(target)); 988 1.1 matt 989 1.1 matt *nodep = PTN_BRANCH(parent); 990 1.1 matt PTREE_CHECK(pt); 991 1.1 matt return; 992 1.1 matt } 993 1.1 matt 994 1.1 matt #ifndef PTNOMASK 995 1.1 matt if (__predict_false(PTN_BRANCH_BITLEN(parent) == 0)) { 996 1.1 matt /* 997 1.1 matt * Parent was a one-way branch which is changing back to a leaf. 998 1.1 matt * Since parent is no longer a one-way branch, it can take over 999 1.1 matt * target's branching duties. 1000 1.1 matt * 1001 1.1 matt * GB = { PB = { TL } } --> GB = { PL } 1002 1.1 matt * TB = { X, Y } --> PB = { X, Y } 1003 1.1 matt */ 1004 1.1 matt KASSERT(PTN_ISMASK_P(parent)); 1005 1.1 matt KASSERT(parent != target); 1006 1.1 matt *removep = PTN_LEAF(parent); 1007 1.1 matt } else 1008 1.1 matt #endif /* !PTNOMASK */ 1009 1.1 matt { 1010 1.1 matt /* 1011 1.1 matt * Now we are the normal removal case. Since after the 1012 1.1 matt * target's leaf identity is removed from the its parent, 1013 1.11 andvar * that parent will only have one descendant. So we can 1014 1.1 matt * just as easily replace the node that has the parent's 1015 1.1 matt * branch identity with the surviving node. This freeing 1016 1.1 matt * parent from its branching duties which means it can 1017 1.1 matt * take over target's branching duties. 1018 1.1 matt * 1019 1.1 matt * GB = { PB = { X, TL } } --> GB = { X } 1020 1.1 matt * TB = { V, W } --> PB = { V, W } 1021 1.1 matt */ 1022 1.1 matt const pt_slot_t other_slot = parent_slot ^ PT_SLOT_OTHER; 1023 1.1 matt uintptr_t other_node = PTN_BRANCH_SLOT(parent, other_slot); 1024 1.1 matt const pt_slot_t target_slot = (parent == target ? branch_slot : leaf_slot); 1025 1.1 matt 1026 1.1 matt *removep = other_node; 1027 1.1 matt 1028 1.1 matt ptree_set_position(other_node, target_slot); 1029 1.1 matt 1030 1.1 matt /* 1031 1.1 matt * If target's branch identity contained its leaf identity, we 1032 1.1 matt * have nothing left to do. We've already moved 'X' so there 1033 1.14 andvar * is no longer anything in the target's branch identity that 1034 1.1 matt * has to be preserved. 1035 1.1 matt */ 1036 1.1 matt if (parent == target) { 1037 1.1 matt /* 1038 1.1 matt * GB = { TB = { X, TL } } --> GB = { X } 1039 1.1 matt * TB = { X, TL } --> don't care 1040 1.1 matt */ 1041 1.1 matt PTREE_CHECK(pt); 1042 1.1 matt return; 1043 1.1 matt } 1044 1.1 matt } 1045 1.1 matt 1046 1.1 matt /* 1047 1.1 matt * If target wasn't used as a branch, then it must have been the 1048 1.1 matt * oddman-out of the tree (the one node that doesn't have a branch 1049 1.1 matt * identity). This makes parent the new oddman-out. 1050 1.1 matt */ 1051 1.1 matt if (*nodep == PTN_LEAF(target)) { 1052 1.1 matt KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode)); 1053 1.1 matt PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(parent); 1054 1.1 matt PTREE_CHECK(pt); 1055 1.1 matt return; 1056 1.1 matt } 1057 1.1 matt 1058 1.1 matt /* 1059 1.1 matt * Finally move the target's branching duties to the parent. 1060 1.1 matt */ 1061 1.1 matt KASSERT(PTN_BRANCH_BITOFF(parent) > PTN_BRANCH_BITOFF(target)); 1062 1.1 matt *nodep = ptree_move_branch(pt, parent, target); 1063 1.1 matt PTREE_CHECK(pt); 1064 1.1 matt } 1065 1.1 matt 1066 1.1 matt #ifdef PTCHECK 1067 1.1 matt static const pt_node_t * 1068 1.1 matt ptree_check_find_node2(const pt_tree_t *pt, const pt_node_t *parent, 1069 1.1 matt uintptr_t target) 1070 1.1 matt { 1071 1.1 matt const pt_bitlen_t slots = 1 << PTN_BRANCH_BITLEN(parent); 1072 1.1 matt pt_slot_t slot; 1073 1.1 matt 1074 1.1 matt for (slot = 0; slot < slots; slot++) { 1075 1.1 matt const uintptr_t node = PTN_BRANCH_SLOT(parent, slot); 1076 1.1 matt if (PTN_BRANCH_SLOT(parent, slot) == node) 1077 1.1 matt return parent; 1078 1.1 matt } 1079 1.1 matt for (slot = 0; slot < slots; slot++) { 1080 1.1 matt const uintptr_t node = PTN_BRANCH_SLOT(parent, slot); 1081 1.1 matt const pt_node_t *branch; 1082 1.1 matt if (!PT_BRANCH_P(node)) 1083 1.1 matt continue; 1084 1.1 matt branch = ptree_check_find_node2(pt, PT_NODE(node), target); 1085 1.1 matt if (branch != NULL) 1086 1.1 matt return branch; 1087 1.1 matt } 1088 1.1 matt 1089 1.1 matt return NULL; 1090 1.1 matt } 1091 1.1 matt 1092 1.1 matt static bool 1093 1.1 matt ptree_check_leaf(const pt_tree_t *pt, const pt_node_t *parent, 1094 1.1 matt const pt_node_t *ptn) 1095 1.1 matt { 1096 1.1 matt const pt_bitoff_t leaf_position = PTN_LEAF_POSITION(ptn); 1097 1.1 matt const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn); 1098 1.1 matt const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn); 1099 1.1 matt const uintptr_t leaf_node = PTN_LEAF(ptn); 1100 1.1 matt const bool is_parent_root = (parent == &pt->pt_rootnode); 1101 1.1 matt const bool is_mask = PTN_ISMASK_P(ptn); 1102 1.1 matt bool ok = true; 1103 1.1 matt 1104 1.1 matt if (is_parent_root) { 1105 1.1 matt ok = ok && PTN_BRANCH_ODDMAN_SLOT(parent) == leaf_node; 1106 1.1 matt KASSERT(ok); 1107 1.1 matt return ok; 1108 1.1 matt } 1109 1.1 matt 1110 1.1 matt if (is_mask && PTN_ISMASK_P(parent) && PTN_BRANCH_BITLEN(parent) == 0) { 1111 1.1 matt ok = ok && PTN_MASK_BITLEN(parent) < mask_len; 1112 1.1 matt KASSERT(ok); 1113 1.1 matt ok = ok && PTN_BRANCH_BITOFF(parent) < mask_len; 1114 1.1 matt KASSERT(ok); 1115 1.1 matt } 1116 1.1 matt ok = ok && PTN_BRANCH_SLOT(parent, leaf_position) == leaf_node; 1117 1.1 matt KASSERT(ok); 1118 1.1 matt ok = ok && leaf_position == ptree_testnode(pt, ptn, parent); 1119 1.1 matt KASSERT(ok); 1120 1.1 matt if (PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) != leaf_node) { 1121 1.1 matt ok = ok && bitlen > 0; 1122 1.1 matt KASSERT(ok); 1123 1.1 matt ok = ok && ptn == ptree_check_find_node2(pt, ptn, PTN_LEAF(ptn)); 1124 1.1 matt KASSERT(ok); 1125 1.1 matt } 1126 1.1 matt return ok; 1127 1.1 matt } 1128 1.1 matt 1129 1.1 matt static bool 1130 1.1 matt ptree_check_branch(const pt_tree_t *pt, const pt_node_t *parent, 1131 1.1 matt const pt_node_t *ptn) 1132 1.1 matt { 1133 1.1 matt const bool is_parent_root = (parent == &pt->pt_rootnode); 1134 1.1 matt const pt_slot_t branch_slot = PTN_BRANCH_POSITION(ptn); 1135 1.1 matt const pt_bitoff_t bitoff = PTN_BRANCH_BITOFF(ptn); 1136 1.1 matt const pt_bitoff_t bitlen = PTN_BRANCH_BITLEN(ptn); 1137 1.1 matt const pt_bitoff_t parent_bitoff = PTN_BRANCH_BITOFF(parent); 1138 1.1 matt const pt_bitoff_t parent_bitlen = PTN_BRANCH_BITLEN(parent); 1139 1.1 matt const bool is_parent_mask = PTN_ISMASK_P(parent) && parent_bitlen == 0; 1140 1.1 matt const bool is_mask = PTN_ISMASK_P(ptn) && bitlen == 0; 1141 1.1 matt const pt_bitoff_t parent_mask_len = PTN_MASK_BITLEN(parent); 1142 1.1 matt const pt_bitoff_t mask_len = PTN_MASK_BITLEN(ptn); 1143 1.1 matt const pt_bitlen_t slots = 1 << bitlen; 1144 1.1 matt pt_slot_t slot; 1145 1.1 matt bool ok = true; 1146 1.1 matt 1147 1.1 matt ok = ok && PTN_BRANCH_SLOT(parent, branch_slot) == PTN_BRANCH(ptn); 1148 1.1 matt KASSERT(ok); 1149 1.1 matt ok = ok && branch_slot == ptree_testnode(pt, ptn, parent); 1150 1.1 matt KASSERT(ok); 1151 1.1 matt 1152 1.1 matt if (is_mask) { 1153 1.1 matt ok = ok && bitoff == mask_len; 1154 1.1 matt KASSERT(ok); 1155 1.1 matt if (is_parent_mask) { 1156 1.1 matt ok = ok && parent_mask_len < mask_len; 1157 1.1 matt KASSERT(ok); 1158 1.1 matt ok = ok && parent_bitoff < bitoff; 1159 1.1 matt KASSERT(ok); 1160 1.1 matt } 1161 1.1 matt } else { 1162 1.1 matt if (is_parent_mask) { 1163 1.1 matt ok = ok && parent_bitoff <= bitoff; 1164 1.1 matt } else if (!is_parent_root) { 1165 1.1 matt ok = ok && parent_bitoff < bitoff; 1166 1.1 matt } 1167 1.1 matt KASSERT(ok); 1168 1.1 matt } 1169 1.1 matt 1170 1.1 matt for (slot = 0; slot < slots; slot++) { 1171 1.1 matt const uintptr_t node = PTN_BRANCH_SLOT(ptn, slot); 1172 1.1 matt pt_bitoff_t tmp_bitoff = 0; 1173 1.1 matt pt_slot_t tmp_slot; 1174 1.1 matt ok = ok && node != PTN_BRANCH(ptn); 1175 1.1 matt KASSERT(ok); 1176 1.1 matt if (bitlen > 0) { 1177 1.1 matt ok = ok && ptree_matchnode(pt, PT_NODE(node), ptn, bitoff, &tmp_bitoff, &tmp_slot); 1178 1.1 matt KASSERT(ok); 1179 1.1 matt tmp_slot = ptree_testnode(pt, PT_NODE(node), ptn); 1180 1.1 matt ok = ok && slot == tmp_slot; 1181 1.1 matt KASSERT(ok); 1182 1.1 matt } 1183 1.1 matt if (PT_LEAF_P(node)) 1184 1.1 matt ok = ok && ptree_check_leaf(pt, ptn, PT_NODE(node)); 1185 1.1 matt else 1186 1.1 matt ok = ok && ptree_check_branch(pt, ptn, PT_NODE(node)); 1187 1.1 matt } 1188 1.1 matt 1189 1.1 matt return ok; 1190 1.1 matt } 1191 1.1 matt #endif /* PTCHECK */ 1192 1.1 matt 1193 1.2 matt /*ARGSUSED*/ 1194 1.1 matt bool 1195 1.1 matt ptree_check(const pt_tree_t *pt) 1196 1.1 matt { 1197 1.1 matt bool ok = true; 1198 1.1 matt #ifdef PTCHECK 1199 1.1 matt const pt_node_t * const parent = &pt->pt_rootnode; 1200 1.1 matt const uintptr_t node = pt->pt_root; 1201 1.1 matt const pt_node_t * const ptn = PT_NODE(node); 1202 1.1 matt 1203 1.1 matt ok = ok && PTN_BRANCH_BITOFF(parent) == 0; 1204 1.1 matt ok = ok && !PTN_ISMASK_P(parent); 1205 1.1 matt 1206 1.1 matt if (PT_NULL_P(node)) 1207 1.1 matt return ok; 1208 1.1 matt 1209 1.1 matt if (PT_LEAF_P(node)) 1210 1.1 matt ok = ok && ptree_check_leaf(pt, parent, ptn); 1211 1.1 matt else 1212 1.1 matt ok = ok && ptree_check_branch(pt, parent, ptn); 1213 1.1 matt #endif 1214 1.1 matt return ok; 1215 1.1 matt } 1216 1.10 matt 1217 1.10 matt bool 1218 1.10 matt ptree_mask_node_p(pt_tree_t *pt, const void *item, pt_bitlen_t *lenp) 1219 1.10 matt { 1220 1.10 matt const pt_node_t * const mask = ITEMTONODE(pt, item); 1221 1.10 matt 1222 1.10 matt if (!PTN_ISMASK_P(mask)) 1223 1.10 matt return false; 1224 1.10 matt 1225 1.10 matt if (lenp != NULL) 1226 1.10 matt *lenp = PTN_MASK_BITLEN(mask); 1227 1.10 matt 1228 1.10 matt return true; 1229 1.10 matt } 1230