Home | History | Annotate | Line # | Download | only in gen
ptree.c revision 1.5.6.1
      1  1.5.6.1     yamt /*	$NetBSD: ptree.c,v 1.5.6.1 2012/10/30 18:46:13 yamt Exp $	*/
      2      1.1     matt 
      3      1.1     matt /*-
      4      1.1     matt  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5      1.1     matt  * All rights reserved.
      6      1.1     matt  *
      7      1.1     matt  * This code is derived from software contributed to The NetBSD Foundation
      8      1.1     matt  * by Matt Thomas <matt (at) 3am-software.com>.
      9      1.1     matt  *
     10      1.1     matt  * Redistribution and use in source and binary forms, with or without
     11      1.1     matt  * modification, are permitted provided that the following conditions
     12      1.1     matt  * are met:
     13      1.1     matt  * 1. Redistributions of source code must retain the above copyright
     14      1.1     matt  *    notice, this list of conditions and the following disclaimer.
     15      1.1     matt  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.1     matt  *    notice, this list of conditions and the following disclaimer in the
     17      1.1     matt  *    documentation and/or other materials provided with the distribution.
     18      1.1     matt  *
     19      1.1     matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.1     matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.1     matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.1     matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.1     matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.1     matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.1     matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.1     matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.1     matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.1     matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.1     matt  * POSSIBILITY OF SUCH DAMAGE.
     30      1.1     matt  */
     31      1.1     matt 
     32      1.1     matt #define _PT_PRIVATE
     33      1.1     matt 
     34      1.1     matt #if defined(PTCHECK) && !defined(PTDEBUG)
     35      1.1     matt #define PTDEBUG
     36      1.1     matt #endif
     37      1.1     matt 
     38      1.1     matt #if defined(_KERNEL) || defined(_STANDALONE)
     39      1.1     matt #include <sys/param.h>
     40      1.1     matt #include <sys/types.h>
     41      1.1     matt #include <sys/systm.h>
     42      1.3  jnemeth #include <lib/libkern/libkern.h>
     43  1.5.6.1     yamt __KERNEL_RCSID(0, "$NetBSD: ptree.c,v 1.5.6.1 2012/10/30 18:46:13 yamt Exp $");
     44      1.1     matt #else
     45      1.1     matt #include <stddef.h>
     46      1.1     matt #include <stdint.h>
     47      1.1     matt #include <limits.h>
     48      1.1     matt #include <stdbool.h>
     49      1.1     matt #include <string.h>
     50      1.1     matt #ifdef PTDEBUG
     51      1.1     matt #include <assert.h>
     52      1.1     matt #define	KASSERT(e)	assert(e)
     53      1.1     matt #else
     54      1.1     matt #define	KASSERT(e)	do { } while (/*CONSTCOND*/ 0)
     55      1.1     matt #endif
     56  1.5.6.1     yamt __RCSID("$NetBSD: ptree.c,v 1.5.6.1 2012/10/30 18:46:13 yamt Exp $");
     57      1.1     matt #endif /* _KERNEL || _STANDALONE */
     58      1.1     matt 
     59      1.1     matt #ifdef _LIBC
     60      1.1     matt #include "namespace.h"
     61      1.1     matt #endif
     62      1.1     matt 
     63      1.1     matt #ifdef PTTEST
     64      1.1     matt #include "ptree.h"
     65      1.1     matt #else
     66      1.1     matt #include <sys/ptree.h>
     67      1.1     matt #endif
     68      1.1     matt 
     69      1.1     matt /*
     70  1.5.6.1     yamt  * This is an implementation of a radix / PATRICIA tree.  As in a traditional
     71      1.1     matt  * patricia tree, all the data is at the leaves of the tree.  An N-value
     72      1.1     matt  * tree would have N leaves, N-1 branching nodes, and a root pointer.  Each
     73      1.1     matt  * branching node would have left(0) and right(1) pointers that either point
     74      1.1     matt  * to another branching node or a leaf node.  The root pointer would also
     75      1.1     matt  * point to either the first branching node or a leaf node.  Leaf nodes
     76      1.1     matt  * have no need for pointers.
     77      1.1     matt  *
     78      1.1     matt  * However, allocation for these branching nodes is problematic since the
     79  1.5.6.1     yamt  * allocation could fail.  This would cause insertions to fail for reasons
     80  1.5.6.1     yamt  * beyond the user's control.  So to prevent this, in this implementation
     81      1.1     matt  * each node has two identities: its leaf identity and its branch identity.
     82      1.1     matt  * Each is separate from the other.  Every branch is tagged as to whether
     83      1.1     matt  * it points to a leaf or a branch.  This is not an attribute of the object
     84      1.1     matt  * but of the pointer to the object.  The low bit of the pointer is used as
     85      1.5     yamt  * the tag to determine whether it points to a leaf or branch identity, with
     86      1.1     matt  * branch identities having the low bit set.
     87  1.5.6.1     yamt  *
     88      1.1     matt  * A node's branch identity has one rule: when traversing the tree from the
     89      1.1     matt  * root to the node's leaf identity, one of the branches traversed will be via
     90      1.1     matt  * the node's branch identity.  Of course, that has an exception: since to
     91      1.1     matt  * store N leaves, you need N-1 branches.  That one node whose branch identity
     92      1.1     matt  * isn't used is stored as "oddman"-out in the root.
     93      1.1     matt  *
     94      1.1     matt  * Branching nodes also has a bit offset and a bit length which determines
     95      1.1     matt  * which branch slot is used.  The bit length can be zero resulting in a
     96  1.5.6.1     yamt  * one-way branch.  This happens in two special cases: the root and
     97      1.1     matt  * interior mask nodes.
     98      1.1     matt  *
     99      1.1     matt  * To support longest match first lookups, when a mask node (one that only
    100      1.1     matt  * match the first N bits) has children who first N bits match the mask nodes,
    101      1.1     matt  * that mask node is converted from being a leaf node to being a one-way
    102      1.1     matt  * branch-node.  The mask becomes fixed in position in the tree.  The mask
    103      1.5     yamt  * will always be the longest mask match for its descendants (unless they
    104      1.1     matt  * traverse an even longer match).
    105      1.1     matt  */
    106      1.1     matt 
    107      1.1     matt #define	NODETOITEM(pt, ptn)	\
    108      1.1     matt 	((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset))
    109      1.1     matt #define	NODETOKEY(pt, ptn)	\
    110      1.1     matt 	((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset + pt->pt_key_offset))
    111      1.1     matt #define	ITEMTONODE(pt, ptn)	\
    112      1.1     matt 	((pt_node_t *)((uintptr_t)(ptn) + (pt)->pt_node_offset))
    113      1.1     matt 
    114      1.1     matt bool ptree_check(const pt_tree_t *);
    115      1.1     matt #if PTCHECK > 1
    116      1.1     matt #define	PTREE_CHECK(pt)		ptree_check(pt)
    117      1.1     matt #else
    118      1.2     matt #define	PTREE_CHECK(pt)		do { } while (/*CONSTCOND*/ 0)
    119      1.1     matt #endif
    120      1.1     matt 
    121      1.1     matt static inline bool
    122      1.1     matt ptree_matchnode(const pt_tree_t *pt, const pt_node_t *target,
    123      1.1     matt 	const pt_node_t *ptn, pt_bitoff_t max_bitoff,
    124      1.1     matt 	pt_bitoff_t *bitoff_p, pt_slot_t *slots_p)
    125      1.1     matt {
    126      1.1     matt 	return (*pt->pt_ops->ptto_matchnode)(NODETOKEY(pt, target),
    127  1.5.6.1     yamt 	    (ptn != NULL ? NODETOKEY(pt, ptn) : NULL),
    128  1.5.6.1     yamt 	    max_bitoff, bitoff_p, slots_p, pt->pt_context);
    129      1.1     matt }
    130      1.1     matt 
    131      1.1     matt static inline pt_slot_t
    132      1.1     matt ptree_testnode(const pt_tree_t *pt, const pt_node_t *target,
    133      1.1     matt 	const pt_node_t *ptn)
    134      1.1     matt {
    135      1.1     matt 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
    136      1.1     matt 	if (bitlen == 0)
    137  1.5.6.1     yamt 		return PT_SLOT_ROOT;	/* mask or root, doesn't matter */
    138      1.1     matt 	return (*pt->pt_ops->ptto_testnode)(NODETOKEY(pt, target),
    139  1.5.6.1     yamt 	    PTN_BRANCH_BITOFF(ptn), bitlen, pt->pt_context);
    140      1.1     matt }
    141      1.1     matt 
    142      1.1     matt static inline bool
    143      1.1     matt ptree_matchkey(const pt_tree_t *pt, const void *key,
    144      1.1     matt 	const pt_node_t *ptn, pt_bitoff_t bitoff, pt_bitlen_t bitlen)
    145      1.1     matt {
    146      1.1     matt 	return (*pt->pt_ops->ptto_matchkey)(key, NODETOKEY(pt, ptn),
    147  1.5.6.1     yamt 	    bitoff, bitlen, pt->pt_context);
    148      1.1     matt }
    149      1.1     matt 
    150      1.1     matt static inline pt_slot_t
    151      1.1     matt ptree_testkey(const pt_tree_t *pt, const void *key, const pt_node_t *ptn)
    152      1.1     matt {
    153  1.5.6.1     yamt 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
    154  1.5.6.1     yamt 	if (bitlen == 0)
    155  1.5.6.1     yamt 		return PT_SLOT_ROOT;	/* mask or root, doesn't matter */
    156  1.5.6.1     yamt 	return (*pt->pt_ops->ptto_testkey)(key, PTN_BRANCH_BITOFF(ptn),
    157  1.5.6.1     yamt 	    PTN_BRANCH_BITLEN(ptn), pt->pt_context);
    158      1.1     matt }
    159      1.1     matt 
    160      1.1     matt static inline void
    161      1.1     matt ptree_set_position(uintptr_t node, pt_slot_t position)
    162      1.1     matt {
    163      1.1     matt 	if (PT_LEAF_P(node))
    164      1.1     matt 		PTN_SET_LEAF_POSITION(PT_NODE(node), position);
    165      1.1     matt 	else
    166      1.1     matt 		PTN_SET_BRANCH_POSITION(PT_NODE(node), position);
    167      1.1     matt }
    168      1.1     matt 
    169      1.1     matt void
    170  1.5.6.1     yamt ptree_init(pt_tree_t *pt, const pt_tree_ops_t *ops, void *context,
    171  1.5.6.1     yamt 	size_t node_offset, size_t key_offset)
    172      1.1     matt {
    173      1.1     matt 	memset(pt, 0, sizeof(*pt));
    174      1.1     matt 	pt->pt_node_offset = node_offset;
    175      1.1     matt 	pt->pt_key_offset = key_offset;
    176  1.5.6.1     yamt 	pt->pt_context = context;
    177      1.1     matt 	pt->pt_ops = ops;
    178      1.1     matt }
    179      1.1     matt 
    180      1.1     matt typedef struct {
    181      1.1     matt 	uintptr_t *id_insertp;
    182      1.1     matt 	pt_node_t *id_parent;
    183      1.1     matt 	uintptr_t id_node;
    184      1.1     matt 	pt_slot_t id_parent_slot;
    185      1.1     matt 	pt_bitoff_t id_bitoff;
    186      1.1     matt 	pt_slot_t id_slot;
    187      1.1     matt } pt_insertdata_t;
    188      1.1     matt 
    189      1.1     matt typedef bool (*pt_insertfunc_t)(pt_tree_t *, pt_node_t *, pt_insertdata_t *);
    190      1.1     matt 
    191      1.1     matt /*
    192      1.1     matt  * Move a branch identify from src to dst.  The leaves don't care since
    193      1.1     matt  * nothing for them has changed.
    194      1.1     matt  */
    195      1.2     matt /*ARGSUSED*/
    196      1.1     matt static uintptr_t
    197      1.1     matt ptree_move_branch(pt_tree_t * const pt, pt_node_t * const dst,
    198      1.1     matt 	const pt_node_t * const src)
    199      1.1     matt {
    200      1.1     matt 	KASSERT(PTN_BRANCH_BITLEN(src) == 1);
    201      1.1     matt 	/* set branch bitlen and bitoff in one step.  */
    202      1.1     matt 	dst->ptn_branchdata = src->ptn_branchdata;
    203      1.1     matt 	PTN_SET_BRANCH_POSITION(dst, PTN_BRANCH_POSITION(src));
    204      1.1     matt 	PTN_COPY_BRANCH_SLOTS(dst, src);
    205      1.1     matt 	return PTN_BRANCH(dst);
    206      1.1     matt }
    207      1.1     matt 
    208      1.1     matt #ifndef PTNOMASK
    209      1.1     matt static inline uintptr_t *
    210      1.1     matt ptree_find_branch(pt_tree_t * const pt, uintptr_t branch_node)
    211      1.1     matt {
    212      1.1     matt 	pt_node_t * const branch = PT_NODE(branch_node);
    213      1.1     matt 	pt_node_t *parent;
    214      1.1     matt 
    215      1.1     matt 	for (parent = &pt->pt_rootnode;;) {
    216      1.1     matt 		uintptr_t *nodep =
    217      1.1     matt 		    &PTN_BRANCH_SLOT(parent, ptree_testnode(pt, branch, parent));
    218      1.1     matt 		if (*nodep == branch_node)
    219      1.1     matt 			return nodep;
    220      1.1     matt 		if (PT_LEAF_P(*nodep))
    221      1.1     matt 			return NULL;
    222      1.1     matt 		parent = PT_NODE(*nodep);
    223      1.1     matt 	}
    224      1.1     matt }
    225      1.1     matt 
    226      1.1     matt static bool
    227      1.1     matt ptree_insert_leaf_after_mask(pt_tree_t * const pt, pt_node_t * const target,
    228      1.1     matt 	pt_insertdata_t * const id)
    229      1.1     matt {
    230      1.1     matt 	const uintptr_t target_node = PTN_LEAF(target);
    231      1.1     matt 	const uintptr_t mask_node = id->id_node;
    232      1.1     matt 	pt_node_t * const mask = PT_NODE(mask_node);
    233      1.1     matt 	const pt_bitlen_t mask_len = PTN_MASK_BITLEN(mask);
    234      1.1     matt 
    235      1.1     matt 	KASSERT(PT_LEAF_P(mask_node));
    236      1.1     matt 	KASSERT(PTN_LEAF_POSITION(mask) == id->id_parent_slot);
    237      1.1     matt 	KASSERT(mask_len <= id->id_bitoff);
    238      1.1     matt 	KASSERT(PTN_ISMASK_P(mask));
    239      1.1     matt 	KASSERT(!PTN_ISMASK_P(target) || mask_len < PTN_MASK_BITLEN(target));
    240      1.1     matt 
    241      1.1     matt 	if (mask_node == PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode)) {
    242      1.1     matt 		KASSERT(id->id_parent != mask);
    243      1.1     matt 		/*
    244      1.1     matt 		 * Nice, mask was an oddman.  So just set the oddman to target.
    245      1.1     matt 		 */
    246      1.1     matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = target_node;
    247      1.1     matt 	} else {
    248      1.1     matt 		/*
    249      1.1     matt 		 * We need to find out who's pointing to mask's branch
    250      1.1     matt 		 * identity.  We know that between root and the leaf identity,
    251      1.1     matt 		 * we must traverse the node's branch identity.
    252      1.1     matt 		 */
    253      1.1     matt 		uintptr_t * const mask_nodep = ptree_find_branch(pt, PTN_BRANCH(mask));
    254      1.1     matt 		KASSERT(mask_nodep != NULL);
    255      1.1     matt 		KASSERT(*mask_nodep == PTN_BRANCH(mask));
    256      1.1     matt 		KASSERT(PTN_BRANCH_BITLEN(mask) == 1);
    257      1.1     matt 
    258      1.1     matt 		/*
    259      1.1     matt 		 * Alas, mask was used as a branch.  Since the mask is becoming
    260      1.1     matt 		 * a one-way branch, we need make target take over mask's
    261      1.1     matt 		 * branching responsibilities.  Only then can we change it.
    262      1.1     matt 		 */
    263      1.1     matt 		*mask_nodep = ptree_move_branch(pt, target, mask);
    264      1.1     matt 
    265      1.1     matt 		/*
    266      1.1     matt 		 * However, it's possible that mask's parent is itself.  If
    267      1.1     matt 		 * that's true, update the insert point to use target since it
    268      1.1     matt 		 * has taken over mask's branching duties.
    269      1.1     matt 		 */
    270      1.1     matt 		if (id->id_parent == mask)
    271      1.1     matt 			id->id_insertp = &PTN_BRANCH_SLOT(target,
    272      1.1     matt 			    id->id_parent_slot);
    273      1.1     matt 	}
    274      1.1     matt 
    275      1.1     matt 	PTN_SET_BRANCH_BITLEN(mask, 0);
    276      1.1     matt 	PTN_SET_BRANCH_BITOFF(mask, mask_len);
    277      1.1     matt 
    278      1.1     matt 	PTN_BRANCH_ROOT_SLOT(mask) = target_node;
    279      1.1     matt 	PTN_BRANCH_ODDMAN_SLOT(mask) = PT_NULL;
    280      1.1     matt 	PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
    281      1.1     matt 	PTN_SET_BRANCH_POSITION(mask, id->id_parent_slot);
    282      1.1     matt 
    283      1.1     matt 	/*
    284      1.1     matt 	 * Now that everything is done, to make target visible we need to
    285      1.1     matt 	 * change mask from a leaf to a branch.
    286      1.1     matt 	 */
    287      1.1     matt 	*id->id_insertp = PTN_BRANCH(mask);
    288      1.1     matt 	PTREE_CHECK(pt);
    289      1.1     matt 	return true;
    290      1.1     matt }
    291      1.1     matt 
    292      1.2     matt /*ARGSUSED*/
    293      1.1     matt static bool
    294      1.1     matt ptree_insert_mask_before_node(pt_tree_t * const pt, pt_node_t * const target,
    295      1.1     matt 	pt_insertdata_t * const id)
    296      1.1     matt {
    297      1.1     matt 	const uintptr_t node = id->id_node;
    298      1.1     matt 	pt_node_t * const ptn = PT_NODE(node);
    299      1.1     matt 	const pt_slot_t mask_len = PTN_MASK_BITLEN(target);
    300      1.1     matt 	const pt_bitlen_t node_mask_len = PTN_MASK_BITLEN(ptn);
    301      1.1     matt 
    302      1.1     matt 	KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(ptn));
    303      1.1     matt 	KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(ptn));
    304      1.1     matt 	KASSERT(PTN_ISMASK_P(target));
    305      1.1     matt 
    306      1.1     matt 	/*
    307      1.1     matt 	 * If the node we are placing ourself in front is a mask with the
    308      1.1     matt 	 * same mask length as us, return failure.
    309      1.1     matt 	 */
    310      1.1     matt 	if (PTN_ISMASK_P(ptn) && node_mask_len == mask_len)
    311      1.1     matt 		return false;
    312      1.1     matt 
    313      1.1     matt 	PTN_SET_BRANCH_BITLEN(target, 0);
    314      1.1     matt 	PTN_SET_BRANCH_BITOFF(target, mask_len);
    315      1.1     matt 
    316      1.1     matt 	PTN_BRANCH_SLOT(target, PT_SLOT_ROOT) = node;
    317      1.1     matt 	*id->id_insertp = PTN_BRANCH(target);
    318      1.1     matt 
    319      1.1     matt 	PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
    320      1.1     matt 	ptree_set_position(node, PT_SLOT_ROOT);
    321      1.1     matt 
    322      1.1     matt 	PTREE_CHECK(pt);
    323      1.1     matt 	return true;
    324      1.1     matt }
    325      1.1     matt #endif /* !PTNOMASK */
    326      1.1     matt 
    327      1.2     matt /*ARGSUSED*/
    328      1.1     matt static bool
    329      1.1     matt ptree_insert_branch_at_node(pt_tree_t * const pt, pt_node_t * const target,
    330      1.1     matt 	pt_insertdata_t * const id)
    331      1.1     matt {
    332      1.1     matt 	const uintptr_t target_node = PTN_LEAF(target);
    333      1.1     matt 	const uintptr_t node = id->id_node;
    334      1.1     matt 	const pt_slot_t other_slot = id->id_slot ^ PT_SLOT_OTHER;
    335      1.1     matt 
    336      1.1     matt 	KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(PT_NODE(node)));
    337      1.1     matt 	KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(PT_NODE(node)));
    338      1.1     matt 	KASSERT((node == pt->pt_root) == (id->id_parent == &pt->pt_rootnode));
    339      1.1     matt #ifndef PTNOMASK
    340      1.1     matt 	KASSERT(!PTN_ISMASK_P(target) || id->id_bitoff <= PTN_MASK_BITLEN(target));
    341      1.1     matt #endif
    342      1.1     matt 	KASSERT(node == pt->pt_root || PTN_BRANCH_BITOFF(id->id_parent) + PTN_BRANCH_BITLEN(id->id_parent) <= id->id_bitoff);
    343      1.1     matt 
    344      1.1     matt 	PTN_SET_BRANCH_BITOFF(target, id->id_bitoff);
    345      1.1     matt 	PTN_SET_BRANCH_BITLEN(target, 1);
    346      1.1     matt 
    347      1.1     matt 	PTN_BRANCH_SLOT(target, id->id_slot) = target_node;
    348      1.1     matt 	PTN_BRANCH_SLOT(target, other_slot) = node;
    349      1.1     matt 	*id->id_insertp = PTN_BRANCH(target);
    350      1.1     matt 
    351      1.1     matt 	PTN_SET_LEAF_POSITION(target, id->id_slot);
    352      1.1     matt 	ptree_set_position(node, other_slot);
    353      1.1     matt 
    354      1.1     matt 	PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
    355      1.1     matt 	PTREE_CHECK(pt);
    356      1.1     matt 	return true;
    357      1.1     matt }
    358      1.1     matt 
    359      1.1     matt static bool
    360      1.1     matt ptree_insert_leaf(pt_tree_t * const pt, pt_node_t * const target,
    361      1.1     matt 	pt_insertdata_t * const id)
    362      1.1     matt {
    363      1.1     matt 	const uintptr_t leaf_node = id->id_node;
    364      1.1     matt 	pt_node_t * const leaf = PT_NODE(leaf_node);
    365      1.1     matt #ifdef PTNOMASK
    366      1.1     matt 	const bool inserting_mask = false;
    367      1.1     matt 	const bool at_mask = false;
    368      1.1     matt #else
    369      1.1     matt 	const bool inserting_mask = PTN_ISMASK_P(target);
    370      1.1     matt 	const bool at_mask = PTN_ISMASK_P(leaf);
    371      1.1     matt 	const pt_bitlen_t leaf_masklen = PTN_MASK_BITLEN(leaf);
    372      1.1     matt 	const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
    373      1.1     matt #endif
    374      1.1     matt 	pt_insertfunc_t insertfunc = ptree_insert_branch_at_node;
    375      1.1     matt 	bool matched;
    376      1.1     matt 
    377      1.1     matt 	/*
    378      1.1     matt 	 * In all likelyhood we are going simply going to insert a branch
    379      1.1     matt 	 * where this leaf is which will point to the old and new leaves.
    380      1.1     matt 	 */
    381      1.1     matt 	KASSERT(PT_LEAF_P(leaf_node));
    382      1.1     matt 	KASSERT(PTN_LEAF_POSITION(leaf) == id->id_parent_slot);
    383      1.1     matt 	matched = ptree_matchnode(pt, target, leaf, UINT_MAX,
    384      1.1     matt 	    &id->id_bitoff, &id->id_slot);
    385      1.1     matt 	if (__predict_false(!inserting_mask)) {
    386      1.1     matt 		/*
    387      1.1     matt 		 * We aren't inserting a mask nor is the leaf a mask, which
    388      1.1     matt 		 * means we are trying to insert a duplicate leaf.  Can't do
    389      1.1     matt 		 * that.
    390      1.1     matt 		 */
    391      1.1     matt 		if (!at_mask && matched)
    392      1.1     matt 			return false;
    393      1.1     matt 
    394      1.1     matt #ifndef PTNOMASK
    395      1.1     matt 		/*
    396      1.1     matt 		 * We are at a mask and the leaf we are about to insert
    397      1.1     matt 		 * is at or beyond the mask, we need to convert the mask
    398      1.1     matt 		 * from a leaf to a one-way branch interior mask.
    399      1.1     matt 		 */
    400      1.1     matt 		if (at_mask && id->id_bitoff >= leaf_masklen)
    401      1.1     matt 			insertfunc = ptree_insert_leaf_after_mask;
    402      1.1     matt #endif /* PTNOMASK */
    403      1.1     matt 	}
    404      1.1     matt #ifndef PTNOMASK
    405      1.1     matt 	else {
    406      1.1     matt 		/*
    407      1.1     matt 		 * We are inserting a mask.
    408      1.1     matt 		 */
    409      1.1     matt 		if (matched) {
    410      1.1     matt 			/*
    411      1.1     matt 			 * If the leaf isn't a mask, we obviously have to
    412      1.1     matt 			 * insert the new mask before non-mask leaf.  If the
    413      1.1     matt 			 * leaf is a mask, and the new node has a LEQ mask
    414      1.1     matt 			 * length it too needs to inserted before leaf (*).
    415      1.1     matt 			 *
    416      1.1     matt 			 * In other cases, we place the new mask as leaf after
    417      1.1     matt 			 * leaf mask.  Which mask comes first will be a one-way
    418      1.1     matt 			 * branch interior mask node which has the other mask
    419      1.1     matt 			 * node as a child.
    420      1.1     matt 			 *
    421      1.1     matt 			 * (*) ptree_insert_mask_before_node can detect a
    422      1.1     matt 			 * duplicate mask and return failure if needed.
    423      1.1     matt 			 */
    424      1.1     matt 			if (!at_mask || target_masklen <= leaf_masklen)
    425      1.1     matt 				insertfunc = ptree_insert_mask_before_node;
    426      1.1     matt 			else
    427      1.1     matt 				insertfunc = ptree_insert_leaf_after_mask;
    428      1.1     matt 		} else if (at_mask && id->id_bitoff >= leaf_masklen) {
    429      1.1     matt 			/*
    430      1.1     matt 			 * If the new mask has a bit offset GEQ than the leaf's
    431      1.1     matt 			 * mask length, convert the left to a one-way branch
    432      1.1     matt 			 * interior mask and make that point to the new [leaf]
    433      1.1     matt 			 * mask.
    434      1.1     matt 			 */
    435      1.1     matt 			insertfunc = ptree_insert_leaf_after_mask;
    436      1.1     matt 		} else {
    437      1.1     matt 			/*
    438      1.1     matt 			 * The new mask has a bit offset less than the leaf's
    439      1.1     matt 			 * mask length or if the leaf isn't a mask at all, the
    440      1.1     matt 			 * new mask deserves to be its own leaf so we use the
    441      1.1     matt 			 * default insertfunc to do that.
    442      1.1     matt 			 */
    443      1.1     matt 		}
    444      1.1     matt 	}
    445      1.1     matt #endif /* PTNOMASK */
    446      1.1     matt 
    447      1.1     matt 	return (*insertfunc)(pt, target, id);
    448      1.1     matt }
    449      1.1     matt 
    450      1.1     matt static bool
    451      1.1     matt ptree_insert_node_common(pt_tree_t *pt, void *item)
    452      1.1     matt {
    453      1.1     matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    454      1.1     matt #ifndef PTNOMASK
    455      1.1     matt 	const bool inserting_mask = PTN_ISMASK_P(target);
    456      1.1     matt 	const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
    457      1.1     matt #endif
    458      1.1     matt 	pt_insertfunc_t insertfunc;
    459      1.1     matt 	pt_insertdata_t id;
    460      1.1     matt 
    461      1.1     matt 	/*
    462  1.5.6.1     yamt 	 * If this node already exists in the tree, return failure.
    463  1.5.6.1     yamt 	 */
    464  1.5.6.1     yamt 	if (target == PT_NODE(pt->pt_root))
    465  1.5.6.1     yamt 		return false;
    466  1.5.6.1     yamt 
    467  1.5.6.1     yamt 	/*
    468      1.1     matt 	 * We need a leaf so we can match against.  Until we get a leaf
    469      1.1     matt 	 * we having nothing to test against.
    470      1.1     matt 	 */
    471      1.1     matt 	if (__predict_false(PT_NULL_P(pt->pt_root))) {
    472      1.1     matt 		PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
    473      1.1     matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
    474      1.1     matt 		PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
    475      1.1     matt 		PTREE_CHECK(pt);
    476      1.1     matt 		return true;
    477      1.1     matt 	}
    478      1.1     matt 
    479      1.1     matt 	id.id_bitoff = 0;
    480      1.1     matt 	id.id_parent = &pt->pt_rootnode;
    481      1.1     matt 	id.id_parent_slot = PT_SLOT_ROOT;
    482      1.1     matt 	id.id_insertp = &PTN_BRANCH_ROOT_SLOT(id.id_parent);
    483      1.1     matt 	for (;;) {
    484      1.1     matt 		pt_bitoff_t branch_bitoff;
    485      1.1     matt 		pt_node_t * const ptn = PT_NODE(*id.id_insertp);
    486      1.1     matt 		id.id_node = *id.id_insertp;
    487      1.1     matt 
    488      1.1     matt 		/*
    489  1.5.6.1     yamt 		 * If this node already exists in the tree, return failure.
    490  1.5.6.1     yamt 		 */
    491  1.5.6.1     yamt 		if (target == ptn)
    492  1.5.6.1     yamt 			return false;
    493  1.5.6.1     yamt 
    494  1.5.6.1     yamt 		/*
    495      1.1     matt 		 * If we hit a leaf, try to insert target at leaf.  We could
    496      1.1     matt 		 * have inlined ptree_insert_leaf here but that would have
    497      1.1     matt 		 * made this routine much harder to understand.  Trust the
    498      1.1     matt 		 * compiler to optimize this properly.
    499      1.1     matt 		 */
    500      1.1     matt 		if (PT_LEAF_P(id.id_node)) {
    501      1.1     matt 			KASSERT(PTN_LEAF_POSITION(ptn) == id.id_parent_slot);
    502      1.1     matt 			insertfunc = ptree_insert_leaf;
    503      1.1     matt 			break;
    504      1.1     matt 		}
    505      1.1     matt 
    506      1.1     matt 		/*
    507      1.1     matt 		 * If we aren't a leaf, we must be a branch.  Make sure we are
    508      1.1     matt 		 * in the slot we think we are.
    509      1.1     matt 		 */
    510      1.1     matt 		KASSERT(PT_BRANCH_P(id.id_node));
    511      1.1     matt 		KASSERT(PTN_BRANCH_POSITION(ptn) == id.id_parent_slot);
    512      1.1     matt 
    513      1.1     matt 		/*
    514      1.1     matt 		 * Where is this branch?
    515      1.1     matt 		 */
    516      1.1     matt 		branch_bitoff = PTN_BRANCH_BITOFF(ptn);
    517      1.1     matt 
    518      1.1     matt #ifndef PTNOMASK
    519      1.1     matt 		/*
    520      1.1     matt 		 * If this is a one-way mask node, its offset must equal
    521      1.1     matt 		 * its mask's bitlen.
    522      1.1     matt 		 */
    523      1.1     matt 		KASSERT(!(PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) || PTN_MASK_BITLEN(ptn) == branch_bitoff);
    524      1.1     matt 
    525      1.1     matt 		/*
    526      1.1     matt 		 * If we are inserting a mask, and we know that at this point
    527      1.1     matt 		 * all bits before the current bit offset match both the target
    528      1.1     matt 		 * and the branch.  If the target's mask length is LEQ than
    529      1.1     matt 		 * this branch's bit offset, then this is where the mask needs
    530      1.1     matt 		 * to added to the tree.
    531      1.1     matt 		 */
    532      1.1     matt 		if (__predict_false(inserting_mask)
    533      1.1     matt 		    && (PTN_ISROOT_P(pt, id.id_parent)
    534      1.1     matt 			|| id.id_bitoff < target_masklen)
    535      1.1     matt 		    && target_masklen <= branch_bitoff) {
    536      1.1     matt 			/*
    537      1.1     matt 			 * We don't know about the bits (if any) between
    538      1.1     matt 			 * id.id_bitoff and the target's mask length match
    539      1.1     matt 			 * both the target and the branch.  If the target's
    540      1.1     matt 			 * mask length is greater than the current bit offset
    541      1.1     matt 			 * make sure the untested bits match both the target
    542      1.1     matt 			 * and the branch.
    543      1.1     matt 			 */
    544      1.1     matt 			if (target_masklen == id.id_bitoff
    545      1.1     matt 			    || ptree_matchnode(pt, target, ptn, target_masklen,
    546      1.1     matt 				    &id.id_bitoff, &id.id_slot)) {
    547      1.1     matt 				/*
    548      1.1     matt 				 * The bits matched, so insert the mask as a
    549      1.1     matt 				 * one-way branch.
    550      1.1     matt 				 */
    551      1.1     matt 				insertfunc = ptree_insert_mask_before_node;
    552      1.1     matt 				break;
    553      1.1     matt 			} else if (id.id_bitoff < branch_bitoff) {
    554      1.1     matt 				/*
    555      1.1     matt 				 * They didn't match, so create a normal branch
    556      1.1     matt 				 * because this mask needs to a be a new leaf.
    557      1.1     matt 				 */
    558      1.1     matt 				insertfunc = ptree_insert_branch_at_node;
    559      1.1     matt 				break;
    560      1.1     matt 			}
    561      1.1     matt 		}
    562      1.1     matt #endif /* PTNOMASK */
    563      1.1     matt 
    564      1.1     matt 		/*
    565      1.1     matt 		 * If we are skipping some bits, verify they match the node.
    566      1.1     matt 		 * If they don't match, it means we have a leaf to insert.
    567      1.1     matt 		 * Note that if we are advancing bit by bit, we'll skip
    568      1.1     matt 		 * doing matchnode and walk the tree bit by bit via testnode.
    569      1.1     matt 		 */
    570      1.1     matt 		if (id.id_bitoff < branch_bitoff
    571      1.1     matt 		    && !ptree_matchnode(pt, target, ptn, branch_bitoff,
    572      1.1     matt 					&id.id_bitoff, &id.id_slot)) {
    573      1.1     matt 			KASSERT(id.id_bitoff < branch_bitoff);
    574      1.1     matt 			insertfunc = ptree_insert_branch_at_node;
    575      1.1     matt 			break;
    576      1.1     matt 		}
    577      1.1     matt 
    578      1.1     matt 		/*
    579      1.1     matt 		 * At this point, all bits before branch_bitoff are known
    580      1.1     matt 		 * to match the target.
    581      1.1     matt 		 */
    582      1.1     matt 		KASSERT(id.id_bitoff >= branch_bitoff);
    583      1.1     matt 
    584      1.1     matt 		/*
    585      1.1     matt 		 * Decend the tree one level.
    586      1.1     matt 		 */
    587      1.1     matt 		id.id_parent = ptn;
    588      1.1     matt 		id.id_parent_slot = ptree_testnode(pt, target, id.id_parent);
    589      1.1     matt 		id.id_bitoff += PTN_BRANCH_BITLEN(id.id_parent);
    590      1.1     matt 		id.id_insertp = &PTN_BRANCH_SLOT(id.id_parent, id.id_parent_slot);
    591      1.1     matt 	}
    592      1.1     matt 
    593      1.1     matt 	/*
    594      1.1     matt 	 * Do the actual insertion.
    595      1.1     matt 	 */
    596      1.1     matt 	return (*insertfunc)(pt, target, &id);
    597      1.1     matt }
    598      1.1     matt 
    599      1.1     matt bool
    600      1.1     matt ptree_insert_node(pt_tree_t *pt, void *item)
    601      1.1     matt {
    602      1.1     matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    603      1.1     matt 
    604      1.1     matt 	memset(target, 0, sizeof(*target));
    605      1.1     matt 	return ptree_insert_node_common(pt, target);
    606      1.1     matt }
    607      1.1     matt 
    608      1.1     matt #ifndef PTNOMASK
    609      1.1     matt bool
    610      1.1     matt ptree_insert_mask_node(pt_tree_t *pt, void *item, pt_bitlen_t mask_len)
    611      1.1     matt {
    612      1.1     matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    613      1.1     matt 	pt_bitoff_t bitoff = mask_len;
    614      1.1     matt 	pt_slot_t slot;
    615      1.1     matt 
    616      1.1     matt 	memset(target, 0, sizeof(*target));
    617      1.1     matt 	KASSERT(mask_len == 0 || (~PT__MASK(PTN_MASK_BITLEN) & mask_len) == 0);
    618      1.1     matt 	/*
    619      1.1     matt 	 * Only the first <mask_len> bits can be non-zero.
    620      1.1     matt 	 * All other bits must be 0.
    621      1.1     matt 	 */
    622      1.1     matt 	if (!ptree_matchnode(pt, target, NULL, UINT_MAX, &bitoff, &slot))
    623      1.1     matt 		return false;
    624      1.1     matt 	PTN_SET_MASK_BITLEN(target, mask_len);
    625      1.1     matt 	PTN_MARK_MASK(target);
    626      1.1     matt 	return ptree_insert_node_common(pt, target);
    627      1.1     matt }
    628      1.1     matt #endif /* !PTNOMASH */
    629      1.1     matt 
    630      1.1     matt void *
    631  1.5.6.1     yamt ptree_find_filtered_node(pt_tree_t *pt, const void *key, pt_filter_t filter,
    632      1.1     matt 	void *filter_arg)
    633      1.1     matt {
    634      1.1     matt #ifndef PTNOMASK
    635      1.1     matt 	pt_node_t *mask = NULL;
    636      1.1     matt #endif
    637      1.1     matt 	bool at_mask = false;
    638      1.1     matt 	pt_node_t *ptn, *parent;
    639      1.1     matt 	pt_bitoff_t bitoff;
    640      1.1     matt 	pt_slot_t parent_slot;
    641      1.1     matt 
    642      1.1     matt 	if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)))
    643      1.1     matt 		return NULL;
    644      1.1     matt 
    645      1.1     matt 	bitoff = 0;
    646      1.1     matt 	parent = &pt->pt_rootnode;
    647      1.1     matt 	parent_slot = PT_SLOT_ROOT;
    648      1.1     matt 	for (;;) {
    649      1.1     matt 		const uintptr_t node = PTN_BRANCH_SLOT(parent, parent_slot);
    650      1.1     matt 		const pt_slot_t branch_bitoff = PTN_BRANCH_BITOFF(PT_NODE(node));
    651      1.1     matt 		ptn = PT_NODE(node);
    652      1.1     matt 
    653      1.1     matt 		if (PT_LEAF_P(node)) {
    654      1.1     matt #ifndef PTNOMASK
    655      1.1     matt 			at_mask = PTN_ISMASK_P(ptn);
    656      1.1     matt #endif
    657      1.1     matt 			break;
    658      1.1     matt 		}
    659      1.1     matt 
    660      1.1     matt 		if (bitoff < branch_bitoff) {
    661      1.1     matt 			if (!ptree_matchkey(pt, key, ptn, bitoff, branch_bitoff - bitoff)) {
    662      1.1     matt #ifndef PTNOMASK
    663      1.1     matt 				if (mask != NULL)
    664      1.1     matt 					return NODETOITEM(pt, mask);
    665      1.1     matt #endif
    666      1.1     matt 				return NULL;
    667      1.1     matt 			}
    668      1.1     matt 			bitoff = branch_bitoff;
    669      1.1     matt 		}
    670      1.1     matt 
    671      1.1     matt #ifndef PTNOMASK
    672      1.1     matt 		if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0
    673      1.1     matt 		    && (!filter
    674      1.1     matt 		        || (*filter)(filter_arg, NODETOITEM(pt, ptn),
    675      1.1     matt 				     PT_FILTER_MASK)))
    676      1.1     matt 			mask = ptn;
    677      1.1     matt #endif
    678      1.1     matt 
    679      1.1     matt 		parent = ptn;
    680      1.1     matt 		parent_slot = ptree_testkey(pt, key, parent);
    681      1.1     matt 		bitoff += PTN_BRANCH_BITLEN(parent);
    682      1.1     matt 	}
    683      1.1     matt 
    684      1.1     matt 	KASSERT(PTN_ISROOT_P(pt, parent) || PTN_BRANCH_BITOFF(parent) + PTN_BRANCH_BITLEN(parent) == bitoff);
    685      1.1     matt 	if (!filter || (*filter)(filter_arg, NODETOITEM(pt, ptn), at_mask ? PT_FILTER_MASK : 0)) {
    686      1.1     matt #ifndef PTNOMASK
    687      1.1     matt 		if (PTN_ISMASK_P(ptn)) {
    688      1.1     matt 			const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
    689      1.1     matt 			if (bitoff == PTN_MASK_BITLEN(ptn))
    690      1.1     matt 				return NODETOITEM(pt, ptn);
    691      1.1     matt 			if (ptree_matchkey(pt, key, ptn, bitoff, mask_len - bitoff))
    692      1.1     matt 				return NODETOITEM(pt, ptn);
    693      1.1     matt 		} else
    694      1.1     matt #endif /* !PTNOMASK */
    695      1.1     matt 		if (ptree_matchkey(pt, key, ptn, bitoff, UINT_MAX))
    696      1.1     matt 			return NODETOITEM(pt, ptn);
    697      1.1     matt 	}
    698      1.1     matt 
    699      1.1     matt #ifndef PTNOMASK
    700      1.1     matt 	/*
    701      1.1     matt 	 * By virtue of how the mask was placed in the tree,
    702      1.1     matt 	 * all nodes descended from it will match it.  But the bits
    703      1.1     matt 	 * before the mask still need to be checked and since the
    704      1.1     matt 	 * mask was a branch, that was done implicitly.
    705      1.1     matt 	 */
    706      1.1     matt 	if (mask != NULL) {
    707      1.1     matt 		KASSERT(ptree_matchkey(pt, key, mask, 0, PTN_MASK_BITLEN(mask)));
    708      1.1     matt 		return NODETOITEM(pt, mask);
    709      1.1     matt 	}
    710      1.1     matt #endif /* !PTNOMASK */
    711      1.1     matt 
    712      1.1     matt 	/*
    713      1.1     matt 	 * Nothing matched.
    714      1.1     matt 	 */
    715      1.1     matt 	return NULL;
    716      1.1     matt }
    717      1.1     matt 
    718      1.1     matt void *
    719      1.1     matt ptree_iterate(pt_tree_t *pt, const void *item, pt_direction_t direction)
    720      1.1     matt {
    721      1.1     matt 	const pt_node_t * const target = ITEMTONODE(pt, item);
    722      1.1     matt 	uintptr_t node, next_node;
    723      1.1     matt 
    724      1.1     matt 	if (direction != PT_ASCENDING && direction != PT_DESCENDING)
    725      1.1     matt 		return NULL;
    726      1.1     matt 
    727      1.1     matt 	node = PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode);
    728      1.1     matt 	if (PT_NULL_P(node))
    729      1.1     matt 		return NULL;
    730      1.1     matt 
    731      1.1     matt 	if (item == NULL) {
    732      1.1     matt 		pt_node_t * const ptn = PT_NODE(node);
    733      1.1     matt 		if (direction == PT_ASCENDING
    734      1.1     matt 		    && PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0)
    735      1.1     matt 			return NODETOITEM(pt, ptn);
    736      1.1     matt 		next_node = node;
    737      1.1     matt 	} else {
    738      1.1     matt #ifndef PTNOMASK
    739      1.1     matt 		uintptr_t mask_node = PT_NULL;
    740      1.1     matt #endif /* !PTNOMASK */
    741      1.1     matt 		next_node = PT_NULL;
    742      1.1     matt 		while (!PT_LEAF_P(node)) {
    743      1.1     matt 			pt_node_t * const ptn = PT_NODE(node);
    744      1.1     matt 			pt_slot_t slot;
    745      1.1     matt #ifndef PTNOMASK
    746      1.1     matt 			if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) {
    747      1.1     matt 				if (ptn == target)
    748      1.1     matt 					break;
    749      1.1     matt 				if (direction == PT_DESCENDING) {
    750      1.1     matt 					mask_node = node;
    751      1.1     matt 					next_node = PT_NULL;
    752      1.1     matt 				}
    753      1.1     matt 			}
    754      1.1     matt #endif /* !PTNOMASK */
    755      1.1     matt 			slot = ptree_testnode(pt, target, ptn);
    756      1.1     matt 			node = PTN_BRANCH_SLOT(ptn, slot);
    757      1.1     matt 			if (direction == PT_ASCENDING) {
    758      1.4    lukem 				if (slot != (pt_slot_t)((1 << PTN_BRANCH_BITLEN(ptn)) - 1))
    759      1.1     matt 					next_node = PTN_BRANCH_SLOT(ptn, slot + 1);
    760      1.1     matt 			} else {
    761      1.1     matt 				if (slot > 0) {
    762      1.1     matt #ifndef PTNOMASK
    763      1.1     matt 					mask_node = PT_NULL;
    764      1.1     matt #endif /* !PTNOMASK */
    765      1.1     matt 					next_node = PTN_BRANCH_SLOT(ptn, slot - 1);
    766      1.1     matt 				}
    767      1.1     matt 			}
    768      1.1     matt 		}
    769      1.1     matt 		if (PT_NODE(node) != target)
    770      1.1     matt 			return NULL;
    771      1.1     matt #ifndef PTNOMASK
    772      1.1     matt 		if (PT_BRANCH_P(node)) {
    773      1.1     matt 			pt_node_t *ptn = PT_NODE(node);
    774      1.1     matt 			KASSERT(PTN_ISMASK_P(PT_NODE(node)) && PTN_BRANCH_BITLEN(PT_NODE(node)) == 0);
    775      1.1     matt 			if (direction == PT_ASCENDING) {
    776      1.1     matt 				next_node = PTN_BRANCH_ROOT_SLOT(ptn);
    777      1.1     matt 				ptn = PT_NODE(next_node);
    778      1.1     matt 			}
    779      1.1     matt 		}
    780      1.1     matt 		/*
    781      1.1     matt 		 * When descending, if we countered a mask node then that's
    782      1.1     matt 		 * we want to return.
    783      1.1     matt 		 */
    784      1.1     matt 		if (direction == PT_DESCENDING && !PT_NULL_P(mask_node)) {
    785      1.1     matt 			KASSERT(PT_NULL_P(next_node));
    786      1.1     matt 			return NODETOITEM(pt, PT_NODE(mask_node));
    787      1.1     matt 		}
    788      1.1     matt #endif /* !PTNOMASK */
    789      1.1     matt 	}
    790      1.1     matt 
    791      1.1     matt 	node = next_node;
    792      1.1     matt 	if (PT_NULL_P(node))
    793      1.1     matt 		return NULL;
    794      1.1     matt 
    795      1.1     matt 	while (!PT_LEAF_P(node)) {
    796      1.1     matt 		pt_node_t * const ptn = PT_NODE(node);
    797      1.1     matt 		pt_slot_t slot;
    798      1.1     matt 		if (direction == PT_ASCENDING) {
    799      1.1     matt #ifndef PTNOMASK
    800      1.1     matt 			if (PT_BRANCH_P(node)
    801      1.1     matt 			    && PTN_ISMASK_P(ptn)
    802      1.1     matt 			    && PTN_BRANCH_BITLEN(ptn) == 0)
    803      1.1     matt 				return NODETOITEM(pt, ptn);
    804      1.1     matt #endif /* !PTNOMASK */
    805      1.1     matt 			slot = PT_SLOT_LEFT;
    806      1.1     matt 		} else {
    807      1.1     matt 			slot = (1 << PTN_BRANCH_BITLEN(ptn)) - 1;
    808      1.1     matt 		}
    809      1.1     matt 		node = PTN_BRANCH_SLOT(ptn, slot);
    810      1.1     matt 	}
    811      1.1     matt 	return NODETOITEM(pt, PT_NODE(node));
    812      1.1     matt }
    813      1.1     matt 
    814      1.1     matt void
    815      1.1     matt ptree_remove_node(pt_tree_t *pt, void *item)
    816      1.1     matt {
    817      1.1     matt 	pt_node_t * const target = ITEMTONODE(pt, item);
    818      1.1     matt 	const pt_slot_t leaf_slot = PTN_LEAF_POSITION(target);
    819      1.1     matt 	const pt_slot_t branch_slot = PTN_BRANCH_POSITION(target);
    820      1.1     matt 	pt_node_t *ptn, *parent;
    821      1.1     matt 	uintptr_t node;
    822      1.1     matt 	uintptr_t *removep;
    823      1.1     matt 	uintptr_t *nodep;
    824      1.1     matt 	pt_bitoff_t bitoff;
    825      1.1     matt 	pt_slot_t parent_slot;
    826      1.1     matt #ifndef PTNOMASK
    827      1.1     matt 	bool at_mask;
    828      1.1     matt #endif
    829      1.1     matt 
    830      1.1     matt 	if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode))) {
    831      1.1     matt 		KASSERT(!PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)));
    832      1.1     matt 		return;
    833      1.1     matt 	}
    834      1.1     matt 
    835      1.1     matt 	bitoff = 0;
    836      1.1     matt 	removep = NULL;
    837      1.1     matt 	nodep = NULL;
    838      1.1     matt 	parent = &pt->pt_rootnode;
    839      1.1     matt 	parent_slot = PT_SLOT_ROOT;
    840      1.1     matt 	for (;;) {
    841      1.1     matt 		node = PTN_BRANCH_SLOT(parent, parent_slot);
    842      1.1     matt 		ptn = PT_NODE(node);
    843      1.1     matt #ifndef PTNOMASK
    844      1.1     matt 		at_mask = PTN_ISMASK_P(ptn);
    845      1.1     matt #endif
    846      1.1     matt 
    847      1.1     matt 		if (PT_LEAF_P(node))
    848      1.1     matt 			break;
    849      1.1     matt 
    850      1.1     matt 		/*
    851      1.1     matt 		 * If we are at the target, then we are looking at its branch
    852      1.1     matt 		 * identity.  We need to remember who's pointing at it so we
    853      1.1     matt 		 * stop them from doing that.
    854      1.1     matt 		 */
    855      1.1     matt 		if (__predict_false(ptn == target)) {
    856      1.1     matt 			KASSERT(nodep == NULL);
    857      1.1     matt #ifndef PTNOMASK
    858      1.1     matt 			/*
    859      1.1     matt 			 * Interior mask nodes are trivial to get rid of.
    860      1.1     matt 			 */
    861      1.1     matt 			if (at_mask && PTN_BRANCH_BITLEN(ptn) == 0) {
    862      1.1     matt 				PTN_BRANCH_SLOT(parent, parent_slot) =
    863      1.1     matt 				    PTN_BRANCH_ROOT_SLOT(ptn);
    864      1.1     matt 				KASSERT(PT_NULL_P(PTN_BRANCH_ODDMAN_SLOT(ptn)));
    865      1.1     matt 				PTREE_CHECK(pt);
    866      1.1     matt 				return;
    867      1.1     matt 			}
    868      1.1     matt #endif /* !PTNOMASK */
    869      1.1     matt 			nodep = &PTN_BRANCH_SLOT(parent, parent_slot);
    870      1.1     matt 			KASSERT(*nodep == PTN_BRANCH(target));
    871      1.1     matt 		}
    872      1.1     matt 		/*
    873      1.1     matt 		 * We need also need to know who's pointing at our parent.
    874      1.1     matt 		 * After we remove ourselves from our parent, he'll only
    875      1.1     matt 		 * have one child and that's unacceptable.  So we replace
    876      1.1     matt 		 * the pointer to the parent with our abadoned sibling.
    877      1.1     matt 		 */
    878      1.1     matt 		removep = &PTN_BRANCH_SLOT(parent, parent_slot);
    879      1.1     matt 
    880      1.1     matt 		/*
    881      1.1     matt 		 * Descend into the tree.
    882      1.1     matt 		 */
    883      1.1     matt 		parent = ptn;
    884      1.1     matt 		parent_slot = ptree_testnode(pt, target, parent);
    885      1.1     matt 		bitoff += PTN_BRANCH_BITLEN(parent);
    886      1.1     matt 	}
    887      1.1     matt 
    888      1.1     matt 	/*
    889      1.1     matt 	 * We better have found that the leaf we are looking for is target.
    890      1.1     matt 	 */
    891      1.1     matt 	if (target != ptn) {
    892      1.1     matt 		KASSERT(target == ptn);
    893      1.1     matt 		return;
    894      1.1     matt 	}
    895      1.1     matt 
    896      1.1     matt 	/*
    897      1.1     matt 	 * If we didn't encounter target as branch, then target must be the
    898      1.1     matt 	 * oddman-out.
    899      1.1     matt 	 */
    900      1.1     matt 	if (nodep == NULL) {
    901      1.1     matt 		KASSERT(PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) == PTN_LEAF(target));
    902      1.1     matt 		KASSERT(nodep == NULL);
    903      1.1     matt 		nodep = &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode);
    904      1.1     matt 	}
    905      1.1     matt 
    906      1.1     matt 	KASSERT((removep == NULL) == (parent == &pt->pt_rootnode));
    907      1.1     matt 
    908      1.1     matt 	/*
    909      1.1     matt 	 * We have to special remove the last leaf from the root since
    910      1.1     matt 	 * the only time the tree can a PT_NULL node is when it's empty.
    911      1.1     matt 	 */
    912      1.1     matt 	if (__predict_false(PTN_ISROOT_P(pt, parent))) {
    913      1.1     matt 		KASSERT(removep == NULL);
    914      1.1     matt 		KASSERT(parent == &pt->pt_rootnode);
    915      1.1     matt 		KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
    916      1.1     matt 		KASSERT(*nodep == PTN_LEAF(target));
    917      1.1     matt 		PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PT_NULL;
    918      1.1     matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PT_NULL;
    919      1.1     matt 		return;
    920      1.1     matt 	}
    921      1.1     matt 
    922      1.1     matt 	KASSERT((parent == target) == (removep == nodep));
    923      1.1     matt 	if (PTN_BRANCH(parent) == PTN_BRANCH_SLOT(target, PTN_BRANCH_POSITION(parent))) {
    924      1.1     matt 		/*
    925      1.1     matt 		 * The pointer to the parent actually lives in the target's
    926      1.1     matt 		 * branch identity.  We can't just move the target's branch
    927      1.1     matt 		 * identity since that would result in the parent pointing
    928      1.1     matt 		 * to its own branch identity and that's fobidden.
    929      1.1     matt 		 */
    930      1.1     matt 		const pt_slot_t slot = PTN_BRANCH_POSITION(parent);
    931      1.1     matt 		const pt_slot_t other_slot = slot ^ PT_SLOT_OTHER;
    932      1.1     matt 		const pt_bitlen_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
    933      1.1     matt 
    934      1.1     matt 		KASSERT(PTN_BRANCH_BITOFF(target) < PTN_BRANCH_BITOFF(parent));
    935      1.1     matt 
    936      1.1     matt 		/*
    937      1.1     matt 		 * This gets so confusing.  The target's branch identity
    938      1.1     matt 		 * points to the branch identity of the parent of the target's
    939      1.1     matt 		 * leaf identity:
    940      1.1     matt 		 *
    941      1.1     matt 		 * 	TB = { X, PB = { TL, Y } }
    942      1.1     matt 		 *   or TB = { X, PB = { TL } }
    943      1.1     matt 		 *
    944      1.1     matt 		 * So we can't move the target's branch identity to the parent
    945      1.1     matt 		 * because that would corrupt the tree.
    946      1.1     matt 		 */
    947      1.1     matt 		if (__predict_true(parent_bitlen > 0)) {
    948      1.1     matt 			/*
    949      1.1     matt 			 * The parent is a two-way branch.  We have to have
    950      1.1     matt 			 * do to this chang in two steps to keep internally
    951      1.1     matt 			 * consistent.  First step is to copy our sibling from
    952      1.1     matt 			 * our parent to where we are pointing to parent's
    953      1.1     matt 			 * branch identiy.  This remove all references to his
    954      1.1     matt 			 * branch identity from the tree.  We then simply make
    955      1.1     matt 			 * the parent assume the target's branching duties.
    956      1.1     matt 			 *
    957      1.1     matt 			 *   TB = { X, PB = { Y, TL } } --> PB = { X, Y }.
    958      1.1     matt 			 *   TB = { X, PB = { TL, Y } } --> PB = { X, Y }.
    959      1.1     matt 			 *   TB = { PB = { Y, TL }, X } --> PB = { Y, X }.
    960      1.1     matt 			 *   TB = { PB = { TL, Y }, X } --> PB = { Y, X }.
    961      1.1     matt 			 */
    962      1.1     matt 			PTN_BRANCH_SLOT(target, slot) =
    963      1.1     matt 			    PTN_BRANCH_SLOT(parent, parent_slot ^ PT_SLOT_OTHER);
    964      1.1     matt 			*nodep = ptree_move_branch(pt, parent, target);
    965      1.1     matt 			PTREE_CHECK(pt);
    966      1.1     matt 			return;
    967      1.1     matt 		} else {
    968      1.1     matt 			/*
    969      1.1     matt 			 * If parent was a one-way branch, it must have been
    970      1.1     matt 			 * mask which pointed to a single leaf which we are
    971      1.1     matt 			 * removing.  This means we have to convert the
    972      1.1     matt 			 * parent back to a leaf node.  So in the same
    973      1.1     matt 			 * position that target pointed to parent, we place
    974      1.1     matt 			 * leaf pointer to parent.  In the other position,
    975      1.1     matt 			 * we just put the other node from target.
    976      1.1     matt 			 *
    977      1.1     matt 			 *   TB = { X, PB = { TL } } --> PB = { X, PL }
    978      1.1     matt 			 */
    979      1.1     matt 			KASSERT(PTN_ISMASK_P(parent));
    980      1.1     matt 			KASSERT(slot == ptree_testnode(pt, parent, target));
    981      1.1     matt 			PTN_BRANCH_SLOT(parent, slot) = PTN_LEAF(parent);
    982      1.1     matt 			PTN_BRANCH_SLOT(parent, other_slot) =
    983      1.1     matt 			   PTN_BRANCH_SLOT(target, other_slot);
    984      1.1     matt 			PTN_SET_LEAF_POSITION(parent,slot);
    985      1.1     matt 			PTN_SET_BRANCH_BITLEN(parent, 1);
    986      1.1     matt 		}
    987      1.1     matt 		PTN_SET_BRANCH_BITOFF(parent, PTN_BRANCH_BITOFF(target));
    988      1.1     matt 		PTN_SET_BRANCH_POSITION(parent, PTN_BRANCH_POSITION(target));
    989      1.1     matt 
    990      1.1     matt 		*nodep = PTN_BRANCH(parent);
    991      1.1     matt 		PTREE_CHECK(pt);
    992      1.1     matt 		return;
    993      1.1     matt 	}
    994      1.1     matt 
    995      1.1     matt #ifndef PTNOMASK
    996      1.1     matt 	if (__predict_false(PTN_BRANCH_BITLEN(parent) == 0)) {
    997      1.1     matt 		/*
    998      1.1     matt 		 * Parent was a one-way branch which is changing back to a leaf.
    999      1.1     matt 		 * Since parent is no longer a one-way branch, it can take over
   1000      1.1     matt 		 * target's branching duties.
   1001      1.1     matt 		 *
   1002      1.1     matt 		 *  GB = { PB = { TL } }	--> GB = { PL }
   1003      1.1     matt 		 *  TB = { X, Y }		--> PB = { X, Y }
   1004      1.1     matt 		 */
   1005      1.1     matt 		KASSERT(PTN_ISMASK_P(parent));
   1006      1.1     matt 		KASSERT(parent != target);
   1007      1.1     matt 		*removep = PTN_LEAF(parent);
   1008      1.1     matt 	} else
   1009      1.1     matt #endif /* !PTNOMASK */
   1010      1.1     matt 	{
   1011      1.1     matt 		/*
   1012      1.1     matt 		 * Now we are the normal removal case.  Since after the
   1013      1.1     matt 		 * target's leaf identity is removed from the its parent,
   1014      1.1     matt 		 * that parent will only have one decendent.  So we can
   1015      1.1     matt 		 * just as easily replace the node that has the parent's
   1016      1.1     matt 		 * branch identity with the surviving node.  This freeing
   1017      1.1     matt 		 * parent from its branching duties which means it can
   1018      1.1     matt 		 * take over target's branching duties.
   1019      1.1     matt 		 *
   1020      1.1     matt 		 *  GB = { PB = { X, TL } }	--> GB = { X }
   1021      1.1     matt 		 *  TB = { V, W }		--> PB = { V, W }
   1022      1.1     matt 		 */
   1023      1.1     matt 		const pt_slot_t other_slot = parent_slot ^ PT_SLOT_OTHER;
   1024      1.1     matt 		uintptr_t other_node = PTN_BRANCH_SLOT(parent, other_slot);
   1025      1.1     matt 		const pt_slot_t target_slot = (parent == target ? branch_slot : leaf_slot);
   1026      1.1     matt 
   1027      1.1     matt 		*removep = other_node;
   1028      1.1     matt 
   1029      1.1     matt 		ptree_set_position(other_node, target_slot);
   1030      1.1     matt 
   1031      1.1     matt 		/*
   1032      1.1     matt 		 * If target's branch identity contained its leaf identity, we
   1033      1.1     matt 		 * have nothing left to do.  We've already moved 'X' so there
   1034      1.1     matt 		 * is no longer anything in the target's branch identiy that
   1035      1.1     matt 		 * has to be preserved.
   1036      1.1     matt 		 */
   1037      1.1     matt 		if (parent == target) {
   1038      1.1     matt 			/*
   1039      1.1     matt 			 *  GB = { TB = { X, TL } }	--> GB = { X }
   1040      1.1     matt 			 *  TB = { X, TL }		--> don't care
   1041      1.1     matt 			 */
   1042      1.1     matt 			PTREE_CHECK(pt);
   1043      1.1     matt 			return;
   1044      1.1     matt 		}
   1045      1.1     matt 	}
   1046      1.1     matt 
   1047      1.1     matt 	/*
   1048      1.1     matt 	 * If target wasn't used as a branch, then it must have been the
   1049      1.1     matt 	 * oddman-out of the tree (the one node that doesn't have a branch
   1050      1.1     matt 	 * identity).  This makes parent the new oddman-out.
   1051      1.1     matt 	 */
   1052      1.1     matt 	if (*nodep == PTN_LEAF(target)) {
   1053      1.1     matt 		KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
   1054      1.1     matt 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(parent);
   1055      1.1     matt 		PTREE_CHECK(pt);
   1056      1.1     matt 		return;
   1057      1.1     matt 	}
   1058      1.1     matt 
   1059      1.1     matt 	/*
   1060      1.1     matt 	 * Finally move the target's branching duties to the parent.
   1061      1.1     matt 	 */
   1062      1.1     matt 	KASSERT(PTN_BRANCH_BITOFF(parent) > PTN_BRANCH_BITOFF(target));
   1063      1.1     matt 	*nodep = ptree_move_branch(pt, parent, target);
   1064      1.1     matt 	PTREE_CHECK(pt);
   1065      1.1     matt }
   1066      1.1     matt 
   1067      1.1     matt #ifdef PTCHECK
   1068      1.1     matt static const pt_node_t *
   1069      1.1     matt ptree_check_find_node2(const pt_tree_t *pt, const pt_node_t *parent,
   1070      1.1     matt 	uintptr_t target)
   1071      1.1     matt {
   1072      1.1     matt 	const pt_bitlen_t slots = 1 << PTN_BRANCH_BITLEN(parent);
   1073      1.1     matt 	pt_slot_t slot;
   1074      1.1     matt 
   1075      1.1     matt 	for (slot = 0; slot < slots; slot++) {
   1076      1.1     matt 		const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
   1077      1.1     matt 		if (PTN_BRANCH_SLOT(parent, slot) == node)
   1078      1.1     matt 			return parent;
   1079      1.1     matt 	}
   1080      1.1     matt 	for (slot = 0; slot < slots; slot++) {
   1081      1.1     matt 		const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
   1082      1.1     matt 		const pt_node_t *branch;
   1083      1.1     matt 		if (!PT_BRANCH_P(node))
   1084      1.1     matt 			continue;
   1085      1.1     matt 		branch = ptree_check_find_node2(pt, PT_NODE(node), target);
   1086      1.1     matt 		if (branch != NULL)
   1087      1.1     matt 			return branch;
   1088      1.1     matt 	}
   1089      1.1     matt 
   1090      1.1     matt 	return NULL;
   1091      1.1     matt }
   1092      1.1     matt 
   1093      1.1     matt static bool
   1094      1.1     matt ptree_check_leaf(const pt_tree_t *pt, const pt_node_t *parent,
   1095      1.1     matt 	const pt_node_t *ptn)
   1096      1.1     matt {
   1097      1.1     matt 	const pt_bitoff_t leaf_position = PTN_LEAF_POSITION(ptn);
   1098      1.1     matt 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
   1099      1.1     matt 	const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
   1100      1.1     matt 	const uintptr_t leaf_node = PTN_LEAF(ptn);
   1101      1.1     matt 	const bool is_parent_root = (parent == &pt->pt_rootnode);
   1102      1.1     matt 	const bool is_mask = PTN_ISMASK_P(ptn);
   1103      1.1     matt 	bool ok = true;
   1104      1.1     matt 
   1105      1.1     matt 	if (is_parent_root) {
   1106      1.1     matt 		ok = ok && PTN_BRANCH_ODDMAN_SLOT(parent) == leaf_node;
   1107      1.1     matt 		KASSERT(ok);
   1108      1.1     matt 		return ok;
   1109      1.1     matt 	}
   1110      1.1     matt 
   1111      1.1     matt 	if (is_mask && PTN_ISMASK_P(parent) && PTN_BRANCH_BITLEN(parent) == 0) {
   1112      1.1     matt 		ok = ok && PTN_MASK_BITLEN(parent) < mask_len;
   1113      1.1     matt 		KASSERT(ok);
   1114      1.1     matt 		ok = ok && PTN_BRANCH_BITOFF(parent) < mask_len;
   1115      1.1     matt 		KASSERT(ok);
   1116      1.1     matt 	}
   1117      1.1     matt 	ok = ok && PTN_BRANCH_SLOT(parent, leaf_position) == leaf_node;
   1118      1.1     matt 	KASSERT(ok);
   1119      1.1     matt 	ok = ok && leaf_position == ptree_testnode(pt, ptn, parent);
   1120      1.1     matt 	KASSERT(ok);
   1121      1.1     matt 	if (PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) != leaf_node) {
   1122      1.1     matt 		ok = ok && bitlen > 0;
   1123      1.1     matt 		KASSERT(ok);
   1124      1.1     matt 		ok = ok && ptn == ptree_check_find_node2(pt, ptn, PTN_LEAF(ptn));
   1125      1.1     matt 		KASSERT(ok);
   1126      1.1     matt 	}
   1127      1.1     matt 	return ok;
   1128      1.1     matt }
   1129      1.1     matt 
   1130      1.1     matt static bool
   1131      1.1     matt ptree_check_branch(const pt_tree_t *pt, const pt_node_t *parent,
   1132      1.1     matt 	const pt_node_t *ptn)
   1133      1.1     matt {
   1134      1.1     matt 	const bool is_parent_root = (parent == &pt->pt_rootnode);
   1135      1.1     matt 	const pt_slot_t branch_slot = PTN_BRANCH_POSITION(ptn);
   1136      1.1     matt 	const pt_bitoff_t bitoff = PTN_BRANCH_BITOFF(ptn);
   1137      1.1     matt 	const pt_bitoff_t bitlen = PTN_BRANCH_BITLEN(ptn);
   1138      1.1     matt 	const pt_bitoff_t parent_bitoff = PTN_BRANCH_BITOFF(parent);
   1139      1.1     matt 	const pt_bitoff_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
   1140      1.1     matt 	const bool is_parent_mask = PTN_ISMASK_P(parent) && parent_bitlen == 0;
   1141      1.1     matt 	const bool is_mask = PTN_ISMASK_P(ptn) && bitlen == 0;
   1142      1.1     matt 	const pt_bitoff_t parent_mask_len = PTN_MASK_BITLEN(parent);
   1143      1.1     matt 	const pt_bitoff_t mask_len = PTN_MASK_BITLEN(ptn);
   1144      1.1     matt 	const pt_bitlen_t slots = 1 << bitlen;
   1145      1.1     matt 	pt_slot_t slot;
   1146      1.1     matt 	bool ok = true;
   1147      1.1     matt 
   1148      1.1     matt 	ok = ok && PTN_BRANCH_SLOT(parent, branch_slot) == PTN_BRANCH(ptn);
   1149      1.1     matt 	KASSERT(ok);
   1150      1.1     matt 	ok = ok && branch_slot == ptree_testnode(pt, ptn, parent);
   1151      1.1     matt 	KASSERT(ok);
   1152      1.1     matt 
   1153      1.1     matt 	if (is_mask) {
   1154      1.1     matt 		ok = ok && bitoff == mask_len;
   1155      1.1     matt 		KASSERT(ok);
   1156      1.1     matt 		if (is_parent_mask) {
   1157      1.1     matt 			ok = ok && parent_mask_len < mask_len;
   1158      1.1     matt 			KASSERT(ok);
   1159      1.1     matt 			ok = ok && parent_bitoff < bitoff;
   1160      1.1     matt 			KASSERT(ok);
   1161      1.1     matt 		}
   1162      1.1     matt 	} else {
   1163      1.1     matt 		if (is_parent_mask) {
   1164      1.1     matt 			ok = ok && parent_bitoff <= bitoff;
   1165      1.1     matt 		} else if (!is_parent_root) {
   1166      1.1     matt 			ok = ok && parent_bitoff < bitoff;
   1167      1.1     matt 		}
   1168      1.1     matt 		KASSERT(ok);
   1169      1.1     matt 	}
   1170      1.1     matt 
   1171      1.1     matt 	for (slot = 0; slot < slots; slot++) {
   1172      1.1     matt 		const uintptr_t node = PTN_BRANCH_SLOT(ptn, slot);
   1173      1.1     matt 		pt_bitoff_t tmp_bitoff = 0;
   1174      1.1     matt 		pt_slot_t tmp_slot;
   1175      1.1     matt 		ok = ok && node != PTN_BRANCH(ptn);
   1176      1.1     matt 		KASSERT(ok);
   1177      1.1     matt 		if (bitlen > 0) {
   1178      1.1     matt 			ok = ok && ptree_matchnode(pt, PT_NODE(node), ptn, bitoff, &tmp_bitoff, &tmp_slot);
   1179      1.1     matt 			KASSERT(ok);
   1180      1.1     matt 			tmp_slot = ptree_testnode(pt, PT_NODE(node), ptn);
   1181      1.1     matt 			ok = ok && slot == tmp_slot;
   1182      1.1     matt 			KASSERT(ok);
   1183      1.1     matt 		}
   1184      1.1     matt 		if (PT_LEAF_P(node))
   1185      1.1     matt 			ok = ok && ptree_check_leaf(pt, ptn, PT_NODE(node));
   1186      1.1     matt 		else
   1187      1.1     matt 			ok = ok && ptree_check_branch(pt, ptn, PT_NODE(node));
   1188      1.1     matt 	}
   1189      1.1     matt 
   1190      1.1     matt 	return ok;
   1191      1.1     matt }
   1192      1.1     matt #endif /* PTCHECK */
   1193      1.1     matt 
   1194      1.2     matt /*ARGSUSED*/
   1195      1.1     matt bool
   1196      1.1     matt ptree_check(const pt_tree_t *pt)
   1197      1.1     matt {
   1198      1.1     matt 	bool ok = true;
   1199      1.1     matt #ifdef PTCHECK
   1200      1.1     matt 	const pt_node_t * const parent = &pt->pt_rootnode;
   1201      1.1     matt 	const uintptr_t node = pt->pt_root;
   1202      1.1     matt 	const pt_node_t * const ptn = PT_NODE(node);
   1203      1.1     matt 
   1204      1.1     matt 	ok = ok && PTN_BRANCH_BITOFF(parent) == 0;
   1205      1.1     matt 	ok = ok && !PTN_ISMASK_P(parent);
   1206      1.1     matt 
   1207      1.1     matt 	if (PT_NULL_P(node))
   1208      1.1     matt 		return ok;
   1209      1.1     matt 
   1210      1.1     matt 	if (PT_LEAF_P(node))
   1211      1.1     matt 		ok = ok && ptree_check_leaf(pt, parent, ptn);
   1212      1.1     matt 	else
   1213      1.1     matt 		ok = ok && ptree_check_branch(pt, parent, ptn);
   1214      1.1     matt #endif
   1215      1.1     matt 	return ok;
   1216      1.1     matt }
   1217  1.5.6.1     yamt 
   1218  1.5.6.1     yamt bool
   1219  1.5.6.1     yamt ptree_mask_node_p(pt_tree_t *pt, const void *item, pt_bitlen_t *lenp)
   1220  1.5.6.1     yamt {
   1221  1.5.6.1     yamt 	const pt_node_t * const mask = ITEMTONODE(pt, item);
   1222  1.5.6.1     yamt 
   1223  1.5.6.1     yamt 	if (!PTN_ISMASK_P(mask))
   1224  1.5.6.1     yamt 		return false;
   1225  1.5.6.1     yamt 
   1226  1.5.6.1     yamt 	if (lenp != NULL)
   1227  1.5.6.1     yamt 		*lenp = PTN_MASK_BITLEN(mask);
   1228  1.5.6.1     yamt 
   1229  1.5.6.1     yamt 	return true;
   1230  1.5.6.1     yamt }
   1231