Home | History | Annotate | Line # | Download | only in gen
ptree.c revision 1.3
      1  1.3  jnemeth /* $NetBSD: ptree.c,v 1.3 2008/11/21 03:23:43 jnemeth Exp $ */
      2  1.1     matt 
      3  1.1     matt /*-
      4  1.1     matt  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  1.1     matt  * All rights reserved.
      6  1.1     matt  *
      7  1.1     matt  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1     matt  * by Matt Thomas <matt (at) 3am-software.com>.
      9  1.1     matt  *
     10  1.1     matt  * Redistribution and use in source and binary forms, with or without
     11  1.1     matt  * modification, are permitted provided that the following conditions
     12  1.1     matt  * are met:
     13  1.1     matt  * 1. Redistributions of source code must retain the above copyright
     14  1.1     matt  *    notice, this list of conditions and the following disclaimer.
     15  1.1     matt  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1     matt  *    notice, this list of conditions and the following disclaimer in the
     17  1.1     matt  *    documentation and/or other materials provided with the distribution.
     18  1.1     matt  *
     19  1.1     matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.1     matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.1     matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.1     matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.1     matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.1     matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.1     matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.1     matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.1     matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.1     matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.1     matt  * POSSIBILITY OF SUCH DAMAGE.
     30  1.1     matt  */
     31  1.1     matt 
     32  1.1     matt #define _PT_PRIVATE
     33  1.1     matt 
     34  1.1     matt #if defined(PTCHECK) && !defined(PTDEBUG)
     35  1.1     matt #define PTDEBUG
     36  1.1     matt #endif
     37  1.1     matt 
     38  1.1     matt #if defined(_KERNEL) || defined(_STANDALONE)
     39  1.1     matt #include <sys/param.h>
     40  1.1     matt #include <sys/types.h>
     41  1.1     matt #include <sys/systm.h>
     42  1.3  jnemeth #include <lib/libkern/libkern.h>
     43  1.3  jnemeth __KERNEL_RCSID(0, "$NetBSD: ptree.c,v 1.3 2008/11/21 03:23:43 jnemeth Exp $");
     44  1.1     matt #else
     45  1.1     matt #include <stddef.h>
     46  1.1     matt #include <stdint.h>
     47  1.1     matt #include <limits.h>
     48  1.1     matt #include <stdbool.h>
     49  1.1     matt #include <string.h>
     50  1.1     matt #ifdef PTDEBUG
     51  1.1     matt #include <assert.h>
     52  1.1     matt #define	KASSERT(e)	assert(e)
     53  1.1     matt #else
     54  1.1     matt #define	KASSERT(e)	do { } while (/*CONSTCOND*/ 0)
     55  1.1     matt #endif
     56  1.3  jnemeth __RCSID("$NetBSD: ptree.c,v 1.3 2008/11/21 03:23:43 jnemeth Exp $");
     57  1.1     matt #endif /* _KERNEL || _STANDALONE */
     58  1.1     matt 
     59  1.1     matt #ifdef _LIBC
     60  1.1     matt #include "namespace.h"
     61  1.1     matt #endif
     62  1.1     matt 
     63  1.1     matt #ifdef PTTEST
     64  1.1     matt #include "ptree.h"
     65  1.1     matt #else
     66  1.1     matt #include <sys/ptree.h>
     67  1.1     matt #endif
     68  1.1     matt 
     69  1.1     matt /*
     70  1.1     matt  * This is an implementation of a radix / PATRICIA tree.  As in a traditional
     71  1.1     matt  * patricia tree, all the data is at the leaves of the tree.  An N-value
     72  1.1     matt  * tree would have N leaves, N-1 branching nodes, and a root pointer.  Each
     73  1.1     matt  * branching node would have left(0) and right(1) pointers that either point
     74  1.1     matt  * to another branching node or a leaf node.  The root pointer would also
     75  1.1     matt  * point to either the first branching node or a leaf node.  Leaf nodes
     76  1.1     matt  * have no need for pointers.
     77  1.1     matt  *
     78  1.1     matt  * However, allocation for these branching nodes is problematic since the
     79  1.1     matt  * allocation could fail.  This would cause insertions to fail for reasons
     80  1.1     matt  * beyond the users control.  So to prevent this, in this implementation
     81  1.1     matt  * each node has two identities: its leaf identity and its branch identity.
     82  1.1     matt  * Each is separate from the other.  Every branch is tagged as to whether
     83  1.1     matt  * it points to a leaf or a branch.  This is not an attribute of the object
     84  1.1     matt  * but of the pointer to the object.  The low bit of the pointer is used as
     85  1.1     matt  * the tag to determine wether it points to a leaf or branch identity, with
     86  1.1     matt  * branch identities having the low bit set.
     87  1.1     matt  *
     88  1.1     matt  * A node's branch identity has one rule: when traversing the tree from the
     89  1.1     matt  * root to the node's leaf identity, one of the branches traversed will be via
     90  1.1     matt  * the node's branch identity.  Of course, that has an exception: since to
     91  1.1     matt  * store N leaves, you need N-1 branches.  That one node whose branch identity
     92  1.1     matt  * isn't used is stored as "oddman"-out in the root.
     93  1.1     matt  *
     94  1.1     matt  * Branching nodes also has a bit offset and a bit length which determines
     95  1.1     matt  * which branch slot is used.  The bit length can be zero resulting in a
     96  1.1     matt  * one-way branch.  This is happens in two special cases: the root and
     97  1.1     matt  * interior mask nodes.
     98  1.1     matt  *
     99  1.1     matt  * To support longest match first lookups, when a mask node (one that only
    100  1.1     matt  * match the first N bits) has children who first N bits match the mask nodes,
    101  1.1     matt  * that mask node is converted from being a leaf node to being a one-way
    102  1.1     matt  * branch-node.  The mask becomes fixed in position in the tree.  The mask
    103  1.1     matt  * will alaways be the longest mask match for its descendants (unless they
    104  1.1     matt  * traverse an even longer match).
    105  1.1     matt  */
    106  1.1     matt 
    107  1.1     matt #define	NODETOITEM(pt, ptn)	\
    108  1.1     matt 	((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset))
    109  1.1     matt #define	NODETOKEY(pt, ptn)	\
    110  1.1     matt 	((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset + pt->pt_key_offset))
    111  1.1     matt #define	ITEMTONODE(pt, ptn)	\
    112  1.1     matt 	((pt_node_t *)((uintptr_t)(ptn) + (pt)->pt_node_offset))
    113  1.1     matt 
    114  1.1     matt bool ptree_check(const pt_tree_t *);
    115  1.1     matt #if PTCHECK > 1
    116  1.1     matt #define	PTREE_CHECK(pt)		ptree_check(pt)
    117  1.1     matt #else
    118  1.2     matt #define	PTREE_CHECK(pt)		do { } while (/*CONSTCOND*/ 0)
    119  1.1     matt #endif
    120  1.1     matt 
    121  1.1     matt static inline bool
    122  1.1     matt ptree_matchnode(const pt_tree_t *pt, const pt_node_t *target,
    123  1.1     matt 	const pt_node_t *ptn, pt_bitoff_t max_bitoff,
    124  1.1     matt 	pt_bitoff_t *bitoff_p, pt_slot_t *slots_p)
    125  1.1     matt {
    126  1.1     matt 	return (*pt->pt_ops->ptto_matchnode)(NODETOKEY(pt, target),
    127  1.1     matt 	    (ptn != NULL ? NODETOKEY(pt, ptn) : NULL), max_bitoff,
    128  1.1     matt 	    bitoff_p, slots_p);
    129  1.1     matt }
    130  1.1     matt 
    131  1.1     matt static inline pt_slot_t
    132  1.1     matt ptree_testnode(const pt_tree_t *pt, const pt_node_t *target,
    133  1.1     matt 	const pt_node_t *ptn)
    134  1.1     matt {
    135  1.1     matt 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
    136  1.1     matt 	if (bitlen == 0)
    137  1.1     matt 		return PT_SLOT_ROOT;
    138  1.1     matt 	return (*pt->pt_ops->ptto_testnode)(NODETOKEY(pt, target),
    139  1.1     matt 	     PTN_BRANCH_BITOFF(ptn),
    140  1.1     matt 	     bitlen);
    141  1.1     matt }
    142  1.1     matt 
    143  1.1     matt static inline bool
    144  1.1     matt ptree_matchkey(const pt_tree_t *pt, const void *key,
    145  1.1     matt 	const pt_node_t *ptn, pt_bitoff_t bitoff, pt_bitlen_t bitlen)
    146  1.1     matt {
    147  1.1     matt 	return (*pt->pt_ops->ptto_matchkey)(key, NODETOKEY(pt, ptn),
    148  1.1     matt 	    bitoff, bitlen);
    149  1.1     matt }
    150  1.1     matt 
    151  1.1     matt static inline pt_slot_t
    152  1.1     matt ptree_testkey(const pt_tree_t *pt, const void *key, const pt_node_t *ptn)
    153  1.1     matt {
    154  1.1     matt 	return (*pt->pt_ops->ptto_testkey)(key,
    155  1.1     matt 	    PTN_BRANCH_BITOFF(ptn),
    156  1.1     matt 	    PTN_BRANCH_BITLEN(ptn));
    157  1.1     matt }
    158  1.1     matt 
    159  1.1     matt static inline void
    160  1.1     matt ptree_set_position(uintptr_t node, pt_slot_t position)
    161  1.1     matt {
    162  1.1     matt 	if (PT_LEAF_P(node))
    163  1.1     matt 		PTN_SET_LEAF_POSITION(PT_NODE(node), position);
    164  1.1     matt 	else
    165  1.1     matt 		PTN_SET_BRANCH_POSITION(PT_NODE(node), position);
    166  1.1     matt }
    167  1.1     matt 
    168  1.1     matt void
    169  1.1     matt ptree_init(pt_tree_t *pt, const pt_tree_ops_t *ops, size_t node_offset,
    170  1.1     matt 	size_t key_offset)
    171  1.1     matt {
    172  1.1     matt 	memset(pt, 0, sizeof(*pt));
    173  1.1     matt 	pt->pt_node_offset = node_offset;
    174  1.1     matt 	pt->pt_key_offset = key_offset;
    175  1.1     matt 	pt->pt_ops = ops;
    176  1.1     matt }
    177  1.1     matt 
    178  1.1     matt typedef struct {
    179  1.1     matt 	uintptr_t *id_insertp;
    180  1.1     matt 	pt_node_t *id_parent;
    181  1.1     matt 	uintptr_t id_node;
    182  1.1     matt 	pt_slot_t id_parent_slot;
    183  1.1     matt 	pt_bitoff_t id_bitoff;
    184  1.1     matt 	pt_slot_t id_slot;
    185  1.1     matt } pt_insertdata_t;
    186  1.1     matt 
    187  1.1     matt typedef bool (*pt_insertfunc_t)(pt_tree_t *, pt_node_t *, pt_insertdata_t *);
    188  1.1     matt 
    189  1.1     matt /*
    190  1.1     matt  * Move a branch identify from src to dst.  The leaves don't care since
    191  1.1     matt  * nothing for them has changed.
    192  1.1     matt  */
    193  1.2     matt /*ARGSUSED*/
    194  1.1     matt static uintptr_t
    195  1.1     matt ptree_move_branch(pt_tree_t * const pt, pt_node_t * const dst,
    196  1.1     matt 	const pt_node_t * const src)
    197  1.1     matt {
    198  1.1     matt 	KASSERT(PTN_BRANCH_BITLEN(src) == 1);
    199  1.1     matt 	/* set branch bitlen and bitoff in one step.  */
    200  1.1     matt 	dst->ptn_branchdata = src->ptn_branchdata;
    201  1.1     matt 	PTN_SET_BRANCH_POSITION(dst, PTN_BRANCH_POSITION(src));
    202  1.1     matt 	PTN_COPY_BRANCH_SLOTS(dst, src);
    203  1.1     matt 	return PTN_BRANCH(dst);
    204  1.1     matt }
    205  1.1     matt 
    206  1.1     matt #ifndef PTNOMASK
    207  1.1     matt static inline uintptr_t *
    208  1.1     matt ptree_find_branch(pt_tree_t * const pt, uintptr_t branch_node)
    209  1.1     matt {
    210  1.1     matt 	pt_node_t * const branch = PT_NODE(branch_node);
    211  1.1     matt 	pt_node_t *parent;
    212  1.1     matt 
    213  1.1     matt 	for (parent = &pt->pt_rootnode;;) {
    214  1.1     matt 		uintptr_t *nodep =
    215  1.1     matt 		    &PTN_BRANCH_SLOT(parent, ptree_testnode(pt, branch, parent));
    216  1.1     matt 		if (*nodep == branch_node)
    217  1.1     matt 			return nodep;
    218  1.1     matt 		if (PT_LEAF_P(*nodep))
    219  1.1     matt 			return NULL;
    220  1.1     matt 		parent = PT_NODE(*nodep);
    221  1.1     matt 	}
    222  1.1     matt }
    223  1.1     matt 
    224  1.1     matt static bool
    225  1.1     matt ptree_insert_leaf_after_mask(pt_tree_t * const pt, pt_node_t * const target,
    226  1.1     matt 	pt_insertdata_t * const id)
    227  1.1     matt {
    228  1.1     matt 	const uintptr_t target_node = PTN_LEAF(target);
    229  1.1     matt 	const uintptr_t mask_node = id->id_node;
    230  1.1     matt 	pt_node_t * const mask = PT_NODE(mask_node);
    231  1.1     matt 	const pt_bitlen_t mask_len = PTN_MASK_BITLEN(mask);
    232  1.1     matt 
    233  1.1     matt 	KASSERT(PT_LEAF_P(mask_node));
    234  1.1     matt 	KASSERT(PTN_LEAF_POSITION(mask) == id->id_parent_slot);
    235  1.1     matt 	KASSERT(mask_len <= id->id_bitoff);
    236  1.1     matt 	KASSERT(PTN_ISMASK_P(mask));
    237  1.1     matt 	KASSERT(!PTN_ISMASK_P(target) || mask_len < PTN_MASK_BITLEN(target));
    238  1.1     matt 
    239  1.1     matt 	if (mask_node == PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode)) {
    240  1.1     matt 		KASSERT(id->id_parent != mask);
    241  1.1     matt 		/*
    242  1.1     matt 		 * Nice, mask was an oddman.  So just set the oddman to target.
    243  1.1     matt 		 */
    244  1.1     matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = target_node;
    245  1.1     matt 	} else {
    246  1.1     matt 		/*
    247  1.1     matt 		 * We need to find out who's pointing to mask's branch
    248  1.1     matt 		 * identity.  We know that between root and the leaf identity,
    249  1.1     matt 		 * we must traverse the node's branch identity.
    250  1.1     matt 		 */
    251  1.1     matt 		uintptr_t * const mask_nodep = ptree_find_branch(pt, PTN_BRANCH(mask));
    252  1.1     matt 		KASSERT(mask_nodep != NULL);
    253  1.1     matt 		KASSERT(*mask_nodep == PTN_BRANCH(mask));
    254  1.1     matt 		KASSERT(PTN_BRANCH_BITLEN(mask) == 1);
    255  1.1     matt 
    256  1.1     matt 		/*
    257  1.1     matt 		 * Alas, mask was used as a branch.  Since the mask is becoming
    258  1.1     matt 		 * a one-way branch, we need make target take over mask's
    259  1.1     matt 		 * branching responsibilities.  Only then can we change it.
    260  1.1     matt 		 */
    261  1.1     matt 		*mask_nodep = ptree_move_branch(pt, target, mask);
    262  1.1     matt 
    263  1.1     matt 		/*
    264  1.1     matt 		 * However, it's possible that mask's parent is itself.  If
    265  1.1     matt 		 * that's true, update the insert point to use target since it
    266  1.1     matt 		 * has taken over mask's branching duties.
    267  1.1     matt 		 */
    268  1.1     matt 		if (id->id_parent == mask)
    269  1.1     matt 			id->id_insertp = &PTN_BRANCH_SLOT(target,
    270  1.1     matt 			    id->id_parent_slot);
    271  1.1     matt 	}
    272  1.1     matt 
    273  1.1     matt 	PTN_SET_BRANCH_BITLEN(mask, 0);
    274  1.1     matt 	PTN_SET_BRANCH_BITOFF(mask, mask_len);
    275  1.1     matt 
    276  1.1     matt 	PTN_BRANCH_ROOT_SLOT(mask) = target_node;
    277  1.1     matt 	PTN_BRANCH_ODDMAN_SLOT(mask) = PT_NULL;
    278  1.1     matt 	PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
    279  1.1     matt 	PTN_SET_BRANCH_POSITION(mask, id->id_parent_slot);
    280  1.1     matt 
    281  1.1     matt 	/*
    282  1.1     matt 	 * Now that everything is done, to make target visible we need to
    283  1.1     matt 	 * change mask from a leaf to a branch.
    284  1.1     matt 	 */
    285  1.1     matt 	*id->id_insertp = PTN_BRANCH(mask);
    286  1.1     matt 	PTREE_CHECK(pt);
    287  1.1     matt 	return true;
    288  1.1     matt }
    289  1.1     matt 
    290  1.2     matt /*ARGSUSED*/
    291  1.1     matt static bool
    292  1.1     matt ptree_insert_mask_before_node(pt_tree_t * const pt, pt_node_t * const target,
    293  1.1     matt 	pt_insertdata_t * const id)
    294  1.1     matt {
    295  1.1     matt 	const uintptr_t node = id->id_node;
    296  1.1     matt 	pt_node_t * const ptn = PT_NODE(node);
    297  1.1     matt 	const pt_slot_t mask_len = PTN_MASK_BITLEN(target);
    298  1.1     matt 	const pt_bitlen_t node_mask_len = PTN_MASK_BITLEN(ptn);
    299  1.1     matt 
    300  1.1     matt 	KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(ptn));
    301  1.1     matt 	KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(ptn));
    302  1.1     matt 	KASSERT(PTN_ISMASK_P(target));
    303  1.1     matt 
    304  1.1     matt 	/*
    305  1.1     matt 	 * If the node we are placing ourself in front is a mask with the
    306  1.1     matt 	 * same mask length as us, return failure.
    307  1.1     matt 	 */
    308  1.1     matt 	if (PTN_ISMASK_P(ptn) && node_mask_len == mask_len)
    309  1.1     matt 		return false;
    310  1.1     matt 
    311  1.1     matt 	PTN_SET_BRANCH_BITLEN(target, 0);
    312  1.1     matt 	PTN_SET_BRANCH_BITOFF(target, mask_len);
    313  1.1     matt 
    314  1.1     matt 	PTN_BRANCH_SLOT(target, PT_SLOT_ROOT) = node;
    315  1.1     matt 	*id->id_insertp = PTN_BRANCH(target);
    316  1.1     matt 
    317  1.1     matt 	PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
    318  1.1     matt 	ptree_set_position(node, PT_SLOT_ROOT);
    319  1.1     matt 
    320  1.1     matt 	PTREE_CHECK(pt);
    321  1.1     matt 	return true;
    322  1.1     matt }
    323  1.1     matt #endif /* !PTNOMASK */
    324  1.1     matt 
    325  1.2     matt /*ARGSUSED*/
    326  1.1     matt static bool
    327  1.1     matt ptree_insert_branch_at_node(pt_tree_t * const pt, pt_node_t * const target,
    328  1.1     matt 	pt_insertdata_t * const id)
    329  1.1     matt {
    330  1.1     matt 	const uintptr_t target_node = PTN_LEAF(target);
    331  1.1     matt 	const uintptr_t node = id->id_node;
    332  1.1     matt 	const pt_slot_t other_slot = id->id_slot ^ PT_SLOT_OTHER;
    333  1.1     matt 
    334  1.1     matt 	KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(PT_NODE(node)));
    335  1.1     matt 	KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(PT_NODE(node)));
    336  1.1     matt 	KASSERT((node == pt->pt_root) == (id->id_parent == &pt->pt_rootnode));
    337  1.1     matt #ifndef PTNOMASK
    338  1.1     matt 	KASSERT(!PTN_ISMASK_P(target) || id->id_bitoff <= PTN_MASK_BITLEN(target));
    339  1.1     matt #endif
    340  1.1     matt 	KASSERT(node == pt->pt_root || PTN_BRANCH_BITOFF(id->id_parent) + PTN_BRANCH_BITLEN(id->id_parent) <= id->id_bitoff);
    341  1.1     matt 
    342  1.1     matt 	PTN_SET_BRANCH_BITOFF(target, id->id_bitoff);
    343  1.1     matt 	PTN_SET_BRANCH_BITLEN(target, 1);
    344  1.1     matt 
    345  1.1     matt 	PTN_BRANCH_SLOT(target, id->id_slot) = target_node;
    346  1.1     matt 	PTN_BRANCH_SLOT(target, other_slot) = node;
    347  1.1     matt 	*id->id_insertp = PTN_BRANCH(target);
    348  1.1     matt 
    349  1.1     matt 	PTN_SET_LEAF_POSITION(target, id->id_slot);
    350  1.1     matt 	ptree_set_position(node, other_slot);
    351  1.1     matt 
    352  1.1     matt 	PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
    353  1.1     matt 	PTREE_CHECK(pt);
    354  1.1     matt 	return true;
    355  1.1     matt }
    356  1.1     matt 
    357  1.1     matt static bool
    358  1.1     matt ptree_insert_leaf(pt_tree_t * const pt, pt_node_t * const target,
    359  1.1     matt 	pt_insertdata_t * const id)
    360  1.1     matt {
    361  1.1     matt 	const uintptr_t leaf_node = id->id_node;
    362  1.1     matt 	pt_node_t * const leaf = PT_NODE(leaf_node);
    363  1.1     matt #ifdef PTNOMASK
    364  1.1     matt 	const bool inserting_mask = false;
    365  1.1     matt 	const bool at_mask = false;
    366  1.1     matt #else
    367  1.1     matt 	const bool inserting_mask = PTN_ISMASK_P(target);
    368  1.1     matt 	const bool at_mask = PTN_ISMASK_P(leaf);
    369  1.1     matt 	const pt_bitlen_t leaf_masklen = PTN_MASK_BITLEN(leaf);
    370  1.1     matt 	const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
    371  1.1     matt #endif
    372  1.1     matt 	pt_insertfunc_t insertfunc = ptree_insert_branch_at_node;
    373  1.1     matt 	bool matched;
    374  1.1     matt 
    375  1.1     matt 	/*
    376  1.1     matt 	 * In all likelyhood we are going simply going to insert a branch
    377  1.1     matt 	 * where this leaf is which will point to the old and new leaves.
    378  1.1     matt 	 */
    379  1.1     matt 	KASSERT(PT_LEAF_P(leaf_node));
    380  1.1     matt 	KASSERT(PTN_LEAF_POSITION(leaf) == id->id_parent_slot);
    381  1.1     matt 	matched = ptree_matchnode(pt, target, leaf, UINT_MAX,
    382  1.1     matt 	    &id->id_bitoff, &id->id_slot);
    383  1.1     matt 	if (__predict_false(!inserting_mask)) {
    384  1.1     matt 		/*
    385  1.1     matt 		 * We aren't inserting a mask nor is the leaf a mask, which
    386  1.1     matt 		 * means we are trying to insert a duplicate leaf.  Can't do
    387  1.1     matt 		 * that.
    388  1.1     matt 		 */
    389  1.1     matt 		if (!at_mask && matched)
    390  1.1     matt 			return false;
    391  1.1     matt 
    392  1.1     matt #ifndef PTNOMASK
    393  1.1     matt 		/*
    394  1.1     matt 		 * We are at a mask and the leaf we are about to insert
    395  1.1     matt 		 * is at or beyond the mask, we need to convert the mask
    396  1.1     matt 		 * from a leaf to a one-way branch interior mask.
    397  1.1     matt 		 */
    398  1.1     matt 		if (at_mask && id->id_bitoff >= leaf_masklen)
    399  1.1     matt 			insertfunc = ptree_insert_leaf_after_mask;
    400  1.1     matt #endif /* PTNOMASK */
    401  1.1     matt 	}
    402  1.1     matt #ifndef PTNOMASK
    403  1.1     matt 	else {
    404  1.1     matt 		/*
    405  1.1     matt 		 * We are inserting a mask.
    406  1.1     matt 		 */
    407  1.1     matt 		if (matched) {
    408  1.1     matt 			/*
    409  1.1     matt 			 * If the leaf isn't a mask, we obviously have to
    410  1.1     matt 			 * insert the new mask before non-mask leaf.  If the
    411  1.1     matt 			 * leaf is a mask, and the new node has a LEQ mask
    412  1.1     matt 			 * length it too needs to inserted before leaf (*).
    413  1.1     matt 			 *
    414  1.1     matt 			 * In other cases, we place the new mask as leaf after
    415  1.1     matt 			 * leaf mask.  Which mask comes first will be a one-way
    416  1.1     matt 			 * branch interior mask node which has the other mask
    417  1.1     matt 			 * node as a child.
    418  1.1     matt 			 *
    419  1.1     matt 			 * (*) ptree_insert_mask_before_node can detect a
    420  1.1     matt 			 * duplicate mask and return failure if needed.
    421  1.1     matt 			 */
    422  1.1     matt 			if (!at_mask || target_masklen <= leaf_masklen)
    423  1.1     matt 				insertfunc = ptree_insert_mask_before_node;
    424  1.1     matt 			else
    425  1.1     matt 				insertfunc = ptree_insert_leaf_after_mask;
    426  1.1     matt 		} else if (at_mask && id->id_bitoff >= leaf_masklen) {
    427  1.1     matt 			/*
    428  1.1     matt 			 * If the new mask has a bit offset GEQ than the leaf's
    429  1.1     matt 			 * mask length, convert the left to a one-way branch
    430  1.1     matt 			 * interior mask and make that point to the new [leaf]
    431  1.1     matt 			 * mask.
    432  1.1     matt 			 */
    433  1.1     matt 			insertfunc = ptree_insert_leaf_after_mask;
    434  1.1     matt 		} else {
    435  1.1     matt 			/*
    436  1.1     matt 			 * The new mask has a bit offset less than the leaf's
    437  1.1     matt 			 * mask length or if the leaf isn't a mask at all, the
    438  1.1     matt 			 * new mask deserves to be its own leaf so we use the
    439  1.1     matt 			 * default insertfunc to do that.
    440  1.1     matt 			 */
    441  1.1     matt 		}
    442  1.1     matt 	}
    443  1.1     matt #endif /* PTNOMASK */
    444  1.1     matt 
    445  1.1     matt 	return (*insertfunc)(pt, target, id);
    446  1.1     matt }
    447  1.1     matt 
    448  1.1     matt static bool
    449  1.1     matt ptree_insert_node_common(pt_tree_t *pt, void *item)
    450  1.1     matt {
    451  1.1     matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    452  1.1     matt #ifndef PTNOMASK
    453  1.1     matt 	const bool inserting_mask = PTN_ISMASK_P(target);
    454  1.1     matt 	const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
    455  1.1     matt #endif
    456  1.1     matt 	pt_insertfunc_t insertfunc;
    457  1.1     matt 	pt_insertdata_t id;
    458  1.1     matt 
    459  1.1     matt 	/*
    460  1.1     matt 	 * We need a leaf so we can match against.  Until we get a leaf
    461  1.1     matt 	 * we having nothing to test against.
    462  1.1     matt 	 */
    463  1.1     matt 	if (__predict_false(PT_NULL_P(pt->pt_root))) {
    464  1.1     matt 		PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
    465  1.1     matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
    466  1.1     matt 		PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
    467  1.1     matt 		PTREE_CHECK(pt);
    468  1.1     matt 		return true;
    469  1.1     matt 	}
    470  1.1     matt 
    471  1.1     matt 	id.id_bitoff = 0;
    472  1.1     matt 	id.id_parent = &pt->pt_rootnode;
    473  1.1     matt 	id.id_parent_slot = PT_SLOT_ROOT;
    474  1.1     matt 	id.id_insertp = &PTN_BRANCH_ROOT_SLOT(id.id_parent);
    475  1.1     matt 	for (;;) {
    476  1.1     matt 		pt_bitoff_t branch_bitoff;
    477  1.1     matt 		pt_node_t * const ptn = PT_NODE(*id.id_insertp);
    478  1.1     matt 		id.id_node = *id.id_insertp;
    479  1.1     matt 
    480  1.1     matt 		/*
    481  1.1     matt 		 * If we hit a leaf, try to insert target at leaf.  We could
    482  1.1     matt 		 * have inlined ptree_insert_leaf here but that would have
    483  1.1     matt 		 * made this routine much harder to understand.  Trust the
    484  1.1     matt 		 * compiler to optimize this properly.
    485  1.1     matt 		 */
    486  1.1     matt 		if (PT_LEAF_P(id.id_node)) {
    487  1.1     matt 			KASSERT(PTN_LEAF_POSITION(ptn) == id.id_parent_slot);
    488  1.1     matt 			insertfunc = ptree_insert_leaf;
    489  1.1     matt 			break;
    490  1.1     matt 		}
    491  1.1     matt 
    492  1.1     matt 		/*
    493  1.1     matt 		 * If we aren't a leaf, we must be a branch.  Make sure we are
    494  1.1     matt 		 * in the slot we think we are.
    495  1.1     matt 		 */
    496  1.1     matt 		KASSERT(PT_BRANCH_P(id.id_node));
    497  1.1     matt 		KASSERT(PTN_BRANCH_POSITION(ptn) == id.id_parent_slot);
    498  1.1     matt 
    499  1.1     matt 		/*
    500  1.1     matt 		 * Where is this branch?
    501  1.1     matt 		 */
    502  1.1     matt 		branch_bitoff = PTN_BRANCH_BITOFF(ptn);
    503  1.1     matt 
    504  1.1     matt #ifndef PTNOMASK
    505  1.1     matt 		/*
    506  1.1     matt 		 * If this is a one-way mask node, its offset must equal
    507  1.1     matt 		 * its mask's bitlen.
    508  1.1     matt 		 */
    509  1.1     matt 		KASSERT(!(PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) || PTN_MASK_BITLEN(ptn) == branch_bitoff);
    510  1.1     matt 
    511  1.1     matt 		/*
    512  1.1     matt 		 * If we are inserting a mask, and we know that at this point
    513  1.1     matt 		 * all bits before the current bit offset match both the target
    514  1.1     matt 		 * and the branch.  If the target's mask length is LEQ than
    515  1.1     matt 		 * this branch's bit offset, then this is where the mask needs
    516  1.1     matt 		 * to added to the tree.
    517  1.1     matt 		 */
    518  1.1     matt 		if (__predict_false(inserting_mask)
    519  1.1     matt 		    && (PTN_ISROOT_P(pt, id.id_parent)
    520  1.1     matt 			|| id.id_bitoff < target_masklen)
    521  1.1     matt 		    && target_masklen <= branch_bitoff) {
    522  1.1     matt 			/*
    523  1.1     matt 			 * We don't know about the bits (if any) between
    524  1.1     matt 			 * id.id_bitoff and the target's mask length match
    525  1.1     matt 			 * both the target and the branch.  If the target's
    526  1.1     matt 			 * mask length is greater than the current bit offset
    527  1.1     matt 			 * make sure the untested bits match both the target
    528  1.1     matt 			 * and the branch.
    529  1.1     matt 			 */
    530  1.1     matt 			if (target_masklen == id.id_bitoff
    531  1.1     matt 			    || ptree_matchnode(pt, target, ptn, target_masklen,
    532  1.1     matt 				    &id.id_bitoff, &id.id_slot)) {
    533  1.1     matt 				/*
    534  1.1     matt 				 * The bits matched, so insert the mask as a
    535  1.1     matt 				 * one-way branch.
    536  1.1     matt 				 */
    537  1.1     matt 				insertfunc = ptree_insert_mask_before_node;
    538  1.1     matt 				break;
    539  1.1     matt 			} else if (id.id_bitoff < branch_bitoff) {
    540  1.1     matt 				/*
    541  1.1     matt 				 * They didn't match, so create a normal branch
    542  1.1     matt 				 * because this mask needs to a be a new leaf.
    543  1.1     matt 				 */
    544  1.1     matt 				insertfunc = ptree_insert_branch_at_node;
    545  1.1     matt 				break;
    546  1.1     matt 			}
    547  1.1     matt 		}
    548  1.1     matt #endif /* PTNOMASK */
    549  1.1     matt 
    550  1.1     matt 		/*
    551  1.1     matt 		 * If we are skipping some bits, verify they match the node.
    552  1.1     matt 		 * If they don't match, it means we have a leaf to insert.
    553  1.1     matt 		 * Note that if we are advancing bit by bit, we'll skip
    554  1.1     matt 		 * doing matchnode and walk the tree bit by bit via testnode.
    555  1.1     matt 		 */
    556  1.1     matt 		if (id.id_bitoff < branch_bitoff
    557  1.1     matt 		    && !ptree_matchnode(pt, target, ptn, branch_bitoff,
    558  1.1     matt 					&id.id_bitoff, &id.id_slot)) {
    559  1.1     matt 			KASSERT(id.id_bitoff < branch_bitoff);
    560  1.1     matt 			insertfunc = ptree_insert_branch_at_node;
    561  1.1     matt 			break;
    562  1.1     matt 		}
    563  1.1     matt 
    564  1.1     matt 		/*
    565  1.1     matt 		 * At this point, all bits before branch_bitoff are known
    566  1.1     matt 		 * to match the target.
    567  1.1     matt 		 */
    568  1.1     matt 		KASSERT(id.id_bitoff >= branch_bitoff);
    569  1.1     matt 
    570  1.1     matt 		/*
    571  1.1     matt 		 * Decend the tree one level.
    572  1.1     matt 		 */
    573  1.1     matt 		id.id_parent = ptn;
    574  1.1     matt 		id.id_parent_slot = ptree_testnode(pt, target, id.id_parent);
    575  1.1     matt 		id.id_bitoff += PTN_BRANCH_BITLEN(id.id_parent);
    576  1.1     matt 		id.id_insertp = &PTN_BRANCH_SLOT(id.id_parent, id.id_parent_slot);
    577  1.1     matt 	}
    578  1.1     matt 
    579  1.1     matt 	/*
    580  1.1     matt 	 * Do the actual insertion.
    581  1.1     matt 	 */
    582  1.1     matt 	return (*insertfunc)(pt, target, &id);
    583  1.1     matt }
    584  1.1     matt 
    585  1.1     matt bool
    586  1.1     matt ptree_insert_node(pt_tree_t *pt, void *item)
    587  1.1     matt {
    588  1.1     matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    589  1.1     matt 
    590  1.1     matt 	memset(target, 0, sizeof(*target));
    591  1.1     matt 	return ptree_insert_node_common(pt, target);
    592  1.1     matt }
    593  1.1     matt 
    594  1.1     matt #ifndef PTNOMASK
    595  1.1     matt bool
    596  1.1     matt ptree_insert_mask_node(pt_tree_t *pt, void *item, pt_bitlen_t mask_len)
    597  1.1     matt {
    598  1.1     matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    599  1.1     matt 	pt_bitoff_t bitoff = mask_len;
    600  1.1     matt 	pt_slot_t slot;
    601  1.1     matt 
    602  1.1     matt 	memset(target, 0, sizeof(*target));
    603  1.1     matt 	KASSERT(mask_len == 0 || (~PT__MASK(PTN_MASK_BITLEN) & mask_len) == 0);
    604  1.1     matt 	/*
    605  1.1     matt 	 * Only the first <mask_len> bits can be non-zero.
    606  1.1     matt 	 * All other bits must be 0.
    607  1.1     matt 	 */
    608  1.1     matt 	if (!ptree_matchnode(pt, target, NULL, UINT_MAX, &bitoff, &slot))
    609  1.1     matt 		return false;
    610  1.1     matt 	PTN_SET_MASK_BITLEN(target, mask_len);
    611  1.1     matt 	PTN_MARK_MASK(target);
    612  1.1     matt 	return ptree_insert_node_common(pt, target);
    613  1.1     matt }
    614  1.1     matt #endif /* !PTNOMASH */
    615  1.1     matt 
    616  1.1     matt void *
    617  1.1     matt ptree_find_filtered_node(pt_tree_t *pt, void *key, pt_filter_t filter,
    618  1.1     matt 	void *filter_arg)
    619  1.1     matt {
    620  1.1     matt #ifndef PTNOMASK
    621  1.1     matt 	pt_node_t *mask = NULL;
    622  1.1     matt #endif
    623  1.1     matt 	bool at_mask = false;
    624  1.1     matt 	pt_node_t *ptn, *parent;
    625  1.1     matt 	pt_bitoff_t bitoff;
    626  1.1     matt 	pt_slot_t parent_slot;
    627  1.1     matt 
    628  1.1     matt 	if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)))
    629  1.1     matt 		return NULL;
    630  1.1     matt 
    631  1.1     matt 	bitoff = 0;
    632  1.1     matt 	parent = &pt->pt_rootnode;
    633  1.1     matt 	parent_slot = PT_SLOT_ROOT;
    634  1.1     matt 	for (;;) {
    635  1.1     matt 		const uintptr_t node = PTN_BRANCH_SLOT(parent, parent_slot);
    636  1.1     matt 		const pt_slot_t branch_bitoff = PTN_BRANCH_BITOFF(PT_NODE(node));
    637  1.1     matt 		ptn = PT_NODE(node);
    638  1.1     matt 
    639  1.1     matt 		if (PT_LEAF_P(node)) {
    640  1.1     matt #ifndef PTNOMASK
    641  1.1     matt 			at_mask = PTN_ISMASK_P(ptn);
    642  1.1     matt #endif
    643  1.1     matt 			break;
    644  1.1     matt 		}
    645  1.1     matt 
    646  1.1     matt 		if (bitoff < branch_bitoff) {
    647  1.1     matt 			if (!ptree_matchkey(pt, key, ptn, bitoff, branch_bitoff - bitoff)) {
    648  1.1     matt #ifndef PTNOMASK
    649  1.1     matt 				if (mask != NULL)
    650  1.1     matt 					return NODETOITEM(pt, mask);
    651  1.1     matt #endif
    652  1.1     matt 				return NULL;
    653  1.1     matt 			}
    654  1.1     matt 			bitoff = branch_bitoff;
    655  1.1     matt 		}
    656  1.1     matt 
    657  1.1     matt #ifndef PTNOMASK
    658  1.1     matt 		if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0
    659  1.1     matt 		    && (!filter
    660  1.1     matt 		        || (*filter)(filter_arg, NODETOITEM(pt, ptn),
    661  1.1     matt 				     PT_FILTER_MASK)))
    662  1.1     matt 			mask = ptn;
    663  1.1     matt #endif
    664  1.1     matt 
    665  1.1     matt 		parent = ptn;
    666  1.1     matt 		parent_slot = ptree_testkey(pt, key, parent);
    667  1.1     matt 		bitoff += PTN_BRANCH_BITLEN(parent);
    668  1.1     matt 	}
    669  1.1     matt 
    670  1.1     matt 	KASSERT(PTN_ISROOT_P(pt, parent) || PTN_BRANCH_BITOFF(parent) + PTN_BRANCH_BITLEN(parent) == bitoff);
    671  1.1     matt 	if (!filter || (*filter)(filter_arg, NODETOITEM(pt, ptn), at_mask ? PT_FILTER_MASK : 0)) {
    672  1.1     matt #ifndef PTNOMASK
    673  1.1     matt 		if (PTN_ISMASK_P(ptn)) {
    674  1.1     matt 			const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
    675  1.1     matt 			if (bitoff == PTN_MASK_BITLEN(ptn))
    676  1.1     matt 				return NODETOITEM(pt, ptn);
    677  1.1     matt 			if (ptree_matchkey(pt, key, ptn, bitoff, mask_len - bitoff))
    678  1.1     matt 				return NODETOITEM(pt, ptn);
    679  1.1     matt 		} else
    680  1.1     matt #endif /* !PTNOMASK */
    681  1.1     matt 		if (ptree_matchkey(pt, key, ptn, bitoff, UINT_MAX))
    682  1.1     matt 			return NODETOITEM(pt, ptn);
    683  1.1     matt 	}
    684  1.1     matt 
    685  1.1     matt #ifndef PTNOMASK
    686  1.1     matt 	/*
    687  1.1     matt 	 * By virtue of how the mask was placed in the tree,
    688  1.1     matt 	 * all nodes descended from it will match it.  But the bits
    689  1.1     matt 	 * before the mask still need to be checked and since the
    690  1.1     matt 	 * mask was a branch, that was done implicitly.
    691  1.1     matt 	 */
    692  1.1     matt 	if (mask != NULL) {
    693  1.1     matt 		KASSERT(ptree_matchkey(pt, key, mask, 0, PTN_MASK_BITLEN(mask)));
    694  1.1     matt 		return NODETOITEM(pt, mask);
    695  1.1     matt 	}
    696  1.1     matt #endif /* !PTNOMASK */
    697  1.1     matt 
    698  1.1     matt 	/*
    699  1.1     matt 	 * Nothing matched.
    700  1.1     matt 	 */
    701  1.1     matt 	return NULL;
    702  1.1     matt }
    703  1.1     matt 
    704  1.1     matt void *
    705  1.1     matt ptree_iterate(pt_tree_t *pt, const void *item, pt_direction_t direction)
    706  1.1     matt {
    707  1.1     matt 	const pt_node_t * const target = ITEMTONODE(pt, item);
    708  1.1     matt 	uintptr_t node, next_node;
    709  1.1     matt 
    710  1.1     matt 	if (direction != PT_ASCENDING && direction != PT_DESCENDING)
    711  1.1     matt 		return NULL;
    712  1.1     matt 
    713  1.1     matt 	node = PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode);
    714  1.1     matt 	if (PT_NULL_P(node))
    715  1.1     matt 		return NULL;
    716  1.1     matt 
    717  1.1     matt 	if (item == NULL) {
    718  1.1     matt 		pt_node_t * const ptn = PT_NODE(node);
    719  1.1     matt 		if (direction == PT_ASCENDING
    720  1.1     matt 		    && PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0)
    721  1.1     matt 			return NODETOITEM(pt, ptn);
    722  1.1     matt 		next_node = node;
    723  1.1     matt 	} else {
    724  1.1     matt #ifndef PTNOMASK
    725  1.1     matt 		uintptr_t mask_node = PT_NULL;
    726  1.1     matt #endif /* !PTNOMASK */
    727  1.1     matt 		next_node = PT_NULL;
    728  1.1     matt 		while (!PT_LEAF_P(node)) {
    729  1.1     matt 			pt_node_t * const ptn = PT_NODE(node);
    730  1.1     matt 			pt_slot_t slot;
    731  1.1     matt #ifndef PTNOMASK
    732  1.1     matt 			if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) {
    733  1.1     matt 				if (ptn == target)
    734  1.1     matt 					break;
    735  1.1     matt 				if (direction == PT_DESCENDING) {
    736  1.1     matt 					mask_node = node;
    737  1.1     matt 					next_node = PT_NULL;
    738  1.1     matt 				}
    739  1.1     matt 			}
    740  1.1     matt #endif /* !PTNOMASK */
    741  1.1     matt 			slot = ptree_testnode(pt, target, ptn);
    742  1.1     matt 			node = PTN_BRANCH_SLOT(ptn, slot);
    743  1.1     matt 			if (direction == PT_ASCENDING) {
    744  1.1     matt 				if (slot != (1 << PTN_BRANCH_BITLEN(ptn)) - 1)
    745  1.1     matt 					next_node = PTN_BRANCH_SLOT(ptn, slot + 1);
    746  1.1     matt 			} else {
    747  1.1     matt 				if (slot > 0) {
    748  1.1     matt #ifndef PTNOMASK
    749  1.1     matt 					mask_node = PT_NULL;
    750  1.1     matt #endif /* !PTNOMASK */
    751  1.1     matt 					next_node = PTN_BRANCH_SLOT(ptn, slot - 1);
    752  1.1     matt 				}
    753  1.1     matt 			}
    754  1.1     matt 		}
    755  1.1     matt 		if (PT_NODE(node) != target)
    756  1.1     matt 			return NULL;
    757  1.1     matt #ifndef PTNOMASK
    758  1.1     matt 		if (PT_BRANCH_P(node)) {
    759  1.1     matt 			pt_node_t *ptn = PT_NODE(node);
    760  1.1     matt 			KASSERT(PTN_ISMASK_P(PT_NODE(node)) && PTN_BRANCH_BITLEN(PT_NODE(node)) == 0);
    761  1.1     matt 			if (direction == PT_ASCENDING) {
    762  1.1     matt 				next_node = PTN_BRANCH_ROOT_SLOT(ptn);
    763  1.1     matt 				ptn = PT_NODE(next_node);
    764  1.1     matt 			}
    765  1.1     matt 		}
    766  1.1     matt 		/*
    767  1.1     matt 		 * When descending, if we countered a mask node then that's
    768  1.1     matt 		 * we want to return.
    769  1.1     matt 		 */
    770  1.1     matt 		if (direction == PT_DESCENDING && !PT_NULL_P(mask_node)) {
    771  1.1     matt 			KASSERT(PT_NULL_P(next_node));
    772  1.1     matt 			return NODETOITEM(pt, PT_NODE(mask_node));
    773  1.1     matt 		}
    774  1.1     matt #endif /* !PTNOMASK */
    775  1.1     matt 	}
    776  1.1     matt 
    777  1.1     matt 	node = next_node;
    778  1.1     matt 	if (PT_NULL_P(node))
    779  1.1     matt 		return NULL;
    780  1.1     matt 
    781  1.1     matt 	while (!PT_LEAF_P(node)) {
    782  1.1     matt 		pt_node_t * const ptn = PT_NODE(node);
    783  1.1     matt 		pt_slot_t slot;
    784  1.1     matt 		if (direction == PT_ASCENDING) {
    785  1.1     matt #ifndef PTNOMASK
    786  1.1     matt 			if (PT_BRANCH_P(node)
    787  1.1     matt 			    && PTN_ISMASK_P(ptn)
    788  1.1     matt 			    && PTN_BRANCH_BITLEN(ptn) == 0)
    789  1.1     matt 				return NODETOITEM(pt, ptn);
    790  1.1     matt #endif /* !PTNOMASK */
    791  1.1     matt 			slot = PT_SLOT_LEFT;
    792  1.1     matt 		} else {
    793  1.1     matt 			slot = (1 << PTN_BRANCH_BITLEN(ptn)) - 1;
    794  1.1     matt 		}
    795  1.1     matt 		node = PTN_BRANCH_SLOT(ptn, slot);
    796  1.1     matt 	}
    797  1.1     matt 	return NODETOITEM(pt, PT_NODE(node));
    798  1.1     matt }
    799  1.1     matt 
    800  1.1     matt void
    801  1.1     matt ptree_remove_node(pt_tree_t *pt, void *item)
    802  1.1     matt {
    803  1.1     matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    804  1.1     matt 	const pt_slot_t leaf_slot = PTN_LEAF_POSITION(target);
    805  1.1     matt 	const pt_slot_t branch_slot = PTN_BRANCH_POSITION(target);
    806  1.1     matt 	pt_node_t *ptn, *parent;
    807  1.1     matt 	uintptr_t node;
    808  1.1     matt 	uintptr_t *removep;
    809  1.1     matt 	uintptr_t *nodep;
    810  1.1     matt 	pt_bitoff_t bitoff;
    811  1.1     matt 	pt_slot_t parent_slot;
    812  1.1     matt #ifndef PTNOMASK
    813  1.1     matt 	bool at_mask;
    814  1.1     matt #endif
    815  1.1     matt 
    816  1.1     matt 	if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode))) {
    817  1.1     matt 		KASSERT(!PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)));
    818  1.1     matt 		return;
    819  1.1     matt 	}
    820  1.1     matt 
    821  1.1     matt 	bitoff = 0;
    822  1.1     matt 	removep = NULL;
    823  1.1     matt 	nodep = NULL;
    824  1.1     matt 	parent = &pt->pt_rootnode;
    825  1.1     matt 	parent_slot = PT_SLOT_ROOT;
    826  1.1     matt 	for (;;) {
    827  1.1     matt 		node = PTN_BRANCH_SLOT(parent, parent_slot);
    828  1.1     matt 		ptn = PT_NODE(node);
    829  1.1     matt #ifndef PTNOMASK
    830  1.1     matt 		at_mask = PTN_ISMASK_P(ptn);
    831  1.1     matt #endif
    832  1.1     matt 
    833  1.1     matt 		if (PT_LEAF_P(node))
    834  1.1     matt 			break;
    835  1.1     matt 
    836  1.1     matt 		/*
    837  1.1     matt 		 * If we are at the target, then we are looking at its branch
    838  1.1     matt 		 * identity.  We need to remember who's pointing at it so we
    839  1.1     matt 		 * stop them from doing that.
    840  1.1     matt 		 */
    841  1.1     matt 		if (__predict_false(ptn == target)) {
    842  1.1     matt 			KASSERT(nodep == NULL);
    843  1.1     matt #ifndef PTNOMASK
    844  1.1     matt 			/*
    845  1.1     matt 			 * Interior mask nodes are trivial to get rid of.
    846  1.1     matt 			 */
    847  1.1     matt 			if (at_mask && PTN_BRANCH_BITLEN(ptn) == 0) {
    848  1.1     matt 				PTN_BRANCH_SLOT(parent, parent_slot) =
    849  1.1     matt 				    PTN_BRANCH_ROOT_SLOT(ptn);
    850  1.1     matt 				KASSERT(PT_NULL_P(PTN_BRANCH_ODDMAN_SLOT(ptn)));
    851  1.1     matt 				PTREE_CHECK(pt);
    852  1.1     matt 				return;
    853  1.1     matt 			}
    854  1.1     matt #endif /* !PTNOMASK */
    855  1.1     matt 			nodep = &PTN_BRANCH_SLOT(parent, parent_slot);
    856  1.1     matt 			KASSERT(*nodep == PTN_BRANCH(target));
    857  1.1     matt 		}
    858  1.1     matt 		/*
    859  1.1     matt 		 * We need also need to know who's pointing at our parent.
    860  1.1     matt 		 * After we remove ourselves from our parent, he'll only
    861  1.1     matt 		 * have one child and that's unacceptable.  So we replace
    862  1.1     matt 		 * the pointer to the parent with our abadoned sibling.
    863  1.1     matt 		 */
    864  1.1     matt 		removep = &PTN_BRANCH_SLOT(parent, parent_slot);
    865  1.1     matt 
    866  1.1     matt 		/*
    867  1.1     matt 		 * Descend into the tree.
    868  1.1     matt 		 */
    869  1.1     matt 		parent = ptn;
    870  1.1     matt 		parent_slot = ptree_testnode(pt, target, parent);
    871  1.1     matt 		bitoff += PTN_BRANCH_BITLEN(parent);
    872  1.1     matt 	}
    873  1.1     matt 
    874  1.1     matt 	/*
    875  1.1     matt 	 * We better have found that the leaf we are looking for is target.
    876  1.1     matt 	 */
    877  1.1     matt 	if (target != ptn) {
    878  1.1     matt 		KASSERT(target == ptn);
    879  1.1     matt 		return;
    880  1.1     matt 	}
    881  1.1     matt 
    882  1.1     matt 	/*
    883  1.1     matt 	 * If we didn't encounter target as branch, then target must be the
    884  1.1     matt 	 * oddman-out.
    885  1.1     matt 	 */
    886  1.1     matt 	if (nodep == NULL) {
    887  1.1     matt 		KASSERT(PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) == PTN_LEAF(target));
    888  1.1     matt 		KASSERT(nodep == NULL);
    889  1.1     matt 		nodep = &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode);
    890  1.1     matt 	}
    891  1.1     matt 
    892  1.1     matt 	KASSERT((removep == NULL) == (parent == &pt->pt_rootnode));
    893  1.1     matt 
    894  1.1     matt 	/*
    895  1.1     matt 	 * We have to special remove the last leaf from the root since
    896  1.1     matt 	 * the only time the tree can a PT_NULL node is when it's empty.
    897  1.1     matt 	 */
    898  1.1     matt 	if (__predict_false(PTN_ISROOT_P(pt, parent))) {
    899  1.1     matt 		KASSERT(removep == NULL);
    900  1.1     matt 		KASSERT(parent == &pt->pt_rootnode);
    901  1.1     matt 		KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
    902  1.1     matt 		KASSERT(*nodep == PTN_LEAF(target));
    903  1.1     matt 		PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PT_NULL;
    904  1.1     matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PT_NULL;
    905  1.1     matt 		return;
    906  1.1     matt 	}
    907  1.1     matt 
    908  1.1     matt 	KASSERT((parent == target) == (removep == nodep));
    909  1.1     matt 	if (PTN_BRANCH(parent) == PTN_BRANCH_SLOT(target, PTN_BRANCH_POSITION(parent))) {
    910  1.1     matt 		/*
    911  1.1     matt 		 * The pointer to the parent actually lives in the target's
    912  1.1     matt 		 * branch identity.  We can't just move the target's branch
    913  1.1     matt 		 * identity since that would result in the parent pointing
    914  1.1     matt 		 * to its own branch identity and that's fobidden.
    915  1.1     matt 		 */
    916  1.1     matt 		const pt_slot_t slot = PTN_BRANCH_POSITION(parent);
    917  1.1     matt 		const pt_slot_t other_slot = slot ^ PT_SLOT_OTHER;
    918  1.1     matt 		const pt_bitlen_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
    919  1.1     matt 
    920  1.1     matt 		KASSERT(PTN_BRANCH_BITOFF(target) < PTN_BRANCH_BITOFF(parent));
    921  1.1     matt 
    922  1.1     matt 		/*
    923  1.1     matt 		 * This gets so confusing.  The target's branch identity
    924  1.1     matt 		 * points to the branch identity of the parent of the target's
    925  1.1     matt 		 * leaf identity:
    926  1.1     matt 		 *
    927  1.1     matt 		 * 	TB = { X, PB = { TL, Y } }
    928  1.1     matt 		 *   or TB = { X, PB = { TL } }
    929  1.1     matt 		 *
    930  1.1     matt 		 * So we can't move the target's branch identity to the parent
    931  1.1     matt 		 * because that would corrupt the tree.
    932  1.1     matt 		 */
    933  1.1     matt 		if (__predict_true(parent_bitlen > 0)) {
    934  1.1     matt 			/*
    935  1.1     matt 			 * The parent is a two-way branch.  We have to have
    936  1.1     matt 			 * do to this chang in two steps to keep internally
    937  1.1     matt 			 * consistent.  First step is to copy our sibling from
    938  1.1     matt 			 * our parent to where we are pointing to parent's
    939  1.1     matt 			 * branch identiy.  This remove all references to his
    940  1.1     matt 			 * branch identity from the tree.  We then simply make
    941  1.1     matt 			 * the parent assume the target's branching duties.
    942  1.1     matt 			 *
    943  1.1     matt 			 *   TB = { X, PB = { Y, TL } } --> PB = { X, Y }.
    944  1.1     matt 			 *   TB = { X, PB = { TL, Y } } --> PB = { X, Y }.
    945  1.1     matt 			 *   TB = { PB = { Y, TL }, X } --> PB = { Y, X }.
    946  1.1     matt 			 *   TB = { PB = { TL, Y }, X } --> PB = { Y, X }.
    947  1.1     matt 			 */
    948  1.1     matt 			PTN_BRANCH_SLOT(target, slot) =
    949  1.1     matt 			    PTN_BRANCH_SLOT(parent, parent_slot ^ PT_SLOT_OTHER);
    950  1.1     matt 			*nodep = ptree_move_branch(pt, parent, target);
    951  1.1     matt 			PTREE_CHECK(pt);
    952  1.1     matt 			return;
    953  1.1     matt 		} else {
    954  1.1     matt 			/*
    955  1.1     matt 			 * If parent was a one-way branch, it must have been
    956  1.1     matt 			 * mask which pointed to a single leaf which we are
    957  1.1     matt 			 * removing.  This means we have to convert the
    958  1.1     matt 			 * parent back to a leaf node.  So in the same
    959  1.1     matt 			 * position that target pointed to parent, we place
    960  1.1     matt 			 * leaf pointer to parent.  In the other position,
    961  1.1     matt 			 * we just put the other node from target.
    962  1.1     matt 			 *
    963  1.1     matt 			 *   TB = { X, PB = { TL } } --> PB = { X, PL }
    964  1.1     matt 			 */
    965  1.1     matt 			KASSERT(PTN_ISMASK_P(parent));
    966  1.1     matt 			KASSERT(slot == ptree_testnode(pt, parent, target));
    967  1.1     matt 			PTN_BRANCH_SLOT(parent, slot) = PTN_LEAF(parent);
    968  1.1     matt 			PTN_BRANCH_SLOT(parent, other_slot) =
    969  1.1     matt 			   PTN_BRANCH_SLOT(target, other_slot);
    970  1.1     matt 			PTN_SET_LEAF_POSITION(parent,slot);
    971  1.1     matt 			PTN_SET_BRANCH_BITLEN(parent, 1);
    972  1.1     matt 		}
    973  1.1     matt 		PTN_SET_BRANCH_BITOFF(parent, PTN_BRANCH_BITOFF(target));
    974  1.1     matt 		PTN_SET_BRANCH_POSITION(parent, PTN_BRANCH_POSITION(target));
    975  1.1     matt 
    976  1.1     matt 		*nodep = PTN_BRANCH(parent);
    977  1.1     matt 		PTREE_CHECK(pt);
    978  1.1     matt 		return;
    979  1.1     matt 	}
    980  1.1     matt 
    981  1.1     matt #ifndef PTNOMASK
    982  1.1     matt 	if (__predict_false(PTN_BRANCH_BITLEN(parent) == 0)) {
    983  1.1     matt 		/*
    984  1.1     matt 		 * Parent was a one-way branch which is changing back to a leaf.
    985  1.1     matt 		 * Since parent is no longer a one-way branch, it can take over
    986  1.1     matt 		 * target's branching duties.
    987  1.1     matt 		 *
    988  1.1     matt 		 *  GB = { PB = { TL } }	--> GB = { PL }
    989  1.1     matt 		 *  TB = { X, Y }		--> PB = { X, Y }
    990  1.1     matt 		 */
    991  1.1     matt 		KASSERT(PTN_ISMASK_P(parent));
    992  1.1     matt 		KASSERT(parent != target);
    993  1.1     matt 		*removep = PTN_LEAF(parent);
    994  1.1     matt 	} else
    995  1.1     matt #endif /* !PTNOMASK */
    996  1.1     matt 	{
    997  1.1     matt 		/*
    998  1.1     matt 		 * Now we are the normal removal case.  Since after the
    999  1.1     matt 		 * target's leaf identity is removed from the its parent,
   1000  1.1     matt 		 * that parent will only have one decendent.  So we can
   1001  1.1     matt 		 * just as easily replace the node that has the parent's
   1002  1.1     matt 		 * branch identity with the surviving node.  This freeing
   1003  1.1     matt 		 * parent from its branching duties which means it can
   1004  1.1     matt 		 * take over target's branching duties.
   1005  1.1     matt 		 *
   1006  1.1     matt 		 *  GB = { PB = { X, TL } }	--> GB = { X }
   1007  1.1     matt 		 *  TB = { V, W }		--> PB = { V, W }
   1008  1.1     matt 		 */
   1009  1.1     matt 		const pt_slot_t other_slot = parent_slot ^ PT_SLOT_OTHER;
   1010  1.1     matt 		uintptr_t other_node = PTN_BRANCH_SLOT(parent, other_slot);
   1011  1.1     matt 		const pt_slot_t target_slot = (parent == target ? branch_slot : leaf_slot);
   1012  1.1     matt 
   1013  1.1     matt 		*removep = other_node;
   1014  1.1     matt 
   1015  1.1     matt 		ptree_set_position(other_node, target_slot);
   1016  1.1     matt 
   1017  1.1     matt 		/*
   1018  1.1     matt 		 * If target's branch identity contained its leaf identity, we
   1019  1.1     matt 		 * have nothing left to do.  We've already moved 'X' so there
   1020  1.1     matt 		 * is no longer anything in the target's branch identiy that
   1021  1.1     matt 		 * has to be preserved.
   1022  1.1     matt 		 */
   1023  1.1     matt 		if (parent == target) {
   1024  1.1     matt 			/*
   1025  1.1     matt 			 *  GB = { TB = { X, TL } }	--> GB = { X }
   1026  1.1     matt 			 *  TB = { X, TL }		--> don't care
   1027  1.1     matt 			 */
   1028  1.1     matt 			PTREE_CHECK(pt);
   1029  1.1     matt 			return;
   1030  1.1     matt 		}
   1031  1.1     matt 	}
   1032  1.1     matt 
   1033  1.1     matt 	/*
   1034  1.1     matt 	 * If target wasn't used as a branch, then it must have been the
   1035  1.1     matt 	 * oddman-out of the tree (the one node that doesn't have a branch
   1036  1.1     matt 	 * identity).  This makes parent the new oddman-out.
   1037  1.1     matt 	 */
   1038  1.1     matt 	if (*nodep == PTN_LEAF(target)) {
   1039  1.1     matt 		KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
   1040  1.1     matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(parent);
   1041  1.1     matt 		PTREE_CHECK(pt);
   1042  1.1     matt 		return;
   1043  1.1     matt 	}
   1044  1.1     matt 
   1045  1.1     matt 	/*
   1046  1.1     matt 	 * Finally move the target's branching duties to the parent.
   1047  1.1     matt 	 */
   1048  1.1     matt 	KASSERT(PTN_BRANCH_BITOFF(parent) > PTN_BRANCH_BITOFF(target));
   1049  1.1     matt 	*nodep = ptree_move_branch(pt, parent, target);
   1050  1.1     matt 	PTREE_CHECK(pt);
   1051  1.1     matt }
   1052  1.1     matt 
   1053  1.1     matt #ifdef PTCHECK
   1054  1.1     matt static const pt_node_t *
   1055  1.1     matt ptree_check_find_node2(const pt_tree_t *pt, const pt_node_t *parent,
   1056  1.1     matt 	uintptr_t target)
   1057  1.1     matt {
   1058  1.1     matt 	const pt_bitlen_t slots = 1 << PTN_BRANCH_BITLEN(parent);
   1059  1.1     matt 	pt_slot_t slot;
   1060  1.1     matt 
   1061  1.1     matt 	for (slot = 0; slot < slots; slot++) {
   1062  1.1     matt 		const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
   1063  1.1     matt 		if (PTN_BRANCH_SLOT(parent, slot) == node)
   1064  1.1     matt 			return parent;
   1065  1.1     matt 	}
   1066  1.1     matt 	for (slot = 0; slot < slots; slot++) {
   1067  1.1     matt 		const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
   1068  1.1     matt 		const pt_node_t *branch;
   1069  1.1     matt 		if (!PT_BRANCH_P(node))
   1070  1.1     matt 			continue;
   1071  1.1     matt 		branch = ptree_check_find_node2(pt, PT_NODE(node), target);
   1072  1.1     matt 		if (branch != NULL)
   1073  1.1     matt 			return branch;
   1074  1.1     matt 	}
   1075  1.1     matt 
   1076  1.1     matt 	return NULL;
   1077  1.1     matt }
   1078  1.1     matt 
   1079  1.1     matt static bool
   1080  1.1     matt ptree_check_leaf(const pt_tree_t *pt, const pt_node_t *parent,
   1081  1.1     matt 	const pt_node_t *ptn)
   1082  1.1     matt {
   1083  1.1     matt 	const pt_bitoff_t leaf_position = PTN_LEAF_POSITION(ptn);
   1084  1.1     matt 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
   1085  1.1     matt 	const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
   1086  1.1     matt 	const uintptr_t leaf_node = PTN_LEAF(ptn);
   1087  1.1     matt 	const bool is_parent_root = (parent == &pt->pt_rootnode);
   1088  1.1     matt 	const bool is_mask = PTN_ISMASK_P(ptn);
   1089  1.1     matt 	bool ok = true;
   1090  1.1     matt 
   1091  1.1     matt 	if (is_parent_root) {
   1092  1.1     matt 		ok = ok && PTN_BRANCH_ODDMAN_SLOT(parent) == leaf_node;
   1093  1.1     matt 		KASSERT(ok);
   1094  1.1     matt 		return ok;
   1095  1.1     matt 	}
   1096  1.1     matt 
   1097  1.1     matt 	if (is_mask && PTN_ISMASK_P(parent) && PTN_BRANCH_BITLEN(parent) == 0) {
   1098  1.1     matt 		ok = ok && PTN_MASK_BITLEN(parent) < mask_len;
   1099  1.1     matt 		KASSERT(ok);
   1100  1.1     matt 		ok = ok && PTN_BRANCH_BITOFF(parent) < mask_len;
   1101  1.1     matt 		KASSERT(ok);
   1102  1.1     matt 	}
   1103  1.1     matt 	ok = ok && PTN_BRANCH_SLOT(parent, leaf_position) == leaf_node;
   1104  1.1     matt 	KASSERT(ok);
   1105  1.1     matt 	ok = ok && leaf_position == ptree_testnode(pt, ptn, parent);
   1106  1.1     matt 	KASSERT(ok);
   1107  1.1     matt 	if (PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) != leaf_node) {
   1108  1.1     matt 		ok = ok && bitlen > 0;
   1109  1.1     matt 		KASSERT(ok);
   1110  1.1     matt 		ok = ok && ptn == ptree_check_find_node2(pt, ptn, PTN_LEAF(ptn));
   1111  1.1     matt 		KASSERT(ok);
   1112  1.1     matt 	}
   1113  1.1     matt 	return ok;
   1114  1.1     matt }
   1115  1.1     matt 
   1116  1.1     matt static bool
   1117  1.1     matt ptree_check_branch(const pt_tree_t *pt, const pt_node_t *parent,
   1118  1.1     matt 	const pt_node_t *ptn)
   1119  1.1     matt {
   1120  1.1     matt 	const bool is_parent_root = (parent == &pt->pt_rootnode);
   1121  1.1     matt 	const pt_slot_t branch_slot = PTN_BRANCH_POSITION(ptn);
   1122  1.1     matt 	const pt_bitoff_t bitoff = PTN_BRANCH_BITOFF(ptn);
   1123  1.1     matt 	const pt_bitoff_t bitlen = PTN_BRANCH_BITLEN(ptn);
   1124  1.1     matt 	const pt_bitoff_t parent_bitoff = PTN_BRANCH_BITOFF(parent);
   1125  1.1     matt 	const pt_bitoff_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
   1126  1.1     matt 	const bool is_parent_mask = PTN_ISMASK_P(parent) && parent_bitlen == 0;
   1127  1.1     matt 	const bool is_mask = PTN_ISMASK_P(ptn) && bitlen == 0;
   1128  1.1     matt 	const pt_bitoff_t parent_mask_len = PTN_MASK_BITLEN(parent);
   1129  1.1     matt 	const pt_bitoff_t mask_len = PTN_MASK_BITLEN(ptn);
   1130  1.1     matt 	const pt_bitlen_t slots = 1 << bitlen;
   1131  1.1     matt 	pt_slot_t slot;
   1132  1.1     matt 	bool ok = true;
   1133  1.1     matt 
   1134  1.1     matt 	ok = ok && PTN_BRANCH_SLOT(parent, branch_slot) == PTN_BRANCH(ptn);
   1135  1.1     matt 	KASSERT(ok);
   1136  1.1     matt 	ok = ok && branch_slot == ptree_testnode(pt, ptn, parent);
   1137  1.1     matt 	KASSERT(ok);
   1138  1.1     matt 
   1139  1.1     matt 	if (is_mask) {
   1140  1.1     matt 		ok = ok && bitoff == mask_len;
   1141  1.1     matt 		KASSERT(ok);
   1142  1.1     matt 		if (is_parent_mask) {
   1143  1.1     matt 			ok = ok && parent_mask_len < mask_len;
   1144  1.1     matt 			KASSERT(ok);
   1145  1.1     matt 			ok = ok && parent_bitoff < bitoff;
   1146  1.1     matt 			KASSERT(ok);
   1147  1.1     matt 		}
   1148  1.1     matt 	} else {
   1149  1.1     matt 		if (is_parent_mask) {
   1150  1.1     matt 			ok = ok && parent_bitoff <= bitoff;
   1151  1.1     matt 		} else if (!is_parent_root) {
   1152  1.1     matt 			ok = ok && parent_bitoff < bitoff;
   1153  1.1     matt 		}
   1154  1.1     matt 		KASSERT(ok);
   1155  1.1     matt 	}
   1156  1.1     matt 
   1157  1.1     matt 	for (slot = 0; slot < slots; slot++) {
   1158  1.1     matt 		const uintptr_t node = PTN_BRANCH_SLOT(ptn, slot);
   1159  1.1     matt 		pt_bitoff_t tmp_bitoff = 0;
   1160  1.1     matt 		pt_slot_t tmp_slot;
   1161  1.1     matt 		ok = ok && node != PTN_BRANCH(ptn);
   1162  1.1     matt 		KASSERT(ok);
   1163  1.1     matt 		if (bitlen > 0) {
   1164  1.1     matt 			ok = ok && ptree_matchnode(pt, PT_NODE(node), ptn, bitoff, &tmp_bitoff, &tmp_slot);
   1165  1.1     matt 			KASSERT(ok);
   1166  1.1     matt 			tmp_slot = ptree_testnode(pt, PT_NODE(node), ptn);
   1167  1.1     matt 			ok = ok && slot == tmp_slot;
   1168  1.1     matt 			KASSERT(ok);
   1169  1.1     matt 		}
   1170  1.1     matt 		if (PT_LEAF_P(node))
   1171  1.1     matt 			ok = ok && ptree_check_leaf(pt, ptn, PT_NODE(node));
   1172  1.1     matt 		else
   1173  1.1     matt 			ok = ok && ptree_check_branch(pt, ptn, PT_NODE(node));
   1174  1.1     matt 	}
   1175  1.1     matt 
   1176  1.1     matt 	return ok;
   1177  1.1     matt }
   1178  1.1     matt #endif /* PTCHECK */
   1179  1.1     matt 
   1180  1.2     matt /*ARGSUSED*/
   1181  1.1     matt bool
   1182  1.1     matt ptree_check(const pt_tree_t *pt)
   1183  1.1     matt {
   1184  1.1     matt 	bool ok = true;
   1185  1.1     matt #ifdef PTCHECK
   1186  1.1     matt 	const pt_node_t * const parent = &pt->pt_rootnode;
   1187  1.1     matt 	const uintptr_t node = pt->pt_root;
   1188  1.1     matt 	const pt_node_t * const ptn = PT_NODE(node);
   1189  1.1     matt 
   1190  1.1     matt 	ok = ok && PTN_BRANCH_BITOFF(parent) == 0;
   1191  1.1     matt 	ok = ok && !PTN_ISMASK_P(parent);
   1192  1.1     matt 
   1193  1.1     matt 	if (PT_NULL_P(node))
   1194  1.1     matt 		return ok;
   1195  1.1     matt 
   1196  1.1     matt 	if (PT_LEAF_P(node))
   1197  1.1     matt 		ok = ok && ptree_check_leaf(pt, parent, ptn);
   1198  1.1     matt 	else
   1199  1.1     matt 		ok = ok && ptree_check_branch(pt, parent, ptn);
   1200  1.1     matt #endif
   1201  1.1     matt 	return ok;
   1202  1.1     matt }
   1203