ptree.c revision 1.1 1 /* $NetBSD: ptree.c,v 1.1 2008/11/20 23:50:08 matt Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas <matt (at) 3am-software.com>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #define _PT_PRIVATE
33
34 #if defined(PTCHECK) && !defined(PTDEBUG)
35 #define PTDEBUG
36 #endif
37
38 #if defined(_KERNEL) || defined(_STANDALONE)
39 #include <sys/param.h>
40 #include <sys/types.h>
41 #include <sys/systm.h>
42 __KERNEL_RCSID(0, "$NetBSD: ptree.c,v 1.1 2008/11/20 23:50:08 matt Exp $");
43 #else
44 #include <stddef.h>
45 #include <stdint.h>
46 #include <limits.h>
47 #include <stdbool.h>
48 #include <string.h>
49 #ifdef PTDEBUG
50 #include <assert.h>
51 #define KASSERT(e) assert(e)
52 #else
53 #define KASSERT(e) do { } while (/*CONSTCOND*/ 0)
54 #endif
55 __RCSID("$NetBSD: ptree.c,v 1.1 2008/11/20 23:50:08 matt Exp $");
56 #endif /* _KERNEL || _STANDALONE */
57
58 #ifdef _LIBC
59 #include "namespace.h"
60 #endif
61
62 #ifdef PTTEST
63 #include "ptree.h"
64 #else
65 #include <sys/ptree.h>
66 #endif
67
68 /*
69 * This is an implementation of a radix / PATRICIA tree. As in a traditional
70 * patricia tree, all the data is at the leaves of the tree. An N-value
71 * tree would have N leaves, N-1 branching nodes, and a root pointer. Each
72 * branching node would have left(0) and right(1) pointers that either point
73 * to another branching node or a leaf node. The root pointer would also
74 * point to either the first branching node or a leaf node. Leaf nodes
75 * have no need for pointers.
76 *
77 * However, allocation for these branching nodes is problematic since the
78 * allocation could fail. This would cause insertions to fail for reasons
79 * beyond the users control. So to prevent this, in this implementation
80 * each node has two identities: its leaf identity and its branch identity.
81 * Each is separate from the other. Every branch is tagged as to whether
82 * it points to a leaf or a branch. This is not an attribute of the object
83 * but of the pointer to the object. The low bit of the pointer is used as
84 * the tag to determine wether it points to a leaf or branch identity, with
85 * branch identities having the low bit set.
86 *
87 * A node's branch identity has one rule: when traversing the tree from the
88 * root to the node's leaf identity, one of the branches traversed will be via
89 * the node's branch identity. Of course, that has an exception: since to
90 * store N leaves, you need N-1 branches. That one node whose branch identity
91 * isn't used is stored as "oddman"-out in the root.
92 *
93 * Branching nodes also has a bit offset and a bit length which determines
94 * which branch slot is used. The bit length can be zero resulting in a
95 * one-way branch. This is happens in two special cases: the root and
96 * interior mask nodes.
97 *
98 * To support longest match first lookups, when a mask node (one that only
99 * match the first N bits) has children who first N bits match the mask nodes,
100 * that mask node is converted from being a leaf node to being a one-way
101 * branch-node. The mask becomes fixed in position in the tree. The mask
102 * will alaways be the longest mask match for its descendants (unless they
103 * traverse an even longer match).
104 */
105
106 #define NODETOITEM(pt, ptn) \
107 ((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset))
108 #define NODETOKEY(pt, ptn) \
109 ((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset + pt->pt_key_offset))
110 #define ITEMTONODE(pt, ptn) \
111 ((pt_node_t *)((uintptr_t)(ptn) + (pt)->pt_node_offset))
112
113 bool ptree_check(const pt_tree_t *);
114 #if PTCHECK > 1
115 #define PTREE_CHECK(pt) ptree_check(pt)
116 #else
117 #define PTREE_CHECK(pt) (void) 0
118 #endif
119
120 static inline bool
121 ptree_matchnode(const pt_tree_t *pt, const pt_node_t *target,
122 const pt_node_t *ptn, pt_bitoff_t max_bitoff,
123 pt_bitoff_t *bitoff_p, pt_slot_t *slots_p)
124 {
125 return (*pt->pt_ops->ptto_matchnode)(NODETOKEY(pt, target),
126 (ptn != NULL ? NODETOKEY(pt, ptn) : NULL), max_bitoff,
127 bitoff_p, slots_p);
128 }
129
130 static inline pt_slot_t
131 ptree_testnode(const pt_tree_t *pt, const pt_node_t *target,
132 const pt_node_t *ptn)
133 {
134 const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
135 if (bitlen == 0)
136 return PT_SLOT_ROOT;
137 return (*pt->pt_ops->ptto_testnode)(NODETOKEY(pt, target),
138 PTN_BRANCH_BITOFF(ptn),
139 bitlen);
140 }
141
142 static inline bool
143 ptree_matchkey(const pt_tree_t *pt, const void *key,
144 const pt_node_t *ptn, pt_bitoff_t bitoff, pt_bitlen_t bitlen)
145 {
146 return (*pt->pt_ops->ptto_matchkey)(key, NODETOKEY(pt, ptn),
147 bitoff, bitlen);
148 }
149
150 static inline pt_slot_t
151 ptree_testkey(const pt_tree_t *pt, const void *key, const pt_node_t *ptn)
152 {
153 return (*pt->pt_ops->ptto_testkey)(key,
154 PTN_BRANCH_BITOFF(ptn),
155 PTN_BRANCH_BITLEN(ptn));
156 }
157
158 static inline void
159 ptree_set_position(uintptr_t node, pt_slot_t position)
160 {
161 if (PT_LEAF_P(node))
162 PTN_SET_LEAF_POSITION(PT_NODE(node), position);
163 else
164 PTN_SET_BRANCH_POSITION(PT_NODE(node), position);
165 }
166
167 void
168 ptree_init(pt_tree_t *pt, const pt_tree_ops_t *ops, size_t node_offset,
169 size_t key_offset)
170 {
171 memset(pt, 0, sizeof(*pt));
172 pt->pt_node_offset = node_offset;
173 pt->pt_key_offset = key_offset;
174 pt->pt_ops = ops;
175 }
176
177 typedef struct {
178 uintptr_t *id_insertp;
179 pt_node_t *id_parent;
180 uintptr_t id_node;
181 pt_slot_t id_parent_slot;
182 pt_bitoff_t id_bitoff;
183 pt_slot_t id_slot;
184 } pt_insertdata_t;
185
186 typedef bool (*pt_insertfunc_t)(pt_tree_t *, pt_node_t *, pt_insertdata_t *);
187
188 /*
189 * Move a branch identify from src to dst. The leaves don't care since
190 * nothing for them has changed.
191 */
192 static uintptr_t
193 ptree_move_branch(pt_tree_t * const pt, pt_node_t * const dst,
194 const pt_node_t * const src)
195 {
196 KASSERT(PTN_BRANCH_BITLEN(src) == 1);
197 /* set branch bitlen and bitoff in one step. */
198 dst->ptn_branchdata = src->ptn_branchdata;
199 PTN_SET_BRANCH_POSITION(dst, PTN_BRANCH_POSITION(src));
200 PTN_COPY_BRANCH_SLOTS(dst, src);
201 return PTN_BRANCH(dst);
202 }
203
204 #ifndef PTNOMASK
205 static inline uintptr_t *
206 ptree_find_branch(pt_tree_t * const pt, uintptr_t branch_node)
207 {
208 pt_node_t * const branch = PT_NODE(branch_node);
209 pt_node_t *parent;
210
211 for (parent = &pt->pt_rootnode;;) {
212 uintptr_t *nodep =
213 &PTN_BRANCH_SLOT(parent, ptree_testnode(pt, branch, parent));
214 if (*nodep == branch_node)
215 return nodep;
216 if (PT_LEAF_P(*nodep))
217 return NULL;
218 parent = PT_NODE(*nodep);
219 }
220 }
221
222 static bool
223 ptree_insert_leaf_after_mask(pt_tree_t * const pt, pt_node_t * const target,
224 pt_insertdata_t * const id)
225 {
226 const uintptr_t target_node = PTN_LEAF(target);
227 const uintptr_t mask_node = id->id_node;
228 pt_node_t * const mask = PT_NODE(mask_node);
229 const pt_bitlen_t mask_len = PTN_MASK_BITLEN(mask);
230
231 KASSERT(PT_LEAF_P(mask_node));
232 KASSERT(PTN_LEAF_POSITION(mask) == id->id_parent_slot);
233 KASSERT(mask_len <= id->id_bitoff);
234 KASSERT(PTN_ISMASK_P(mask));
235 KASSERT(!PTN_ISMASK_P(target) || mask_len < PTN_MASK_BITLEN(target));
236
237 if (mask_node == PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode)) {
238 KASSERT(id->id_parent != mask);
239 /*
240 * Nice, mask was an oddman. So just set the oddman to target.
241 */
242 PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = target_node;
243 } else {
244 /*
245 * We need to find out who's pointing to mask's branch
246 * identity. We know that between root and the leaf identity,
247 * we must traverse the node's branch identity.
248 */
249 uintptr_t * const mask_nodep = ptree_find_branch(pt, PTN_BRANCH(mask));
250 KASSERT(mask_nodep != NULL);
251 KASSERT(*mask_nodep == PTN_BRANCH(mask));
252 KASSERT(PTN_BRANCH_BITLEN(mask) == 1);
253
254 /*
255 * Alas, mask was used as a branch. Since the mask is becoming
256 * a one-way branch, we need make target take over mask's
257 * branching responsibilities. Only then can we change it.
258 */
259 *mask_nodep = ptree_move_branch(pt, target, mask);
260
261 /*
262 * However, it's possible that mask's parent is itself. If
263 * that's true, update the insert point to use target since it
264 * has taken over mask's branching duties.
265 */
266 if (id->id_parent == mask)
267 id->id_insertp = &PTN_BRANCH_SLOT(target,
268 id->id_parent_slot);
269 }
270
271 PTN_SET_BRANCH_BITLEN(mask, 0);
272 PTN_SET_BRANCH_BITOFF(mask, mask_len);
273
274 PTN_BRANCH_ROOT_SLOT(mask) = target_node;
275 PTN_BRANCH_ODDMAN_SLOT(mask) = PT_NULL;
276 PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
277 PTN_SET_BRANCH_POSITION(mask, id->id_parent_slot);
278
279 /*
280 * Now that everything is done, to make target visible we need to
281 * change mask from a leaf to a branch.
282 */
283 *id->id_insertp = PTN_BRANCH(mask);
284 PTREE_CHECK(pt);
285 return true;
286 }
287
288 static bool
289 ptree_insert_mask_before_node(pt_tree_t * const pt, pt_node_t * const target,
290 pt_insertdata_t * const id)
291 {
292 const uintptr_t node = id->id_node;
293 pt_node_t * const ptn = PT_NODE(node);
294 const pt_slot_t mask_len = PTN_MASK_BITLEN(target);
295 const pt_bitlen_t node_mask_len = PTN_MASK_BITLEN(ptn);
296
297 KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(ptn));
298 KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(ptn));
299 KASSERT(PTN_ISMASK_P(target));
300
301 /*
302 * If the node we are placing ourself in front is a mask with the
303 * same mask length as us, return failure.
304 */
305 if (PTN_ISMASK_P(ptn) && node_mask_len == mask_len)
306 return false;
307
308 PTN_SET_BRANCH_BITLEN(target, 0);
309 PTN_SET_BRANCH_BITOFF(target, mask_len);
310
311 PTN_BRANCH_SLOT(target, PT_SLOT_ROOT) = node;
312 *id->id_insertp = PTN_BRANCH(target);
313
314 PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
315 ptree_set_position(node, PT_SLOT_ROOT);
316
317 PTREE_CHECK(pt);
318 return true;
319 }
320 #endif /* !PTNOMASK */
321
322 static bool
323 ptree_insert_branch_at_node(pt_tree_t * const pt, pt_node_t * const target,
324 pt_insertdata_t * const id)
325 {
326 const uintptr_t target_node = PTN_LEAF(target);
327 const uintptr_t node = id->id_node;
328 const pt_slot_t other_slot = id->id_slot ^ PT_SLOT_OTHER;
329
330 KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(PT_NODE(node)));
331 KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(PT_NODE(node)));
332 KASSERT((node == pt->pt_root) == (id->id_parent == &pt->pt_rootnode));
333 #ifndef PTNOMASK
334 KASSERT(!PTN_ISMASK_P(target) || id->id_bitoff <= PTN_MASK_BITLEN(target));
335 #endif
336 KASSERT(node == pt->pt_root || PTN_BRANCH_BITOFF(id->id_parent) + PTN_BRANCH_BITLEN(id->id_parent) <= id->id_bitoff);
337
338 PTN_SET_BRANCH_BITOFF(target, id->id_bitoff);
339 PTN_SET_BRANCH_BITLEN(target, 1);
340
341 PTN_BRANCH_SLOT(target, id->id_slot) = target_node;
342 PTN_BRANCH_SLOT(target, other_slot) = node;
343 *id->id_insertp = PTN_BRANCH(target);
344
345 PTN_SET_LEAF_POSITION(target, id->id_slot);
346 ptree_set_position(node, other_slot);
347
348 PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
349 PTREE_CHECK(pt);
350 return true;
351 }
352
353 static bool
354 ptree_insert_leaf(pt_tree_t * const pt, pt_node_t * const target,
355 pt_insertdata_t * const id)
356 {
357 const uintptr_t leaf_node = id->id_node;
358 pt_node_t * const leaf = PT_NODE(leaf_node);
359 #ifdef PTNOMASK
360 const bool inserting_mask = false;
361 const bool at_mask = false;
362 #else
363 const bool inserting_mask = PTN_ISMASK_P(target);
364 const bool at_mask = PTN_ISMASK_P(leaf);
365 const pt_bitlen_t leaf_masklen = PTN_MASK_BITLEN(leaf);
366 const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
367 #endif
368 pt_insertfunc_t insertfunc = ptree_insert_branch_at_node;
369 bool matched;
370
371 /*
372 * In all likelyhood we are going simply going to insert a branch
373 * where this leaf is which will point to the old and new leaves.
374 */
375 KASSERT(PT_LEAF_P(leaf_node));
376 KASSERT(PTN_LEAF_POSITION(leaf) == id->id_parent_slot);
377 matched = ptree_matchnode(pt, target, leaf, UINT_MAX,
378 &id->id_bitoff, &id->id_slot);
379 if (__predict_false(!inserting_mask)) {
380 /*
381 * We aren't inserting a mask nor is the leaf a mask, which
382 * means we are trying to insert a duplicate leaf. Can't do
383 * that.
384 */
385 if (!at_mask && matched)
386 return false;
387
388 #ifndef PTNOMASK
389 /*
390 * We are at a mask and the leaf we are about to insert
391 * is at or beyond the mask, we need to convert the mask
392 * from a leaf to a one-way branch interior mask.
393 */
394 if (at_mask && id->id_bitoff >= leaf_masklen)
395 insertfunc = ptree_insert_leaf_after_mask;
396 #endif /* PTNOMASK */
397 }
398 #ifndef PTNOMASK
399 else {
400 /*
401 * We are inserting a mask.
402 */
403 if (matched) {
404 /*
405 * If the leaf isn't a mask, we obviously have to
406 * insert the new mask before non-mask leaf. If the
407 * leaf is a mask, and the new node has a LEQ mask
408 * length it too needs to inserted before leaf (*).
409 *
410 * In other cases, we place the new mask as leaf after
411 * leaf mask. Which mask comes first will be a one-way
412 * branch interior mask node which has the other mask
413 * node as a child.
414 *
415 * (*) ptree_insert_mask_before_node can detect a
416 * duplicate mask and return failure if needed.
417 */
418 if (!at_mask || target_masklen <= leaf_masklen)
419 insertfunc = ptree_insert_mask_before_node;
420 else
421 insertfunc = ptree_insert_leaf_after_mask;
422 } else if (at_mask && id->id_bitoff >= leaf_masklen) {
423 /*
424 * If the new mask has a bit offset GEQ than the leaf's
425 * mask length, convert the left to a one-way branch
426 * interior mask and make that point to the new [leaf]
427 * mask.
428 */
429 insertfunc = ptree_insert_leaf_after_mask;
430 } else {
431 /*
432 * The new mask has a bit offset less than the leaf's
433 * mask length or if the leaf isn't a mask at all, the
434 * new mask deserves to be its own leaf so we use the
435 * default insertfunc to do that.
436 */
437 }
438 }
439 #endif /* PTNOMASK */
440
441 return (*insertfunc)(pt, target, id);
442 }
443
444 static bool
445 ptree_insert_node_common(pt_tree_t *pt, void *item)
446 {
447 pt_node_t * const target = ITEMTONODE(pt, item);
448 #ifndef PTNOMASK
449 const bool inserting_mask = PTN_ISMASK_P(target);
450 const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
451 #endif
452 pt_insertfunc_t insertfunc;
453 pt_insertdata_t id;
454
455 /*
456 * We need a leaf so we can match against. Until we get a leaf
457 * we having nothing to test against.
458 */
459 if (__predict_false(PT_NULL_P(pt->pt_root))) {
460 PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
461 PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
462 PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
463 PTREE_CHECK(pt);
464 return true;
465 }
466
467 id.id_bitoff = 0;
468 id.id_parent = &pt->pt_rootnode;
469 id.id_parent_slot = PT_SLOT_ROOT;
470 id.id_insertp = &PTN_BRANCH_ROOT_SLOT(id.id_parent);
471 for (;;) {
472 pt_bitoff_t branch_bitoff;
473 pt_node_t * const ptn = PT_NODE(*id.id_insertp);
474 id.id_node = *id.id_insertp;
475
476 /*
477 * If we hit a leaf, try to insert target at leaf. We could
478 * have inlined ptree_insert_leaf here but that would have
479 * made this routine much harder to understand. Trust the
480 * compiler to optimize this properly.
481 */
482 if (PT_LEAF_P(id.id_node)) {
483 KASSERT(PTN_LEAF_POSITION(ptn) == id.id_parent_slot);
484 insertfunc = ptree_insert_leaf;
485 break;
486 }
487
488 /*
489 * If we aren't a leaf, we must be a branch. Make sure we are
490 * in the slot we think we are.
491 */
492 KASSERT(PT_BRANCH_P(id.id_node));
493 KASSERT(PTN_BRANCH_POSITION(ptn) == id.id_parent_slot);
494
495 /*
496 * Where is this branch?
497 */
498 branch_bitoff = PTN_BRANCH_BITOFF(ptn);
499
500 #ifndef PTNOMASK
501 /*
502 * If this is a one-way mask node, its offset must equal
503 * its mask's bitlen.
504 */
505 KASSERT(!(PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) || PTN_MASK_BITLEN(ptn) == branch_bitoff);
506
507 /*
508 * If we are inserting a mask, and we know that at this point
509 * all bits before the current bit offset match both the target
510 * and the branch. If the target's mask length is LEQ than
511 * this branch's bit offset, then this is where the mask needs
512 * to added to the tree.
513 */
514 if (__predict_false(inserting_mask)
515 && (PTN_ISROOT_P(pt, id.id_parent)
516 || id.id_bitoff < target_masklen)
517 && target_masklen <= branch_bitoff) {
518 /*
519 * We don't know about the bits (if any) between
520 * id.id_bitoff and the target's mask length match
521 * both the target and the branch. If the target's
522 * mask length is greater than the current bit offset
523 * make sure the untested bits match both the target
524 * and the branch.
525 */
526 if (target_masklen == id.id_bitoff
527 || ptree_matchnode(pt, target, ptn, target_masklen,
528 &id.id_bitoff, &id.id_slot)) {
529 /*
530 * The bits matched, so insert the mask as a
531 * one-way branch.
532 */
533 insertfunc = ptree_insert_mask_before_node;
534 break;
535 } else if (id.id_bitoff < branch_bitoff) {
536 /*
537 * They didn't match, so create a normal branch
538 * because this mask needs to a be a new leaf.
539 */
540 insertfunc = ptree_insert_branch_at_node;
541 break;
542 }
543 }
544 #endif /* PTNOMASK */
545
546 /*
547 * If we are skipping some bits, verify they match the node.
548 * If they don't match, it means we have a leaf to insert.
549 * Note that if we are advancing bit by bit, we'll skip
550 * doing matchnode and walk the tree bit by bit via testnode.
551 */
552 if (id.id_bitoff < branch_bitoff
553 && !ptree_matchnode(pt, target, ptn, branch_bitoff,
554 &id.id_bitoff, &id.id_slot)) {
555 KASSERT(id.id_bitoff < branch_bitoff);
556 insertfunc = ptree_insert_branch_at_node;
557 break;
558 }
559
560 /*
561 * At this point, all bits before branch_bitoff are known
562 * to match the target.
563 */
564 KASSERT(id.id_bitoff >= branch_bitoff);
565
566 /*
567 * Decend the tree one level.
568 */
569 id.id_parent = ptn;
570 id.id_parent_slot = ptree_testnode(pt, target, id.id_parent);
571 id.id_bitoff += PTN_BRANCH_BITLEN(id.id_parent);
572 id.id_insertp = &PTN_BRANCH_SLOT(id.id_parent, id.id_parent_slot);
573 }
574
575 /*
576 * Do the actual insertion.
577 */
578 return (*insertfunc)(pt, target, &id);
579 }
580
581 bool
582 ptree_insert_node(pt_tree_t *pt, void *item)
583 {
584 pt_node_t * const target = ITEMTONODE(pt, item);
585
586 memset(target, 0, sizeof(*target));
587 return ptree_insert_node_common(pt, target);
588 }
589
590 #ifndef PTNOMASK
591 bool
592 ptree_insert_mask_node(pt_tree_t *pt, void *item, pt_bitlen_t mask_len)
593 {
594 pt_node_t * const target = ITEMTONODE(pt, item);
595 pt_bitoff_t bitoff = mask_len;
596 pt_slot_t slot;
597
598 memset(target, 0, sizeof(*target));
599 KASSERT(mask_len == 0 || (~PT__MASK(PTN_MASK_BITLEN) & mask_len) == 0);
600 /*
601 * Only the first <mask_len> bits can be non-zero.
602 * All other bits must be 0.
603 */
604 if (!ptree_matchnode(pt, target, NULL, UINT_MAX, &bitoff, &slot))
605 return false;
606 PTN_SET_MASK_BITLEN(target, mask_len);
607 PTN_MARK_MASK(target);
608 return ptree_insert_node_common(pt, target);
609 }
610 #endif /* !PTNOMASH */
611
612 void *
613 ptree_find_filtered_node(pt_tree_t *pt, void *key, pt_filter_t filter,
614 void *filter_arg)
615 {
616 #ifndef PTNOMASK
617 pt_node_t *mask = NULL;
618 #endif
619 bool at_mask = false;
620 pt_node_t *ptn, *parent;
621 pt_bitoff_t bitoff;
622 pt_slot_t parent_slot;
623
624 if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)))
625 return NULL;
626
627 bitoff = 0;
628 parent = &pt->pt_rootnode;
629 parent_slot = PT_SLOT_ROOT;
630 for (;;) {
631 const uintptr_t node = PTN_BRANCH_SLOT(parent, parent_slot);
632 const pt_slot_t branch_bitoff = PTN_BRANCH_BITOFF(PT_NODE(node));
633 ptn = PT_NODE(node);
634
635 if (PT_LEAF_P(node)) {
636 #ifndef PTNOMASK
637 at_mask = PTN_ISMASK_P(ptn);
638 #endif
639 break;
640 }
641
642 if (bitoff < branch_bitoff) {
643 if (!ptree_matchkey(pt, key, ptn, bitoff, branch_bitoff - bitoff)) {
644 #ifndef PTNOMASK
645 if (mask != NULL)
646 return NODETOITEM(pt, mask);
647 #endif
648 return NULL;
649 }
650 bitoff = branch_bitoff;
651 }
652
653 #ifndef PTNOMASK
654 if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0
655 && (!filter
656 || (*filter)(filter_arg, NODETOITEM(pt, ptn),
657 PT_FILTER_MASK)))
658 mask = ptn;
659 #endif
660
661 parent = ptn;
662 parent_slot = ptree_testkey(pt, key, parent);
663 bitoff += PTN_BRANCH_BITLEN(parent);
664 }
665
666 KASSERT(PTN_ISROOT_P(pt, parent) || PTN_BRANCH_BITOFF(parent) + PTN_BRANCH_BITLEN(parent) == bitoff);
667 if (!filter || (*filter)(filter_arg, NODETOITEM(pt, ptn), at_mask ? PT_FILTER_MASK : 0)) {
668 #ifndef PTNOMASK
669 if (PTN_ISMASK_P(ptn)) {
670 const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
671 if (bitoff == PTN_MASK_BITLEN(ptn))
672 return NODETOITEM(pt, ptn);
673 if (ptree_matchkey(pt, key, ptn, bitoff, mask_len - bitoff))
674 return NODETOITEM(pt, ptn);
675 } else
676 #endif /* !PTNOMASK */
677 if (ptree_matchkey(pt, key, ptn, bitoff, UINT_MAX))
678 return NODETOITEM(pt, ptn);
679 }
680
681 #ifndef PTNOMASK
682 /*
683 * By virtue of how the mask was placed in the tree,
684 * all nodes descended from it will match it. But the bits
685 * before the mask still need to be checked and since the
686 * mask was a branch, that was done implicitly.
687 */
688 if (mask != NULL) {
689 KASSERT(ptree_matchkey(pt, key, mask, 0, PTN_MASK_BITLEN(mask)));
690 return NODETOITEM(pt, mask);
691 }
692 #endif /* !PTNOMASK */
693
694 /*
695 * Nothing matched.
696 */
697 return NULL;
698 }
699
700 void *
701 ptree_iterate(pt_tree_t *pt, const void *item, pt_direction_t direction)
702 {
703 const pt_node_t * const target = ITEMTONODE(pt, item);
704 uintptr_t node, next_node;
705
706 if (direction != PT_ASCENDING && direction != PT_DESCENDING)
707 return NULL;
708
709 node = PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode);
710 if (PT_NULL_P(node))
711 return NULL;
712
713 if (item == NULL) {
714 pt_node_t * const ptn = PT_NODE(node);
715 if (direction == PT_ASCENDING
716 && PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0)
717 return NODETOITEM(pt, ptn);
718 next_node = node;
719 } else {
720 #ifndef PTNOMASK
721 uintptr_t mask_node = PT_NULL;
722 #endif /* !PTNOMASK */
723 next_node = PT_NULL;
724 while (!PT_LEAF_P(node)) {
725 pt_node_t * const ptn = PT_NODE(node);
726 pt_slot_t slot;
727 #ifndef PTNOMASK
728 if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) {
729 if (ptn == target)
730 break;
731 if (direction == PT_DESCENDING) {
732 mask_node = node;
733 next_node = PT_NULL;
734 }
735 }
736 #endif /* !PTNOMASK */
737 slot = ptree_testnode(pt, target, ptn);
738 node = PTN_BRANCH_SLOT(ptn, slot);
739 if (direction == PT_ASCENDING) {
740 if (slot != (1 << PTN_BRANCH_BITLEN(ptn)) - 1)
741 next_node = PTN_BRANCH_SLOT(ptn, slot + 1);
742 } else {
743 if (slot > 0) {
744 #ifndef PTNOMASK
745 mask_node = PT_NULL;
746 #endif /* !PTNOMASK */
747 next_node = PTN_BRANCH_SLOT(ptn, slot - 1);
748 }
749 }
750 }
751 if (PT_NODE(node) != target)
752 return NULL;
753 #ifndef PTNOMASK
754 if (PT_BRANCH_P(node)) {
755 pt_node_t *ptn = PT_NODE(node);
756 KASSERT(PTN_ISMASK_P(PT_NODE(node)) && PTN_BRANCH_BITLEN(PT_NODE(node)) == 0);
757 if (direction == PT_ASCENDING) {
758 next_node = PTN_BRANCH_ROOT_SLOT(ptn);
759 ptn = PT_NODE(next_node);
760 }
761 }
762 /*
763 * When descending, if we countered a mask node then that's
764 * we want to return.
765 */
766 if (direction == PT_DESCENDING && !PT_NULL_P(mask_node)) {
767 KASSERT(PT_NULL_P(next_node));
768 return NODETOITEM(pt, PT_NODE(mask_node));
769 }
770 #endif /* !PTNOMASK */
771 }
772
773 node = next_node;
774 if (PT_NULL_P(node))
775 return NULL;
776
777 while (!PT_LEAF_P(node)) {
778 pt_node_t * const ptn = PT_NODE(node);
779 pt_slot_t slot;
780 if (direction == PT_ASCENDING) {
781 #ifndef PTNOMASK
782 if (PT_BRANCH_P(node)
783 && PTN_ISMASK_P(ptn)
784 && PTN_BRANCH_BITLEN(ptn) == 0)
785 return NODETOITEM(pt, ptn);
786 #endif /* !PTNOMASK */
787 slot = PT_SLOT_LEFT;
788 } else {
789 slot = (1 << PTN_BRANCH_BITLEN(ptn)) - 1;
790 }
791 node = PTN_BRANCH_SLOT(ptn, slot);
792 }
793 return NODETOITEM(pt, PT_NODE(node));
794 }
795
796 void
797 ptree_remove_node(pt_tree_t *pt, void *item)
798 {
799 pt_node_t * const target = ITEMTONODE(pt, item);
800 const pt_slot_t leaf_slot = PTN_LEAF_POSITION(target);
801 const pt_slot_t branch_slot = PTN_BRANCH_POSITION(target);
802 pt_node_t *ptn, *parent;
803 uintptr_t node;
804 uintptr_t *removep;
805 uintptr_t *nodep;
806 pt_bitoff_t bitoff;
807 pt_slot_t parent_slot;
808 #ifndef PTNOMASK
809 bool at_mask;
810 #endif
811
812 if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode))) {
813 KASSERT(!PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)));
814 return;
815 }
816
817 bitoff = 0;
818 removep = NULL;
819 nodep = NULL;
820 parent = &pt->pt_rootnode;
821 parent_slot = PT_SLOT_ROOT;
822 for (;;) {
823 node = PTN_BRANCH_SLOT(parent, parent_slot);
824 ptn = PT_NODE(node);
825 #ifndef PTNOMASK
826 at_mask = PTN_ISMASK_P(ptn);
827 #endif
828
829 if (PT_LEAF_P(node))
830 break;
831
832 /*
833 * If we are at the target, then we are looking at its branch
834 * identity. We need to remember who's pointing at it so we
835 * stop them from doing that.
836 */
837 if (__predict_false(ptn == target)) {
838 KASSERT(nodep == NULL);
839 #ifndef PTNOMASK
840 /*
841 * Interior mask nodes are trivial to get rid of.
842 */
843 if (at_mask && PTN_BRANCH_BITLEN(ptn) == 0) {
844 PTN_BRANCH_SLOT(parent, parent_slot) =
845 PTN_BRANCH_ROOT_SLOT(ptn);
846 KASSERT(PT_NULL_P(PTN_BRANCH_ODDMAN_SLOT(ptn)));
847 PTREE_CHECK(pt);
848 return;
849 }
850 #endif /* !PTNOMASK */
851 nodep = &PTN_BRANCH_SLOT(parent, parent_slot);
852 KASSERT(*nodep == PTN_BRANCH(target));
853 }
854 /*
855 * We need also need to know who's pointing at our parent.
856 * After we remove ourselves from our parent, he'll only
857 * have one child and that's unacceptable. So we replace
858 * the pointer to the parent with our abadoned sibling.
859 */
860 removep = &PTN_BRANCH_SLOT(parent, parent_slot);
861
862 /*
863 * Descend into the tree.
864 */
865 parent = ptn;
866 parent_slot = ptree_testnode(pt, target, parent);
867 bitoff += PTN_BRANCH_BITLEN(parent);
868 }
869
870 /*
871 * We better have found that the leaf we are looking for is target.
872 */
873 if (target != ptn) {
874 KASSERT(target == ptn);
875 return;
876 }
877
878 /*
879 * If we didn't encounter target as branch, then target must be the
880 * oddman-out.
881 */
882 if (nodep == NULL) {
883 KASSERT(PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) == PTN_LEAF(target));
884 KASSERT(nodep == NULL);
885 nodep = &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode);
886 }
887
888 KASSERT((removep == NULL) == (parent == &pt->pt_rootnode));
889
890 /*
891 * We have to special remove the last leaf from the root since
892 * the only time the tree can a PT_NULL node is when it's empty.
893 */
894 if (__predict_false(PTN_ISROOT_P(pt, parent))) {
895 KASSERT(removep == NULL);
896 KASSERT(parent == &pt->pt_rootnode);
897 KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
898 KASSERT(*nodep == PTN_LEAF(target));
899 PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PT_NULL;
900 PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PT_NULL;
901 return;
902 }
903
904 KASSERT((parent == target) == (removep == nodep));
905 if (PTN_BRANCH(parent) == PTN_BRANCH_SLOT(target, PTN_BRANCH_POSITION(parent))) {
906 /*
907 * The pointer to the parent actually lives in the target's
908 * branch identity. We can't just move the target's branch
909 * identity since that would result in the parent pointing
910 * to its own branch identity and that's fobidden.
911 */
912 const pt_slot_t slot = PTN_BRANCH_POSITION(parent);
913 const pt_slot_t other_slot = slot ^ PT_SLOT_OTHER;
914 const pt_bitlen_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
915
916 KASSERT(PTN_BRANCH_BITOFF(target) < PTN_BRANCH_BITOFF(parent));
917
918 /*
919 * This gets so confusing. The target's branch identity
920 * points to the branch identity of the parent of the target's
921 * leaf identity:
922 *
923 * TB = { X, PB = { TL, Y } }
924 * or TB = { X, PB = { TL } }
925 *
926 * So we can't move the target's branch identity to the parent
927 * because that would corrupt the tree.
928 */
929 if (__predict_true(parent_bitlen > 0)) {
930 /*
931 * The parent is a two-way branch. We have to have
932 * do to this chang in two steps to keep internally
933 * consistent. First step is to copy our sibling from
934 * our parent to where we are pointing to parent's
935 * branch identiy. This remove all references to his
936 * branch identity from the tree. We then simply make
937 * the parent assume the target's branching duties.
938 *
939 * TB = { X, PB = { Y, TL } } --> PB = { X, Y }.
940 * TB = { X, PB = { TL, Y } } --> PB = { X, Y }.
941 * TB = { PB = { Y, TL }, X } --> PB = { Y, X }.
942 * TB = { PB = { TL, Y }, X } --> PB = { Y, X }.
943 */
944 PTN_BRANCH_SLOT(target, slot) =
945 PTN_BRANCH_SLOT(parent, parent_slot ^ PT_SLOT_OTHER);
946 *nodep = ptree_move_branch(pt, parent, target);
947 PTREE_CHECK(pt);
948 return;
949 } else {
950 /*
951 * If parent was a one-way branch, it must have been
952 * mask which pointed to a single leaf which we are
953 * removing. This means we have to convert the
954 * parent back to a leaf node. So in the same
955 * position that target pointed to parent, we place
956 * leaf pointer to parent. In the other position,
957 * we just put the other node from target.
958 *
959 * TB = { X, PB = { TL } } --> PB = { X, PL }
960 */
961 KASSERT(PTN_ISMASK_P(parent));
962 KASSERT(slot == ptree_testnode(pt, parent, target));
963 PTN_BRANCH_SLOT(parent, slot) = PTN_LEAF(parent);
964 PTN_BRANCH_SLOT(parent, other_slot) =
965 PTN_BRANCH_SLOT(target, other_slot);
966 PTN_SET_LEAF_POSITION(parent,slot);
967 PTN_SET_BRANCH_BITLEN(parent, 1);
968 }
969 PTN_SET_BRANCH_BITOFF(parent, PTN_BRANCH_BITOFF(target));
970 PTN_SET_BRANCH_POSITION(parent, PTN_BRANCH_POSITION(target));
971
972 *nodep = PTN_BRANCH(parent);
973 PTREE_CHECK(pt);
974 return;
975 }
976
977 #ifndef PTNOMASK
978 if (__predict_false(PTN_BRANCH_BITLEN(parent) == 0)) {
979 /*
980 * Parent was a one-way branch which is changing back to a leaf.
981 * Since parent is no longer a one-way branch, it can take over
982 * target's branching duties.
983 *
984 * GB = { PB = { TL } } --> GB = { PL }
985 * TB = { X, Y } --> PB = { X, Y }
986 */
987 KASSERT(PTN_ISMASK_P(parent));
988 KASSERT(parent != target);
989 *removep = PTN_LEAF(parent);
990 } else
991 #endif /* !PTNOMASK */
992 {
993 /*
994 * Now we are the normal removal case. Since after the
995 * target's leaf identity is removed from the its parent,
996 * that parent will only have one decendent. So we can
997 * just as easily replace the node that has the parent's
998 * branch identity with the surviving node. This freeing
999 * parent from its branching duties which means it can
1000 * take over target's branching duties.
1001 *
1002 * GB = { PB = { X, TL } } --> GB = { X }
1003 * TB = { V, W } --> PB = { V, W }
1004 */
1005 const pt_slot_t other_slot = parent_slot ^ PT_SLOT_OTHER;
1006 uintptr_t other_node = PTN_BRANCH_SLOT(parent, other_slot);
1007 const pt_slot_t target_slot = (parent == target ? branch_slot : leaf_slot);
1008
1009 *removep = other_node;
1010
1011 ptree_set_position(other_node, target_slot);
1012
1013 /*
1014 * If target's branch identity contained its leaf identity, we
1015 * have nothing left to do. We've already moved 'X' so there
1016 * is no longer anything in the target's branch identiy that
1017 * has to be preserved.
1018 */
1019 if (parent == target) {
1020 /*
1021 * GB = { TB = { X, TL } } --> GB = { X }
1022 * TB = { X, TL } --> don't care
1023 */
1024 PTREE_CHECK(pt);
1025 return;
1026 }
1027 }
1028
1029 /*
1030 * If target wasn't used as a branch, then it must have been the
1031 * oddman-out of the tree (the one node that doesn't have a branch
1032 * identity). This makes parent the new oddman-out.
1033 */
1034 if (*nodep == PTN_LEAF(target)) {
1035 KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
1036 PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(parent);
1037 PTREE_CHECK(pt);
1038 return;
1039 }
1040
1041 /*
1042 * Finally move the target's branching duties to the parent.
1043 */
1044 KASSERT(PTN_BRANCH_BITOFF(parent) > PTN_BRANCH_BITOFF(target));
1045 *nodep = ptree_move_branch(pt, parent, target);
1046 PTREE_CHECK(pt);
1047 }
1048
1049 #ifdef PTCHECK
1050 static const pt_node_t *
1051 ptree_check_find_node2(const pt_tree_t *pt, const pt_node_t *parent,
1052 uintptr_t target)
1053 {
1054 const pt_bitlen_t slots = 1 << PTN_BRANCH_BITLEN(parent);
1055 pt_slot_t slot;
1056
1057 for (slot = 0; slot < slots; slot++) {
1058 const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
1059 if (PTN_BRANCH_SLOT(parent, slot) == node)
1060 return parent;
1061 }
1062 for (slot = 0; slot < slots; slot++) {
1063 const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
1064 const pt_node_t *branch;
1065 if (!PT_BRANCH_P(node))
1066 continue;
1067 branch = ptree_check_find_node2(pt, PT_NODE(node), target);
1068 if (branch != NULL)
1069 return branch;
1070 }
1071
1072 return NULL;
1073 }
1074
1075 static bool
1076 ptree_check_leaf(const pt_tree_t *pt, const pt_node_t *parent,
1077 const pt_node_t *ptn)
1078 {
1079 const pt_bitoff_t leaf_position = PTN_LEAF_POSITION(ptn);
1080 const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
1081 const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
1082 const uintptr_t leaf_node = PTN_LEAF(ptn);
1083 const bool is_parent_root = (parent == &pt->pt_rootnode);
1084 const bool is_mask = PTN_ISMASK_P(ptn);
1085 bool ok = true;
1086
1087 if (is_parent_root) {
1088 ok = ok && PTN_BRANCH_ODDMAN_SLOT(parent) == leaf_node;
1089 KASSERT(ok);
1090 return ok;
1091 }
1092
1093 if (is_mask && PTN_ISMASK_P(parent) && PTN_BRANCH_BITLEN(parent) == 0) {
1094 ok = ok && PTN_MASK_BITLEN(parent) < mask_len;
1095 KASSERT(ok);
1096 ok = ok && PTN_BRANCH_BITOFF(parent) < mask_len;
1097 KASSERT(ok);
1098 }
1099 ok = ok && PTN_BRANCH_SLOT(parent, leaf_position) == leaf_node;
1100 KASSERT(ok);
1101 ok = ok && leaf_position == ptree_testnode(pt, ptn, parent);
1102 KASSERT(ok);
1103 if (PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) != leaf_node) {
1104 ok = ok && bitlen > 0;
1105 KASSERT(ok);
1106 ok = ok && ptn == ptree_check_find_node2(pt, ptn, PTN_LEAF(ptn));
1107 KASSERT(ok);
1108 }
1109 return ok;
1110 }
1111
1112 static bool
1113 ptree_check_branch(const pt_tree_t *pt, const pt_node_t *parent,
1114 const pt_node_t *ptn)
1115 {
1116 const bool is_parent_root = (parent == &pt->pt_rootnode);
1117 const pt_slot_t branch_slot = PTN_BRANCH_POSITION(ptn);
1118 const pt_bitoff_t bitoff = PTN_BRANCH_BITOFF(ptn);
1119 const pt_bitoff_t bitlen = PTN_BRANCH_BITLEN(ptn);
1120 const pt_bitoff_t parent_bitoff = PTN_BRANCH_BITOFF(parent);
1121 const pt_bitoff_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
1122 const bool is_parent_mask = PTN_ISMASK_P(parent) && parent_bitlen == 0;
1123 const bool is_mask = PTN_ISMASK_P(ptn) && bitlen == 0;
1124 const pt_bitoff_t parent_mask_len = PTN_MASK_BITLEN(parent);
1125 const pt_bitoff_t mask_len = PTN_MASK_BITLEN(ptn);
1126 const pt_bitlen_t slots = 1 << bitlen;
1127 pt_slot_t slot;
1128 bool ok = true;
1129
1130 ok = ok && PTN_BRANCH_SLOT(parent, branch_slot) == PTN_BRANCH(ptn);
1131 KASSERT(ok);
1132 ok = ok && branch_slot == ptree_testnode(pt, ptn, parent);
1133 KASSERT(ok);
1134
1135 if (is_mask) {
1136 ok = ok && bitoff == mask_len;
1137 KASSERT(ok);
1138 if (is_parent_mask) {
1139 ok = ok && parent_mask_len < mask_len;
1140 KASSERT(ok);
1141 ok = ok && parent_bitoff < bitoff;
1142 KASSERT(ok);
1143 }
1144 } else {
1145 if (is_parent_mask) {
1146 ok = ok && parent_bitoff <= bitoff;
1147 } else if (!is_parent_root) {
1148 ok = ok && parent_bitoff < bitoff;
1149 }
1150 KASSERT(ok);
1151 }
1152
1153 for (slot = 0; slot < slots; slot++) {
1154 const uintptr_t node = PTN_BRANCH_SLOT(ptn, slot);
1155 pt_bitoff_t tmp_bitoff = 0;
1156 pt_slot_t tmp_slot;
1157 ok = ok && node != PTN_BRANCH(ptn);
1158 KASSERT(ok);
1159 if (bitlen > 0) {
1160 ok = ok && ptree_matchnode(pt, PT_NODE(node), ptn, bitoff, &tmp_bitoff, &tmp_slot);
1161 KASSERT(ok);
1162 tmp_slot = ptree_testnode(pt, PT_NODE(node), ptn);
1163 ok = ok && slot == tmp_slot;
1164 KASSERT(ok);
1165 }
1166 if (PT_LEAF_P(node))
1167 ok = ok && ptree_check_leaf(pt, ptn, PT_NODE(node));
1168 else
1169 ok = ok && ptree_check_branch(pt, ptn, PT_NODE(node));
1170 }
1171
1172 return ok;
1173 }
1174 #endif /* PTCHECK */
1175
1176 bool
1177 ptree_check(const pt_tree_t *pt)
1178 {
1179 bool ok = true;
1180 #ifdef PTCHECK
1181 const pt_node_t * const parent = &pt->pt_rootnode;
1182 const uintptr_t node = pt->pt_root;
1183 const pt_node_t * const ptn = PT_NODE(node);
1184
1185 ok = ok && PTN_BRANCH_BITOFF(parent) == 0;
1186 ok = ok && !PTN_ISMASK_P(parent);
1187
1188 if (PT_NULL_P(node))
1189 return ok;
1190
1191 if (PT_LEAF_P(node))
1192 ok = ok && ptree_check_leaf(pt, parent, ptn);
1193 else
1194 ok = ok && ptree_check_branch(pt, parent, ptn);
1195 #endif
1196 return ok;
1197 }
1198