Home | History | Annotate | Line # | Download | only in gen
ptree.c revision 1.10
      1  1.10     matt /*	$NetBSD: ptree.c,v 1.10 2012/10/06 22:15:09 matt Exp $	*/
      2   1.1     matt 
      3   1.1     matt /*-
      4   1.1     matt  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5   1.1     matt  * All rights reserved.
      6   1.1     matt  *
      7   1.1     matt  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1     matt  * by Matt Thomas <matt (at) 3am-software.com>.
      9   1.1     matt  *
     10   1.1     matt  * Redistribution and use in source and binary forms, with or without
     11   1.1     matt  * modification, are permitted provided that the following conditions
     12   1.1     matt  * are met:
     13   1.1     matt  * 1. Redistributions of source code must retain the above copyright
     14   1.1     matt  *    notice, this list of conditions and the following disclaimer.
     15   1.1     matt  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1     matt  *    notice, this list of conditions and the following disclaimer in the
     17   1.1     matt  *    documentation and/or other materials provided with the distribution.
     18   1.1     matt  *
     19   1.1     matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1     matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1     matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1     matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1     matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1     matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1     matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1     matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1     matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1     matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1     matt  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1     matt  */
     31   1.1     matt 
     32   1.1     matt #define _PT_PRIVATE
     33   1.1     matt 
     34   1.1     matt #if defined(PTCHECK) && !defined(PTDEBUG)
     35   1.1     matt #define PTDEBUG
     36   1.1     matt #endif
     37   1.1     matt 
     38   1.1     matt #if defined(_KERNEL) || defined(_STANDALONE)
     39   1.1     matt #include <sys/param.h>
     40   1.1     matt #include <sys/types.h>
     41   1.1     matt #include <sys/systm.h>
     42   1.3  jnemeth #include <lib/libkern/libkern.h>
     43  1.10     matt __KERNEL_RCSID(0, "$NetBSD: ptree.c,v 1.10 2012/10/06 22:15:09 matt Exp $");
     44   1.1     matt #else
     45   1.1     matt #include <stddef.h>
     46   1.1     matt #include <stdint.h>
     47   1.1     matt #include <limits.h>
     48   1.1     matt #include <stdbool.h>
     49   1.1     matt #include <string.h>
     50   1.1     matt #ifdef PTDEBUG
     51   1.1     matt #include <assert.h>
     52   1.1     matt #define	KASSERT(e)	assert(e)
     53   1.1     matt #else
     54   1.1     matt #define	KASSERT(e)	do { } while (/*CONSTCOND*/ 0)
     55   1.1     matt #endif
     56  1.10     matt __RCSID("$NetBSD: ptree.c,v 1.10 2012/10/06 22:15:09 matt Exp $");
     57   1.1     matt #endif /* _KERNEL || _STANDALONE */
     58   1.1     matt 
     59   1.1     matt #ifdef _LIBC
     60   1.1     matt #include "namespace.h"
     61   1.1     matt #endif
     62   1.1     matt 
     63   1.1     matt #ifdef PTTEST
     64   1.1     matt #include "ptree.h"
     65   1.1     matt #else
     66   1.1     matt #include <sys/ptree.h>
     67   1.1     matt #endif
     68   1.1     matt 
     69   1.1     matt /*
     70   1.9    rmind  * This is an implementation of a radix / PATRICIA tree.  As in a traditional
     71   1.1     matt  * patricia tree, all the data is at the leaves of the tree.  An N-value
     72   1.1     matt  * tree would have N leaves, N-1 branching nodes, and a root pointer.  Each
     73   1.1     matt  * branching node would have left(0) and right(1) pointers that either point
     74   1.1     matt  * to another branching node or a leaf node.  The root pointer would also
     75   1.1     matt  * point to either the first branching node or a leaf node.  Leaf nodes
     76   1.1     matt  * have no need for pointers.
     77   1.1     matt  *
     78   1.1     matt  * However, allocation for these branching nodes is problematic since the
     79   1.9    rmind  * allocation could fail.  This would cause insertions to fail for reasons
     80   1.9    rmind  * beyond the user's control.  So to prevent this, in this implementation
     81   1.1     matt  * each node has two identities: its leaf identity and its branch identity.
     82   1.1     matt  * Each is separate from the other.  Every branch is tagged as to whether
     83   1.1     matt  * it points to a leaf or a branch.  This is not an attribute of the object
     84   1.1     matt  * but of the pointer to the object.  The low bit of the pointer is used as
     85   1.5     yamt  * the tag to determine whether it points to a leaf or branch identity, with
     86   1.1     matt  * branch identities having the low bit set.
     87   1.9    rmind  *
     88   1.1     matt  * A node's branch identity has one rule: when traversing the tree from the
     89   1.1     matt  * root to the node's leaf identity, one of the branches traversed will be via
     90   1.1     matt  * the node's branch identity.  Of course, that has an exception: since to
     91   1.1     matt  * store N leaves, you need N-1 branches.  That one node whose branch identity
     92   1.1     matt  * isn't used is stored as "oddman"-out in the root.
     93   1.1     matt  *
     94   1.1     matt  * Branching nodes also has a bit offset and a bit length which determines
     95   1.1     matt  * which branch slot is used.  The bit length can be zero resulting in a
     96   1.9    rmind  * one-way branch.  This happens in two special cases: the root and
     97   1.1     matt  * interior mask nodes.
     98   1.1     matt  *
     99   1.1     matt  * To support longest match first lookups, when a mask node (one that only
    100   1.1     matt  * match the first N bits) has children who first N bits match the mask nodes,
    101   1.1     matt  * that mask node is converted from being a leaf node to being a one-way
    102   1.1     matt  * branch-node.  The mask becomes fixed in position in the tree.  The mask
    103   1.5     yamt  * will always be the longest mask match for its descendants (unless they
    104   1.1     matt  * traverse an even longer match).
    105   1.1     matt  */
    106   1.1     matt 
    107   1.1     matt #define	NODETOITEM(pt, ptn)	\
    108   1.1     matt 	((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset))
    109   1.1     matt #define	NODETOKEY(pt, ptn)	\
    110   1.1     matt 	((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset + pt->pt_key_offset))
    111   1.1     matt #define	ITEMTONODE(pt, ptn)	\
    112   1.1     matt 	((pt_node_t *)((uintptr_t)(ptn) + (pt)->pt_node_offset))
    113   1.1     matt 
    114   1.1     matt bool ptree_check(const pt_tree_t *);
    115   1.1     matt #if PTCHECK > 1
    116   1.1     matt #define	PTREE_CHECK(pt)		ptree_check(pt)
    117   1.1     matt #else
    118   1.2     matt #define	PTREE_CHECK(pt)		do { } while (/*CONSTCOND*/ 0)
    119   1.1     matt #endif
    120   1.1     matt 
    121   1.1     matt static inline bool
    122   1.1     matt ptree_matchnode(const pt_tree_t *pt, const pt_node_t *target,
    123   1.1     matt 	const pt_node_t *ptn, pt_bitoff_t max_bitoff,
    124   1.1     matt 	pt_bitoff_t *bitoff_p, pt_slot_t *slots_p)
    125   1.1     matt {
    126   1.1     matt 	return (*pt->pt_ops->ptto_matchnode)(NODETOKEY(pt, target),
    127   1.6    rmind 	    (ptn != NULL ? NODETOKEY(pt, ptn) : NULL),
    128   1.6    rmind 	    max_bitoff, bitoff_p, slots_p, pt->pt_context);
    129   1.1     matt }
    130   1.1     matt 
    131   1.1     matt static inline pt_slot_t
    132   1.1     matt ptree_testnode(const pt_tree_t *pt, const pt_node_t *target,
    133   1.1     matt 	const pt_node_t *ptn)
    134   1.1     matt {
    135   1.1     matt 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
    136   1.1     matt 	if (bitlen == 0)
    137   1.7     matt 		return PT_SLOT_ROOT;	/* mask or root, doesn't matter */
    138   1.1     matt 	return (*pt->pt_ops->ptto_testnode)(NODETOKEY(pt, target),
    139   1.6    rmind 	    PTN_BRANCH_BITOFF(ptn), bitlen, pt->pt_context);
    140   1.1     matt }
    141   1.1     matt 
    142   1.1     matt static inline bool
    143   1.1     matt ptree_matchkey(const pt_tree_t *pt, const void *key,
    144   1.1     matt 	const pt_node_t *ptn, pt_bitoff_t bitoff, pt_bitlen_t bitlen)
    145   1.1     matt {
    146   1.1     matt 	return (*pt->pt_ops->ptto_matchkey)(key, NODETOKEY(pt, ptn),
    147   1.6    rmind 	    bitoff, bitlen, pt->pt_context);
    148   1.1     matt }
    149   1.1     matt 
    150   1.1     matt static inline pt_slot_t
    151   1.1     matt ptree_testkey(const pt_tree_t *pt, const void *key, const pt_node_t *ptn)
    152   1.1     matt {
    153   1.7     matt 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
    154   1.7     matt 	if (bitlen == 0)
    155   1.7     matt 		return PT_SLOT_ROOT;	/* mask or root, doesn't matter */
    156   1.6    rmind 	return (*pt->pt_ops->ptto_testkey)(key, PTN_BRANCH_BITOFF(ptn),
    157   1.6    rmind 	    PTN_BRANCH_BITLEN(ptn), pt->pt_context);
    158   1.1     matt }
    159   1.1     matt 
    160   1.1     matt static inline void
    161   1.1     matt ptree_set_position(uintptr_t node, pt_slot_t position)
    162   1.1     matt {
    163   1.1     matt 	if (PT_LEAF_P(node))
    164   1.1     matt 		PTN_SET_LEAF_POSITION(PT_NODE(node), position);
    165   1.1     matt 	else
    166   1.1     matt 		PTN_SET_BRANCH_POSITION(PT_NODE(node), position);
    167   1.1     matt }
    168   1.1     matt 
    169   1.1     matt void
    170   1.6    rmind ptree_init(pt_tree_t *pt, const pt_tree_ops_t *ops, void *context,
    171   1.6    rmind 	size_t node_offset, size_t key_offset)
    172   1.1     matt {
    173   1.1     matt 	memset(pt, 0, sizeof(*pt));
    174   1.1     matt 	pt->pt_node_offset = node_offset;
    175   1.1     matt 	pt->pt_key_offset = key_offset;
    176   1.6    rmind 	pt->pt_context = context;
    177   1.1     matt 	pt->pt_ops = ops;
    178   1.1     matt }
    179   1.1     matt 
    180   1.1     matt typedef struct {
    181   1.1     matt 	uintptr_t *id_insertp;
    182   1.1     matt 	pt_node_t *id_parent;
    183   1.1     matt 	uintptr_t id_node;
    184   1.1     matt 	pt_slot_t id_parent_slot;
    185   1.1     matt 	pt_bitoff_t id_bitoff;
    186   1.1     matt 	pt_slot_t id_slot;
    187   1.1     matt } pt_insertdata_t;
    188   1.1     matt 
    189   1.1     matt typedef bool (*pt_insertfunc_t)(pt_tree_t *, pt_node_t *, pt_insertdata_t *);
    190   1.1     matt 
    191   1.1     matt /*
    192   1.1     matt  * Move a branch identify from src to dst.  The leaves don't care since
    193   1.1     matt  * nothing for them has changed.
    194   1.1     matt  */
    195   1.2     matt /*ARGSUSED*/
    196   1.1     matt static uintptr_t
    197   1.1     matt ptree_move_branch(pt_tree_t * const pt, pt_node_t * const dst,
    198   1.1     matt 	const pt_node_t * const src)
    199   1.1     matt {
    200   1.1     matt 	KASSERT(PTN_BRANCH_BITLEN(src) == 1);
    201   1.1     matt 	/* set branch bitlen and bitoff in one step.  */
    202   1.1     matt 	dst->ptn_branchdata = src->ptn_branchdata;
    203   1.1     matt 	PTN_SET_BRANCH_POSITION(dst, PTN_BRANCH_POSITION(src));
    204   1.1     matt 	PTN_COPY_BRANCH_SLOTS(dst, src);
    205   1.1     matt 	return PTN_BRANCH(dst);
    206   1.1     matt }
    207   1.1     matt 
    208   1.1     matt #ifndef PTNOMASK
    209   1.1     matt static inline uintptr_t *
    210   1.1     matt ptree_find_branch(pt_tree_t * const pt, uintptr_t branch_node)
    211   1.1     matt {
    212   1.1     matt 	pt_node_t * const branch = PT_NODE(branch_node);
    213   1.1     matt 	pt_node_t *parent;
    214   1.1     matt 
    215   1.1     matt 	for (parent = &pt->pt_rootnode;;) {
    216   1.1     matt 		uintptr_t *nodep =
    217   1.1     matt 		    &PTN_BRANCH_SLOT(parent, ptree_testnode(pt, branch, parent));
    218   1.1     matt 		if (*nodep == branch_node)
    219   1.1     matt 			return nodep;
    220   1.1     matt 		if (PT_LEAF_P(*nodep))
    221   1.1     matt 			return NULL;
    222   1.1     matt 		parent = PT_NODE(*nodep);
    223   1.1     matt 	}
    224   1.1     matt }
    225   1.1     matt 
    226   1.1     matt static bool
    227   1.1     matt ptree_insert_leaf_after_mask(pt_tree_t * const pt, pt_node_t * const target,
    228   1.1     matt 	pt_insertdata_t * const id)
    229   1.1     matt {
    230   1.1     matt 	const uintptr_t target_node = PTN_LEAF(target);
    231   1.1     matt 	const uintptr_t mask_node = id->id_node;
    232   1.1     matt 	pt_node_t * const mask = PT_NODE(mask_node);
    233   1.1     matt 	const pt_bitlen_t mask_len = PTN_MASK_BITLEN(mask);
    234   1.1     matt 
    235   1.1     matt 	KASSERT(PT_LEAF_P(mask_node));
    236   1.1     matt 	KASSERT(PTN_LEAF_POSITION(mask) == id->id_parent_slot);
    237   1.1     matt 	KASSERT(mask_len <= id->id_bitoff);
    238   1.1     matt 	KASSERT(PTN_ISMASK_P(mask));
    239   1.1     matt 	KASSERT(!PTN_ISMASK_P(target) || mask_len < PTN_MASK_BITLEN(target));
    240   1.1     matt 
    241   1.1     matt 	if (mask_node == PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode)) {
    242   1.1     matt 		KASSERT(id->id_parent != mask);
    243   1.1     matt 		/*
    244   1.1     matt 		 * Nice, mask was an oddman.  So just set the oddman to target.
    245   1.1     matt 		 */
    246   1.1     matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = target_node;
    247   1.1     matt 	} else {
    248   1.1     matt 		/*
    249   1.1     matt 		 * We need to find out who's pointing to mask's branch
    250   1.1     matt 		 * identity.  We know that between root and the leaf identity,
    251   1.1     matt 		 * we must traverse the node's branch identity.
    252   1.1     matt 		 */
    253   1.1     matt 		uintptr_t * const mask_nodep = ptree_find_branch(pt, PTN_BRANCH(mask));
    254   1.1     matt 		KASSERT(mask_nodep != NULL);
    255   1.1     matt 		KASSERT(*mask_nodep == PTN_BRANCH(mask));
    256   1.1     matt 		KASSERT(PTN_BRANCH_BITLEN(mask) == 1);
    257   1.1     matt 
    258   1.1     matt 		/*
    259   1.1     matt 		 * Alas, mask was used as a branch.  Since the mask is becoming
    260   1.1     matt 		 * a one-way branch, we need make target take over mask's
    261   1.1     matt 		 * branching responsibilities.  Only then can we change it.
    262   1.1     matt 		 */
    263   1.1     matt 		*mask_nodep = ptree_move_branch(pt, target, mask);
    264   1.1     matt 
    265   1.1     matt 		/*
    266   1.1     matt 		 * However, it's possible that mask's parent is itself.  If
    267   1.1     matt 		 * that's true, update the insert point to use target since it
    268   1.1     matt 		 * has taken over mask's branching duties.
    269   1.1     matt 		 */
    270   1.1     matt 		if (id->id_parent == mask)
    271   1.1     matt 			id->id_insertp = &PTN_BRANCH_SLOT(target,
    272   1.1     matt 			    id->id_parent_slot);
    273   1.1     matt 	}
    274   1.1     matt 
    275   1.1     matt 	PTN_SET_BRANCH_BITLEN(mask, 0);
    276   1.1     matt 	PTN_SET_BRANCH_BITOFF(mask, mask_len);
    277   1.1     matt 
    278   1.1     matt 	PTN_BRANCH_ROOT_SLOT(mask) = target_node;
    279   1.1     matt 	PTN_BRANCH_ODDMAN_SLOT(mask) = PT_NULL;
    280   1.1     matt 	PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
    281   1.1     matt 	PTN_SET_BRANCH_POSITION(mask, id->id_parent_slot);
    282   1.1     matt 
    283   1.1     matt 	/*
    284   1.1     matt 	 * Now that everything is done, to make target visible we need to
    285   1.1     matt 	 * change mask from a leaf to a branch.
    286   1.1     matt 	 */
    287   1.1     matt 	*id->id_insertp = PTN_BRANCH(mask);
    288   1.1     matt 	PTREE_CHECK(pt);
    289   1.1     matt 	return true;
    290   1.1     matt }
    291   1.1     matt 
    292   1.2     matt /*ARGSUSED*/
    293   1.1     matt static bool
    294   1.1     matt ptree_insert_mask_before_node(pt_tree_t * const pt, pt_node_t * const target,
    295   1.1     matt 	pt_insertdata_t * const id)
    296   1.1     matt {
    297   1.1     matt 	const uintptr_t node = id->id_node;
    298   1.1     matt 	pt_node_t * const ptn = PT_NODE(node);
    299   1.1     matt 	const pt_slot_t mask_len = PTN_MASK_BITLEN(target);
    300   1.1     matt 	const pt_bitlen_t node_mask_len = PTN_MASK_BITLEN(ptn);
    301   1.1     matt 
    302   1.1     matt 	KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(ptn));
    303   1.1     matt 	KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(ptn));
    304   1.1     matt 	KASSERT(PTN_ISMASK_P(target));
    305   1.1     matt 
    306   1.1     matt 	/*
    307   1.1     matt 	 * If the node we are placing ourself in front is a mask with the
    308   1.1     matt 	 * same mask length as us, return failure.
    309   1.1     matt 	 */
    310   1.1     matt 	if (PTN_ISMASK_P(ptn) && node_mask_len == mask_len)
    311   1.1     matt 		return false;
    312   1.1     matt 
    313   1.1     matt 	PTN_SET_BRANCH_BITLEN(target, 0);
    314   1.1     matt 	PTN_SET_BRANCH_BITOFF(target, mask_len);
    315   1.1     matt 
    316   1.1     matt 	PTN_BRANCH_SLOT(target, PT_SLOT_ROOT) = node;
    317   1.1     matt 	*id->id_insertp = PTN_BRANCH(target);
    318   1.1     matt 
    319   1.1     matt 	PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
    320   1.1     matt 	ptree_set_position(node, PT_SLOT_ROOT);
    321   1.1     matt 
    322   1.1     matt 	PTREE_CHECK(pt);
    323   1.1     matt 	return true;
    324   1.1     matt }
    325   1.1     matt #endif /* !PTNOMASK */
    326   1.1     matt 
    327   1.2     matt /*ARGSUSED*/
    328   1.1     matt static bool
    329   1.1     matt ptree_insert_branch_at_node(pt_tree_t * const pt, pt_node_t * const target,
    330   1.1     matt 	pt_insertdata_t * const id)
    331   1.1     matt {
    332   1.1     matt 	const uintptr_t target_node = PTN_LEAF(target);
    333   1.1     matt 	const uintptr_t node = id->id_node;
    334   1.1     matt 	const pt_slot_t other_slot = id->id_slot ^ PT_SLOT_OTHER;
    335   1.1     matt 
    336   1.1     matt 	KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(PT_NODE(node)));
    337   1.1     matt 	KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(PT_NODE(node)));
    338   1.1     matt 	KASSERT((node == pt->pt_root) == (id->id_parent == &pt->pt_rootnode));
    339   1.1     matt #ifndef PTNOMASK
    340   1.1     matt 	KASSERT(!PTN_ISMASK_P(target) || id->id_bitoff <= PTN_MASK_BITLEN(target));
    341   1.1     matt #endif
    342   1.1     matt 	KASSERT(node == pt->pt_root || PTN_BRANCH_BITOFF(id->id_parent) + PTN_BRANCH_BITLEN(id->id_parent) <= id->id_bitoff);
    343   1.1     matt 
    344   1.1     matt 	PTN_SET_BRANCH_BITOFF(target, id->id_bitoff);
    345   1.1     matt 	PTN_SET_BRANCH_BITLEN(target, 1);
    346   1.1     matt 
    347   1.1     matt 	PTN_BRANCH_SLOT(target, id->id_slot) = target_node;
    348   1.1     matt 	PTN_BRANCH_SLOT(target, other_slot) = node;
    349   1.1     matt 	*id->id_insertp = PTN_BRANCH(target);
    350   1.1     matt 
    351   1.1     matt 	PTN_SET_LEAF_POSITION(target, id->id_slot);
    352   1.1     matt 	ptree_set_position(node, other_slot);
    353   1.1     matt 
    354   1.1     matt 	PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
    355   1.1     matt 	PTREE_CHECK(pt);
    356   1.1     matt 	return true;
    357   1.1     matt }
    358   1.1     matt 
    359   1.1     matt static bool
    360   1.1     matt ptree_insert_leaf(pt_tree_t * const pt, pt_node_t * const target,
    361   1.1     matt 	pt_insertdata_t * const id)
    362   1.1     matt {
    363   1.1     matt 	const uintptr_t leaf_node = id->id_node;
    364   1.1     matt 	pt_node_t * const leaf = PT_NODE(leaf_node);
    365   1.1     matt #ifdef PTNOMASK
    366   1.1     matt 	const bool inserting_mask = false;
    367   1.1     matt 	const bool at_mask = false;
    368   1.1     matt #else
    369   1.1     matt 	const bool inserting_mask = PTN_ISMASK_P(target);
    370   1.1     matt 	const bool at_mask = PTN_ISMASK_P(leaf);
    371   1.1     matt 	const pt_bitlen_t leaf_masklen = PTN_MASK_BITLEN(leaf);
    372   1.1     matt 	const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
    373   1.1     matt #endif
    374   1.1     matt 	pt_insertfunc_t insertfunc = ptree_insert_branch_at_node;
    375   1.1     matt 	bool matched;
    376   1.1     matt 
    377   1.1     matt 	/*
    378   1.1     matt 	 * In all likelyhood we are going simply going to insert a branch
    379   1.1     matt 	 * where this leaf is which will point to the old and new leaves.
    380   1.1     matt 	 */
    381   1.1     matt 	KASSERT(PT_LEAF_P(leaf_node));
    382   1.1     matt 	KASSERT(PTN_LEAF_POSITION(leaf) == id->id_parent_slot);
    383   1.1     matt 	matched = ptree_matchnode(pt, target, leaf, UINT_MAX,
    384   1.1     matt 	    &id->id_bitoff, &id->id_slot);
    385   1.1     matt 	if (__predict_false(!inserting_mask)) {
    386   1.1     matt 		/*
    387   1.1     matt 		 * We aren't inserting a mask nor is the leaf a mask, which
    388   1.1     matt 		 * means we are trying to insert a duplicate leaf.  Can't do
    389   1.1     matt 		 * that.
    390   1.1     matt 		 */
    391   1.1     matt 		if (!at_mask && matched)
    392   1.1     matt 			return false;
    393   1.1     matt 
    394   1.1     matt #ifndef PTNOMASK
    395   1.1     matt 		/*
    396   1.1     matt 		 * We are at a mask and the leaf we are about to insert
    397   1.1     matt 		 * is at or beyond the mask, we need to convert the mask
    398   1.1     matt 		 * from a leaf to a one-way branch interior mask.
    399   1.1     matt 		 */
    400   1.1     matt 		if (at_mask && id->id_bitoff >= leaf_masklen)
    401   1.1     matt 			insertfunc = ptree_insert_leaf_after_mask;
    402   1.1     matt #endif /* PTNOMASK */
    403   1.1     matt 	}
    404   1.1     matt #ifndef PTNOMASK
    405   1.1     matt 	else {
    406   1.1     matt 		/*
    407   1.1     matt 		 * We are inserting a mask.
    408   1.1     matt 		 */
    409   1.1     matt 		if (matched) {
    410   1.1     matt 			/*
    411   1.1     matt 			 * If the leaf isn't a mask, we obviously have to
    412   1.1     matt 			 * insert the new mask before non-mask leaf.  If the
    413   1.1     matt 			 * leaf is a mask, and the new node has a LEQ mask
    414   1.1     matt 			 * length it too needs to inserted before leaf (*).
    415   1.1     matt 			 *
    416   1.1     matt 			 * In other cases, we place the new mask as leaf after
    417   1.1     matt 			 * leaf mask.  Which mask comes first will be a one-way
    418   1.1     matt 			 * branch interior mask node which has the other mask
    419   1.1     matt 			 * node as a child.
    420   1.1     matt 			 *
    421   1.1     matt 			 * (*) ptree_insert_mask_before_node can detect a
    422   1.1     matt 			 * duplicate mask and return failure if needed.
    423   1.1     matt 			 */
    424   1.1     matt 			if (!at_mask || target_masklen <= leaf_masklen)
    425   1.1     matt 				insertfunc = ptree_insert_mask_before_node;
    426   1.1     matt 			else
    427   1.1     matt 				insertfunc = ptree_insert_leaf_after_mask;
    428   1.1     matt 		} else if (at_mask && id->id_bitoff >= leaf_masklen) {
    429   1.1     matt 			/*
    430   1.1     matt 			 * If the new mask has a bit offset GEQ than the leaf's
    431   1.1     matt 			 * mask length, convert the left to a one-way branch
    432   1.1     matt 			 * interior mask and make that point to the new [leaf]
    433   1.1     matt 			 * mask.
    434   1.1     matt 			 */
    435   1.1     matt 			insertfunc = ptree_insert_leaf_after_mask;
    436   1.1     matt 		} else {
    437   1.1     matt 			/*
    438   1.1     matt 			 * The new mask has a bit offset less than the leaf's
    439   1.1     matt 			 * mask length or if the leaf isn't a mask at all, the
    440   1.1     matt 			 * new mask deserves to be its own leaf so we use the
    441   1.1     matt 			 * default insertfunc to do that.
    442   1.1     matt 			 */
    443   1.1     matt 		}
    444   1.1     matt 	}
    445   1.1     matt #endif /* PTNOMASK */
    446   1.1     matt 
    447   1.1     matt 	return (*insertfunc)(pt, target, id);
    448   1.1     matt }
    449   1.1     matt 
    450   1.1     matt static bool
    451   1.1     matt ptree_insert_node_common(pt_tree_t *pt, void *item)
    452   1.1     matt {
    453   1.1     matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    454   1.1     matt #ifndef PTNOMASK
    455   1.1     matt 	const bool inserting_mask = PTN_ISMASK_P(target);
    456   1.1     matt 	const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
    457   1.1     matt #endif
    458   1.1     matt 	pt_insertfunc_t insertfunc;
    459   1.1     matt 	pt_insertdata_t id;
    460   1.1     matt 
    461   1.1     matt 	/*
    462   1.8     matt 	 * If this node already exists in the tree, return failure.
    463   1.8     matt 	 */
    464   1.8     matt 	if (target == PT_NODE(pt->pt_root))
    465   1.8     matt 		return false;
    466   1.8     matt 
    467   1.8     matt 	/*
    468   1.1     matt 	 * We need a leaf so we can match against.  Until we get a leaf
    469   1.1     matt 	 * we having nothing to test against.
    470   1.1     matt 	 */
    471   1.1     matt 	if (__predict_false(PT_NULL_P(pt->pt_root))) {
    472   1.1     matt 		PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
    473   1.1     matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
    474   1.1     matt 		PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
    475   1.1     matt 		PTREE_CHECK(pt);
    476   1.1     matt 		return true;
    477   1.1     matt 	}
    478   1.1     matt 
    479   1.1     matt 	id.id_bitoff = 0;
    480   1.1     matt 	id.id_parent = &pt->pt_rootnode;
    481   1.1     matt 	id.id_parent_slot = PT_SLOT_ROOT;
    482   1.1     matt 	id.id_insertp = &PTN_BRANCH_ROOT_SLOT(id.id_parent);
    483   1.1     matt 	for (;;) {
    484   1.1     matt 		pt_bitoff_t branch_bitoff;
    485   1.1     matt 		pt_node_t * const ptn = PT_NODE(*id.id_insertp);
    486   1.1     matt 		id.id_node = *id.id_insertp;
    487   1.1     matt 
    488   1.1     matt 		/*
    489   1.8     matt 		 * If this node already exists in the tree, return failure.
    490   1.8     matt 		 */
    491   1.8     matt 		if (target == ptn)
    492   1.8     matt 			return false;
    493   1.8     matt 
    494   1.8     matt 		/*
    495   1.1     matt 		 * If we hit a leaf, try to insert target at leaf.  We could
    496   1.1     matt 		 * have inlined ptree_insert_leaf here but that would have
    497   1.1     matt 		 * made this routine much harder to understand.  Trust the
    498   1.1     matt 		 * compiler to optimize this properly.
    499   1.1     matt 		 */
    500   1.1     matt 		if (PT_LEAF_P(id.id_node)) {
    501   1.1     matt 			KASSERT(PTN_LEAF_POSITION(ptn) == id.id_parent_slot);
    502   1.1     matt 			insertfunc = ptree_insert_leaf;
    503   1.1     matt 			break;
    504   1.1     matt 		}
    505   1.1     matt 
    506   1.1     matt 		/*
    507   1.1     matt 		 * If we aren't a leaf, we must be a branch.  Make sure we are
    508   1.1     matt 		 * in the slot we think we are.
    509   1.1     matt 		 */
    510   1.1     matt 		KASSERT(PT_BRANCH_P(id.id_node));
    511   1.1     matt 		KASSERT(PTN_BRANCH_POSITION(ptn) == id.id_parent_slot);
    512   1.1     matt 
    513   1.1     matt 		/*
    514   1.1     matt 		 * Where is this branch?
    515   1.1     matt 		 */
    516   1.1     matt 		branch_bitoff = PTN_BRANCH_BITOFF(ptn);
    517   1.1     matt 
    518   1.1     matt #ifndef PTNOMASK
    519   1.1     matt 		/*
    520   1.1     matt 		 * If this is a one-way mask node, its offset must equal
    521   1.1     matt 		 * its mask's bitlen.
    522   1.1     matt 		 */
    523   1.1     matt 		KASSERT(!(PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) || PTN_MASK_BITLEN(ptn) == branch_bitoff);
    524   1.1     matt 
    525   1.1     matt 		/*
    526   1.1     matt 		 * If we are inserting a mask, and we know that at this point
    527   1.1     matt 		 * all bits before the current bit offset match both the target
    528   1.1     matt 		 * and the branch.  If the target's mask length is LEQ than
    529   1.1     matt 		 * this branch's bit offset, then this is where the mask needs
    530   1.1     matt 		 * to added to the tree.
    531   1.1     matt 		 */
    532   1.1     matt 		if (__predict_false(inserting_mask)
    533   1.1     matt 		    && (PTN_ISROOT_P(pt, id.id_parent)
    534   1.1     matt 			|| id.id_bitoff < target_masklen)
    535   1.1     matt 		    && target_masklen <= branch_bitoff) {
    536   1.1     matt 			/*
    537   1.1     matt 			 * We don't know about the bits (if any) between
    538   1.1     matt 			 * id.id_bitoff and the target's mask length match
    539   1.1     matt 			 * both the target and the branch.  If the target's
    540   1.1     matt 			 * mask length is greater than the current bit offset
    541   1.1     matt 			 * make sure the untested bits match both the target
    542   1.1     matt 			 * and the branch.
    543   1.1     matt 			 */
    544   1.1     matt 			if (target_masklen == id.id_bitoff
    545   1.1     matt 			    || ptree_matchnode(pt, target, ptn, target_masklen,
    546   1.1     matt 				    &id.id_bitoff, &id.id_slot)) {
    547   1.1     matt 				/*
    548   1.1     matt 				 * The bits matched, so insert the mask as a
    549   1.1     matt 				 * one-way branch.
    550   1.1     matt 				 */
    551   1.1     matt 				insertfunc = ptree_insert_mask_before_node;
    552   1.1     matt 				break;
    553   1.1     matt 			} else if (id.id_bitoff < branch_bitoff) {
    554   1.1     matt 				/*
    555   1.1     matt 				 * They didn't match, so create a normal branch
    556   1.1     matt 				 * because this mask needs to a be a new leaf.
    557   1.1     matt 				 */
    558   1.1     matt 				insertfunc = ptree_insert_branch_at_node;
    559   1.1     matt 				break;
    560   1.1     matt 			}
    561   1.1     matt 		}
    562   1.1     matt #endif /* PTNOMASK */
    563   1.1     matt 
    564   1.1     matt 		/*
    565   1.1     matt 		 * If we are skipping some bits, verify they match the node.
    566   1.1     matt 		 * If they don't match, it means we have a leaf to insert.
    567   1.1     matt 		 * Note that if we are advancing bit by bit, we'll skip
    568   1.1     matt 		 * doing matchnode and walk the tree bit by bit via testnode.
    569   1.1     matt 		 */
    570   1.1     matt 		if (id.id_bitoff < branch_bitoff
    571   1.1     matt 		    && !ptree_matchnode(pt, target, ptn, branch_bitoff,
    572   1.1     matt 					&id.id_bitoff, &id.id_slot)) {
    573   1.1     matt 			KASSERT(id.id_bitoff < branch_bitoff);
    574   1.1     matt 			insertfunc = ptree_insert_branch_at_node;
    575   1.1     matt 			break;
    576   1.1     matt 		}
    577   1.1     matt 
    578   1.1     matt 		/*
    579   1.1     matt 		 * At this point, all bits before branch_bitoff are known
    580   1.1     matt 		 * to match the target.
    581   1.1     matt 		 */
    582   1.1     matt 		KASSERT(id.id_bitoff >= branch_bitoff);
    583   1.1     matt 
    584   1.1     matt 		/*
    585   1.1     matt 		 * Decend the tree one level.
    586   1.1     matt 		 */
    587   1.1     matt 		id.id_parent = ptn;
    588   1.1     matt 		id.id_parent_slot = ptree_testnode(pt, target, id.id_parent);
    589   1.1     matt 		id.id_bitoff += PTN_BRANCH_BITLEN(id.id_parent);
    590   1.1     matt 		id.id_insertp = &PTN_BRANCH_SLOT(id.id_parent, id.id_parent_slot);
    591   1.1     matt 	}
    592   1.1     matt 
    593   1.1     matt 	/*
    594   1.1     matt 	 * Do the actual insertion.
    595   1.1     matt 	 */
    596   1.1     matt 	return (*insertfunc)(pt, target, &id);
    597   1.1     matt }
    598   1.1     matt 
    599   1.1     matt bool
    600   1.1     matt ptree_insert_node(pt_tree_t *pt, void *item)
    601   1.1     matt {
    602   1.1     matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    603   1.1     matt 
    604   1.1     matt 	memset(target, 0, sizeof(*target));
    605   1.1     matt 	return ptree_insert_node_common(pt, target);
    606   1.1     matt }
    607   1.1     matt 
    608   1.1     matt #ifndef PTNOMASK
    609   1.1     matt bool
    610   1.1     matt ptree_insert_mask_node(pt_tree_t *pt, void *item, pt_bitlen_t mask_len)
    611   1.1     matt {
    612   1.1     matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    613   1.1     matt 	pt_bitoff_t bitoff = mask_len;
    614   1.1     matt 	pt_slot_t slot;
    615   1.1     matt 
    616   1.1     matt 	memset(target, 0, sizeof(*target));
    617   1.1     matt 	KASSERT(mask_len == 0 || (~PT__MASK(PTN_MASK_BITLEN) & mask_len) == 0);
    618   1.1     matt 	/*
    619   1.1     matt 	 * Only the first <mask_len> bits can be non-zero.
    620   1.1     matt 	 * All other bits must be 0.
    621   1.1     matt 	 */
    622   1.1     matt 	if (!ptree_matchnode(pt, target, NULL, UINT_MAX, &bitoff, &slot))
    623   1.1     matt 		return false;
    624   1.1     matt 	PTN_SET_MASK_BITLEN(target, mask_len);
    625   1.1     matt 	PTN_MARK_MASK(target);
    626   1.1     matt 	return ptree_insert_node_common(pt, target);
    627   1.1     matt }
    628   1.1     matt #endif /* !PTNOMASH */
    629   1.1     matt 
    630   1.1     matt void *
    631   1.9    rmind ptree_find_filtered_node(pt_tree_t *pt, const void *key, pt_filter_t filter,
    632   1.1     matt 	void *filter_arg)
    633   1.1     matt {
    634   1.1     matt #ifndef PTNOMASK
    635   1.1     matt 	pt_node_t *mask = NULL;
    636   1.1     matt #endif
    637   1.1     matt 	bool at_mask = false;
    638   1.1     matt 	pt_node_t *ptn, *parent;
    639   1.1     matt 	pt_bitoff_t bitoff;
    640   1.1     matt 	pt_slot_t parent_slot;
    641   1.1     matt 
    642   1.1     matt 	if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)))
    643   1.1     matt 		return NULL;
    644   1.1     matt 
    645   1.1     matt 	bitoff = 0;
    646   1.1     matt 	parent = &pt->pt_rootnode;
    647   1.1     matt 	parent_slot = PT_SLOT_ROOT;
    648   1.1     matt 	for (;;) {
    649   1.1     matt 		const uintptr_t node = PTN_BRANCH_SLOT(parent, parent_slot);
    650   1.1     matt 		const pt_slot_t branch_bitoff = PTN_BRANCH_BITOFF(PT_NODE(node));
    651   1.1     matt 		ptn = PT_NODE(node);
    652   1.1     matt 
    653   1.1     matt 		if (PT_LEAF_P(node)) {
    654   1.1     matt #ifndef PTNOMASK
    655   1.1     matt 			at_mask = PTN_ISMASK_P(ptn);
    656   1.1     matt #endif
    657   1.1     matt 			break;
    658   1.1     matt 		}
    659   1.1     matt 
    660   1.1     matt 		if (bitoff < branch_bitoff) {
    661   1.1     matt 			if (!ptree_matchkey(pt, key, ptn, bitoff, branch_bitoff - bitoff)) {
    662   1.1     matt #ifndef PTNOMASK
    663   1.1     matt 				if (mask != NULL)
    664   1.1     matt 					return NODETOITEM(pt, mask);
    665   1.1     matt #endif
    666   1.1     matt 				return NULL;
    667   1.1     matt 			}
    668   1.1     matt 			bitoff = branch_bitoff;
    669   1.1     matt 		}
    670   1.1     matt 
    671   1.1     matt #ifndef PTNOMASK
    672   1.1     matt 		if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0
    673   1.1     matt 		    && (!filter
    674   1.1     matt 		        || (*filter)(filter_arg, NODETOITEM(pt, ptn),
    675   1.1     matt 				     PT_FILTER_MASK)))
    676   1.1     matt 			mask = ptn;
    677   1.1     matt #endif
    678   1.1     matt 
    679   1.1     matt 		parent = ptn;
    680   1.1     matt 		parent_slot = ptree_testkey(pt, key, parent);
    681   1.1     matt 		bitoff += PTN_BRANCH_BITLEN(parent);
    682   1.1     matt 	}
    683   1.1     matt 
    684   1.1     matt 	KASSERT(PTN_ISROOT_P(pt, parent) || PTN_BRANCH_BITOFF(parent) + PTN_BRANCH_BITLEN(parent) == bitoff);
    685   1.1     matt 	if (!filter || (*filter)(filter_arg, NODETOITEM(pt, ptn), at_mask ? PT_FILTER_MASK : 0)) {
    686   1.1     matt #ifndef PTNOMASK
    687   1.1     matt 		if (PTN_ISMASK_P(ptn)) {
    688   1.1     matt 			const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
    689   1.1     matt 			if (bitoff == PTN_MASK_BITLEN(ptn))
    690   1.1     matt 				return NODETOITEM(pt, ptn);
    691   1.1     matt 			if (ptree_matchkey(pt, key, ptn, bitoff, mask_len - bitoff))
    692   1.1     matt 				return NODETOITEM(pt, ptn);
    693   1.1     matt 		} else
    694   1.1     matt #endif /* !PTNOMASK */
    695   1.1     matt 		if (ptree_matchkey(pt, key, ptn, bitoff, UINT_MAX))
    696   1.1     matt 			return NODETOITEM(pt, ptn);
    697   1.1     matt 	}
    698   1.1     matt 
    699   1.1     matt #ifndef PTNOMASK
    700   1.1     matt 	/*
    701   1.1     matt 	 * By virtue of how the mask was placed in the tree,
    702   1.1     matt 	 * all nodes descended from it will match it.  But the bits
    703   1.1     matt 	 * before the mask still need to be checked and since the
    704   1.1     matt 	 * mask was a branch, that was done implicitly.
    705   1.1     matt 	 */
    706   1.1     matt 	if (mask != NULL) {
    707   1.1     matt 		KASSERT(ptree_matchkey(pt, key, mask, 0, PTN_MASK_BITLEN(mask)));
    708   1.1     matt 		return NODETOITEM(pt, mask);
    709   1.1     matt 	}
    710   1.1     matt #endif /* !PTNOMASK */
    711   1.1     matt 
    712   1.1     matt 	/*
    713   1.1     matt 	 * Nothing matched.
    714   1.1     matt 	 */
    715   1.1     matt 	return NULL;
    716   1.1     matt }
    717   1.1     matt 
    718   1.1     matt void *
    719   1.1     matt ptree_iterate(pt_tree_t *pt, const void *item, pt_direction_t direction)
    720   1.1     matt {
    721   1.1     matt 	const pt_node_t * const target = ITEMTONODE(pt, item);
    722   1.1     matt 	uintptr_t node, next_node;
    723   1.1     matt 
    724   1.1     matt 	if (direction != PT_ASCENDING && direction != PT_DESCENDING)
    725   1.1     matt 		return NULL;
    726   1.1     matt 
    727   1.1     matt 	node = PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode);
    728   1.1     matt 	if (PT_NULL_P(node))
    729   1.1     matt 		return NULL;
    730   1.1     matt 
    731   1.1     matt 	if (item == NULL) {
    732   1.1     matt 		pt_node_t * const ptn = PT_NODE(node);
    733   1.1     matt 		if (direction == PT_ASCENDING
    734   1.1     matt 		    && PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0)
    735   1.1     matt 			return NODETOITEM(pt, ptn);
    736   1.1     matt 		next_node = node;
    737   1.1     matt 	} else {
    738   1.1     matt #ifndef PTNOMASK
    739   1.1     matt 		uintptr_t mask_node = PT_NULL;
    740   1.1     matt #endif /* !PTNOMASK */
    741   1.1     matt 		next_node = PT_NULL;
    742   1.1     matt 		while (!PT_LEAF_P(node)) {
    743   1.1     matt 			pt_node_t * const ptn = PT_NODE(node);
    744   1.1     matt 			pt_slot_t slot;
    745   1.1     matt #ifndef PTNOMASK
    746   1.1     matt 			if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) {
    747   1.1     matt 				if (ptn == target)
    748   1.1     matt 					break;
    749   1.1     matt 				if (direction == PT_DESCENDING) {
    750   1.1     matt 					mask_node = node;
    751   1.1     matt 					next_node = PT_NULL;
    752   1.1     matt 				}
    753   1.1     matt 			}
    754   1.1     matt #endif /* !PTNOMASK */
    755   1.1     matt 			slot = ptree_testnode(pt, target, ptn);
    756   1.1     matt 			node = PTN_BRANCH_SLOT(ptn, slot);
    757   1.1     matt 			if (direction == PT_ASCENDING) {
    758   1.4    lukem 				if (slot != (pt_slot_t)((1 << PTN_BRANCH_BITLEN(ptn)) - 1))
    759   1.1     matt 					next_node = PTN_BRANCH_SLOT(ptn, slot + 1);
    760   1.1     matt 			} else {
    761   1.1     matt 				if (slot > 0) {
    762   1.1     matt #ifndef PTNOMASK
    763   1.1     matt 					mask_node = PT_NULL;
    764   1.1     matt #endif /* !PTNOMASK */
    765   1.1     matt 					next_node = PTN_BRANCH_SLOT(ptn, slot - 1);
    766   1.1     matt 				}
    767   1.1     matt 			}
    768   1.1     matt 		}
    769   1.1     matt 		if (PT_NODE(node) != target)
    770   1.1     matt 			return NULL;
    771   1.1     matt #ifndef PTNOMASK
    772   1.1     matt 		if (PT_BRANCH_P(node)) {
    773   1.1     matt 			pt_node_t *ptn = PT_NODE(node);
    774   1.1     matt 			KASSERT(PTN_ISMASK_P(PT_NODE(node)) && PTN_BRANCH_BITLEN(PT_NODE(node)) == 0);
    775   1.1     matt 			if (direction == PT_ASCENDING) {
    776   1.1     matt 				next_node = PTN_BRANCH_ROOT_SLOT(ptn);
    777   1.1     matt 				ptn = PT_NODE(next_node);
    778   1.1     matt 			}
    779   1.1     matt 		}
    780   1.1     matt 		/*
    781   1.1     matt 		 * When descending, if we countered a mask node then that's
    782   1.1     matt 		 * we want to return.
    783   1.1     matt 		 */
    784   1.1     matt 		if (direction == PT_DESCENDING && !PT_NULL_P(mask_node)) {
    785   1.1     matt 			KASSERT(PT_NULL_P(next_node));
    786   1.1     matt 			return NODETOITEM(pt, PT_NODE(mask_node));
    787   1.1     matt 		}
    788   1.1     matt #endif /* !PTNOMASK */
    789   1.1     matt 	}
    790   1.1     matt 
    791   1.1     matt 	node = next_node;
    792   1.1     matt 	if (PT_NULL_P(node))
    793   1.1     matt 		return NULL;
    794   1.1     matt 
    795   1.1     matt 	while (!PT_LEAF_P(node)) {
    796   1.1     matt 		pt_node_t * const ptn = PT_NODE(node);
    797   1.1     matt 		pt_slot_t slot;
    798   1.1     matt 		if (direction == PT_ASCENDING) {
    799   1.1     matt #ifndef PTNOMASK
    800   1.1     matt 			if (PT_BRANCH_P(node)
    801   1.1     matt 			    && PTN_ISMASK_P(ptn)
    802   1.1     matt 			    && PTN_BRANCH_BITLEN(ptn) == 0)
    803   1.1     matt 				return NODETOITEM(pt, ptn);
    804   1.1     matt #endif /* !PTNOMASK */
    805   1.1     matt 			slot = PT_SLOT_LEFT;
    806   1.1     matt 		} else {
    807   1.1     matt 			slot = (1 << PTN_BRANCH_BITLEN(ptn)) - 1;
    808   1.1     matt 		}
    809   1.1     matt 		node = PTN_BRANCH_SLOT(ptn, slot);
    810   1.1     matt 	}
    811   1.1     matt 	return NODETOITEM(pt, PT_NODE(node));
    812   1.1     matt }
    813   1.1     matt 
    814   1.1     matt void
    815   1.1     matt ptree_remove_node(pt_tree_t *pt, void *item)
    816   1.1     matt {
    817   1.1     matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    818   1.1     matt 	const pt_slot_t leaf_slot = PTN_LEAF_POSITION(target);
    819   1.1     matt 	const pt_slot_t branch_slot = PTN_BRANCH_POSITION(target);
    820   1.1     matt 	pt_node_t *ptn, *parent;
    821   1.1     matt 	uintptr_t node;
    822   1.1     matt 	uintptr_t *removep;
    823   1.1     matt 	uintptr_t *nodep;
    824   1.1     matt 	pt_bitoff_t bitoff;
    825   1.1     matt 	pt_slot_t parent_slot;
    826   1.1     matt #ifndef PTNOMASK
    827   1.1     matt 	bool at_mask;
    828   1.1     matt #endif
    829   1.1     matt 
    830   1.1     matt 	if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode))) {
    831   1.1     matt 		KASSERT(!PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)));
    832   1.1     matt 		return;
    833   1.1     matt 	}
    834   1.1     matt 
    835   1.1     matt 	bitoff = 0;
    836   1.1     matt 	removep = NULL;
    837   1.1     matt 	nodep = NULL;
    838   1.1     matt 	parent = &pt->pt_rootnode;
    839   1.1     matt 	parent_slot = PT_SLOT_ROOT;
    840   1.1     matt 	for (;;) {
    841   1.1     matt 		node = PTN_BRANCH_SLOT(parent, parent_slot);
    842   1.1     matt 		ptn = PT_NODE(node);
    843   1.1     matt #ifndef PTNOMASK
    844   1.1     matt 		at_mask = PTN_ISMASK_P(ptn);
    845   1.1     matt #endif
    846   1.1     matt 
    847   1.1     matt 		if (PT_LEAF_P(node))
    848   1.1     matt 			break;
    849   1.1     matt 
    850   1.1     matt 		/*
    851   1.1     matt 		 * If we are at the target, then we are looking at its branch
    852   1.1     matt 		 * identity.  We need to remember who's pointing at it so we
    853   1.1     matt 		 * stop them from doing that.
    854   1.1     matt 		 */
    855   1.1     matt 		if (__predict_false(ptn == target)) {
    856   1.1     matt 			KASSERT(nodep == NULL);
    857   1.1     matt #ifndef PTNOMASK
    858   1.1     matt 			/*
    859   1.1     matt 			 * Interior mask nodes are trivial to get rid of.
    860   1.1     matt 			 */
    861   1.1     matt 			if (at_mask && PTN_BRANCH_BITLEN(ptn) == 0) {
    862   1.1     matt 				PTN_BRANCH_SLOT(parent, parent_slot) =
    863   1.1     matt 				    PTN_BRANCH_ROOT_SLOT(ptn);
    864   1.1     matt 				KASSERT(PT_NULL_P(PTN_BRANCH_ODDMAN_SLOT(ptn)));
    865   1.1     matt 				PTREE_CHECK(pt);
    866   1.1     matt 				return;
    867   1.1     matt 			}
    868   1.1     matt #endif /* !PTNOMASK */
    869   1.1     matt 			nodep = &PTN_BRANCH_SLOT(parent, parent_slot);
    870   1.1     matt 			KASSERT(*nodep == PTN_BRANCH(target));
    871   1.1     matt 		}
    872   1.1     matt 		/*
    873   1.1     matt 		 * We need also need to know who's pointing at our parent.
    874   1.1     matt 		 * After we remove ourselves from our parent, he'll only
    875   1.1     matt 		 * have one child and that's unacceptable.  So we replace
    876   1.1     matt 		 * the pointer to the parent with our abadoned sibling.
    877   1.1     matt 		 */
    878   1.1     matt 		removep = &PTN_BRANCH_SLOT(parent, parent_slot);
    879   1.1     matt 
    880   1.1     matt 		/*
    881   1.1     matt 		 * Descend into the tree.
    882   1.1     matt 		 */
    883   1.1     matt 		parent = ptn;
    884   1.1     matt 		parent_slot = ptree_testnode(pt, target, parent);
    885   1.1     matt 		bitoff += PTN_BRANCH_BITLEN(parent);
    886   1.1     matt 	}
    887   1.1     matt 
    888   1.1     matt 	/*
    889   1.1     matt 	 * We better have found that the leaf we are looking for is target.
    890   1.1     matt 	 */
    891   1.1     matt 	if (target != ptn) {
    892   1.1     matt 		KASSERT(target == ptn);
    893   1.1     matt 		return;
    894   1.1     matt 	}
    895   1.1     matt 
    896   1.1     matt 	/*
    897   1.1     matt 	 * If we didn't encounter target as branch, then target must be the
    898   1.1     matt 	 * oddman-out.
    899   1.1     matt 	 */
    900   1.1     matt 	if (nodep == NULL) {
    901   1.1     matt 		KASSERT(PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) == PTN_LEAF(target));
    902   1.1     matt 		KASSERT(nodep == NULL);
    903   1.1     matt 		nodep = &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode);
    904   1.1     matt 	}
    905   1.1     matt 
    906   1.1     matt 	KASSERT((removep == NULL) == (parent == &pt->pt_rootnode));
    907   1.1     matt 
    908   1.1     matt 	/*
    909   1.1     matt 	 * We have to special remove the last leaf from the root since
    910   1.1     matt 	 * the only time the tree can a PT_NULL node is when it's empty.
    911   1.1     matt 	 */
    912   1.1     matt 	if (__predict_false(PTN_ISROOT_P(pt, parent))) {
    913   1.1     matt 		KASSERT(removep == NULL);
    914   1.1     matt 		KASSERT(parent == &pt->pt_rootnode);
    915   1.1     matt 		KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
    916   1.1     matt 		KASSERT(*nodep == PTN_LEAF(target));
    917   1.1     matt 		PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PT_NULL;
    918   1.1     matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PT_NULL;
    919   1.1     matt 		return;
    920   1.1     matt 	}
    921   1.1     matt 
    922   1.1     matt 	KASSERT((parent == target) == (removep == nodep));
    923   1.1     matt 	if (PTN_BRANCH(parent) == PTN_BRANCH_SLOT(target, PTN_BRANCH_POSITION(parent))) {
    924   1.1     matt 		/*
    925   1.1     matt 		 * The pointer to the parent actually lives in the target's
    926   1.1     matt 		 * branch identity.  We can't just move the target's branch
    927   1.1     matt 		 * identity since that would result in the parent pointing
    928   1.1     matt 		 * to its own branch identity and that's fobidden.
    929   1.1     matt 		 */
    930   1.1     matt 		const pt_slot_t slot = PTN_BRANCH_POSITION(parent);
    931   1.1     matt 		const pt_slot_t other_slot = slot ^ PT_SLOT_OTHER;
    932   1.1     matt 		const pt_bitlen_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
    933   1.1     matt 
    934   1.1     matt 		KASSERT(PTN_BRANCH_BITOFF(target) < PTN_BRANCH_BITOFF(parent));
    935   1.1     matt 
    936   1.1     matt 		/*
    937   1.1     matt 		 * This gets so confusing.  The target's branch identity
    938   1.1     matt 		 * points to the branch identity of the parent of the target's
    939   1.1     matt 		 * leaf identity:
    940   1.1     matt 		 *
    941   1.1     matt 		 * 	TB = { X, PB = { TL, Y } }
    942   1.1     matt 		 *   or TB = { X, PB = { TL } }
    943   1.1     matt 		 *
    944   1.1     matt 		 * So we can't move the target's branch identity to the parent
    945   1.1     matt 		 * because that would corrupt the tree.
    946   1.1     matt 		 */
    947   1.1     matt 		if (__predict_true(parent_bitlen > 0)) {
    948   1.1     matt 			/*
    949   1.1     matt 			 * The parent is a two-way branch.  We have to have
    950   1.1     matt 			 * do to this chang in two steps to keep internally
    951   1.1     matt 			 * consistent.  First step is to copy our sibling from
    952   1.1     matt 			 * our parent to where we are pointing to parent's
    953   1.1     matt 			 * branch identiy.  This remove all references to his
    954   1.1     matt 			 * branch identity from the tree.  We then simply make
    955   1.1     matt 			 * the parent assume the target's branching duties.
    956   1.1     matt 			 *
    957   1.1     matt 			 *   TB = { X, PB = { Y, TL } } --> PB = { X, Y }.
    958   1.1     matt 			 *   TB = { X, PB = { TL, Y } } --> PB = { X, Y }.
    959   1.1     matt 			 *   TB = { PB = { Y, TL }, X } --> PB = { Y, X }.
    960   1.1     matt 			 *   TB = { PB = { TL, Y }, X } --> PB = { Y, X }.
    961   1.1     matt 			 */
    962   1.1     matt 			PTN_BRANCH_SLOT(target, slot) =
    963   1.1     matt 			    PTN_BRANCH_SLOT(parent, parent_slot ^ PT_SLOT_OTHER);
    964   1.1     matt 			*nodep = ptree_move_branch(pt, parent, target);
    965   1.1     matt 			PTREE_CHECK(pt);
    966   1.1     matt 			return;
    967   1.1     matt 		} else {
    968   1.1     matt 			/*
    969   1.1     matt 			 * If parent was a one-way branch, it must have been
    970   1.1     matt 			 * mask which pointed to a single leaf which we are
    971   1.1     matt 			 * removing.  This means we have to convert the
    972   1.1     matt 			 * parent back to a leaf node.  So in the same
    973   1.1     matt 			 * position that target pointed to parent, we place
    974   1.1     matt 			 * leaf pointer to parent.  In the other position,
    975   1.1     matt 			 * we just put the other node from target.
    976   1.1     matt 			 *
    977   1.1     matt 			 *   TB = { X, PB = { TL } } --> PB = { X, PL }
    978   1.1     matt 			 */
    979   1.1     matt 			KASSERT(PTN_ISMASK_P(parent));
    980   1.1     matt 			KASSERT(slot == ptree_testnode(pt, parent, target));
    981   1.1     matt 			PTN_BRANCH_SLOT(parent, slot) = PTN_LEAF(parent);
    982   1.1     matt 			PTN_BRANCH_SLOT(parent, other_slot) =
    983   1.1     matt 			   PTN_BRANCH_SLOT(target, other_slot);
    984   1.1     matt 			PTN_SET_LEAF_POSITION(parent,slot);
    985   1.1     matt 			PTN_SET_BRANCH_BITLEN(parent, 1);
    986   1.1     matt 		}
    987   1.1     matt 		PTN_SET_BRANCH_BITOFF(parent, PTN_BRANCH_BITOFF(target));
    988   1.1     matt 		PTN_SET_BRANCH_POSITION(parent, PTN_BRANCH_POSITION(target));
    989   1.1     matt 
    990   1.1     matt 		*nodep = PTN_BRANCH(parent);
    991   1.1     matt 		PTREE_CHECK(pt);
    992   1.1     matt 		return;
    993   1.1     matt 	}
    994   1.1     matt 
    995   1.1     matt #ifndef PTNOMASK
    996   1.1     matt 	if (__predict_false(PTN_BRANCH_BITLEN(parent) == 0)) {
    997   1.1     matt 		/*
    998   1.1     matt 		 * Parent was a one-way branch which is changing back to a leaf.
    999   1.1     matt 		 * Since parent is no longer a one-way branch, it can take over
   1000   1.1     matt 		 * target's branching duties.
   1001   1.1     matt 		 *
   1002   1.1     matt 		 *  GB = { PB = { TL } }	--> GB = { PL }
   1003   1.1     matt 		 *  TB = { X, Y }		--> PB = { X, Y }
   1004   1.1     matt 		 */
   1005   1.1     matt 		KASSERT(PTN_ISMASK_P(parent));
   1006   1.1     matt 		KASSERT(parent != target);
   1007   1.1     matt 		*removep = PTN_LEAF(parent);
   1008   1.1     matt 	} else
   1009   1.1     matt #endif /* !PTNOMASK */
   1010   1.1     matt 	{
   1011   1.1     matt 		/*
   1012   1.1     matt 		 * Now we are the normal removal case.  Since after the
   1013   1.1     matt 		 * target's leaf identity is removed from the its parent,
   1014   1.1     matt 		 * that parent will only have one decendent.  So we can
   1015   1.1     matt 		 * just as easily replace the node that has the parent's
   1016   1.1     matt 		 * branch identity with the surviving node.  This freeing
   1017   1.1     matt 		 * parent from its branching duties which means it can
   1018   1.1     matt 		 * take over target's branching duties.
   1019   1.1     matt 		 *
   1020   1.1     matt 		 *  GB = { PB = { X, TL } }	--> GB = { X }
   1021   1.1     matt 		 *  TB = { V, W }		--> PB = { V, W }
   1022   1.1     matt 		 */
   1023   1.1     matt 		const pt_slot_t other_slot = parent_slot ^ PT_SLOT_OTHER;
   1024   1.1     matt 		uintptr_t other_node = PTN_BRANCH_SLOT(parent, other_slot);
   1025   1.1     matt 		const pt_slot_t target_slot = (parent == target ? branch_slot : leaf_slot);
   1026   1.1     matt 
   1027   1.1     matt 		*removep = other_node;
   1028   1.1     matt 
   1029   1.1     matt 		ptree_set_position(other_node, target_slot);
   1030   1.1     matt 
   1031   1.1     matt 		/*
   1032   1.1     matt 		 * If target's branch identity contained its leaf identity, we
   1033   1.1     matt 		 * have nothing left to do.  We've already moved 'X' so there
   1034   1.1     matt 		 * is no longer anything in the target's branch identiy that
   1035   1.1     matt 		 * has to be preserved.
   1036   1.1     matt 		 */
   1037   1.1     matt 		if (parent == target) {
   1038   1.1     matt 			/*
   1039   1.1     matt 			 *  GB = { TB = { X, TL } }	--> GB = { X }
   1040   1.1     matt 			 *  TB = { X, TL }		--> don't care
   1041   1.1     matt 			 */
   1042   1.1     matt 			PTREE_CHECK(pt);
   1043   1.1     matt 			return;
   1044   1.1     matt 		}
   1045   1.1     matt 	}
   1046   1.1     matt 
   1047   1.1     matt 	/*
   1048   1.1     matt 	 * If target wasn't used as a branch, then it must have been the
   1049   1.1     matt 	 * oddman-out of the tree (the one node that doesn't have a branch
   1050   1.1     matt 	 * identity).  This makes parent the new oddman-out.
   1051   1.1     matt 	 */
   1052   1.1     matt 	if (*nodep == PTN_LEAF(target)) {
   1053   1.1     matt 		KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
   1054   1.1     matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(parent);
   1055   1.1     matt 		PTREE_CHECK(pt);
   1056   1.1     matt 		return;
   1057   1.1     matt 	}
   1058   1.1     matt 
   1059   1.1     matt 	/*
   1060   1.1     matt 	 * Finally move the target's branching duties to the parent.
   1061   1.1     matt 	 */
   1062   1.1     matt 	KASSERT(PTN_BRANCH_BITOFF(parent) > PTN_BRANCH_BITOFF(target));
   1063   1.1     matt 	*nodep = ptree_move_branch(pt, parent, target);
   1064   1.1     matt 	PTREE_CHECK(pt);
   1065   1.1     matt }
   1066   1.1     matt 
   1067   1.1     matt #ifdef PTCHECK
   1068   1.1     matt static const pt_node_t *
   1069   1.1     matt ptree_check_find_node2(const pt_tree_t *pt, const pt_node_t *parent,
   1070   1.1     matt 	uintptr_t target)
   1071   1.1     matt {
   1072   1.1     matt 	const pt_bitlen_t slots = 1 << PTN_BRANCH_BITLEN(parent);
   1073   1.1     matt 	pt_slot_t slot;
   1074   1.1     matt 
   1075   1.1     matt 	for (slot = 0; slot < slots; slot++) {
   1076   1.1     matt 		const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
   1077   1.1     matt 		if (PTN_BRANCH_SLOT(parent, slot) == node)
   1078   1.1     matt 			return parent;
   1079   1.1     matt 	}
   1080   1.1     matt 	for (slot = 0; slot < slots; slot++) {
   1081   1.1     matt 		const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
   1082   1.1     matt 		const pt_node_t *branch;
   1083   1.1     matt 		if (!PT_BRANCH_P(node))
   1084   1.1     matt 			continue;
   1085   1.1     matt 		branch = ptree_check_find_node2(pt, PT_NODE(node), target);
   1086   1.1     matt 		if (branch != NULL)
   1087   1.1     matt 			return branch;
   1088   1.1     matt 	}
   1089   1.1     matt 
   1090   1.1     matt 	return NULL;
   1091   1.1     matt }
   1092   1.1     matt 
   1093   1.1     matt static bool
   1094   1.1     matt ptree_check_leaf(const pt_tree_t *pt, const pt_node_t *parent,
   1095   1.1     matt 	const pt_node_t *ptn)
   1096   1.1     matt {
   1097   1.1     matt 	const pt_bitoff_t leaf_position = PTN_LEAF_POSITION(ptn);
   1098   1.1     matt 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
   1099   1.1     matt 	const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
   1100   1.1     matt 	const uintptr_t leaf_node = PTN_LEAF(ptn);
   1101   1.1     matt 	const bool is_parent_root = (parent == &pt->pt_rootnode);
   1102   1.1     matt 	const bool is_mask = PTN_ISMASK_P(ptn);
   1103   1.1     matt 	bool ok = true;
   1104   1.1     matt 
   1105   1.1     matt 	if (is_parent_root) {
   1106   1.1     matt 		ok = ok && PTN_BRANCH_ODDMAN_SLOT(parent) == leaf_node;
   1107   1.1     matt 		KASSERT(ok);
   1108   1.1     matt 		return ok;
   1109   1.1     matt 	}
   1110   1.1     matt 
   1111   1.1     matt 	if (is_mask && PTN_ISMASK_P(parent) && PTN_BRANCH_BITLEN(parent) == 0) {
   1112   1.1     matt 		ok = ok && PTN_MASK_BITLEN(parent) < mask_len;
   1113   1.1     matt 		KASSERT(ok);
   1114   1.1     matt 		ok = ok && PTN_BRANCH_BITOFF(parent) < mask_len;
   1115   1.1     matt 		KASSERT(ok);
   1116   1.1     matt 	}
   1117   1.1     matt 	ok = ok && PTN_BRANCH_SLOT(parent, leaf_position) == leaf_node;
   1118   1.1     matt 	KASSERT(ok);
   1119   1.1     matt 	ok = ok && leaf_position == ptree_testnode(pt, ptn, parent);
   1120   1.1     matt 	KASSERT(ok);
   1121   1.1     matt 	if (PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) != leaf_node) {
   1122   1.1     matt 		ok = ok && bitlen > 0;
   1123   1.1     matt 		KASSERT(ok);
   1124   1.1     matt 		ok = ok && ptn == ptree_check_find_node2(pt, ptn, PTN_LEAF(ptn));
   1125   1.1     matt 		KASSERT(ok);
   1126   1.1     matt 	}
   1127   1.1     matt 	return ok;
   1128   1.1     matt }
   1129   1.1     matt 
   1130   1.1     matt static bool
   1131   1.1     matt ptree_check_branch(const pt_tree_t *pt, const pt_node_t *parent,
   1132   1.1     matt 	const pt_node_t *ptn)
   1133   1.1     matt {
   1134   1.1     matt 	const bool is_parent_root = (parent == &pt->pt_rootnode);
   1135   1.1     matt 	const pt_slot_t branch_slot = PTN_BRANCH_POSITION(ptn);
   1136   1.1     matt 	const pt_bitoff_t bitoff = PTN_BRANCH_BITOFF(ptn);
   1137   1.1     matt 	const pt_bitoff_t bitlen = PTN_BRANCH_BITLEN(ptn);
   1138   1.1     matt 	const pt_bitoff_t parent_bitoff = PTN_BRANCH_BITOFF(parent);
   1139   1.1     matt 	const pt_bitoff_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
   1140   1.1     matt 	const bool is_parent_mask = PTN_ISMASK_P(parent) && parent_bitlen == 0;
   1141   1.1     matt 	const bool is_mask = PTN_ISMASK_P(ptn) && bitlen == 0;
   1142   1.1     matt 	const pt_bitoff_t parent_mask_len = PTN_MASK_BITLEN(parent);
   1143   1.1     matt 	const pt_bitoff_t mask_len = PTN_MASK_BITLEN(ptn);
   1144   1.1     matt 	const pt_bitlen_t slots = 1 << bitlen;
   1145   1.1     matt 	pt_slot_t slot;
   1146   1.1     matt 	bool ok = true;
   1147   1.1     matt 
   1148   1.1     matt 	ok = ok && PTN_BRANCH_SLOT(parent, branch_slot) == PTN_BRANCH(ptn);
   1149   1.1     matt 	KASSERT(ok);
   1150   1.1     matt 	ok = ok && branch_slot == ptree_testnode(pt, ptn, parent);
   1151   1.1     matt 	KASSERT(ok);
   1152   1.1     matt 
   1153   1.1     matt 	if (is_mask) {
   1154   1.1     matt 		ok = ok && bitoff == mask_len;
   1155   1.1     matt 		KASSERT(ok);
   1156   1.1     matt 		if (is_parent_mask) {
   1157   1.1     matt 			ok = ok && parent_mask_len < mask_len;
   1158   1.1     matt 			KASSERT(ok);
   1159   1.1     matt 			ok = ok && parent_bitoff < bitoff;
   1160   1.1     matt 			KASSERT(ok);
   1161   1.1     matt 		}
   1162   1.1     matt 	} else {
   1163   1.1     matt 		if (is_parent_mask) {
   1164   1.1     matt 			ok = ok && parent_bitoff <= bitoff;
   1165   1.1     matt 		} else if (!is_parent_root) {
   1166   1.1     matt 			ok = ok && parent_bitoff < bitoff;
   1167   1.1     matt 		}
   1168   1.1     matt 		KASSERT(ok);
   1169   1.1     matt 	}
   1170   1.1     matt 
   1171   1.1     matt 	for (slot = 0; slot < slots; slot++) {
   1172   1.1     matt 		const uintptr_t node = PTN_BRANCH_SLOT(ptn, slot);
   1173   1.1     matt 		pt_bitoff_t tmp_bitoff = 0;
   1174   1.1     matt 		pt_slot_t tmp_slot;
   1175   1.1     matt 		ok = ok && node != PTN_BRANCH(ptn);
   1176   1.1     matt 		KASSERT(ok);
   1177   1.1     matt 		if (bitlen > 0) {
   1178   1.1     matt 			ok = ok && ptree_matchnode(pt, PT_NODE(node), ptn, bitoff, &tmp_bitoff, &tmp_slot);
   1179   1.1     matt 			KASSERT(ok);
   1180   1.1     matt 			tmp_slot = ptree_testnode(pt, PT_NODE(node), ptn);
   1181   1.1     matt 			ok = ok && slot == tmp_slot;
   1182   1.1     matt 			KASSERT(ok);
   1183   1.1     matt 		}
   1184   1.1     matt 		if (PT_LEAF_P(node))
   1185   1.1     matt 			ok = ok && ptree_check_leaf(pt, ptn, PT_NODE(node));
   1186   1.1     matt 		else
   1187   1.1     matt 			ok = ok && ptree_check_branch(pt, ptn, PT_NODE(node));
   1188   1.1     matt 	}
   1189   1.1     matt 
   1190   1.1     matt 	return ok;
   1191   1.1     matt }
   1192   1.1     matt #endif /* PTCHECK */
   1193   1.1     matt 
   1194   1.2     matt /*ARGSUSED*/
   1195   1.1     matt bool
   1196   1.1     matt ptree_check(const pt_tree_t *pt)
   1197   1.1     matt {
   1198   1.1     matt 	bool ok = true;
   1199   1.1     matt #ifdef PTCHECK
   1200   1.1     matt 	const pt_node_t * const parent = &pt->pt_rootnode;
   1201   1.1     matt 	const uintptr_t node = pt->pt_root;
   1202   1.1     matt 	const pt_node_t * const ptn = PT_NODE(node);
   1203   1.1     matt 
   1204   1.1     matt 	ok = ok && PTN_BRANCH_BITOFF(parent) == 0;
   1205   1.1     matt 	ok = ok && !PTN_ISMASK_P(parent);
   1206   1.1     matt 
   1207   1.1     matt 	if (PT_NULL_P(node))
   1208   1.1     matt 		return ok;
   1209   1.1     matt 
   1210   1.1     matt 	if (PT_LEAF_P(node))
   1211   1.1     matt 		ok = ok && ptree_check_leaf(pt, parent, ptn);
   1212   1.1     matt 	else
   1213   1.1     matt 		ok = ok && ptree_check_branch(pt, parent, ptn);
   1214   1.1     matt #endif
   1215   1.1     matt 	return ok;
   1216   1.1     matt }
   1217  1.10     matt 
   1218  1.10     matt bool
   1219  1.10     matt ptree_mask_node_p(pt_tree_t *pt, const void *item, pt_bitlen_t *lenp)
   1220  1.10     matt {
   1221  1.10     matt 	const pt_node_t * const mask = ITEMTONODE(pt, item);
   1222  1.10     matt 
   1223  1.10     matt 	if (!PTN_ISMASK_P(mask))
   1224  1.10     matt 		return false;
   1225  1.10     matt 
   1226  1.10     matt 	if (lenp != NULL)
   1227  1.10     matt 		*lenp = PTN_MASK_BITLEN(mask);
   1228  1.10     matt 
   1229  1.10     matt 	return true;
   1230  1.10     matt }
   1231