Home | History | Annotate | Line # | Download | only in gen
ptree.c revision 1.13.2.1
      1  1.13.2.1  perseant /*	$NetBSD: ptree.c,v 1.13.2.1 2025/08/02 05:18:34 perseant Exp $	*/
      2       1.1      matt 
      3       1.1      matt /*-
      4       1.1      matt  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5       1.1      matt  * All rights reserved.
      6       1.1      matt  *
      7       1.1      matt  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1      matt  * by Matt Thomas <matt (at) 3am-software.com>.
      9       1.1      matt  *
     10       1.1      matt  * Redistribution and use in source and binary forms, with or without
     11       1.1      matt  * modification, are permitted provided that the following conditions
     12       1.1      matt  * are met:
     13       1.1      matt  * 1. Redistributions of source code must retain the above copyright
     14       1.1      matt  *    notice, this list of conditions and the following disclaimer.
     15       1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     17       1.1      matt  *    documentation and/or other materials provided with the distribution.
     18       1.1      matt  *
     19       1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.1      matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     30       1.1      matt  */
     31       1.1      matt 
     32       1.1      matt #define _PT_PRIVATE
     33       1.1      matt 
     34       1.1      matt #if defined(PTCHECK) && !defined(PTDEBUG)
     35       1.1      matt #define PTDEBUG
     36       1.1      matt #endif
     37       1.1      matt 
     38       1.1      matt #if defined(_KERNEL) || defined(_STANDALONE)
     39       1.1      matt #include <sys/param.h>
     40       1.1      matt #include <sys/types.h>
     41       1.1      matt #include <sys/systm.h>
     42       1.3   jnemeth #include <lib/libkern/libkern.h>
     43  1.13.2.1  perseant __KERNEL_RCSID(0, "$NetBSD: ptree.c,v 1.13.2.1 2025/08/02 05:18:34 perseant Exp $");
     44       1.1      matt #else
     45       1.1      matt #include <stddef.h>
     46       1.1      matt #include <stdint.h>
     47       1.1      matt #include <limits.h>
     48       1.1      matt #include <stdbool.h>
     49       1.1      matt #include <string.h>
     50       1.1      matt #ifdef PTDEBUG
     51       1.1      matt #include <assert.h>
     52       1.1      matt #define	KASSERT(e)	assert(e)
     53       1.1      matt #else
     54      1.12    rillig #define	KASSERT(e)	do { } while (0)
     55       1.1      matt #endif
     56  1.13.2.1  perseant __RCSID("$NetBSD: ptree.c,v 1.13.2.1 2025/08/02 05:18:34 perseant Exp $");
     57       1.1      matt #endif /* _KERNEL || _STANDALONE */
     58       1.1      matt 
     59       1.1      matt #ifdef _LIBC
     60       1.1      matt #include "namespace.h"
     61       1.1      matt #endif
     62       1.1      matt 
     63       1.1      matt #ifdef PTTEST
     64       1.1      matt #include "ptree.h"
     65       1.1      matt #else
     66       1.1      matt #include <sys/ptree.h>
     67       1.1      matt #endif
     68       1.1      matt 
     69       1.1      matt /*
     70       1.9     rmind  * This is an implementation of a radix / PATRICIA tree.  As in a traditional
     71       1.1      matt  * patricia tree, all the data is at the leaves of the tree.  An N-value
     72       1.1      matt  * tree would have N leaves, N-1 branching nodes, and a root pointer.  Each
     73       1.1      matt  * branching node would have left(0) and right(1) pointers that either point
     74       1.1      matt  * to another branching node or a leaf node.  The root pointer would also
     75       1.1      matt  * point to either the first branching node or a leaf node.  Leaf nodes
     76       1.1      matt  * have no need for pointers.
     77       1.1      matt  *
     78       1.1      matt  * However, allocation for these branching nodes is problematic since the
     79       1.9     rmind  * allocation could fail.  This would cause insertions to fail for reasons
     80       1.9     rmind  * beyond the user's control.  So to prevent this, in this implementation
     81       1.1      matt  * each node has two identities: its leaf identity and its branch identity.
     82       1.1      matt  * Each is separate from the other.  Every branch is tagged as to whether
     83       1.1      matt  * it points to a leaf or a branch.  This is not an attribute of the object
     84       1.1      matt  * but of the pointer to the object.  The low bit of the pointer is used as
     85       1.5      yamt  * the tag to determine whether it points to a leaf or branch identity, with
     86       1.1      matt  * branch identities having the low bit set.
     87       1.9     rmind  *
     88       1.1      matt  * A node's branch identity has one rule: when traversing the tree from the
     89       1.1      matt  * root to the node's leaf identity, one of the branches traversed will be via
     90       1.1      matt  * the node's branch identity.  Of course, that has an exception: since to
     91       1.1      matt  * store N leaves, you need N-1 branches.  That one node whose branch identity
     92       1.1      matt  * isn't used is stored as "oddman"-out in the root.
     93       1.1      matt  *
     94       1.1      matt  * Branching nodes also has a bit offset and a bit length which determines
     95       1.1      matt  * which branch slot is used.  The bit length can be zero resulting in a
     96       1.9     rmind  * one-way branch.  This happens in two special cases: the root and
     97       1.1      matt  * interior mask nodes.
     98       1.1      matt  *
     99       1.1      matt  * To support longest match first lookups, when a mask node (one that only
    100       1.1      matt  * match the first N bits) has children who first N bits match the mask nodes,
    101       1.1      matt  * that mask node is converted from being a leaf node to being a one-way
    102       1.1      matt  * branch-node.  The mask becomes fixed in position in the tree.  The mask
    103       1.5      yamt  * will always be the longest mask match for its descendants (unless they
    104       1.1      matt  * traverse an even longer match).
    105       1.1      matt  */
    106       1.1      matt 
    107       1.1      matt #define	NODETOITEM(pt, ptn)	\
    108       1.1      matt 	((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset))
    109       1.1      matt #define	NODETOKEY(pt, ptn)	\
    110       1.1      matt 	((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset + pt->pt_key_offset))
    111       1.1      matt #define	ITEMTONODE(pt, ptn)	\
    112       1.1      matt 	((pt_node_t *)((uintptr_t)(ptn) + (pt)->pt_node_offset))
    113       1.1      matt 
    114       1.1      matt #if PTCHECK > 1
    115       1.1      matt #define	PTREE_CHECK(pt)		ptree_check(pt)
    116       1.1      matt #else
    117      1.12    rillig #define	PTREE_CHECK(pt)		do { } while (0)
    118       1.1      matt #endif
    119       1.1      matt 
    120       1.1      matt static inline bool
    121       1.1      matt ptree_matchnode(const pt_tree_t *pt, const pt_node_t *target,
    122       1.1      matt 	const pt_node_t *ptn, pt_bitoff_t max_bitoff,
    123       1.1      matt 	pt_bitoff_t *bitoff_p, pt_slot_t *slots_p)
    124       1.1      matt {
    125       1.1      matt 	return (*pt->pt_ops->ptto_matchnode)(NODETOKEY(pt, target),
    126       1.6     rmind 	    (ptn != NULL ? NODETOKEY(pt, ptn) : NULL),
    127       1.6     rmind 	    max_bitoff, bitoff_p, slots_p, pt->pt_context);
    128       1.1      matt }
    129       1.1      matt 
    130       1.1      matt static inline pt_slot_t
    131       1.1      matt ptree_testnode(const pt_tree_t *pt, const pt_node_t *target,
    132       1.1      matt 	const pt_node_t *ptn)
    133       1.1      matt {
    134       1.1      matt 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
    135       1.1      matt 	if (bitlen == 0)
    136       1.7      matt 		return PT_SLOT_ROOT;	/* mask or root, doesn't matter */
    137       1.1      matt 	return (*pt->pt_ops->ptto_testnode)(NODETOKEY(pt, target),
    138       1.6     rmind 	    PTN_BRANCH_BITOFF(ptn), bitlen, pt->pt_context);
    139       1.1      matt }
    140       1.1      matt 
    141       1.1      matt static inline bool
    142       1.1      matt ptree_matchkey(const pt_tree_t *pt, const void *key,
    143       1.1      matt 	const pt_node_t *ptn, pt_bitoff_t bitoff, pt_bitlen_t bitlen)
    144       1.1      matt {
    145       1.1      matt 	return (*pt->pt_ops->ptto_matchkey)(key, NODETOKEY(pt, ptn),
    146       1.6     rmind 	    bitoff, bitlen, pt->pt_context);
    147       1.1      matt }
    148       1.1      matt 
    149       1.1      matt static inline pt_slot_t
    150       1.1      matt ptree_testkey(const pt_tree_t *pt, const void *key, const pt_node_t *ptn)
    151       1.1      matt {
    152       1.7      matt 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
    153       1.7      matt 	if (bitlen == 0)
    154       1.7      matt 		return PT_SLOT_ROOT;	/* mask or root, doesn't matter */
    155       1.6     rmind 	return (*pt->pt_ops->ptto_testkey)(key, PTN_BRANCH_BITOFF(ptn),
    156       1.6     rmind 	    PTN_BRANCH_BITLEN(ptn), pt->pt_context);
    157       1.1      matt }
    158       1.1      matt 
    159       1.1      matt static inline void
    160       1.1      matt ptree_set_position(uintptr_t node, pt_slot_t position)
    161       1.1      matt {
    162       1.1      matt 	if (PT_LEAF_P(node))
    163       1.1      matt 		PTN_SET_LEAF_POSITION(PT_NODE(node), position);
    164       1.1      matt 	else
    165       1.1      matt 		PTN_SET_BRANCH_POSITION(PT_NODE(node), position);
    166       1.1      matt }
    167       1.1      matt 
    168       1.1      matt void
    169       1.6     rmind ptree_init(pt_tree_t *pt, const pt_tree_ops_t *ops, void *context,
    170       1.6     rmind 	size_t node_offset, size_t key_offset)
    171       1.1      matt {
    172       1.1      matt 	memset(pt, 0, sizeof(*pt));
    173       1.1      matt 	pt->pt_node_offset = node_offset;
    174       1.1      matt 	pt->pt_key_offset = key_offset;
    175       1.6     rmind 	pt->pt_context = context;
    176       1.1      matt 	pt->pt_ops = ops;
    177       1.1      matt }
    178       1.1      matt 
    179       1.1      matt typedef struct {
    180       1.1      matt 	uintptr_t *id_insertp;
    181       1.1      matt 	pt_node_t *id_parent;
    182       1.1      matt 	uintptr_t id_node;
    183       1.1      matt 	pt_slot_t id_parent_slot;
    184       1.1      matt 	pt_bitoff_t id_bitoff;
    185       1.1      matt 	pt_slot_t id_slot;
    186       1.1      matt } pt_insertdata_t;
    187       1.1      matt 
    188       1.1      matt typedef bool (*pt_insertfunc_t)(pt_tree_t *, pt_node_t *, pt_insertdata_t *);
    189       1.1      matt 
    190       1.1      matt /*
    191       1.1      matt  * Move a branch identify from src to dst.  The leaves don't care since
    192       1.1      matt  * nothing for them has changed.
    193       1.1      matt  */
    194       1.2      matt /*ARGSUSED*/
    195       1.1      matt static uintptr_t
    196       1.1      matt ptree_move_branch(pt_tree_t * const pt, pt_node_t * const dst,
    197       1.1      matt 	const pt_node_t * const src)
    198       1.1      matt {
    199       1.1      matt 	KASSERT(PTN_BRANCH_BITLEN(src) == 1);
    200       1.1      matt 	/* set branch bitlen and bitoff in one step.  */
    201       1.1      matt 	dst->ptn_branchdata = src->ptn_branchdata;
    202       1.1      matt 	PTN_SET_BRANCH_POSITION(dst, PTN_BRANCH_POSITION(src));
    203       1.1      matt 	PTN_COPY_BRANCH_SLOTS(dst, src);
    204       1.1      matt 	return PTN_BRANCH(dst);
    205       1.1      matt }
    206       1.1      matt 
    207       1.1      matt #ifndef PTNOMASK
    208       1.1      matt static inline uintptr_t *
    209       1.1      matt ptree_find_branch(pt_tree_t * const pt, uintptr_t branch_node)
    210       1.1      matt {
    211       1.1      matt 	pt_node_t * const branch = PT_NODE(branch_node);
    212       1.1      matt 	pt_node_t *parent;
    213       1.1      matt 
    214       1.1      matt 	for (parent = &pt->pt_rootnode;;) {
    215       1.1      matt 		uintptr_t *nodep =
    216       1.1      matt 		    &PTN_BRANCH_SLOT(parent, ptree_testnode(pt, branch, parent));
    217       1.1      matt 		if (*nodep == branch_node)
    218       1.1      matt 			return nodep;
    219       1.1      matt 		if (PT_LEAF_P(*nodep))
    220       1.1      matt 			return NULL;
    221       1.1      matt 		parent = PT_NODE(*nodep);
    222       1.1      matt 	}
    223       1.1      matt }
    224       1.1      matt 
    225       1.1      matt static bool
    226       1.1      matt ptree_insert_leaf_after_mask(pt_tree_t * const pt, pt_node_t * const target,
    227       1.1      matt 	pt_insertdata_t * const id)
    228       1.1      matt {
    229       1.1      matt 	const uintptr_t target_node = PTN_LEAF(target);
    230       1.1      matt 	const uintptr_t mask_node = id->id_node;
    231       1.1      matt 	pt_node_t * const mask = PT_NODE(mask_node);
    232       1.1      matt 	const pt_bitlen_t mask_len = PTN_MASK_BITLEN(mask);
    233       1.1      matt 
    234       1.1      matt 	KASSERT(PT_LEAF_P(mask_node));
    235       1.1      matt 	KASSERT(PTN_LEAF_POSITION(mask) == id->id_parent_slot);
    236       1.1      matt 	KASSERT(mask_len <= id->id_bitoff);
    237       1.1      matt 	KASSERT(PTN_ISMASK_P(mask));
    238       1.1      matt 	KASSERT(!PTN_ISMASK_P(target) || mask_len < PTN_MASK_BITLEN(target));
    239       1.1      matt 
    240       1.1      matt 	if (mask_node == PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode)) {
    241       1.1      matt 		KASSERT(id->id_parent != mask);
    242       1.1      matt 		/*
    243       1.1      matt 		 * Nice, mask was an oddman.  So just set the oddman to target.
    244       1.1      matt 		 */
    245       1.1      matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = target_node;
    246       1.1      matt 	} else {
    247       1.1      matt 		/*
    248       1.1      matt 		 * We need to find out who's pointing to mask's branch
    249       1.1      matt 		 * identity.  We know that between root and the leaf identity,
    250       1.1      matt 		 * we must traverse the node's branch identity.
    251       1.1      matt 		 */
    252       1.1      matt 		uintptr_t * const mask_nodep = ptree_find_branch(pt, PTN_BRANCH(mask));
    253       1.1      matt 		KASSERT(mask_nodep != NULL);
    254       1.1      matt 		KASSERT(*mask_nodep == PTN_BRANCH(mask));
    255       1.1      matt 		KASSERT(PTN_BRANCH_BITLEN(mask) == 1);
    256       1.1      matt 
    257       1.1      matt 		/*
    258       1.1      matt 		 * Alas, mask was used as a branch.  Since the mask is becoming
    259       1.1      matt 		 * a one-way branch, we need make target take over mask's
    260       1.1      matt 		 * branching responsibilities.  Only then can we change it.
    261       1.1      matt 		 */
    262       1.1      matt 		*mask_nodep = ptree_move_branch(pt, target, mask);
    263       1.1      matt 
    264       1.1      matt 		/*
    265       1.1      matt 		 * However, it's possible that mask's parent is itself.  If
    266       1.1      matt 		 * that's true, update the insert point to use target since it
    267       1.1      matt 		 * has taken over mask's branching duties.
    268       1.1      matt 		 */
    269       1.1      matt 		if (id->id_parent == mask)
    270       1.1      matt 			id->id_insertp = &PTN_BRANCH_SLOT(target,
    271       1.1      matt 			    id->id_parent_slot);
    272       1.1      matt 	}
    273       1.1      matt 
    274       1.1      matt 	PTN_SET_BRANCH_BITLEN(mask, 0);
    275       1.1      matt 	PTN_SET_BRANCH_BITOFF(mask, mask_len);
    276       1.1      matt 
    277       1.1      matt 	PTN_BRANCH_ROOT_SLOT(mask) = target_node;
    278       1.1      matt 	PTN_BRANCH_ODDMAN_SLOT(mask) = PT_NULL;
    279       1.1      matt 	PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
    280       1.1      matt 	PTN_SET_BRANCH_POSITION(mask, id->id_parent_slot);
    281       1.1      matt 
    282       1.1      matt 	/*
    283       1.1      matt 	 * Now that everything is done, to make target visible we need to
    284       1.1      matt 	 * change mask from a leaf to a branch.
    285       1.1      matt 	 */
    286       1.1      matt 	*id->id_insertp = PTN_BRANCH(mask);
    287       1.1      matt 	PTREE_CHECK(pt);
    288       1.1      matt 	return true;
    289       1.1      matt }
    290       1.1      matt 
    291       1.2      matt /*ARGSUSED*/
    292       1.1      matt static bool
    293       1.1      matt ptree_insert_mask_before_node(pt_tree_t * const pt, pt_node_t * const target,
    294       1.1      matt 	pt_insertdata_t * const id)
    295       1.1      matt {
    296       1.1      matt 	const uintptr_t node = id->id_node;
    297       1.1      matt 	pt_node_t * const ptn = PT_NODE(node);
    298       1.1      matt 	const pt_slot_t mask_len = PTN_MASK_BITLEN(target);
    299       1.1      matt 	const pt_bitlen_t node_mask_len = PTN_MASK_BITLEN(ptn);
    300       1.1      matt 
    301       1.1      matt 	KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(ptn));
    302       1.1      matt 	KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(ptn));
    303       1.1      matt 	KASSERT(PTN_ISMASK_P(target));
    304       1.1      matt 
    305       1.1      matt 	/*
    306       1.1      matt 	 * If the node we are placing ourself in front is a mask with the
    307       1.1      matt 	 * same mask length as us, return failure.
    308       1.1      matt 	 */
    309       1.1      matt 	if (PTN_ISMASK_P(ptn) && node_mask_len == mask_len)
    310       1.1      matt 		return false;
    311       1.1      matt 
    312       1.1      matt 	PTN_SET_BRANCH_BITLEN(target, 0);
    313       1.1      matt 	PTN_SET_BRANCH_BITOFF(target, mask_len);
    314       1.1      matt 
    315       1.1      matt 	PTN_BRANCH_SLOT(target, PT_SLOT_ROOT) = node;
    316       1.1      matt 	*id->id_insertp = PTN_BRANCH(target);
    317       1.1      matt 
    318       1.1      matt 	PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
    319       1.1      matt 	ptree_set_position(node, PT_SLOT_ROOT);
    320       1.1      matt 
    321       1.1      matt 	PTREE_CHECK(pt);
    322       1.1      matt 	return true;
    323       1.1      matt }
    324       1.1      matt #endif /* !PTNOMASK */
    325       1.1      matt 
    326       1.2      matt /*ARGSUSED*/
    327       1.1      matt static bool
    328       1.1      matt ptree_insert_branch_at_node(pt_tree_t * const pt, pt_node_t * const target,
    329       1.1      matt 	pt_insertdata_t * const id)
    330       1.1      matt {
    331       1.1      matt 	const uintptr_t target_node = PTN_LEAF(target);
    332       1.1      matt 	const uintptr_t node = id->id_node;
    333       1.1      matt 	const pt_slot_t other_slot = id->id_slot ^ PT_SLOT_OTHER;
    334       1.1      matt 
    335       1.1      matt 	KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(PT_NODE(node)));
    336       1.1      matt 	KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(PT_NODE(node)));
    337       1.1      matt 	KASSERT((node == pt->pt_root) == (id->id_parent == &pt->pt_rootnode));
    338       1.1      matt #ifndef PTNOMASK
    339       1.1      matt 	KASSERT(!PTN_ISMASK_P(target) || id->id_bitoff <= PTN_MASK_BITLEN(target));
    340       1.1      matt #endif
    341       1.1      matt 	KASSERT(node == pt->pt_root || PTN_BRANCH_BITOFF(id->id_parent) + PTN_BRANCH_BITLEN(id->id_parent) <= id->id_bitoff);
    342       1.1      matt 
    343       1.1      matt 	PTN_SET_BRANCH_BITOFF(target, id->id_bitoff);
    344       1.1      matt 	PTN_SET_BRANCH_BITLEN(target, 1);
    345       1.1      matt 
    346       1.1      matt 	PTN_BRANCH_SLOT(target, id->id_slot) = target_node;
    347       1.1      matt 	PTN_BRANCH_SLOT(target, other_slot) = node;
    348       1.1      matt 	*id->id_insertp = PTN_BRANCH(target);
    349       1.1      matt 
    350       1.1      matt 	PTN_SET_LEAF_POSITION(target, id->id_slot);
    351       1.1      matt 	ptree_set_position(node, other_slot);
    352       1.1      matt 
    353       1.1      matt 	PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
    354       1.1      matt 	PTREE_CHECK(pt);
    355       1.1      matt 	return true;
    356       1.1      matt }
    357       1.1      matt 
    358       1.1      matt static bool
    359       1.1      matt ptree_insert_leaf(pt_tree_t * const pt, pt_node_t * const target,
    360       1.1      matt 	pt_insertdata_t * const id)
    361       1.1      matt {
    362       1.1      matt 	const uintptr_t leaf_node = id->id_node;
    363       1.1      matt 	pt_node_t * const leaf = PT_NODE(leaf_node);
    364       1.1      matt #ifdef PTNOMASK
    365       1.1      matt 	const bool inserting_mask = false;
    366       1.1      matt 	const bool at_mask = false;
    367       1.1      matt #else
    368       1.1      matt 	const bool inserting_mask = PTN_ISMASK_P(target);
    369       1.1      matt 	const bool at_mask = PTN_ISMASK_P(leaf);
    370       1.1      matt 	const pt_bitlen_t leaf_masklen = PTN_MASK_BITLEN(leaf);
    371       1.1      matt 	const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
    372       1.1      matt #endif
    373       1.1      matt 	pt_insertfunc_t insertfunc = ptree_insert_branch_at_node;
    374       1.1      matt 	bool matched;
    375       1.1      matt 
    376       1.1      matt 	/*
    377       1.1      matt 	 * In all likelyhood we are going simply going to insert a branch
    378       1.1      matt 	 * where this leaf is which will point to the old and new leaves.
    379       1.1      matt 	 */
    380       1.1      matt 	KASSERT(PT_LEAF_P(leaf_node));
    381       1.1      matt 	KASSERT(PTN_LEAF_POSITION(leaf) == id->id_parent_slot);
    382       1.1      matt 	matched = ptree_matchnode(pt, target, leaf, UINT_MAX,
    383       1.1      matt 	    &id->id_bitoff, &id->id_slot);
    384       1.1      matt 	if (__predict_false(!inserting_mask)) {
    385       1.1      matt 		/*
    386       1.1      matt 		 * We aren't inserting a mask nor is the leaf a mask, which
    387       1.1      matt 		 * means we are trying to insert a duplicate leaf.  Can't do
    388       1.1      matt 		 * that.
    389       1.1      matt 		 */
    390       1.1      matt 		if (!at_mask && matched)
    391       1.1      matt 			return false;
    392       1.1      matt 
    393       1.1      matt #ifndef PTNOMASK
    394       1.1      matt 		/*
    395       1.1      matt 		 * We are at a mask and the leaf we are about to insert
    396       1.1      matt 		 * is at or beyond the mask, we need to convert the mask
    397       1.1      matt 		 * from a leaf to a one-way branch interior mask.
    398       1.1      matt 		 */
    399       1.1      matt 		if (at_mask && id->id_bitoff >= leaf_masklen)
    400       1.1      matt 			insertfunc = ptree_insert_leaf_after_mask;
    401       1.1      matt #endif /* PTNOMASK */
    402       1.1      matt 	}
    403       1.1      matt #ifndef PTNOMASK
    404       1.1      matt 	else {
    405       1.1      matt 		/*
    406       1.1      matt 		 * We are inserting a mask.
    407       1.1      matt 		 */
    408       1.1      matt 		if (matched) {
    409       1.1      matt 			/*
    410       1.1      matt 			 * If the leaf isn't a mask, we obviously have to
    411       1.1      matt 			 * insert the new mask before non-mask leaf.  If the
    412       1.1      matt 			 * leaf is a mask, and the new node has a LEQ mask
    413       1.1      matt 			 * length it too needs to inserted before leaf (*).
    414       1.1      matt 			 *
    415       1.1      matt 			 * In other cases, we place the new mask as leaf after
    416       1.1      matt 			 * leaf mask.  Which mask comes first will be a one-way
    417       1.1      matt 			 * branch interior mask node which has the other mask
    418       1.1      matt 			 * node as a child.
    419       1.1      matt 			 *
    420       1.1      matt 			 * (*) ptree_insert_mask_before_node can detect a
    421       1.1      matt 			 * duplicate mask and return failure if needed.
    422       1.1      matt 			 */
    423       1.1      matt 			if (!at_mask || target_masklen <= leaf_masklen)
    424       1.1      matt 				insertfunc = ptree_insert_mask_before_node;
    425       1.1      matt 			else
    426       1.1      matt 				insertfunc = ptree_insert_leaf_after_mask;
    427       1.1      matt 		} else if (at_mask && id->id_bitoff >= leaf_masklen) {
    428       1.1      matt 			/*
    429       1.1      matt 			 * If the new mask has a bit offset GEQ than the leaf's
    430       1.1      matt 			 * mask length, convert the left to a one-way branch
    431       1.1      matt 			 * interior mask and make that point to the new [leaf]
    432       1.1      matt 			 * mask.
    433       1.1      matt 			 */
    434       1.1      matt 			insertfunc = ptree_insert_leaf_after_mask;
    435       1.1      matt 		} else {
    436       1.1      matt 			/*
    437       1.1      matt 			 * The new mask has a bit offset less than the leaf's
    438       1.1      matt 			 * mask length or if the leaf isn't a mask at all, the
    439       1.1      matt 			 * new mask deserves to be its own leaf so we use the
    440       1.1      matt 			 * default insertfunc to do that.
    441       1.1      matt 			 */
    442       1.1      matt 		}
    443       1.1      matt 	}
    444       1.1      matt #endif /* PTNOMASK */
    445       1.1      matt 
    446       1.1      matt 	return (*insertfunc)(pt, target, id);
    447       1.1      matt }
    448       1.1      matt 
    449       1.1      matt static bool
    450       1.1      matt ptree_insert_node_common(pt_tree_t *pt, void *item)
    451       1.1      matt {
    452       1.1      matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    453       1.1      matt #ifndef PTNOMASK
    454       1.1      matt 	const bool inserting_mask = PTN_ISMASK_P(target);
    455       1.1      matt 	const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
    456       1.1      matt #endif
    457       1.1      matt 	pt_insertfunc_t insertfunc;
    458       1.1      matt 	pt_insertdata_t id;
    459       1.1      matt 
    460       1.1      matt 	/*
    461       1.8      matt 	 * If this node already exists in the tree, return failure.
    462       1.8      matt 	 */
    463       1.8      matt 	if (target == PT_NODE(pt->pt_root))
    464       1.8      matt 		return false;
    465       1.8      matt 
    466       1.8      matt 	/*
    467       1.1      matt 	 * We need a leaf so we can match against.  Until we get a leaf
    468       1.1      matt 	 * we having nothing to test against.
    469       1.1      matt 	 */
    470       1.1      matt 	if (__predict_false(PT_NULL_P(pt->pt_root))) {
    471       1.1      matt 		PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
    472       1.1      matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
    473       1.1      matt 		PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
    474       1.1      matt 		PTREE_CHECK(pt);
    475       1.1      matt 		return true;
    476       1.1      matt 	}
    477       1.1      matt 
    478       1.1      matt 	id.id_bitoff = 0;
    479       1.1      matt 	id.id_parent = &pt->pt_rootnode;
    480       1.1      matt 	id.id_parent_slot = PT_SLOT_ROOT;
    481       1.1      matt 	id.id_insertp = &PTN_BRANCH_ROOT_SLOT(id.id_parent);
    482       1.1      matt 	for (;;) {
    483       1.1      matt 		pt_bitoff_t branch_bitoff;
    484       1.1      matt 		pt_node_t * const ptn = PT_NODE(*id.id_insertp);
    485       1.1      matt 		id.id_node = *id.id_insertp;
    486       1.1      matt 
    487       1.1      matt 		/*
    488       1.8      matt 		 * If this node already exists in the tree, return failure.
    489       1.8      matt 		 */
    490       1.8      matt 		if (target == ptn)
    491       1.8      matt 			return false;
    492       1.8      matt 
    493       1.8      matt 		/*
    494       1.1      matt 		 * If we hit a leaf, try to insert target at leaf.  We could
    495       1.1      matt 		 * have inlined ptree_insert_leaf here but that would have
    496       1.1      matt 		 * made this routine much harder to understand.  Trust the
    497       1.1      matt 		 * compiler to optimize this properly.
    498       1.1      matt 		 */
    499       1.1      matt 		if (PT_LEAF_P(id.id_node)) {
    500       1.1      matt 			KASSERT(PTN_LEAF_POSITION(ptn) == id.id_parent_slot);
    501       1.1      matt 			insertfunc = ptree_insert_leaf;
    502       1.1      matt 			break;
    503       1.1      matt 		}
    504       1.1      matt 
    505       1.1      matt 		/*
    506       1.1      matt 		 * If we aren't a leaf, we must be a branch.  Make sure we are
    507       1.1      matt 		 * in the slot we think we are.
    508       1.1      matt 		 */
    509       1.1      matt 		KASSERT(PT_BRANCH_P(id.id_node));
    510       1.1      matt 		KASSERT(PTN_BRANCH_POSITION(ptn) == id.id_parent_slot);
    511       1.1      matt 
    512       1.1      matt 		/*
    513       1.1      matt 		 * Where is this branch?
    514       1.1      matt 		 */
    515       1.1      matt 		branch_bitoff = PTN_BRANCH_BITOFF(ptn);
    516       1.1      matt 
    517       1.1      matt #ifndef PTNOMASK
    518       1.1      matt 		/*
    519       1.1      matt 		 * If this is a one-way mask node, its offset must equal
    520       1.1      matt 		 * its mask's bitlen.
    521       1.1      matt 		 */
    522       1.1      matt 		KASSERT(!(PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) || PTN_MASK_BITLEN(ptn) == branch_bitoff);
    523       1.1      matt 
    524       1.1      matt 		/*
    525       1.1      matt 		 * If we are inserting a mask, and we know that at this point
    526       1.1      matt 		 * all bits before the current bit offset match both the target
    527       1.1      matt 		 * and the branch.  If the target's mask length is LEQ than
    528       1.1      matt 		 * this branch's bit offset, then this is where the mask needs
    529       1.1      matt 		 * to added to the tree.
    530       1.1      matt 		 */
    531       1.1      matt 		if (__predict_false(inserting_mask)
    532       1.1      matt 		    && (PTN_ISROOT_P(pt, id.id_parent)
    533       1.1      matt 			|| id.id_bitoff < target_masklen)
    534       1.1      matt 		    && target_masklen <= branch_bitoff) {
    535       1.1      matt 			/*
    536       1.1      matt 			 * We don't know about the bits (if any) between
    537       1.1      matt 			 * id.id_bitoff and the target's mask length match
    538       1.1      matt 			 * both the target and the branch.  If the target's
    539       1.1      matt 			 * mask length is greater than the current bit offset
    540       1.1      matt 			 * make sure the untested bits match both the target
    541       1.1      matt 			 * and the branch.
    542       1.1      matt 			 */
    543       1.1      matt 			if (target_masklen == id.id_bitoff
    544       1.1      matt 			    || ptree_matchnode(pt, target, ptn, target_masklen,
    545       1.1      matt 				    &id.id_bitoff, &id.id_slot)) {
    546       1.1      matt 				/*
    547       1.1      matt 				 * The bits matched, so insert the mask as a
    548       1.1      matt 				 * one-way branch.
    549       1.1      matt 				 */
    550       1.1      matt 				insertfunc = ptree_insert_mask_before_node;
    551       1.1      matt 				break;
    552       1.1      matt 			} else if (id.id_bitoff < branch_bitoff) {
    553       1.1      matt 				/*
    554       1.1      matt 				 * They didn't match, so create a normal branch
    555       1.1      matt 				 * because this mask needs to a be a new leaf.
    556       1.1      matt 				 */
    557       1.1      matt 				insertfunc = ptree_insert_branch_at_node;
    558       1.1      matt 				break;
    559       1.1      matt 			}
    560       1.1      matt 		}
    561       1.1      matt #endif /* PTNOMASK */
    562       1.1      matt 
    563       1.1      matt 		/*
    564       1.1      matt 		 * If we are skipping some bits, verify they match the node.
    565       1.1      matt 		 * If they don't match, it means we have a leaf to insert.
    566       1.1      matt 		 * Note that if we are advancing bit by bit, we'll skip
    567       1.1      matt 		 * doing matchnode and walk the tree bit by bit via testnode.
    568       1.1      matt 		 */
    569       1.1      matt 		if (id.id_bitoff < branch_bitoff
    570       1.1      matt 		    && !ptree_matchnode(pt, target, ptn, branch_bitoff,
    571       1.1      matt 					&id.id_bitoff, &id.id_slot)) {
    572       1.1      matt 			KASSERT(id.id_bitoff < branch_bitoff);
    573       1.1      matt 			insertfunc = ptree_insert_branch_at_node;
    574       1.1      matt 			break;
    575       1.1      matt 		}
    576       1.1      matt 
    577       1.1      matt 		/*
    578       1.1      matt 		 * At this point, all bits before branch_bitoff are known
    579       1.1      matt 		 * to match the target.
    580       1.1      matt 		 */
    581       1.1      matt 		KASSERT(id.id_bitoff >= branch_bitoff);
    582       1.1      matt 
    583       1.1      matt 		/*
    584      1.11    andvar 		 * Descend the tree one level.
    585       1.1      matt 		 */
    586       1.1      matt 		id.id_parent = ptn;
    587       1.1      matt 		id.id_parent_slot = ptree_testnode(pt, target, id.id_parent);
    588       1.1      matt 		id.id_bitoff += PTN_BRANCH_BITLEN(id.id_parent);
    589       1.1      matt 		id.id_insertp = &PTN_BRANCH_SLOT(id.id_parent, id.id_parent_slot);
    590       1.1      matt 	}
    591       1.1      matt 
    592       1.1      matt 	/*
    593       1.1      matt 	 * Do the actual insertion.
    594       1.1      matt 	 */
    595       1.1      matt 	return (*insertfunc)(pt, target, &id);
    596       1.1      matt }
    597       1.1      matt 
    598       1.1      matt bool
    599       1.1      matt ptree_insert_node(pt_tree_t *pt, void *item)
    600       1.1      matt {
    601       1.1      matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    602       1.1      matt 
    603       1.1      matt 	memset(target, 0, sizeof(*target));
    604       1.1      matt 	return ptree_insert_node_common(pt, target);
    605       1.1      matt }
    606       1.1      matt 
    607       1.1      matt #ifndef PTNOMASK
    608       1.1      matt bool
    609       1.1      matt ptree_insert_mask_node(pt_tree_t *pt, void *item, pt_bitlen_t mask_len)
    610       1.1      matt {
    611       1.1      matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    612       1.1      matt 	pt_bitoff_t bitoff = mask_len;
    613       1.1      matt 	pt_slot_t slot;
    614       1.1      matt 
    615       1.1      matt 	memset(target, 0, sizeof(*target));
    616       1.1      matt 	KASSERT(mask_len == 0 || (~PT__MASK(PTN_MASK_BITLEN) & mask_len) == 0);
    617       1.1      matt 	/*
    618       1.1      matt 	 * Only the first <mask_len> bits can be non-zero.
    619       1.1      matt 	 * All other bits must be 0.
    620       1.1      matt 	 */
    621       1.1      matt 	if (!ptree_matchnode(pt, target, NULL, UINT_MAX, &bitoff, &slot))
    622       1.1      matt 		return false;
    623       1.1      matt 	PTN_SET_MASK_BITLEN(target, mask_len);
    624       1.1      matt 	PTN_MARK_MASK(target);
    625       1.1      matt 	return ptree_insert_node_common(pt, target);
    626       1.1      matt }
    627       1.1      matt #endif /* !PTNOMASH */
    628       1.1      matt 
    629       1.1      matt void *
    630       1.9     rmind ptree_find_filtered_node(pt_tree_t *pt, const void *key, pt_filter_t filter,
    631       1.1      matt 	void *filter_arg)
    632       1.1      matt {
    633       1.1      matt #ifndef PTNOMASK
    634       1.1      matt 	pt_node_t *mask = NULL;
    635       1.1      matt #endif
    636       1.1      matt 	bool at_mask = false;
    637       1.1      matt 	pt_node_t *ptn, *parent;
    638       1.1      matt 	pt_bitoff_t bitoff;
    639       1.1      matt 	pt_slot_t parent_slot;
    640       1.1      matt 
    641       1.1      matt 	if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)))
    642       1.1      matt 		return NULL;
    643       1.1      matt 
    644       1.1      matt 	bitoff = 0;
    645       1.1      matt 	parent = &pt->pt_rootnode;
    646       1.1      matt 	parent_slot = PT_SLOT_ROOT;
    647       1.1      matt 	for (;;) {
    648       1.1      matt 		const uintptr_t node = PTN_BRANCH_SLOT(parent, parent_slot);
    649       1.1      matt 		const pt_slot_t branch_bitoff = PTN_BRANCH_BITOFF(PT_NODE(node));
    650       1.1      matt 		ptn = PT_NODE(node);
    651       1.1      matt 
    652       1.1      matt 		if (PT_LEAF_P(node)) {
    653       1.1      matt #ifndef PTNOMASK
    654       1.1      matt 			at_mask = PTN_ISMASK_P(ptn);
    655       1.1      matt #endif
    656       1.1      matt 			break;
    657       1.1      matt 		}
    658       1.1      matt 
    659       1.1      matt 		if (bitoff < branch_bitoff) {
    660       1.1      matt 			if (!ptree_matchkey(pt, key, ptn, bitoff, branch_bitoff - bitoff)) {
    661       1.1      matt #ifndef PTNOMASK
    662       1.1      matt 				if (mask != NULL)
    663       1.1      matt 					return NODETOITEM(pt, mask);
    664       1.1      matt #endif
    665       1.1      matt 				return NULL;
    666       1.1      matt 			}
    667       1.1      matt 			bitoff = branch_bitoff;
    668       1.1      matt 		}
    669       1.1      matt 
    670       1.1      matt #ifndef PTNOMASK
    671       1.1      matt 		if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0
    672       1.1      matt 		    && (!filter
    673       1.1      matt 		        || (*filter)(filter_arg, NODETOITEM(pt, ptn),
    674       1.1      matt 				     PT_FILTER_MASK)))
    675       1.1      matt 			mask = ptn;
    676       1.1      matt #endif
    677       1.1      matt 
    678       1.1      matt 		parent = ptn;
    679       1.1      matt 		parent_slot = ptree_testkey(pt, key, parent);
    680       1.1      matt 		bitoff += PTN_BRANCH_BITLEN(parent);
    681       1.1      matt 	}
    682       1.1      matt 
    683       1.1      matt 	KASSERT(PTN_ISROOT_P(pt, parent) || PTN_BRANCH_BITOFF(parent) + PTN_BRANCH_BITLEN(parent) == bitoff);
    684       1.1      matt 	if (!filter || (*filter)(filter_arg, NODETOITEM(pt, ptn), at_mask ? PT_FILTER_MASK : 0)) {
    685       1.1      matt #ifndef PTNOMASK
    686       1.1      matt 		if (PTN_ISMASK_P(ptn)) {
    687       1.1      matt 			const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
    688       1.1      matt 			if (bitoff == PTN_MASK_BITLEN(ptn))
    689       1.1      matt 				return NODETOITEM(pt, ptn);
    690       1.1      matt 			if (ptree_matchkey(pt, key, ptn, bitoff, mask_len - bitoff))
    691       1.1      matt 				return NODETOITEM(pt, ptn);
    692       1.1      matt 		} else
    693       1.1      matt #endif /* !PTNOMASK */
    694       1.1      matt 		if (ptree_matchkey(pt, key, ptn, bitoff, UINT_MAX))
    695       1.1      matt 			return NODETOITEM(pt, ptn);
    696       1.1      matt 	}
    697       1.1      matt 
    698       1.1      matt #ifndef PTNOMASK
    699       1.1      matt 	/*
    700       1.1      matt 	 * By virtue of how the mask was placed in the tree,
    701       1.1      matt 	 * all nodes descended from it will match it.  But the bits
    702       1.1      matt 	 * before the mask still need to be checked and since the
    703       1.1      matt 	 * mask was a branch, that was done implicitly.
    704       1.1      matt 	 */
    705       1.1      matt 	if (mask != NULL) {
    706       1.1      matt 		KASSERT(ptree_matchkey(pt, key, mask, 0, PTN_MASK_BITLEN(mask)));
    707       1.1      matt 		return NODETOITEM(pt, mask);
    708       1.1      matt 	}
    709       1.1      matt #endif /* !PTNOMASK */
    710       1.1      matt 
    711       1.1      matt 	/*
    712       1.1      matt 	 * Nothing matched.
    713       1.1      matt 	 */
    714       1.1      matt 	return NULL;
    715       1.1      matt }
    716       1.1      matt 
    717       1.1      matt void *
    718       1.1      matt ptree_iterate(pt_tree_t *pt, const void *item, pt_direction_t direction)
    719       1.1      matt {
    720       1.1      matt 	const pt_node_t * const target = ITEMTONODE(pt, item);
    721       1.1      matt 	uintptr_t node, next_node;
    722       1.1      matt 
    723       1.1      matt 	if (direction != PT_ASCENDING && direction != PT_DESCENDING)
    724       1.1      matt 		return NULL;
    725       1.1      matt 
    726       1.1      matt 	node = PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode);
    727       1.1      matt 	if (PT_NULL_P(node))
    728       1.1      matt 		return NULL;
    729       1.1      matt 
    730       1.1      matt 	if (item == NULL) {
    731       1.1      matt 		pt_node_t * const ptn = PT_NODE(node);
    732       1.1      matt 		if (direction == PT_ASCENDING
    733       1.1      matt 		    && PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0)
    734       1.1      matt 			return NODETOITEM(pt, ptn);
    735       1.1      matt 		next_node = node;
    736       1.1      matt 	} else {
    737       1.1      matt #ifndef PTNOMASK
    738       1.1      matt 		uintptr_t mask_node = PT_NULL;
    739       1.1      matt #endif /* !PTNOMASK */
    740       1.1      matt 		next_node = PT_NULL;
    741       1.1      matt 		while (!PT_LEAF_P(node)) {
    742       1.1      matt 			pt_node_t * const ptn = PT_NODE(node);
    743       1.1      matt 			pt_slot_t slot;
    744       1.1      matt #ifndef PTNOMASK
    745       1.1      matt 			if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) {
    746       1.1      matt 				if (ptn == target)
    747       1.1      matt 					break;
    748       1.1      matt 				if (direction == PT_DESCENDING) {
    749       1.1      matt 					mask_node = node;
    750       1.1      matt 					next_node = PT_NULL;
    751       1.1      matt 				}
    752       1.1      matt 			}
    753       1.1      matt #endif /* !PTNOMASK */
    754       1.1      matt 			slot = ptree_testnode(pt, target, ptn);
    755       1.1      matt 			node = PTN_BRANCH_SLOT(ptn, slot);
    756       1.1      matt 			if (direction == PT_ASCENDING) {
    757       1.4     lukem 				if (slot != (pt_slot_t)((1 << PTN_BRANCH_BITLEN(ptn)) - 1))
    758       1.1      matt 					next_node = PTN_BRANCH_SLOT(ptn, slot + 1);
    759       1.1      matt 			} else {
    760       1.1      matt 				if (slot > 0) {
    761       1.1      matt #ifndef PTNOMASK
    762       1.1      matt 					mask_node = PT_NULL;
    763       1.1      matt #endif /* !PTNOMASK */
    764       1.1      matt 					next_node = PTN_BRANCH_SLOT(ptn, slot - 1);
    765       1.1      matt 				}
    766       1.1      matt 			}
    767       1.1      matt 		}
    768       1.1      matt 		if (PT_NODE(node) != target)
    769       1.1      matt 			return NULL;
    770       1.1      matt #ifndef PTNOMASK
    771       1.1      matt 		if (PT_BRANCH_P(node)) {
    772       1.1      matt 			pt_node_t *ptn = PT_NODE(node);
    773       1.1      matt 			KASSERT(PTN_ISMASK_P(PT_NODE(node)) && PTN_BRANCH_BITLEN(PT_NODE(node)) == 0);
    774       1.1      matt 			if (direction == PT_ASCENDING) {
    775       1.1      matt 				next_node = PTN_BRANCH_ROOT_SLOT(ptn);
    776       1.1      matt 				ptn = PT_NODE(next_node);
    777       1.1      matt 			}
    778       1.1      matt 		}
    779       1.1      matt 		/*
    780       1.1      matt 		 * When descending, if we countered a mask node then that's
    781       1.1      matt 		 * we want to return.
    782       1.1      matt 		 */
    783       1.1      matt 		if (direction == PT_DESCENDING && !PT_NULL_P(mask_node)) {
    784       1.1      matt 			KASSERT(PT_NULL_P(next_node));
    785       1.1      matt 			return NODETOITEM(pt, PT_NODE(mask_node));
    786       1.1      matt 		}
    787       1.1      matt #endif /* !PTNOMASK */
    788       1.1      matt 	}
    789       1.1      matt 
    790       1.1      matt 	node = next_node;
    791       1.1      matt 	if (PT_NULL_P(node))
    792       1.1      matt 		return NULL;
    793       1.1      matt 
    794       1.1      matt 	while (!PT_LEAF_P(node)) {
    795       1.1      matt 		pt_node_t * const ptn = PT_NODE(node);
    796       1.1      matt 		pt_slot_t slot;
    797       1.1      matt 		if (direction == PT_ASCENDING) {
    798       1.1      matt #ifndef PTNOMASK
    799       1.1      matt 			if (PT_BRANCH_P(node)
    800       1.1      matt 			    && PTN_ISMASK_P(ptn)
    801       1.1      matt 			    && PTN_BRANCH_BITLEN(ptn) == 0)
    802       1.1      matt 				return NODETOITEM(pt, ptn);
    803       1.1      matt #endif /* !PTNOMASK */
    804       1.1      matt 			slot = PT_SLOT_LEFT;
    805       1.1      matt 		} else {
    806       1.1      matt 			slot = (1 << PTN_BRANCH_BITLEN(ptn)) - 1;
    807       1.1      matt 		}
    808       1.1      matt 		node = PTN_BRANCH_SLOT(ptn, slot);
    809       1.1      matt 	}
    810       1.1      matt 	return NODETOITEM(pt, PT_NODE(node));
    811       1.1      matt }
    812       1.1      matt 
    813       1.1      matt void
    814       1.1      matt ptree_remove_node(pt_tree_t *pt, void *item)
    815       1.1      matt {
    816       1.1      matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    817       1.1      matt 	const pt_slot_t leaf_slot = PTN_LEAF_POSITION(target);
    818       1.1      matt 	const pt_slot_t branch_slot = PTN_BRANCH_POSITION(target);
    819       1.1      matt 	pt_node_t *ptn, *parent;
    820       1.1      matt 	uintptr_t node;
    821       1.1      matt 	uintptr_t *removep;
    822       1.1      matt 	uintptr_t *nodep;
    823       1.1      matt 	pt_bitoff_t bitoff;
    824       1.1      matt 	pt_slot_t parent_slot;
    825       1.1      matt #ifndef PTNOMASK
    826       1.1      matt 	bool at_mask;
    827       1.1      matt #endif
    828       1.1      matt 
    829       1.1      matt 	if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode))) {
    830       1.1      matt 		KASSERT(!PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)));
    831       1.1      matt 		return;
    832       1.1      matt 	}
    833       1.1      matt 
    834       1.1      matt 	bitoff = 0;
    835       1.1      matt 	removep = NULL;
    836       1.1      matt 	nodep = NULL;
    837       1.1      matt 	parent = &pt->pt_rootnode;
    838       1.1      matt 	parent_slot = PT_SLOT_ROOT;
    839       1.1      matt 	for (;;) {
    840       1.1      matt 		node = PTN_BRANCH_SLOT(parent, parent_slot);
    841       1.1      matt 		ptn = PT_NODE(node);
    842       1.1      matt #ifndef PTNOMASK
    843       1.1      matt 		at_mask = PTN_ISMASK_P(ptn);
    844       1.1      matt #endif
    845       1.1      matt 
    846       1.1      matt 		if (PT_LEAF_P(node))
    847       1.1      matt 			break;
    848       1.1      matt 
    849       1.1      matt 		/*
    850       1.1      matt 		 * If we are at the target, then we are looking at its branch
    851       1.1      matt 		 * identity.  We need to remember who's pointing at it so we
    852       1.1      matt 		 * stop them from doing that.
    853       1.1      matt 		 */
    854       1.1      matt 		if (__predict_false(ptn == target)) {
    855       1.1      matt 			KASSERT(nodep == NULL);
    856       1.1      matt #ifndef PTNOMASK
    857       1.1      matt 			/*
    858       1.1      matt 			 * Interior mask nodes are trivial to get rid of.
    859       1.1      matt 			 */
    860       1.1      matt 			if (at_mask && PTN_BRANCH_BITLEN(ptn) == 0) {
    861       1.1      matt 				PTN_BRANCH_SLOT(parent, parent_slot) =
    862       1.1      matt 				    PTN_BRANCH_ROOT_SLOT(ptn);
    863       1.1      matt 				KASSERT(PT_NULL_P(PTN_BRANCH_ODDMAN_SLOT(ptn)));
    864       1.1      matt 				PTREE_CHECK(pt);
    865       1.1      matt 				return;
    866       1.1      matt 			}
    867       1.1      matt #endif /* !PTNOMASK */
    868       1.1      matt 			nodep = &PTN_BRANCH_SLOT(parent, parent_slot);
    869       1.1      matt 			KASSERT(*nodep == PTN_BRANCH(target));
    870       1.1      matt 		}
    871       1.1      matt 		/*
    872       1.1      matt 		 * We need also need to know who's pointing at our parent.
    873       1.1      matt 		 * After we remove ourselves from our parent, he'll only
    874       1.1      matt 		 * have one child and that's unacceptable.  So we replace
    875  1.13.2.1  perseant 		 * the pointer to the parent with our abandoned sibling.
    876       1.1      matt 		 */
    877       1.1      matt 		removep = &PTN_BRANCH_SLOT(parent, parent_slot);
    878       1.1      matt 
    879       1.1      matt 		/*
    880       1.1      matt 		 * Descend into the tree.
    881       1.1      matt 		 */
    882       1.1      matt 		parent = ptn;
    883       1.1      matt 		parent_slot = ptree_testnode(pt, target, parent);
    884       1.1      matt 		bitoff += PTN_BRANCH_BITLEN(parent);
    885       1.1      matt 	}
    886       1.1      matt 
    887       1.1      matt 	/*
    888       1.1      matt 	 * We better have found that the leaf we are looking for is target.
    889       1.1      matt 	 */
    890       1.1      matt 	if (target != ptn) {
    891       1.1      matt 		KASSERT(target == ptn);
    892       1.1      matt 		return;
    893       1.1      matt 	}
    894       1.1      matt 
    895       1.1      matt 	/*
    896       1.1      matt 	 * If we didn't encounter target as branch, then target must be the
    897       1.1      matt 	 * oddman-out.
    898       1.1      matt 	 */
    899       1.1      matt 	if (nodep == NULL) {
    900       1.1      matt 		KASSERT(PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) == PTN_LEAF(target));
    901       1.1      matt 		KASSERT(nodep == NULL);
    902       1.1      matt 		nodep = &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode);
    903       1.1      matt 	}
    904       1.1      matt 
    905       1.1      matt 	KASSERT((removep == NULL) == (parent == &pt->pt_rootnode));
    906       1.1      matt 
    907       1.1      matt 	/*
    908       1.1      matt 	 * We have to special remove the last leaf from the root since
    909       1.1      matt 	 * the only time the tree can a PT_NULL node is when it's empty.
    910       1.1      matt 	 */
    911       1.1      matt 	if (__predict_false(PTN_ISROOT_P(pt, parent))) {
    912       1.1      matt 		KASSERT(removep == NULL);
    913       1.1      matt 		KASSERT(parent == &pt->pt_rootnode);
    914       1.1      matt 		KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
    915       1.1      matt 		KASSERT(*nodep == PTN_LEAF(target));
    916       1.1      matt 		PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PT_NULL;
    917       1.1      matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PT_NULL;
    918       1.1      matt 		return;
    919       1.1      matt 	}
    920       1.1      matt 
    921       1.1      matt 	KASSERT((parent == target) == (removep == nodep));
    922       1.1      matt 	if (PTN_BRANCH(parent) == PTN_BRANCH_SLOT(target, PTN_BRANCH_POSITION(parent))) {
    923       1.1      matt 		/*
    924       1.1      matt 		 * The pointer to the parent actually lives in the target's
    925       1.1      matt 		 * branch identity.  We can't just move the target's branch
    926       1.1      matt 		 * identity since that would result in the parent pointing
    927  1.13.2.1  perseant 		 * to its own branch identity and that's forbidden.
    928       1.1      matt 		 */
    929       1.1      matt 		const pt_slot_t slot = PTN_BRANCH_POSITION(parent);
    930       1.1      matt 		const pt_slot_t other_slot = slot ^ PT_SLOT_OTHER;
    931       1.1      matt 		const pt_bitlen_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
    932       1.1      matt 
    933       1.1      matt 		KASSERT(PTN_BRANCH_BITOFF(target) < PTN_BRANCH_BITOFF(parent));
    934       1.1      matt 
    935       1.1      matt 		/*
    936       1.1      matt 		 * This gets so confusing.  The target's branch identity
    937       1.1      matt 		 * points to the branch identity of the parent of the target's
    938       1.1      matt 		 * leaf identity:
    939       1.1      matt 		 *
    940       1.1      matt 		 * 	TB = { X, PB = { TL, Y } }
    941       1.1      matt 		 *   or TB = { X, PB = { TL } }
    942       1.1      matt 		 *
    943       1.1      matt 		 * So we can't move the target's branch identity to the parent
    944       1.1      matt 		 * because that would corrupt the tree.
    945       1.1      matt 		 */
    946       1.1      matt 		if (__predict_true(parent_bitlen > 0)) {
    947       1.1      matt 			/*
    948       1.1      matt 			 * The parent is a two-way branch.  We have to have
    949  1.13.2.1  perseant 			 * do to this change in two steps to keep internally
    950       1.1      matt 			 * consistent.  First step is to copy our sibling from
    951       1.1      matt 			 * our parent to where we are pointing to parent's
    952  1.13.2.1  perseant 			 * branch identity.  This remove all references to his
    953       1.1      matt 			 * branch identity from the tree.  We then simply make
    954       1.1      matt 			 * the parent assume the target's branching duties.
    955       1.1      matt 			 *
    956       1.1      matt 			 *   TB = { X, PB = { Y, TL } } --> PB = { X, Y }.
    957       1.1      matt 			 *   TB = { X, PB = { TL, Y } } --> PB = { X, Y }.
    958       1.1      matt 			 *   TB = { PB = { Y, TL }, X } --> PB = { Y, X }.
    959       1.1      matt 			 *   TB = { PB = { TL, Y }, X } --> PB = { Y, X }.
    960       1.1      matt 			 */
    961       1.1      matt 			PTN_BRANCH_SLOT(target, slot) =
    962       1.1      matt 			    PTN_BRANCH_SLOT(parent, parent_slot ^ PT_SLOT_OTHER);
    963       1.1      matt 			*nodep = ptree_move_branch(pt, parent, target);
    964       1.1      matt 			PTREE_CHECK(pt);
    965       1.1      matt 			return;
    966       1.1      matt 		} else {
    967       1.1      matt 			/*
    968       1.1      matt 			 * If parent was a one-way branch, it must have been
    969       1.1      matt 			 * mask which pointed to a single leaf which we are
    970       1.1      matt 			 * removing.  This means we have to convert the
    971       1.1      matt 			 * parent back to a leaf node.  So in the same
    972       1.1      matt 			 * position that target pointed to parent, we place
    973       1.1      matt 			 * leaf pointer to parent.  In the other position,
    974       1.1      matt 			 * we just put the other node from target.
    975       1.1      matt 			 *
    976       1.1      matt 			 *   TB = { X, PB = { TL } } --> PB = { X, PL }
    977       1.1      matt 			 */
    978       1.1      matt 			KASSERT(PTN_ISMASK_P(parent));
    979       1.1      matt 			KASSERT(slot == ptree_testnode(pt, parent, target));
    980       1.1      matt 			PTN_BRANCH_SLOT(parent, slot) = PTN_LEAF(parent);
    981       1.1      matt 			PTN_BRANCH_SLOT(parent, other_slot) =
    982       1.1      matt 			   PTN_BRANCH_SLOT(target, other_slot);
    983       1.1      matt 			PTN_SET_LEAF_POSITION(parent,slot);
    984       1.1      matt 			PTN_SET_BRANCH_BITLEN(parent, 1);
    985       1.1      matt 		}
    986       1.1      matt 		PTN_SET_BRANCH_BITOFF(parent, PTN_BRANCH_BITOFF(target));
    987       1.1      matt 		PTN_SET_BRANCH_POSITION(parent, PTN_BRANCH_POSITION(target));
    988       1.1      matt 
    989       1.1      matt 		*nodep = PTN_BRANCH(parent);
    990       1.1      matt 		PTREE_CHECK(pt);
    991       1.1      matt 		return;
    992       1.1      matt 	}
    993       1.1      matt 
    994       1.1      matt #ifndef PTNOMASK
    995       1.1      matt 	if (__predict_false(PTN_BRANCH_BITLEN(parent) == 0)) {
    996       1.1      matt 		/*
    997       1.1      matt 		 * Parent was a one-way branch which is changing back to a leaf.
    998       1.1      matt 		 * Since parent is no longer a one-way branch, it can take over
    999       1.1      matt 		 * target's branching duties.
   1000       1.1      matt 		 *
   1001       1.1      matt 		 *  GB = { PB = { TL } }	--> GB = { PL }
   1002       1.1      matt 		 *  TB = { X, Y }		--> PB = { X, Y }
   1003       1.1      matt 		 */
   1004       1.1      matt 		KASSERT(PTN_ISMASK_P(parent));
   1005       1.1      matt 		KASSERT(parent != target);
   1006       1.1      matt 		*removep = PTN_LEAF(parent);
   1007       1.1      matt 	} else
   1008       1.1      matt #endif /* !PTNOMASK */
   1009       1.1      matt 	{
   1010       1.1      matt 		/*
   1011       1.1      matt 		 * Now we are the normal removal case.  Since after the
   1012       1.1      matt 		 * target's leaf identity is removed from the its parent,
   1013      1.11    andvar 		 * that parent will only have one descendant.  So we can
   1014       1.1      matt 		 * just as easily replace the node that has the parent's
   1015       1.1      matt 		 * branch identity with the surviving node.  This freeing
   1016       1.1      matt 		 * parent from its branching duties which means it can
   1017       1.1      matt 		 * take over target's branching duties.
   1018       1.1      matt 		 *
   1019       1.1      matt 		 *  GB = { PB = { X, TL } }	--> GB = { X }
   1020       1.1      matt 		 *  TB = { V, W }		--> PB = { V, W }
   1021       1.1      matt 		 */
   1022       1.1      matt 		const pt_slot_t other_slot = parent_slot ^ PT_SLOT_OTHER;
   1023       1.1      matt 		uintptr_t other_node = PTN_BRANCH_SLOT(parent, other_slot);
   1024       1.1      matt 		const pt_slot_t target_slot = (parent == target ? branch_slot : leaf_slot);
   1025       1.1      matt 
   1026       1.1      matt 		*removep = other_node;
   1027       1.1      matt 
   1028       1.1      matt 		ptree_set_position(other_node, target_slot);
   1029       1.1      matt 
   1030       1.1      matt 		/*
   1031       1.1      matt 		 * If target's branch identity contained its leaf identity, we
   1032       1.1      matt 		 * have nothing left to do.  We've already moved 'X' so there
   1033  1.13.2.1  perseant 		 * is no longer anything in the target's branch identity that
   1034       1.1      matt 		 * has to be preserved.
   1035       1.1      matt 		 */
   1036       1.1      matt 		if (parent == target) {
   1037       1.1      matt 			/*
   1038       1.1      matt 			 *  GB = { TB = { X, TL } }	--> GB = { X }
   1039       1.1      matt 			 *  TB = { X, TL }		--> don't care
   1040       1.1      matt 			 */
   1041       1.1      matt 			PTREE_CHECK(pt);
   1042       1.1      matt 			return;
   1043       1.1      matt 		}
   1044       1.1      matt 	}
   1045       1.1      matt 
   1046       1.1      matt 	/*
   1047       1.1      matt 	 * If target wasn't used as a branch, then it must have been the
   1048       1.1      matt 	 * oddman-out of the tree (the one node that doesn't have a branch
   1049       1.1      matt 	 * identity).  This makes parent the new oddman-out.
   1050       1.1      matt 	 */
   1051       1.1      matt 	if (*nodep == PTN_LEAF(target)) {
   1052       1.1      matt 		KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
   1053       1.1      matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(parent);
   1054       1.1      matt 		PTREE_CHECK(pt);
   1055       1.1      matt 		return;
   1056       1.1      matt 	}
   1057       1.1      matt 
   1058       1.1      matt 	/*
   1059       1.1      matt 	 * Finally move the target's branching duties to the parent.
   1060       1.1      matt 	 */
   1061       1.1      matt 	KASSERT(PTN_BRANCH_BITOFF(parent) > PTN_BRANCH_BITOFF(target));
   1062       1.1      matt 	*nodep = ptree_move_branch(pt, parent, target);
   1063       1.1      matt 	PTREE_CHECK(pt);
   1064       1.1      matt }
   1065       1.1      matt 
   1066       1.1      matt #ifdef PTCHECK
   1067       1.1      matt static const pt_node_t *
   1068       1.1      matt ptree_check_find_node2(const pt_tree_t *pt, const pt_node_t *parent,
   1069       1.1      matt 	uintptr_t target)
   1070       1.1      matt {
   1071       1.1      matt 	const pt_bitlen_t slots = 1 << PTN_BRANCH_BITLEN(parent);
   1072       1.1      matt 	pt_slot_t slot;
   1073       1.1      matt 
   1074       1.1      matt 	for (slot = 0; slot < slots; slot++) {
   1075       1.1      matt 		const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
   1076       1.1      matt 		if (PTN_BRANCH_SLOT(parent, slot) == node)
   1077       1.1      matt 			return parent;
   1078       1.1      matt 	}
   1079       1.1      matt 	for (slot = 0; slot < slots; slot++) {
   1080       1.1      matt 		const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
   1081       1.1      matt 		const pt_node_t *branch;
   1082       1.1      matt 		if (!PT_BRANCH_P(node))
   1083       1.1      matt 			continue;
   1084       1.1      matt 		branch = ptree_check_find_node2(pt, PT_NODE(node), target);
   1085       1.1      matt 		if (branch != NULL)
   1086       1.1      matt 			return branch;
   1087       1.1      matt 	}
   1088       1.1      matt 
   1089       1.1      matt 	return NULL;
   1090       1.1      matt }
   1091       1.1      matt 
   1092       1.1      matt static bool
   1093       1.1      matt ptree_check_leaf(const pt_tree_t *pt, const pt_node_t *parent,
   1094       1.1      matt 	const pt_node_t *ptn)
   1095       1.1      matt {
   1096       1.1      matt 	const pt_bitoff_t leaf_position = PTN_LEAF_POSITION(ptn);
   1097       1.1      matt 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
   1098       1.1      matt 	const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
   1099       1.1      matt 	const uintptr_t leaf_node = PTN_LEAF(ptn);
   1100       1.1      matt 	const bool is_parent_root = (parent == &pt->pt_rootnode);
   1101       1.1      matt 	const bool is_mask = PTN_ISMASK_P(ptn);
   1102       1.1      matt 	bool ok = true;
   1103       1.1      matt 
   1104       1.1      matt 	if (is_parent_root) {
   1105       1.1      matt 		ok = ok && PTN_BRANCH_ODDMAN_SLOT(parent) == leaf_node;
   1106       1.1      matt 		KASSERT(ok);
   1107       1.1      matt 		return ok;
   1108       1.1      matt 	}
   1109       1.1      matt 
   1110       1.1      matt 	if (is_mask && PTN_ISMASK_P(parent) && PTN_BRANCH_BITLEN(parent) == 0) {
   1111       1.1      matt 		ok = ok && PTN_MASK_BITLEN(parent) < mask_len;
   1112       1.1      matt 		KASSERT(ok);
   1113       1.1      matt 		ok = ok && PTN_BRANCH_BITOFF(parent) < mask_len;
   1114       1.1      matt 		KASSERT(ok);
   1115       1.1      matt 	}
   1116       1.1      matt 	ok = ok && PTN_BRANCH_SLOT(parent, leaf_position) == leaf_node;
   1117       1.1      matt 	KASSERT(ok);
   1118       1.1      matt 	ok = ok && leaf_position == ptree_testnode(pt, ptn, parent);
   1119       1.1      matt 	KASSERT(ok);
   1120       1.1      matt 	if (PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) != leaf_node) {
   1121       1.1      matt 		ok = ok && bitlen > 0;
   1122       1.1      matt 		KASSERT(ok);
   1123       1.1      matt 		ok = ok && ptn == ptree_check_find_node2(pt, ptn, PTN_LEAF(ptn));
   1124       1.1      matt 		KASSERT(ok);
   1125       1.1      matt 	}
   1126       1.1      matt 	return ok;
   1127       1.1      matt }
   1128       1.1      matt 
   1129       1.1      matt static bool
   1130       1.1      matt ptree_check_branch(const pt_tree_t *pt, const pt_node_t *parent,
   1131       1.1      matt 	const pt_node_t *ptn)
   1132       1.1      matt {
   1133       1.1      matt 	const bool is_parent_root = (parent == &pt->pt_rootnode);
   1134       1.1      matt 	const pt_slot_t branch_slot = PTN_BRANCH_POSITION(ptn);
   1135       1.1      matt 	const pt_bitoff_t bitoff = PTN_BRANCH_BITOFF(ptn);
   1136       1.1      matt 	const pt_bitoff_t bitlen = PTN_BRANCH_BITLEN(ptn);
   1137       1.1      matt 	const pt_bitoff_t parent_bitoff = PTN_BRANCH_BITOFF(parent);
   1138       1.1      matt 	const pt_bitoff_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
   1139       1.1      matt 	const bool is_parent_mask = PTN_ISMASK_P(parent) && parent_bitlen == 0;
   1140       1.1      matt 	const bool is_mask = PTN_ISMASK_P(ptn) && bitlen == 0;
   1141       1.1      matt 	const pt_bitoff_t parent_mask_len = PTN_MASK_BITLEN(parent);
   1142       1.1      matt 	const pt_bitoff_t mask_len = PTN_MASK_BITLEN(ptn);
   1143       1.1      matt 	const pt_bitlen_t slots = 1 << bitlen;
   1144       1.1      matt 	pt_slot_t slot;
   1145       1.1      matt 	bool ok = true;
   1146       1.1      matt 
   1147       1.1      matt 	ok = ok && PTN_BRANCH_SLOT(parent, branch_slot) == PTN_BRANCH(ptn);
   1148       1.1      matt 	KASSERT(ok);
   1149       1.1      matt 	ok = ok && branch_slot == ptree_testnode(pt, ptn, parent);
   1150       1.1      matt 	KASSERT(ok);
   1151       1.1      matt 
   1152       1.1      matt 	if (is_mask) {
   1153       1.1      matt 		ok = ok && bitoff == mask_len;
   1154       1.1      matt 		KASSERT(ok);
   1155       1.1      matt 		if (is_parent_mask) {
   1156       1.1      matt 			ok = ok && parent_mask_len < mask_len;
   1157       1.1      matt 			KASSERT(ok);
   1158       1.1      matt 			ok = ok && parent_bitoff < bitoff;
   1159       1.1      matt 			KASSERT(ok);
   1160       1.1      matt 		}
   1161       1.1      matt 	} else {
   1162       1.1      matt 		if (is_parent_mask) {
   1163       1.1      matt 			ok = ok && parent_bitoff <= bitoff;
   1164       1.1      matt 		} else if (!is_parent_root) {
   1165       1.1      matt 			ok = ok && parent_bitoff < bitoff;
   1166       1.1      matt 		}
   1167       1.1      matt 		KASSERT(ok);
   1168       1.1      matt 	}
   1169       1.1      matt 
   1170       1.1      matt 	for (slot = 0; slot < slots; slot++) {
   1171       1.1      matt 		const uintptr_t node = PTN_BRANCH_SLOT(ptn, slot);
   1172       1.1      matt 		pt_bitoff_t tmp_bitoff = 0;
   1173       1.1      matt 		pt_slot_t tmp_slot;
   1174       1.1      matt 		ok = ok && node != PTN_BRANCH(ptn);
   1175       1.1      matt 		KASSERT(ok);
   1176       1.1      matt 		if (bitlen > 0) {
   1177       1.1      matt 			ok = ok && ptree_matchnode(pt, PT_NODE(node), ptn, bitoff, &tmp_bitoff, &tmp_slot);
   1178       1.1      matt 			KASSERT(ok);
   1179       1.1      matt 			tmp_slot = ptree_testnode(pt, PT_NODE(node), ptn);
   1180       1.1      matt 			ok = ok && slot == tmp_slot;
   1181       1.1      matt 			KASSERT(ok);
   1182       1.1      matt 		}
   1183       1.1      matt 		if (PT_LEAF_P(node))
   1184       1.1      matt 			ok = ok && ptree_check_leaf(pt, ptn, PT_NODE(node));
   1185       1.1      matt 		else
   1186       1.1      matt 			ok = ok && ptree_check_branch(pt, ptn, PT_NODE(node));
   1187       1.1      matt 	}
   1188       1.1      matt 
   1189       1.1      matt 	return ok;
   1190       1.1      matt }
   1191       1.1      matt #endif /* PTCHECK */
   1192       1.1      matt 
   1193       1.2      matt /*ARGSUSED*/
   1194       1.1      matt bool
   1195       1.1      matt ptree_check(const pt_tree_t *pt)
   1196       1.1      matt {
   1197       1.1      matt 	bool ok = true;
   1198       1.1      matt #ifdef PTCHECK
   1199       1.1      matt 	const pt_node_t * const parent = &pt->pt_rootnode;
   1200       1.1      matt 	const uintptr_t node = pt->pt_root;
   1201       1.1      matt 	const pt_node_t * const ptn = PT_NODE(node);
   1202       1.1      matt 
   1203       1.1      matt 	ok = ok && PTN_BRANCH_BITOFF(parent) == 0;
   1204       1.1      matt 	ok = ok && !PTN_ISMASK_P(parent);
   1205       1.1      matt 
   1206       1.1      matt 	if (PT_NULL_P(node))
   1207       1.1      matt 		return ok;
   1208       1.1      matt 
   1209       1.1      matt 	if (PT_LEAF_P(node))
   1210       1.1      matt 		ok = ok && ptree_check_leaf(pt, parent, ptn);
   1211       1.1      matt 	else
   1212       1.1      matt 		ok = ok && ptree_check_branch(pt, parent, ptn);
   1213       1.1      matt #endif
   1214       1.1      matt 	return ok;
   1215       1.1      matt }
   1216      1.10      matt 
   1217      1.10      matt bool
   1218      1.10      matt ptree_mask_node_p(pt_tree_t *pt, const void *item, pt_bitlen_t *lenp)
   1219      1.10      matt {
   1220      1.10      matt 	const pt_node_t * const mask = ITEMTONODE(pt, item);
   1221      1.10      matt 
   1222      1.10      matt 	if (!PTN_ISMASK_P(mask))
   1223      1.10      matt 		return false;
   1224      1.10      matt 
   1225      1.10      matt 	if (lenp != NULL)
   1226      1.10      matt 		*lenp = PTN_MASK_BITLEN(mask);
   1227      1.10      matt 
   1228      1.10      matt 	return true;
   1229      1.10      matt }
   1230