Home | History | Annotate | Line # | Download | only in gen
ptree.c revision 1.12
      1 /*	$NetBSD: ptree.c,v 1.12 2022/05/26 15:23:33 rillig Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Matt Thomas <matt (at) 3am-software.com>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #define _PT_PRIVATE
     33 
     34 #if defined(PTCHECK) && !defined(PTDEBUG)
     35 #define PTDEBUG
     36 #endif
     37 
     38 #if defined(_KERNEL) || defined(_STANDALONE)
     39 #include <sys/param.h>
     40 #include <sys/types.h>
     41 #include <sys/systm.h>
     42 #include <lib/libkern/libkern.h>
     43 __KERNEL_RCSID(0, "$NetBSD: ptree.c,v 1.12 2022/05/26 15:23:33 rillig Exp $");
     44 #else
     45 #include <stddef.h>
     46 #include <stdint.h>
     47 #include <limits.h>
     48 #include <stdbool.h>
     49 #include <string.h>
     50 #ifdef PTDEBUG
     51 #include <assert.h>
     52 #define	KASSERT(e)	assert(e)
     53 #else
     54 #define	KASSERT(e)	do { } while (0)
     55 #endif
     56 __RCSID("$NetBSD: ptree.c,v 1.12 2022/05/26 15:23:33 rillig Exp $");
     57 #endif /* _KERNEL || _STANDALONE */
     58 
     59 #ifdef _LIBC
     60 #include "namespace.h"
     61 #endif
     62 
     63 #ifdef PTTEST
     64 #include "ptree.h"
     65 #else
     66 #include <sys/ptree.h>
     67 #endif
     68 
     69 /*
     70  * This is an implementation of a radix / PATRICIA tree.  As in a traditional
     71  * patricia tree, all the data is at the leaves of the tree.  An N-value
     72  * tree would have N leaves, N-1 branching nodes, and a root pointer.  Each
     73  * branching node would have left(0) and right(1) pointers that either point
     74  * to another branching node or a leaf node.  The root pointer would also
     75  * point to either the first branching node or a leaf node.  Leaf nodes
     76  * have no need for pointers.
     77  *
     78  * However, allocation for these branching nodes is problematic since the
     79  * allocation could fail.  This would cause insertions to fail for reasons
     80  * beyond the user's control.  So to prevent this, in this implementation
     81  * each node has two identities: its leaf identity and its branch identity.
     82  * Each is separate from the other.  Every branch is tagged as to whether
     83  * it points to a leaf or a branch.  This is not an attribute of the object
     84  * but of the pointer to the object.  The low bit of the pointer is used as
     85  * the tag to determine whether it points to a leaf or branch identity, with
     86  * branch identities having the low bit set.
     87  *
     88  * A node's branch identity has one rule: when traversing the tree from the
     89  * root to the node's leaf identity, one of the branches traversed will be via
     90  * the node's branch identity.  Of course, that has an exception: since to
     91  * store N leaves, you need N-1 branches.  That one node whose branch identity
     92  * isn't used is stored as "oddman"-out in the root.
     93  *
     94  * Branching nodes also has a bit offset and a bit length which determines
     95  * which branch slot is used.  The bit length can be zero resulting in a
     96  * one-way branch.  This happens in two special cases: the root and
     97  * interior mask nodes.
     98  *
     99  * To support longest match first lookups, when a mask node (one that only
    100  * match the first N bits) has children who first N bits match the mask nodes,
    101  * that mask node is converted from being a leaf node to being a one-way
    102  * branch-node.  The mask becomes fixed in position in the tree.  The mask
    103  * will always be the longest mask match for its descendants (unless they
    104  * traverse an even longer match).
    105  */
    106 
    107 #define	NODETOITEM(pt, ptn)	\
    108 	((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset))
    109 #define	NODETOKEY(pt, ptn)	\
    110 	((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset + pt->pt_key_offset))
    111 #define	ITEMTONODE(pt, ptn)	\
    112 	((pt_node_t *)((uintptr_t)(ptn) + (pt)->pt_node_offset))
    113 
    114 bool ptree_check(const pt_tree_t *);
    115 #if PTCHECK > 1
    116 #define	PTREE_CHECK(pt)		ptree_check(pt)
    117 #else
    118 #define	PTREE_CHECK(pt)		do { } while (0)
    119 #endif
    120 
    121 static inline bool
    122 ptree_matchnode(const pt_tree_t *pt, const pt_node_t *target,
    123 	const pt_node_t *ptn, pt_bitoff_t max_bitoff,
    124 	pt_bitoff_t *bitoff_p, pt_slot_t *slots_p)
    125 {
    126 	return (*pt->pt_ops->ptto_matchnode)(NODETOKEY(pt, target),
    127 	    (ptn != NULL ? NODETOKEY(pt, ptn) : NULL),
    128 	    max_bitoff, bitoff_p, slots_p, pt->pt_context);
    129 }
    130 
    131 static inline pt_slot_t
    132 ptree_testnode(const pt_tree_t *pt, const pt_node_t *target,
    133 	const pt_node_t *ptn)
    134 {
    135 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
    136 	if (bitlen == 0)
    137 		return PT_SLOT_ROOT;	/* mask or root, doesn't matter */
    138 	return (*pt->pt_ops->ptto_testnode)(NODETOKEY(pt, target),
    139 	    PTN_BRANCH_BITOFF(ptn), bitlen, pt->pt_context);
    140 }
    141 
    142 static inline bool
    143 ptree_matchkey(const pt_tree_t *pt, const void *key,
    144 	const pt_node_t *ptn, pt_bitoff_t bitoff, pt_bitlen_t bitlen)
    145 {
    146 	return (*pt->pt_ops->ptto_matchkey)(key, NODETOKEY(pt, ptn),
    147 	    bitoff, bitlen, pt->pt_context);
    148 }
    149 
    150 static inline pt_slot_t
    151 ptree_testkey(const pt_tree_t *pt, const void *key, const pt_node_t *ptn)
    152 {
    153 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
    154 	if (bitlen == 0)
    155 		return PT_SLOT_ROOT;	/* mask or root, doesn't matter */
    156 	return (*pt->pt_ops->ptto_testkey)(key, PTN_BRANCH_BITOFF(ptn),
    157 	    PTN_BRANCH_BITLEN(ptn), pt->pt_context);
    158 }
    159 
    160 static inline void
    161 ptree_set_position(uintptr_t node, pt_slot_t position)
    162 {
    163 	if (PT_LEAF_P(node))
    164 		PTN_SET_LEAF_POSITION(PT_NODE(node), position);
    165 	else
    166 		PTN_SET_BRANCH_POSITION(PT_NODE(node), position);
    167 }
    168 
    169 void
    170 ptree_init(pt_tree_t *pt, const pt_tree_ops_t *ops, void *context,
    171 	size_t node_offset, size_t key_offset)
    172 {
    173 	memset(pt, 0, sizeof(*pt));
    174 	pt->pt_node_offset = node_offset;
    175 	pt->pt_key_offset = key_offset;
    176 	pt->pt_context = context;
    177 	pt->pt_ops = ops;
    178 }
    179 
    180 typedef struct {
    181 	uintptr_t *id_insertp;
    182 	pt_node_t *id_parent;
    183 	uintptr_t id_node;
    184 	pt_slot_t id_parent_slot;
    185 	pt_bitoff_t id_bitoff;
    186 	pt_slot_t id_slot;
    187 } pt_insertdata_t;
    188 
    189 typedef bool (*pt_insertfunc_t)(pt_tree_t *, pt_node_t *, pt_insertdata_t *);
    190 
    191 /*
    192  * Move a branch identify from src to dst.  The leaves don't care since
    193  * nothing for them has changed.
    194  */
    195 /*ARGSUSED*/
    196 static uintptr_t
    197 ptree_move_branch(pt_tree_t * const pt, pt_node_t * const dst,
    198 	const pt_node_t * const src)
    199 {
    200 	KASSERT(PTN_BRANCH_BITLEN(src) == 1);
    201 	/* set branch bitlen and bitoff in one step.  */
    202 	dst->ptn_branchdata = src->ptn_branchdata;
    203 	PTN_SET_BRANCH_POSITION(dst, PTN_BRANCH_POSITION(src));
    204 	PTN_COPY_BRANCH_SLOTS(dst, src);
    205 	return PTN_BRANCH(dst);
    206 }
    207 
    208 #ifndef PTNOMASK
    209 static inline uintptr_t *
    210 ptree_find_branch(pt_tree_t * const pt, uintptr_t branch_node)
    211 {
    212 	pt_node_t * const branch = PT_NODE(branch_node);
    213 	pt_node_t *parent;
    214 
    215 	for (parent = &pt->pt_rootnode;;) {
    216 		uintptr_t *nodep =
    217 		    &PTN_BRANCH_SLOT(parent, ptree_testnode(pt, branch, parent));
    218 		if (*nodep == branch_node)
    219 			return nodep;
    220 		if (PT_LEAF_P(*nodep))
    221 			return NULL;
    222 		parent = PT_NODE(*nodep);
    223 	}
    224 }
    225 
    226 static bool
    227 ptree_insert_leaf_after_mask(pt_tree_t * const pt, pt_node_t * const target,
    228 	pt_insertdata_t * const id)
    229 {
    230 	const uintptr_t target_node = PTN_LEAF(target);
    231 	const uintptr_t mask_node = id->id_node;
    232 	pt_node_t * const mask = PT_NODE(mask_node);
    233 	const pt_bitlen_t mask_len = PTN_MASK_BITLEN(mask);
    234 
    235 	KASSERT(PT_LEAF_P(mask_node));
    236 	KASSERT(PTN_LEAF_POSITION(mask) == id->id_parent_slot);
    237 	KASSERT(mask_len <= id->id_bitoff);
    238 	KASSERT(PTN_ISMASK_P(mask));
    239 	KASSERT(!PTN_ISMASK_P(target) || mask_len < PTN_MASK_BITLEN(target));
    240 
    241 	if (mask_node == PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode)) {
    242 		KASSERT(id->id_parent != mask);
    243 		/*
    244 		 * Nice, mask was an oddman.  So just set the oddman to target.
    245 		 */
    246 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = target_node;
    247 	} else {
    248 		/*
    249 		 * We need to find out who's pointing to mask's branch
    250 		 * identity.  We know that between root and the leaf identity,
    251 		 * we must traverse the node's branch identity.
    252 		 */
    253 		uintptr_t * const mask_nodep = ptree_find_branch(pt, PTN_BRANCH(mask));
    254 		KASSERT(mask_nodep != NULL);
    255 		KASSERT(*mask_nodep == PTN_BRANCH(mask));
    256 		KASSERT(PTN_BRANCH_BITLEN(mask) == 1);
    257 
    258 		/*
    259 		 * Alas, mask was used as a branch.  Since the mask is becoming
    260 		 * a one-way branch, we need make target take over mask's
    261 		 * branching responsibilities.  Only then can we change it.
    262 		 */
    263 		*mask_nodep = ptree_move_branch(pt, target, mask);
    264 
    265 		/*
    266 		 * However, it's possible that mask's parent is itself.  If
    267 		 * that's true, update the insert point to use target since it
    268 		 * has taken over mask's branching duties.
    269 		 */
    270 		if (id->id_parent == mask)
    271 			id->id_insertp = &PTN_BRANCH_SLOT(target,
    272 			    id->id_parent_slot);
    273 	}
    274 
    275 	PTN_SET_BRANCH_BITLEN(mask, 0);
    276 	PTN_SET_BRANCH_BITOFF(mask, mask_len);
    277 
    278 	PTN_BRANCH_ROOT_SLOT(mask) = target_node;
    279 	PTN_BRANCH_ODDMAN_SLOT(mask) = PT_NULL;
    280 	PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
    281 	PTN_SET_BRANCH_POSITION(mask, id->id_parent_slot);
    282 
    283 	/*
    284 	 * Now that everything is done, to make target visible we need to
    285 	 * change mask from a leaf to a branch.
    286 	 */
    287 	*id->id_insertp = PTN_BRANCH(mask);
    288 	PTREE_CHECK(pt);
    289 	return true;
    290 }
    291 
    292 /*ARGSUSED*/
    293 static bool
    294 ptree_insert_mask_before_node(pt_tree_t * const pt, pt_node_t * const target,
    295 	pt_insertdata_t * const id)
    296 {
    297 	const uintptr_t node = id->id_node;
    298 	pt_node_t * const ptn = PT_NODE(node);
    299 	const pt_slot_t mask_len = PTN_MASK_BITLEN(target);
    300 	const pt_bitlen_t node_mask_len = PTN_MASK_BITLEN(ptn);
    301 
    302 	KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(ptn));
    303 	KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(ptn));
    304 	KASSERT(PTN_ISMASK_P(target));
    305 
    306 	/*
    307 	 * If the node we are placing ourself in front is a mask with the
    308 	 * same mask length as us, return failure.
    309 	 */
    310 	if (PTN_ISMASK_P(ptn) && node_mask_len == mask_len)
    311 		return false;
    312 
    313 	PTN_SET_BRANCH_BITLEN(target, 0);
    314 	PTN_SET_BRANCH_BITOFF(target, mask_len);
    315 
    316 	PTN_BRANCH_SLOT(target, PT_SLOT_ROOT) = node;
    317 	*id->id_insertp = PTN_BRANCH(target);
    318 
    319 	PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
    320 	ptree_set_position(node, PT_SLOT_ROOT);
    321 
    322 	PTREE_CHECK(pt);
    323 	return true;
    324 }
    325 #endif /* !PTNOMASK */
    326 
    327 /*ARGSUSED*/
    328 static bool
    329 ptree_insert_branch_at_node(pt_tree_t * const pt, pt_node_t * const target,
    330 	pt_insertdata_t * const id)
    331 {
    332 	const uintptr_t target_node = PTN_LEAF(target);
    333 	const uintptr_t node = id->id_node;
    334 	const pt_slot_t other_slot = id->id_slot ^ PT_SLOT_OTHER;
    335 
    336 	KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(PT_NODE(node)));
    337 	KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(PT_NODE(node)));
    338 	KASSERT((node == pt->pt_root) == (id->id_parent == &pt->pt_rootnode));
    339 #ifndef PTNOMASK
    340 	KASSERT(!PTN_ISMASK_P(target) || id->id_bitoff <= PTN_MASK_BITLEN(target));
    341 #endif
    342 	KASSERT(node == pt->pt_root || PTN_BRANCH_BITOFF(id->id_parent) + PTN_BRANCH_BITLEN(id->id_parent) <= id->id_bitoff);
    343 
    344 	PTN_SET_BRANCH_BITOFF(target, id->id_bitoff);
    345 	PTN_SET_BRANCH_BITLEN(target, 1);
    346 
    347 	PTN_BRANCH_SLOT(target, id->id_slot) = target_node;
    348 	PTN_BRANCH_SLOT(target, other_slot) = node;
    349 	*id->id_insertp = PTN_BRANCH(target);
    350 
    351 	PTN_SET_LEAF_POSITION(target, id->id_slot);
    352 	ptree_set_position(node, other_slot);
    353 
    354 	PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
    355 	PTREE_CHECK(pt);
    356 	return true;
    357 }
    358 
    359 static bool
    360 ptree_insert_leaf(pt_tree_t * const pt, pt_node_t * const target,
    361 	pt_insertdata_t * const id)
    362 {
    363 	const uintptr_t leaf_node = id->id_node;
    364 	pt_node_t * const leaf = PT_NODE(leaf_node);
    365 #ifdef PTNOMASK
    366 	const bool inserting_mask = false;
    367 	const bool at_mask = false;
    368 #else
    369 	const bool inserting_mask = PTN_ISMASK_P(target);
    370 	const bool at_mask = PTN_ISMASK_P(leaf);
    371 	const pt_bitlen_t leaf_masklen = PTN_MASK_BITLEN(leaf);
    372 	const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
    373 #endif
    374 	pt_insertfunc_t insertfunc = ptree_insert_branch_at_node;
    375 	bool matched;
    376 
    377 	/*
    378 	 * In all likelyhood we are going simply going to insert a branch
    379 	 * where this leaf is which will point to the old and new leaves.
    380 	 */
    381 	KASSERT(PT_LEAF_P(leaf_node));
    382 	KASSERT(PTN_LEAF_POSITION(leaf) == id->id_parent_slot);
    383 	matched = ptree_matchnode(pt, target, leaf, UINT_MAX,
    384 	    &id->id_bitoff, &id->id_slot);
    385 	if (__predict_false(!inserting_mask)) {
    386 		/*
    387 		 * We aren't inserting a mask nor is the leaf a mask, which
    388 		 * means we are trying to insert a duplicate leaf.  Can't do
    389 		 * that.
    390 		 */
    391 		if (!at_mask && matched)
    392 			return false;
    393 
    394 #ifndef PTNOMASK
    395 		/*
    396 		 * We are at a mask and the leaf we are about to insert
    397 		 * is at or beyond the mask, we need to convert the mask
    398 		 * from a leaf to a one-way branch interior mask.
    399 		 */
    400 		if (at_mask && id->id_bitoff >= leaf_masklen)
    401 			insertfunc = ptree_insert_leaf_after_mask;
    402 #endif /* PTNOMASK */
    403 	}
    404 #ifndef PTNOMASK
    405 	else {
    406 		/*
    407 		 * We are inserting a mask.
    408 		 */
    409 		if (matched) {
    410 			/*
    411 			 * If the leaf isn't a mask, we obviously have to
    412 			 * insert the new mask before non-mask leaf.  If the
    413 			 * leaf is a mask, and the new node has a LEQ mask
    414 			 * length it too needs to inserted before leaf (*).
    415 			 *
    416 			 * In other cases, we place the new mask as leaf after
    417 			 * leaf mask.  Which mask comes first will be a one-way
    418 			 * branch interior mask node which has the other mask
    419 			 * node as a child.
    420 			 *
    421 			 * (*) ptree_insert_mask_before_node can detect a
    422 			 * duplicate mask and return failure if needed.
    423 			 */
    424 			if (!at_mask || target_masklen <= leaf_masklen)
    425 				insertfunc = ptree_insert_mask_before_node;
    426 			else
    427 				insertfunc = ptree_insert_leaf_after_mask;
    428 		} else if (at_mask && id->id_bitoff >= leaf_masklen) {
    429 			/*
    430 			 * If the new mask has a bit offset GEQ than the leaf's
    431 			 * mask length, convert the left to a one-way branch
    432 			 * interior mask and make that point to the new [leaf]
    433 			 * mask.
    434 			 */
    435 			insertfunc = ptree_insert_leaf_after_mask;
    436 		} else {
    437 			/*
    438 			 * The new mask has a bit offset less than the leaf's
    439 			 * mask length or if the leaf isn't a mask at all, the
    440 			 * new mask deserves to be its own leaf so we use the
    441 			 * default insertfunc to do that.
    442 			 */
    443 		}
    444 	}
    445 #endif /* PTNOMASK */
    446 
    447 	return (*insertfunc)(pt, target, id);
    448 }
    449 
    450 static bool
    451 ptree_insert_node_common(pt_tree_t *pt, void *item)
    452 {
    453 	pt_node_t * const target = ITEMTONODE(pt, item);
    454 #ifndef PTNOMASK
    455 	const bool inserting_mask = PTN_ISMASK_P(target);
    456 	const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
    457 #endif
    458 	pt_insertfunc_t insertfunc;
    459 	pt_insertdata_t id;
    460 
    461 	/*
    462 	 * If this node already exists in the tree, return failure.
    463 	 */
    464 	if (target == PT_NODE(pt->pt_root))
    465 		return false;
    466 
    467 	/*
    468 	 * We need a leaf so we can match against.  Until we get a leaf
    469 	 * we having nothing to test against.
    470 	 */
    471 	if (__predict_false(PT_NULL_P(pt->pt_root))) {
    472 		PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
    473 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
    474 		PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
    475 		PTREE_CHECK(pt);
    476 		return true;
    477 	}
    478 
    479 	id.id_bitoff = 0;
    480 	id.id_parent = &pt->pt_rootnode;
    481 	id.id_parent_slot = PT_SLOT_ROOT;
    482 	id.id_insertp = &PTN_BRANCH_ROOT_SLOT(id.id_parent);
    483 	for (;;) {
    484 		pt_bitoff_t branch_bitoff;
    485 		pt_node_t * const ptn = PT_NODE(*id.id_insertp);
    486 		id.id_node = *id.id_insertp;
    487 
    488 		/*
    489 		 * If this node already exists in the tree, return failure.
    490 		 */
    491 		if (target == ptn)
    492 			return false;
    493 
    494 		/*
    495 		 * If we hit a leaf, try to insert target at leaf.  We could
    496 		 * have inlined ptree_insert_leaf here but that would have
    497 		 * made this routine much harder to understand.  Trust the
    498 		 * compiler to optimize this properly.
    499 		 */
    500 		if (PT_LEAF_P(id.id_node)) {
    501 			KASSERT(PTN_LEAF_POSITION(ptn) == id.id_parent_slot);
    502 			insertfunc = ptree_insert_leaf;
    503 			break;
    504 		}
    505 
    506 		/*
    507 		 * If we aren't a leaf, we must be a branch.  Make sure we are
    508 		 * in the slot we think we are.
    509 		 */
    510 		KASSERT(PT_BRANCH_P(id.id_node));
    511 		KASSERT(PTN_BRANCH_POSITION(ptn) == id.id_parent_slot);
    512 
    513 		/*
    514 		 * Where is this branch?
    515 		 */
    516 		branch_bitoff = PTN_BRANCH_BITOFF(ptn);
    517 
    518 #ifndef PTNOMASK
    519 		/*
    520 		 * If this is a one-way mask node, its offset must equal
    521 		 * its mask's bitlen.
    522 		 */
    523 		KASSERT(!(PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) || PTN_MASK_BITLEN(ptn) == branch_bitoff);
    524 
    525 		/*
    526 		 * If we are inserting a mask, and we know that at this point
    527 		 * all bits before the current bit offset match both the target
    528 		 * and the branch.  If the target's mask length is LEQ than
    529 		 * this branch's bit offset, then this is where the mask needs
    530 		 * to added to the tree.
    531 		 */
    532 		if (__predict_false(inserting_mask)
    533 		    && (PTN_ISROOT_P(pt, id.id_parent)
    534 			|| id.id_bitoff < target_masklen)
    535 		    && target_masklen <= branch_bitoff) {
    536 			/*
    537 			 * We don't know about the bits (if any) between
    538 			 * id.id_bitoff and the target's mask length match
    539 			 * both the target and the branch.  If the target's
    540 			 * mask length is greater than the current bit offset
    541 			 * make sure the untested bits match both the target
    542 			 * and the branch.
    543 			 */
    544 			if (target_masklen == id.id_bitoff
    545 			    || ptree_matchnode(pt, target, ptn, target_masklen,
    546 				    &id.id_bitoff, &id.id_slot)) {
    547 				/*
    548 				 * The bits matched, so insert the mask as a
    549 				 * one-way branch.
    550 				 */
    551 				insertfunc = ptree_insert_mask_before_node;
    552 				break;
    553 			} else if (id.id_bitoff < branch_bitoff) {
    554 				/*
    555 				 * They didn't match, so create a normal branch
    556 				 * because this mask needs to a be a new leaf.
    557 				 */
    558 				insertfunc = ptree_insert_branch_at_node;
    559 				break;
    560 			}
    561 		}
    562 #endif /* PTNOMASK */
    563 
    564 		/*
    565 		 * If we are skipping some bits, verify they match the node.
    566 		 * If they don't match, it means we have a leaf to insert.
    567 		 * Note that if we are advancing bit by bit, we'll skip
    568 		 * doing matchnode and walk the tree bit by bit via testnode.
    569 		 */
    570 		if (id.id_bitoff < branch_bitoff
    571 		    && !ptree_matchnode(pt, target, ptn, branch_bitoff,
    572 					&id.id_bitoff, &id.id_slot)) {
    573 			KASSERT(id.id_bitoff < branch_bitoff);
    574 			insertfunc = ptree_insert_branch_at_node;
    575 			break;
    576 		}
    577 
    578 		/*
    579 		 * At this point, all bits before branch_bitoff are known
    580 		 * to match the target.
    581 		 */
    582 		KASSERT(id.id_bitoff >= branch_bitoff);
    583 
    584 		/*
    585 		 * Descend the tree one level.
    586 		 */
    587 		id.id_parent = ptn;
    588 		id.id_parent_slot = ptree_testnode(pt, target, id.id_parent);
    589 		id.id_bitoff += PTN_BRANCH_BITLEN(id.id_parent);
    590 		id.id_insertp = &PTN_BRANCH_SLOT(id.id_parent, id.id_parent_slot);
    591 	}
    592 
    593 	/*
    594 	 * Do the actual insertion.
    595 	 */
    596 	return (*insertfunc)(pt, target, &id);
    597 }
    598 
    599 bool
    600 ptree_insert_node(pt_tree_t *pt, void *item)
    601 {
    602 	pt_node_t * const target = ITEMTONODE(pt, item);
    603 
    604 	memset(target, 0, sizeof(*target));
    605 	return ptree_insert_node_common(pt, target);
    606 }
    607 
    608 #ifndef PTNOMASK
    609 bool
    610 ptree_insert_mask_node(pt_tree_t *pt, void *item, pt_bitlen_t mask_len)
    611 {
    612 	pt_node_t * const target = ITEMTONODE(pt, item);
    613 	pt_bitoff_t bitoff = mask_len;
    614 	pt_slot_t slot;
    615 
    616 	memset(target, 0, sizeof(*target));
    617 	KASSERT(mask_len == 0 || (~PT__MASK(PTN_MASK_BITLEN) & mask_len) == 0);
    618 	/*
    619 	 * Only the first <mask_len> bits can be non-zero.
    620 	 * All other bits must be 0.
    621 	 */
    622 	if (!ptree_matchnode(pt, target, NULL, UINT_MAX, &bitoff, &slot))
    623 		return false;
    624 	PTN_SET_MASK_BITLEN(target, mask_len);
    625 	PTN_MARK_MASK(target);
    626 	return ptree_insert_node_common(pt, target);
    627 }
    628 #endif /* !PTNOMASH */
    629 
    630 void *
    631 ptree_find_filtered_node(pt_tree_t *pt, const void *key, pt_filter_t filter,
    632 	void *filter_arg)
    633 {
    634 #ifndef PTNOMASK
    635 	pt_node_t *mask = NULL;
    636 #endif
    637 	bool at_mask = false;
    638 	pt_node_t *ptn, *parent;
    639 	pt_bitoff_t bitoff;
    640 	pt_slot_t parent_slot;
    641 
    642 	if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)))
    643 		return NULL;
    644 
    645 	bitoff = 0;
    646 	parent = &pt->pt_rootnode;
    647 	parent_slot = PT_SLOT_ROOT;
    648 	for (;;) {
    649 		const uintptr_t node = PTN_BRANCH_SLOT(parent, parent_slot);
    650 		const pt_slot_t branch_bitoff = PTN_BRANCH_BITOFF(PT_NODE(node));
    651 		ptn = PT_NODE(node);
    652 
    653 		if (PT_LEAF_P(node)) {
    654 #ifndef PTNOMASK
    655 			at_mask = PTN_ISMASK_P(ptn);
    656 #endif
    657 			break;
    658 		}
    659 
    660 		if (bitoff < branch_bitoff) {
    661 			if (!ptree_matchkey(pt, key, ptn, bitoff, branch_bitoff - bitoff)) {
    662 #ifndef PTNOMASK
    663 				if (mask != NULL)
    664 					return NODETOITEM(pt, mask);
    665 #endif
    666 				return NULL;
    667 			}
    668 			bitoff = branch_bitoff;
    669 		}
    670 
    671 #ifndef PTNOMASK
    672 		if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0
    673 		    && (!filter
    674 		        || (*filter)(filter_arg, NODETOITEM(pt, ptn),
    675 				     PT_FILTER_MASK)))
    676 			mask = ptn;
    677 #endif
    678 
    679 		parent = ptn;
    680 		parent_slot = ptree_testkey(pt, key, parent);
    681 		bitoff += PTN_BRANCH_BITLEN(parent);
    682 	}
    683 
    684 	KASSERT(PTN_ISROOT_P(pt, parent) || PTN_BRANCH_BITOFF(parent) + PTN_BRANCH_BITLEN(parent) == bitoff);
    685 	if (!filter || (*filter)(filter_arg, NODETOITEM(pt, ptn), at_mask ? PT_FILTER_MASK : 0)) {
    686 #ifndef PTNOMASK
    687 		if (PTN_ISMASK_P(ptn)) {
    688 			const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
    689 			if (bitoff == PTN_MASK_BITLEN(ptn))
    690 				return NODETOITEM(pt, ptn);
    691 			if (ptree_matchkey(pt, key, ptn, bitoff, mask_len - bitoff))
    692 				return NODETOITEM(pt, ptn);
    693 		} else
    694 #endif /* !PTNOMASK */
    695 		if (ptree_matchkey(pt, key, ptn, bitoff, UINT_MAX))
    696 			return NODETOITEM(pt, ptn);
    697 	}
    698 
    699 #ifndef PTNOMASK
    700 	/*
    701 	 * By virtue of how the mask was placed in the tree,
    702 	 * all nodes descended from it will match it.  But the bits
    703 	 * before the mask still need to be checked and since the
    704 	 * mask was a branch, that was done implicitly.
    705 	 */
    706 	if (mask != NULL) {
    707 		KASSERT(ptree_matchkey(pt, key, mask, 0, PTN_MASK_BITLEN(mask)));
    708 		return NODETOITEM(pt, mask);
    709 	}
    710 #endif /* !PTNOMASK */
    711 
    712 	/*
    713 	 * Nothing matched.
    714 	 */
    715 	return NULL;
    716 }
    717 
    718 void *
    719 ptree_iterate(pt_tree_t *pt, const void *item, pt_direction_t direction)
    720 {
    721 	const pt_node_t * const target = ITEMTONODE(pt, item);
    722 	uintptr_t node, next_node;
    723 
    724 	if (direction != PT_ASCENDING && direction != PT_DESCENDING)
    725 		return NULL;
    726 
    727 	node = PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode);
    728 	if (PT_NULL_P(node))
    729 		return NULL;
    730 
    731 	if (item == NULL) {
    732 		pt_node_t * const ptn = PT_NODE(node);
    733 		if (direction == PT_ASCENDING
    734 		    && PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0)
    735 			return NODETOITEM(pt, ptn);
    736 		next_node = node;
    737 	} else {
    738 #ifndef PTNOMASK
    739 		uintptr_t mask_node = PT_NULL;
    740 #endif /* !PTNOMASK */
    741 		next_node = PT_NULL;
    742 		while (!PT_LEAF_P(node)) {
    743 			pt_node_t * const ptn = PT_NODE(node);
    744 			pt_slot_t slot;
    745 #ifndef PTNOMASK
    746 			if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) {
    747 				if (ptn == target)
    748 					break;
    749 				if (direction == PT_DESCENDING) {
    750 					mask_node = node;
    751 					next_node = PT_NULL;
    752 				}
    753 			}
    754 #endif /* !PTNOMASK */
    755 			slot = ptree_testnode(pt, target, ptn);
    756 			node = PTN_BRANCH_SLOT(ptn, slot);
    757 			if (direction == PT_ASCENDING) {
    758 				if (slot != (pt_slot_t)((1 << PTN_BRANCH_BITLEN(ptn)) - 1))
    759 					next_node = PTN_BRANCH_SLOT(ptn, slot + 1);
    760 			} else {
    761 				if (slot > 0) {
    762 #ifndef PTNOMASK
    763 					mask_node = PT_NULL;
    764 #endif /* !PTNOMASK */
    765 					next_node = PTN_BRANCH_SLOT(ptn, slot - 1);
    766 				}
    767 			}
    768 		}
    769 		if (PT_NODE(node) != target)
    770 			return NULL;
    771 #ifndef PTNOMASK
    772 		if (PT_BRANCH_P(node)) {
    773 			pt_node_t *ptn = PT_NODE(node);
    774 			KASSERT(PTN_ISMASK_P(PT_NODE(node)) && PTN_BRANCH_BITLEN(PT_NODE(node)) == 0);
    775 			if (direction == PT_ASCENDING) {
    776 				next_node = PTN_BRANCH_ROOT_SLOT(ptn);
    777 				ptn = PT_NODE(next_node);
    778 			}
    779 		}
    780 		/*
    781 		 * When descending, if we countered a mask node then that's
    782 		 * we want to return.
    783 		 */
    784 		if (direction == PT_DESCENDING && !PT_NULL_P(mask_node)) {
    785 			KASSERT(PT_NULL_P(next_node));
    786 			return NODETOITEM(pt, PT_NODE(mask_node));
    787 		}
    788 #endif /* !PTNOMASK */
    789 	}
    790 
    791 	node = next_node;
    792 	if (PT_NULL_P(node))
    793 		return NULL;
    794 
    795 	while (!PT_LEAF_P(node)) {
    796 		pt_node_t * const ptn = PT_NODE(node);
    797 		pt_slot_t slot;
    798 		if (direction == PT_ASCENDING) {
    799 #ifndef PTNOMASK
    800 			if (PT_BRANCH_P(node)
    801 			    && PTN_ISMASK_P(ptn)
    802 			    && PTN_BRANCH_BITLEN(ptn) == 0)
    803 				return NODETOITEM(pt, ptn);
    804 #endif /* !PTNOMASK */
    805 			slot = PT_SLOT_LEFT;
    806 		} else {
    807 			slot = (1 << PTN_BRANCH_BITLEN(ptn)) - 1;
    808 		}
    809 		node = PTN_BRANCH_SLOT(ptn, slot);
    810 	}
    811 	return NODETOITEM(pt, PT_NODE(node));
    812 }
    813 
    814 void
    815 ptree_remove_node(pt_tree_t *pt, void *item)
    816 {
    817 	pt_node_t * const target = ITEMTONODE(pt, item);
    818 	const pt_slot_t leaf_slot = PTN_LEAF_POSITION(target);
    819 	const pt_slot_t branch_slot = PTN_BRANCH_POSITION(target);
    820 	pt_node_t *ptn, *parent;
    821 	uintptr_t node;
    822 	uintptr_t *removep;
    823 	uintptr_t *nodep;
    824 	pt_bitoff_t bitoff;
    825 	pt_slot_t parent_slot;
    826 #ifndef PTNOMASK
    827 	bool at_mask;
    828 #endif
    829 
    830 	if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode))) {
    831 		KASSERT(!PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)));
    832 		return;
    833 	}
    834 
    835 	bitoff = 0;
    836 	removep = NULL;
    837 	nodep = NULL;
    838 	parent = &pt->pt_rootnode;
    839 	parent_slot = PT_SLOT_ROOT;
    840 	for (;;) {
    841 		node = PTN_BRANCH_SLOT(parent, parent_slot);
    842 		ptn = PT_NODE(node);
    843 #ifndef PTNOMASK
    844 		at_mask = PTN_ISMASK_P(ptn);
    845 #endif
    846 
    847 		if (PT_LEAF_P(node))
    848 			break;
    849 
    850 		/*
    851 		 * If we are at the target, then we are looking at its branch
    852 		 * identity.  We need to remember who's pointing at it so we
    853 		 * stop them from doing that.
    854 		 */
    855 		if (__predict_false(ptn == target)) {
    856 			KASSERT(nodep == NULL);
    857 #ifndef PTNOMASK
    858 			/*
    859 			 * Interior mask nodes are trivial to get rid of.
    860 			 */
    861 			if (at_mask && PTN_BRANCH_BITLEN(ptn) == 0) {
    862 				PTN_BRANCH_SLOT(parent, parent_slot) =
    863 				    PTN_BRANCH_ROOT_SLOT(ptn);
    864 				KASSERT(PT_NULL_P(PTN_BRANCH_ODDMAN_SLOT(ptn)));
    865 				PTREE_CHECK(pt);
    866 				return;
    867 			}
    868 #endif /* !PTNOMASK */
    869 			nodep = &PTN_BRANCH_SLOT(parent, parent_slot);
    870 			KASSERT(*nodep == PTN_BRANCH(target));
    871 		}
    872 		/*
    873 		 * We need also need to know who's pointing at our parent.
    874 		 * After we remove ourselves from our parent, he'll only
    875 		 * have one child and that's unacceptable.  So we replace
    876 		 * the pointer to the parent with our abadoned sibling.
    877 		 */
    878 		removep = &PTN_BRANCH_SLOT(parent, parent_slot);
    879 
    880 		/*
    881 		 * Descend into the tree.
    882 		 */
    883 		parent = ptn;
    884 		parent_slot = ptree_testnode(pt, target, parent);
    885 		bitoff += PTN_BRANCH_BITLEN(parent);
    886 	}
    887 
    888 	/*
    889 	 * We better have found that the leaf we are looking for is target.
    890 	 */
    891 	if (target != ptn) {
    892 		KASSERT(target == ptn);
    893 		return;
    894 	}
    895 
    896 	/*
    897 	 * If we didn't encounter target as branch, then target must be the
    898 	 * oddman-out.
    899 	 */
    900 	if (nodep == NULL) {
    901 		KASSERT(PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) == PTN_LEAF(target));
    902 		KASSERT(nodep == NULL);
    903 		nodep = &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode);
    904 	}
    905 
    906 	KASSERT((removep == NULL) == (parent == &pt->pt_rootnode));
    907 
    908 	/*
    909 	 * We have to special remove the last leaf from the root since
    910 	 * the only time the tree can a PT_NULL node is when it's empty.
    911 	 */
    912 	if (__predict_false(PTN_ISROOT_P(pt, parent))) {
    913 		KASSERT(removep == NULL);
    914 		KASSERT(parent == &pt->pt_rootnode);
    915 		KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
    916 		KASSERT(*nodep == PTN_LEAF(target));
    917 		PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PT_NULL;
    918 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PT_NULL;
    919 		return;
    920 	}
    921 
    922 	KASSERT((parent == target) == (removep == nodep));
    923 	if (PTN_BRANCH(parent) == PTN_BRANCH_SLOT(target, PTN_BRANCH_POSITION(parent))) {
    924 		/*
    925 		 * The pointer to the parent actually lives in the target's
    926 		 * branch identity.  We can't just move the target's branch
    927 		 * identity since that would result in the parent pointing
    928 		 * to its own branch identity and that's fobidden.
    929 		 */
    930 		const pt_slot_t slot = PTN_BRANCH_POSITION(parent);
    931 		const pt_slot_t other_slot = slot ^ PT_SLOT_OTHER;
    932 		const pt_bitlen_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
    933 
    934 		KASSERT(PTN_BRANCH_BITOFF(target) < PTN_BRANCH_BITOFF(parent));
    935 
    936 		/*
    937 		 * This gets so confusing.  The target's branch identity
    938 		 * points to the branch identity of the parent of the target's
    939 		 * leaf identity:
    940 		 *
    941 		 * 	TB = { X, PB = { TL, Y } }
    942 		 *   or TB = { X, PB = { TL } }
    943 		 *
    944 		 * So we can't move the target's branch identity to the parent
    945 		 * because that would corrupt the tree.
    946 		 */
    947 		if (__predict_true(parent_bitlen > 0)) {
    948 			/*
    949 			 * The parent is a two-way branch.  We have to have
    950 			 * do to this chang in two steps to keep internally
    951 			 * consistent.  First step is to copy our sibling from
    952 			 * our parent to where we are pointing to parent's
    953 			 * branch identiy.  This remove all references to his
    954 			 * branch identity from the tree.  We then simply make
    955 			 * the parent assume the target's branching duties.
    956 			 *
    957 			 *   TB = { X, PB = { Y, TL } } --> PB = { X, Y }.
    958 			 *   TB = { X, PB = { TL, Y } } --> PB = { X, Y }.
    959 			 *   TB = { PB = { Y, TL }, X } --> PB = { Y, X }.
    960 			 *   TB = { PB = { TL, Y }, X } --> PB = { Y, X }.
    961 			 */
    962 			PTN_BRANCH_SLOT(target, slot) =
    963 			    PTN_BRANCH_SLOT(parent, parent_slot ^ PT_SLOT_OTHER);
    964 			*nodep = ptree_move_branch(pt, parent, target);
    965 			PTREE_CHECK(pt);
    966 			return;
    967 		} else {
    968 			/*
    969 			 * If parent was a one-way branch, it must have been
    970 			 * mask which pointed to a single leaf which we are
    971 			 * removing.  This means we have to convert the
    972 			 * parent back to a leaf node.  So in the same
    973 			 * position that target pointed to parent, we place
    974 			 * leaf pointer to parent.  In the other position,
    975 			 * we just put the other node from target.
    976 			 *
    977 			 *   TB = { X, PB = { TL } } --> PB = { X, PL }
    978 			 */
    979 			KASSERT(PTN_ISMASK_P(parent));
    980 			KASSERT(slot == ptree_testnode(pt, parent, target));
    981 			PTN_BRANCH_SLOT(parent, slot) = PTN_LEAF(parent);
    982 			PTN_BRANCH_SLOT(parent, other_slot) =
    983 			   PTN_BRANCH_SLOT(target, other_slot);
    984 			PTN_SET_LEAF_POSITION(parent,slot);
    985 			PTN_SET_BRANCH_BITLEN(parent, 1);
    986 		}
    987 		PTN_SET_BRANCH_BITOFF(parent, PTN_BRANCH_BITOFF(target));
    988 		PTN_SET_BRANCH_POSITION(parent, PTN_BRANCH_POSITION(target));
    989 
    990 		*nodep = PTN_BRANCH(parent);
    991 		PTREE_CHECK(pt);
    992 		return;
    993 	}
    994 
    995 #ifndef PTNOMASK
    996 	if (__predict_false(PTN_BRANCH_BITLEN(parent) == 0)) {
    997 		/*
    998 		 * Parent was a one-way branch which is changing back to a leaf.
    999 		 * Since parent is no longer a one-way branch, it can take over
   1000 		 * target's branching duties.
   1001 		 *
   1002 		 *  GB = { PB = { TL } }	--> GB = { PL }
   1003 		 *  TB = { X, Y }		--> PB = { X, Y }
   1004 		 */
   1005 		KASSERT(PTN_ISMASK_P(parent));
   1006 		KASSERT(parent != target);
   1007 		*removep = PTN_LEAF(parent);
   1008 	} else
   1009 #endif /* !PTNOMASK */
   1010 	{
   1011 		/*
   1012 		 * Now we are the normal removal case.  Since after the
   1013 		 * target's leaf identity is removed from the its parent,
   1014 		 * that parent will only have one descendant.  So we can
   1015 		 * just as easily replace the node that has the parent's
   1016 		 * branch identity with the surviving node.  This freeing
   1017 		 * parent from its branching duties which means it can
   1018 		 * take over target's branching duties.
   1019 		 *
   1020 		 *  GB = { PB = { X, TL } }	--> GB = { X }
   1021 		 *  TB = { V, W }		--> PB = { V, W }
   1022 		 */
   1023 		const pt_slot_t other_slot = parent_slot ^ PT_SLOT_OTHER;
   1024 		uintptr_t other_node = PTN_BRANCH_SLOT(parent, other_slot);
   1025 		const pt_slot_t target_slot = (parent == target ? branch_slot : leaf_slot);
   1026 
   1027 		*removep = other_node;
   1028 
   1029 		ptree_set_position(other_node, target_slot);
   1030 
   1031 		/*
   1032 		 * If target's branch identity contained its leaf identity, we
   1033 		 * have nothing left to do.  We've already moved 'X' so there
   1034 		 * is no longer anything in the target's branch identiy that
   1035 		 * has to be preserved.
   1036 		 */
   1037 		if (parent == target) {
   1038 			/*
   1039 			 *  GB = { TB = { X, TL } }	--> GB = { X }
   1040 			 *  TB = { X, TL }		--> don't care
   1041 			 */
   1042 			PTREE_CHECK(pt);
   1043 			return;
   1044 		}
   1045 	}
   1046 
   1047 	/*
   1048 	 * If target wasn't used as a branch, then it must have been the
   1049 	 * oddman-out of the tree (the one node that doesn't have a branch
   1050 	 * identity).  This makes parent the new oddman-out.
   1051 	 */
   1052 	if (*nodep == PTN_LEAF(target)) {
   1053 		KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
   1054 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(parent);
   1055 		PTREE_CHECK(pt);
   1056 		return;
   1057 	}
   1058 
   1059 	/*
   1060 	 * Finally move the target's branching duties to the parent.
   1061 	 */
   1062 	KASSERT(PTN_BRANCH_BITOFF(parent) > PTN_BRANCH_BITOFF(target));
   1063 	*nodep = ptree_move_branch(pt, parent, target);
   1064 	PTREE_CHECK(pt);
   1065 }
   1066 
   1067 #ifdef PTCHECK
   1068 static const pt_node_t *
   1069 ptree_check_find_node2(const pt_tree_t *pt, const pt_node_t *parent,
   1070 	uintptr_t target)
   1071 {
   1072 	const pt_bitlen_t slots = 1 << PTN_BRANCH_BITLEN(parent);
   1073 	pt_slot_t slot;
   1074 
   1075 	for (slot = 0; slot < slots; slot++) {
   1076 		const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
   1077 		if (PTN_BRANCH_SLOT(parent, slot) == node)
   1078 			return parent;
   1079 	}
   1080 	for (slot = 0; slot < slots; slot++) {
   1081 		const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
   1082 		const pt_node_t *branch;
   1083 		if (!PT_BRANCH_P(node))
   1084 			continue;
   1085 		branch = ptree_check_find_node2(pt, PT_NODE(node), target);
   1086 		if (branch != NULL)
   1087 			return branch;
   1088 	}
   1089 
   1090 	return NULL;
   1091 }
   1092 
   1093 static bool
   1094 ptree_check_leaf(const pt_tree_t *pt, const pt_node_t *parent,
   1095 	const pt_node_t *ptn)
   1096 {
   1097 	const pt_bitoff_t leaf_position = PTN_LEAF_POSITION(ptn);
   1098 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
   1099 	const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
   1100 	const uintptr_t leaf_node = PTN_LEAF(ptn);
   1101 	const bool is_parent_root = (parent == &pt->pt_rootnode);
   1102 	const bool is_mask = PTN_ISMASK_P(ptn);
   1103 	bool ok = true;
   1104 
   1105 	if (is_parent_root) {
   1106 		ok = ok && PTN_BRANCH_ODDMAN_SLOT(parent) == leaf_node;
   1107 		KASSERT(ok);
   1108 		return ok;
   1109 	}
   1110 
   1111 	if (is_mask && PTN_ISMASK_P(parent) && PTN_BRANCH_BITLEN(parent) == 0) {
   1112 		ok = ok && PTN_MASK_BITLEN(parent) < mask_len;
   1113 		KASSERT(ok);
   1114 		ok = ok && PTN_BRANCH_BITOFF(parent) < mask_len;
   1115 		KASSERT(ok);
   1116 	}
   1117 	ok = ok && PTN_BRANCH_SLOT(parent, leaf_position) == leaf_node;
   1118 	KASSERT(ok);
   1119 	ok = ok && leaf_position == ptree_testnode(pt, ptn, parent);
   1120 	KASSERT(ok);
   1121 	if (PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) != leaf_node) {
   1122 		ok = ok && bitlen > 0;
   1123 		KASSERT(ok);
   1124 		ok = ok && ptn == ptree_check_find_node2(pt, ptn, PTN_LEAF(ptn));
   1125 		KASSERT(ok);
   1126 	}
   1127 	return ok;
   1128 }
   1129 
   1130 static bool
   1131 ptree_check_branch(const pt_tree_t *pt, const pt_node_t *parent,
   1132 	const pt_node_t *ptn)
   1133 {
   1134 	const bool is_parent_root = (parent == &pt->pt_rootnode);
   1135 	const pt_slot_t branch_slot = PTN_BRANCH_POSITION(ptn);
   1136 	const pt_bitoff_t bitoff = PTN_BRANCH_BITOFF(ptn);
   1137 	const pt_bitoff_t bitlen = PTN_BRANCH_BITLEN(ptn);
   1138 	const pt_bitoff_t parent_bitoff = PTN_BRANCH_BITOFF(parent);
   1139 	const pt_bitoff_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
   1140 	const bool is_parent_mask = PTN_ISMASK_P(parent) && parent_bitlen == 0;
   1141 	const bool is_mask = PTN_ISMASK_P(ptn) && bitlen == 0;
   1142 	const pt_bitoff_t parent_mask_len = PTN_MASK_BITLEN(parent);
   1143 	const pt_bitoff_t mask_len = PTN_MASK_BITLEN(ptn);
   1144 	const pt_bitlen_t slots = 1 << bitlen;
   1145 	pt_slot_t slot;
   1146 	bool ok = true;
   1147 
   1148 	ok = ok && PTN_BRANCH_SLOT(parent, branch_slot) == PTN_BRANCH(ptn);
   1149 	KASSERT(ok);
   1150 	ok = ok && branch_slot == ptree_testnode(pt, ptn, parent);
   1151 	KASSERT(ok);
   1152 
   1153 	if (is_mask) {
   1154 		ok = ok && bitoff == mask_len;
   1155 		KASSERT(ok);
   1156 		if (is_parent_mask) {
   1157 			ok = ok && parent_mask_len < mask_len;
   1158 			KASSERT(ok);
   1159 			ok = ok && parent_bitoff < bitoff;
   1160 			KASSERT(ok);
   1161 		}
   1162 	} else {
   1163 		if (is_parent_mask) {
   1164 			ok = ok && parent_bitoff <= bitoff;
   1165 		} else if (!is_parent_root) {
   1166 			ok = ok && parent_bitoff < bitoff;
   1167 		}
   1168 		KASSERT(ok);
   1169 	}
   1170 
   1171 	for (slot = 0; slot < slots; slot++) {
   1172 		const uintptr_t node = PTN_BRANCH_SLOT(ptn, slot);
   1173 		pt_bitoff_t tmp_bitoff = 0;
   1174 		pt_slot_t tmp_slot;
   1175 		ok = ok && node != PTN_BRANCH(ptn);
   1176 		KASSERT(ok);
   1177 		if (bitlen > 0) {
   1178 			ok = ok && ptree_matchnode(pt, PT_NODE(node), ptn, bitoff, &tmp_bitoff, &tmp_slot);
   1179 			KASSERT(ok);
   1180 			tmp_slot = ptree_testnode(pt, PT_NODE(node), ptn);
   1181 			ok = ok && slot == tmp_slot;
   1182 			KASSERT(ok);
   1183 		}
   1184 		if (PT_LEAF_P(node))
   1185 			ok = ok && ptree_check_leaf(pt, ptn, PT_NODE(node));
   1186 		else
   1187 			ok = ok && ptree_check_branch(pt, ptn, PT_NODE(node));
   1188 	}
   1189 
   1190 	return ok;
   1191 }
   1192 #endif /* PTCHECK */
   1193 
   1194 /*ARGSUSED*/
   1195 bool
   1196 ptree_check(const pt_tree_t *pt)
   1197 {
   1198 	bool ok = true;
   1199 #ifdef PTCHECK
   1200 	const pt_node_t * const parent = &pt->pt_rootnode;
   1201 	const uintptr_t node = pt->pt_root;
   1202 	const pt_node_t * const ptn = PT_NODE(node);
   1203 
   1204 	ok = ok && PTN_BRANCH_BITOFF(parent) == 0;
   1205 	ok = ok && !PTN_ISMASK_P(parent);
   1206 
   1207 	if (PT_NULL_P(node))
   1208 		return ok;
   1209 
   1210 	if (PT_LEAF_P(node))
   1211 		ok = ok && ptree_check_leaf(pt, parent, ptn);
   1212 	else
   1213 		ok = ok && ptree_check_branch(pt, parent, ptn);
   1214 #endif
   1215 	return ok;
   1216 }
   1217 
   1218 bool
   1219 ptree_mask_node_p(pt_tree_t *pt, const void *item, pt_bitlen_t *lenp)
   1220 {
   1221 	const pt_node_t * const mask = ITEMTONODE(pt, item);
   1222 
   1223 	if (!PTN_ISMASK_P(mask))
   1224 		return false;
   1225 
   1226 	if (lenp != NULL)
   1227 		*lenp = PTN_MASK_BITLEN(mask);
   1228 
   1229 	return true;
   1230 }
   1231