ptree.c revision 1.2 1 /* $NetBSD: ptree.c,v 1.2 2008/11/21 01:58:41 matt Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas <matt (at) 3am-software.com>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #define _PT_PRIVATE
33
34 #if defined(PTCHECK) && !defined(PTDEBUG)
35 #define PTDEBUG
36 #endif
37
38 #if defined(_KERNEL) || defined(_STANDALONE)
39 #include <sys/param.h>
40 #include <sys/types.h>
41 #include <sys/systm.h>
42 __KERNEL_RCSID(0, "$NetBSD: ptree.c,v 1.2 2008/11/21 01:58:41 matt Exp $");
43 #else
44 #include <stddef.h>
45 #include <stdint.h>
46 #include <limits.h>
47 #include <stdbool.h>
48 #include <string.h>
49 #ifdef PTDEBUG
50 #include <assert.h>
51 #define KASSERT(e) assert(e)
52 #else
53 #define KASSERT(e) do { } while (/*CONSTCOND*/ 0)
54 #endif
55 __RCSID("$NetBSD: ptree.c,v 1.2 2008/11/21 01:58:41 matt Exp $");
56 #endif /* _KERNEL || _STANDALONE */
57
58 #ifdef _LIBC
59 #include "namespace.h"
60 #endif
61
62 #ifdef PTTEST
63 #include "ptree.h"
64 #else
65 #include <sys/ptree.h>
66 #endif
67
68 /*
69 * This is an implementation of a radix / PATRICIA tree. As in a traditional
70 * patricia tree, all the data is at the leaves of the tree. An N-value
71 * tree would have N leaves, N-1 branching nodes, and a root pointer. Each
72 * branching node would have left(0) and right(1) pointers that either point
73 * to another branching node or a leaf node. The root pointer would also
74 * point to either the first branching node or a leaf node. Leaf nodes
75 * have no need for pointers.
76 *
77 * However, allocation for these branching nodes is problematic since the
78 * allocation could fail. This would cause insertions to fail for reasons
79 * beyond the users control. So to prevent this, in this implementation
80 * each node has two identities: its leaf identity and its branch identity.
81 * Each is separate from the other. Every branch is tagged as to whether
82 * it points to a leaf or a branch. This is not an attribute of the object
83 * but of the pointer to the object. The low bit of the pointer is used as
84 * the tag to determine wether it points to a leaf or branch identity, with
85 * branch identities having the low bit set.
86 *
87 * A node's branch identity has one rule: when traversing the tree from the
88 * root to the node's leaf identity, one of the branches traversed will be via
89 * the node's branch identity. Of course, that has an exception: since to
90 * store N leaves, you need N-1 branches. That one node whose branch identity
91 * isn't used is stored as "oddman"-out in the root.
92 *
93 * Branching nodes also has a bit offset and a bit length which determines
94 * which branch slot is used. The bit length can be zero resulting in a
95 * one-way branch. This is happens in two special cases: the root and
96 * interior mask nodes.
97 *
98 * To support longest match first lookups, when a mask node (one that only
99 * match the first N bits) has children who first N bits match the mask nodes,
100 * that mask node is converted from being a leaf node to being a one-way
101 * branch-node. The mask becomes fixed in position in the tree. The mask
102 * will alaways be the longest mask match for its descendants (unless they
103 * traverse an even longer match).
104 */
105
106 #define NODETOITEM(pt, ptn) \
107 ((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset))
108 #define NODETOKEY(pt, ptn) \
109 ((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset + pt->pt_key_offset))
110 #define ITEMTONODE(pt, ptn) \
111 ((pt_node_t *)((uintptr_t)(ptn) + (pt)->pt_node_offset))
112
113 bool ptree_check(const pt_tree_t *);
114 #if PTCHECK > 1
115 #define PTREE_CHECK(pt) ptree_check(pt)
116 #else
117 #define PTREE_CHECK(pt) do { } while (/*CONSTCOND*/ 0)
118 #endif
119
120 static inline bool
121 ptree_matchnode(const pt_tree_t *pt, const pt_node_t *target,
122 const pt_node_t *ptn, pt_bitoff_t max_bitoff,
123 pt_bitoff_t *bitoff_p, pt_slot_t *slots_p)
124 {
125 return (*pt->pt_ops->ptto_matchnode)(NODETOKEY(pt, target),
126 (ptn != NULL ? NODETOKEY(pt, ptn) : NULL), max_bitoff,
127 bitoff_p, slots_p);
128 }
129
130 static inline pt_slot_t
131 ptree_testnode(const pt_tree_t *pt, const pt_node_t *target,
132 const pt_node_t *ptn)
133 {
134 const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
135 if (bitlen == 0)
136 return PT_SLOT_ROOT;
137 return (*pt->pt_ops->ptto_testnode)(NODETOKEY(pt, target),
138 PTN_BRANCH_BITOFF(ptn),
139 bitlen);
140 }
141
142 static inline bool
143 ptree_matchkey(const pt_tree_t *pt, const void *key,
144 const pt_node_t *ptn, pt_bitoff_t bitoff, pt_bitlen_t bitlen)
145 {
146 return (*pt->pt_ops->ptto_matchkey)(key, NODETOKEY(pt, ptn),
147 bitoff, bitlen);
148 }
149
150 static inline pt_slot_t
151 ptree_testkey(const pt_tree_t *pt, const void *key, const pt_node_t *ptn)
152 {
153 return (*pt->pt_ops->ptto_testkey)(key,
154 PTN_BRANCH_BITOFF(ptn),
155 PTN_BRANCH_BITLEN(ptn));
156 }
157
158 static inline void
159 ptree_set_position(uintptr_t node, pt_slot_t position)
160 {
161 if (PT_LEAF_P(node))
162 PTN_SET_LEAF_POSITION(PT_NODE(node), position);
163 else
164 PTN_SET_BRANCH_POSITION(PT_NODE(node), position);
165 }
166
167 void
168 ptree_init(pt_tree_t *pt, const pt_tree_ops_t *ops, size_t node_offset,
169 size_t key_offset)
170 {
171 memset(pt, 0, sizeof(*pt));
172 pt->pt_node_offset = node_offset;
173 pt->pt_key_offset = key_offset;
174 pt->pt_ops = ops;
175 }
176
177 typedef struct {
178 uintptr_t *id_insertp;
179 pt_node_t *id_parent;
180 uintptr_t id_node;
181 pt_slot_t id_parent_slot;
182 pt_bitoff_t id_bitoff;
183 pt_slot_t id_slot;
184 } pt_insertdata_t;
185
186 typedef bool (*pt_insertfunc_t)(pt_tree_t *, pt_node_t *, pt_insertdata_t *);
187
188 /*
189 * Move a branch identify from src to dst. The leaves don't care since
190 * nothing for them has changed.
191 */
192 /*ARGSUSED*/
193 static uintptr_t
194 ptree_move_branch(pt_tree_t * const pt, pt_node_t * const dst,
195 const pt_node_t * const src)
196 {
197 KASSERT(PTN_BRANCH_BITLEN(src) == 1);
198 /* set branch bitlen and bitoff in one step. */
199 dst->ptn_branchdata = src->ptn_branchdata;
200 PTN_SET_BRANCH_POSITION(dst, PTN_BRANCH_POSITION(src));
201 PTN_COPY_BRANCH_SLOTS(dst, src);
202 return PTN_BRANCH(dst);
203 }
204
205 #ifndef PTNOMASK
206 static inline uintptr_t *
207 ptree_find_branch(pt_tree_t * const pt, uintptr_t branch_node)
208 {
209 pt_node_t * const branch = PT_NODE(branch_node);
210 pt_node_t *parent;
211
212 for (parent = &pt->pt_rootnode;;) {
213 uintptr_t *nodep =
214 &PTN_BRANCH_SLOT(parent, ptree_testnode(pt, branch, parent));
215 if (*nodep == branch_node)
216 return nodep;
217 if (PT_LEAF_P(*nodep))
218 return NULL;
219 parent = PT_NODE(*nodep);
220 }
221 }
222
223 static bool
224 ptree_insert_leaf_after_mask(pt_tree_t * const pt, pt_node_t * const target,
225 pt_insertdata_t * const id)
226 {
227 const uintptr_t target_node = PTN_LEAF(target);
228 const uintptr_t mask_node = id->id_node;
229 pt_node_t * const mask = PT_NODE(mask_node);
230 const pt_bitlen_t mask_len = PTN_MASK_BITLEN(mask);
231
232 KASSERT(PT_LEAF_P(mask_node));
233 KASSERT(PTN_LEAF_POSITION(mask) == id->id_parent_slot);
234 KASSERT(mask_len <= id->id_bitoff);
235 KASSERT(PTN_ISMASK_P(mask));
236 KASSERT(!PTN_ISMASK_P(target) || mask_len < PTN_MASK_BITLEN(target));
237
238 if (mask_node == PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode)) {
239 KASSERT(id->id_parent != mask);
240 /*
241 * Nice, mask was an oddman. So just set the oddman to target.
242 */
243 PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = target_node;
244 } else {
245 /*
246 * We need to find out who's pointing to mask's branch
247 * identity. We know that between root and the leaf identity,
248 * we must traverse the node's branch identity.
249 */
250 uintptr_t * const mask_nodep = ptree_find_branch(pt, PTN_BRANCH(mask));
251 KASSERT(mask_nodep != NULL);
252 KASSERT(*mask_nodep == PTN_BRANCH(mask));
253 KASSERT(PTN_BRANCH_BITLEN(mask) == 1);
254
255 /*
256 * Alas, mask was used as a branch. Since the mask is becoming
257 * a one-way branch, we need make target take over mask's
258 * branching responsibilities. Only then can we change it.
259 */
260 *mask_nodep = ptree_move_branch(pt, target, mask);
261
262 /*
263 * However, it's possible that mask's parent is itself. If
264 * that's true, update the insert point to use target since it
265 * has taken over mask's branching duties.
266 */
267 if (id->id_parent == mask)
268 id->id_insertp = &PTN_BRANCH_SLOT(target,
269 id->id_parent_slot);
270 }
271
272 PTN_SET_BRANCH_BITLEN(mask, 0);
273 PTN_SET_BRANCH_BITOFF(mask, mask_len);
274
275 PTN_BRANCH_ROOT_SLOT(mask) = target_node;
276 PTN_BRANCH_ODDMAN_SLOT(mask) = PT_NULL;
277 PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
278 PTN_SET_BRANCH_POSITION(mask, id->id_parent_slot);
279
280 /*
281 * Now that everything is done, to make target visible we need to
282 * change mask from a leaf to a branch.
283 */
284 *id->id_insertp = PTN_BRANCH(mask);
285 PTREE_CHECK(pt);
286 return true;
287 }
288
289 /*ARGSUSED*/
290 static bool
291 ptree_insert_mask_before_node(pt_tree_t * const pt, pt_node_t * const target,
292 pt_insertdata_t * const id)
293 {
294 const uintptr_t node = id->id_node;
295 pt_node_t * const ptn = PT_NODE(node);
296 const pt_slot_t mask_len = PTN_MASK_BITLEN(target);
297 const pt_bitlen_t node_mask_len = PTN_MASK_BITLEN(ptn);
298
299 KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(ptn));
300 KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(ptn));
301 KASSERT(PTN_ISMASK_P(target));
302
303 /*
304 * If the node we are placing ourself in front is a mask with the
305 * same mask length as us, return failure.
306 */
307 if (PTN_ISMASK_P(ptn) && node_mask_len == mask_len)
308 return false;
309
310 PTN_SET_BRANCH_BITLEN(target, 0);
311 PTN_SET_BRANCH_BITOFF(target, mask_len);
312
313 PTN_BRANCH_SLOT(target, PT_SLOT_ROOT) = node;
314 *id->id_insertp = PTN_BRANCH(target);
315
316 PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
317 ptree_set_position(node, PT_SLOT_ROOT);
318
319 PTREE_CHECK(pt);
320 return true;
321 }
322 #endif /* !PTNOMASK */
323
324 /*ARGSUSED*/
325 static bool
326 ptree_insert_branch_at_node(pt_tree_t * const pt, pt_node_t * const target,
327 pt_insertdata_t * const id)
328 {
329 const uintptr_t target_node = PTN_LEAF(target);
330 const uintptr_t node = id->id_node;
331 const pt_slot_t other_slot = id->id_slot ^ PT_SLOT_OTHER;
332
333 KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(PT_NODE(node)));
334 KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(PT_NODE(node)));
335 KASSERT((node == pt->pt_root) == (id->id_parent == &pt->pt_rootnode));
336 #ifndef PTNOMASK
337 KASSERT(!PTN_ISMASK_P(target) || id->id_bitoff <= PTN_MASK_BITLEN(target));
338 #endif
339 KASSERT(node == pt->pt_root || PTN_BRANCH_BITOFF(id->id_parent) + PTN_BRANCH_BITLEN(id->id_parent) <= id->id_bitoff);
340
341 PTN_SET_BRANCH_BITOFF(target, id->id_bitoff);
342 PTN_SET_BRANCH_BITLEN(target, 1);
343
344 PTN_BRANCH_SLOT(target, id->id_slot) = target_node;
345 PTN_BRANCH_SLOT(target, other_slot) = node;
346 *id->id_insertp = PTN_BRANCH(target);
347
348 PTN_SET_LEAF_POSITION(target, id->id_slot);
349 ptree_set_position(node, other_slot);
350
351 PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
352 PTREE_CHECK(pt);
353 return true;
354 }
355
356 static bool
357 ptree_insert_leaf(pt_tree_t * const pt, pt_node_t * const target,
358 pt_insertdata_t * const id)
359 {
360 const uintptr_t leaf_node = id->id_node;
361 pt_node_t * const leaf = PT_NODE(leaf_node);
362 #ifdef PTNOMASK
363 const bool inserting_mask = false;
364 const bool at_mask = false;
365 #else
366 const bool inserting_mask = PTN_ISMASK_P(target);
367 const bool at_mask = PTN_ISMASK_P(leaf);
368 const pt_bitlen_t leaf_masklen = PTN_MASK_BITLEN(leaf);
369 const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
370 #endif
371 pt_insertfunc_t insertfunc = ptree_insert_branch_at_node;
372 bool matched;
373
374 /*
375 * In all likelyhood we are going simply going to insert a branch
376 * where this leaf is which will point to the old and new leaves.
377 */
378 KASSERT(PT_LEAF_P(leaf_node));
379 KASSERT(PTN_LEAF_POSITION(leaf) == id->id_parent_slot);
380 matched = ptree_matchnode(pt, target, leaf, UINT_MAX,
381 &id->id_bitoff, &id->id_slot);
382 if (__predict_false(!inserting_mask)) {
383 /*
384 * We aren't inserting a mask nor is the leaf a mask, which
385 * means we are trying to insert a duplicate leaf. Can't do
386 * that.
387 */
388 if (!at_mask && matched)
389 return false;
390
391 #ifndef PTNOMASK
392 /*
393 * We are at a mask and the leaf we are about to insert
394 * is at or beyond the mask, we need to convert the mask
395 * from a leaf to a one-way branch interior mask.
396 */
397 if (at_mask && id->id_bitoff >= leaf_masklen)
398 insertfunc = ptree_insert_leaf_after_mask;
399 #endif /* PTNOMASK */
400 }
401 #ifndef PTNOMASK
402 else {
403 /*
404 * We are inserting a mask.
405 */
406 if (matched) {
407 /*
408 * If the leaf isn't a mask, we obviously have to
409 * insert the new mask before non-mask leaf. If the
410 * leaf is a mask, and the new node has a LEQ mask
411 * length it too needs to inserted before leaf (*).
412 *
413 * In other cases, we place the new mask as leaf after
414 * leaf mask. Which mask comes first will be a one-way
415 * branch interior mask node which has the other mask
416 * node as a child.
417 *
418 * (*) ptree_insert_mask_before_node can detect a
419 * duplicate mask and return failure if needed.
420 */
421 if (!at_mask || target_masklen <= leaf_masklen)
422 insertfunc = ptree_insert_mask_before_node;
423 else
424 insertfunc = ptree_insert_leaf_after_mask;
425 } else if (at_mask && id->id_bitoff >= leaf_masklen) {
426 /*
427 * If the new mask has a bit offset GEQ than the leaf's
428 * mask length, convert the left to a one-way branch
429 * interior mask and make that point to the new [leaf]
430 * mask.
431 */
432 insertfunc = ptree_insert_leaf_after_mask;
433 } else {
434 /*
435 * The new mask has a bit offset less than the leaf's
436 * mask length or if the leaf isn't a mask at all, the
437 * new mask deserves to be its own leaf so we use the
438 * default insertfunc to do that.
439 */
440 }
441 }
442 #endif /* PTNOMASK */
443
444 return (*insertfunc)(pt, target, id);
445 }
446
447 static bool
448 ptree_insert_node_common(pt_tree_t *pt, void *item)
449 {
450 pt_node_t * const target = ITEMTONODE(pt, item);
451 #ifndef PTNOMASK
452 const bool inserting_mask = PTN_ISMASK_P(target);
453 const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
454 #endif
455 pt_insertfunc_t insertfunc;
456 pt_insertdata_t id;
457
458 /*
459 * We need a leaf so we can match against. Until we get a leaf
460 * we having nothing to test against.
461 */
462 if (__predict_false(PT_NULL_P(pt->pt_root))) {
463 PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
464 PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
465 PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
466 PTREE_CHECK(pt);
467 return true;
468 }
469
470 id.id_bitoff = 0;
471 id.id_parent = &pt->pt_rootnode;
472 id.id_parent_slot = PT_SLOT_ROOT;
473 id.id_insertp = &PTN_BRANCH_ROOT_SLOT(id.id_parent);
474 for (;;) {
475 pt_bitoff_t branch_bitoff;
476 pt_node_t * const ptn = PT_NODE(*id.id_insertp);
477 id.id_node = *id.id_insertp;
478
479 /*
480 * If we hit a leaf, try to insert target at leaf. We could
481 * have inlined ptree_insert_leaf here but that would have
482 * made this routine much harder to understand. Trust the
483 * compiler to optimize this properly.
484 */
485 if (PT_LEAF_P(id.id_node)) {
486 KASSERT(PTN_LEAF_POSITION(ptn) == id.id_parent_slot);
487 insertfunc = ptree_insert_leaf;
488 break;
489 }
490
491 /*
492 * If we aren't a leaf, we must be a branch. Make sure we are
493 * in the slot we think we are.
494 */
495 KASSERT(PT_BRANCH_P(id.id_node));
496 KASSERT(PTN_BRANCH_POSITION(ptn) == id.id_parent_slot);
497
498 /*
499 * Where is this branch?
500 */
501 branch_bitoff = PTN_BRANCH_BITOFF(ptn);
502
503 #ifndef PTNOMASK
504 /*
505 * If this is a one-way mask node, its offset must equal
506 * its mask's bitlen.
507 */
508 KASSERT(!(PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) || PTN_MASK_BITLEN(ptn) == branch_bitoff);
509
510 /*
511 * If we are inserting a mask, and we know that at this point
512 * all bits before the current bit offset match both the target
513 * and the branch. If the target's mask length is LEQ than
514 * this branch's bit offset, then this is where the mask needs
515 * to added to the tree.
516 */
517 if (__predict_false(inserting_mask)
518 && (PTN_ISROOT_P(pt, id.id_parent)
519 || id.id_bitoff < target_masklen)
520 && target_masklen <= branch_bitoff) {
521 /*
522 * We don't know about the bits (if any) between
523 * id.id_bitoff and the target's mask length match
524 * both the target and the branch. If the target's
525 * mask length is greater than the current bit offset
526 * make sure the untested bits match both the target
527 * and the branch.
528 */
529 if (target_masklen == id.id_bitoff
530 || ptree_matchnode(pt, target, ptn, target_masklen,
531 &id.id_bitoff, &id.id_slot)) {
532 /*
533 * The bits matched, so insert the mask as a
534 * one-way branch.
535 */
536 insertfunc = ptree_insert_mask_before_node;
537 break;
538 } else if (id.id_bitoff < branch_bitoff) {
539 /*
540 * They didn't match, so create a normal branch
541 * because this mask needs to a be a new leaf.
542 */
543 insertfunc = ptree_insert_branch_at_node;
544 break;
545 }
546 }
547 #endif /* PTNOMASK */
548
549 /*
550 * If we are skipping some bits, verify they match the node.
551 * If they don't match, it means we have a leaf to insert.
552 * Note that if we are advancing bit by bit, we'll skip
553 * doing matchnode and walk the tree bit by bit via testnode.
554 */
555 if (id.id_bitoff < branch_bitoff
556 && !ptree_matchnode(pt, target, ptn, branch_bitoff,
557 &id.id_bitoff, &id.id_slot)) {
558 KASSERT(id.id_bitoff < branch_bitoff);
559 insertfunc = ptree_insert_branch_at_node;
560 break;
561 }
562
563 /*
564 * At this point, all bits before branch_bitoff are known
565 * to match the target.
566 */
567 KASSERT(id.id_bitoff >= branch_bitoff);
568
569 /*
570 * Decend the tree one level.
571 */
572 id.id_parent = ptn;
573 id.id_parent_slot = ptree_testnode(pt, target, id.id_parent);
574 id.id_bitoff += PTN_BRANCH_BITLEN(id.id_parent);
575 id.id_insertp = &PTN_BRANCH_SLOT(id.id_parent, id.id_parent_slot);
576 }
577
578 /*
579 * Do the actual insertion.
580 */
581 return (*insertfunc)(pt, target, &id);
582 }
583
584 bool
585 ptree_insert_node(pt_tree_t *pt, void *item)
586 {
587 pt_node_t * const target = ITEMTONODE(pt, item);
588
589 memset(target, 0, sizeof(*target));
590 return ptree_insert_node_common(pt, target);
591 }
592
593 #ifndef PTNOMASK
594 bool
595 ptree_insert_mask_node(pt_tree_t *pt, void *item, pt_bitlen_t mask_len)
596 {
597 pt_node_t * const target = ITEMTONODE(pt, item);
598 pt_bitoff_t bitoff = mask_len;
599 pt_slot_t slot;
600
601 memset(target, 0, sizeof(*target));
602 KASSERT(mask_len == 0 || (~PT__MASK(PTN_MASK_BITLEN) & mask_len) == 0);
603 /*
604 * Only the first <mask_len> bits can be non-zero.
605 * All other bits must be 0.
606 */
607 if (!ptree_matchnode(pt, target, NULL, UINT_MAX, &bitoff, &slot))
608 return false;
609 PTN_SET_MASK_BITLEN(target, mask_len);
610 PTN_MARK_MASK(target);
611 return ptree_insert_node_common(pt, target);
612 }
613 #endif /* !PTNOMASH */
614
615 void *
616 ptree_find_filtered_node(pt_tree_t *pt, void *key, pt_filter_t filter,
617 void *filter_arg)
618 {
619 #ifndef PTNOMASK
620 pt_node_t *mask = NULL;
621 #endif
622 bool at_mask = false;
623 pt_node_t *ptn, *parent;
624 pt_bitoff_t bitoff;
625 pt_slot_t parent_slot;
626
627 if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)))
628 return NULL;
629
630 bitoff = 0;
631 parent = &pt->pt_rootnode;
632 parent_slot = PT_SLOT_ROOT;
633 for (;;) {
634 const uintptr_t node = PTN_BRANCH_SLOT(parent, parent_slot);
635 const pt_slot_t branch_bitoff = PTN_BRANCH_BITOFF(PT_NODE(node));
636 ptn = PT_NODE(node);
637
638 if (PT_LEAF_P(node)) {
639 #ifndef PTNOMASK
640 at_mask = PTN_ISMASK_P(ptn);
641 #endif
642 break;
643 }
644
645 if (bitoff < branch_bitoff) {
646 if (!ptree_matchkey(pt, key, ptn, bitoff, branch_bitoff - bitoff)) {
647 #ifndef PTNOMASK
648 if (mask != NULL)
649 return NODETOITEM(pt, mask);
650 #endif
651 return NULL;
652 }
653 bitoff = branch_bitoff;
654 }
655
656 #ifndef PTNOMASK
657 if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0
658 && (!filter
659 || (*filter)(filter_arg, NODETOITEM(pt, ptn),
660 PT_FILTER_MASK)))
661 mask = ptn;
662 #endif
663
664 parent = ptn;
665 parent_slot = ptree_testkey(pt, key, parent);
666 bitoff += PTN_BRANCH_BITLEN(parent);
667 }
668
669 KASSERT(PTN_ISROOT_P(pt, parent) || PTN_BRANCH_BITOFF(parent) + PTN_BRANCH_BITLEN(parent) == bitoff);
670 if (!filter || (*filter)(filter_arg, NODETOITEM(pt, ptn), at_mask ? PT_FILTER_MASK : 0)) {
671 #ifndef PTNOMASK
672 if (PTN_ISMASK_P(ptn)) {
673 const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
674 if (bitoff == PTN_MASK_BITLEN(ptn))
675 return NODETOITEM(pt, ptn);
676 if (ptree_matchkey(pt, key, ptn, bitoff, mask_len - bitoff))
677 return NODETOITEM(pt, ptn);
678 } else
679 #endif /* !PTNOMASK */
680 if (ptree_matchkey(pt, key, ptn, bitoff, UINT_MAX))
681 return NODETOITEM(pt, ptn);
682 }
683
684 #ifndef PTNOMASK
685 /*
686 * By virtue of how the mask was placed in the tree,
687 * all nodes descended from it will match it. But the bits
688 * before the mask still need to be checked and since the
689 * mask was a branch, that was done implicitly.
690 */
691 if (mask != NULL) {
692 KASSERT(ptree_matchkey(pt, key, mask, 0, PTN_MASK_BITLEN(mask)));
693 return NODETOITEM(pt, mask);
694 }
695 #endif /* !PTNOMASK */
696
697 /*
698 * Nothing matched.
699 */
700 return NULL;
701 }
702
703 void *
704 ptree_iterate(pt_tree_t *pt, const void *item, pt_direction_t direction)
705 {
706 const pt_node_t * const target = ITEMTONODE(pt, item);
707 uintptr_t node, next_node;
708
709 if (direction != PT_ASCENDING && direction != PT_DESCENDING)
710 return NULL;
711
712 node = PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode);
713 if (PT_NULL_P(node))
714 return NULL;
715
716 if (item == NULL) {
717 pt_node_t * const ptn = PT_NODE(node);
718 if (direction == PT_ASCENDING
719 && PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0)
720 return NODETOITEM(pt, ptn);
721 next_node = node;
722 } else {
723 #ifndef PTNOMASK
724 uintptr_t mask_node = PT_NULL;
725 #endif /* !PTNOMASK */
726 next_node = PT_NULL;
727 while (!PT_LEAF_P(node)) {
728 pt_node_t * const ptn = PT_NODE(node);
729 pt_slot_t slot;
730 #ifndef PTNOMASK
731 if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) {
732 if (ptn == target)
733 break;
734 if (direction == PT_DESCENDING) {
735 mask_node = node;
736 next_node = PT_NULL;
737 }
738 }
739 #endif /* !PTNOMASK */
740 slot = ptree_testnode(pt, target, ptn);
741 node = PTN_BRANCH_SLOT(ptn, slot);
742 if (direction == PT_ASCENDING) {
743 if (slot != (1 << PTN_BRANCH_BITLEN(ptn)) - 1)
744 next_node = PTN_BRANCH_SLOT(ptn, slot + 1);
745 } else {
746 if (slot > 0) {
747 #ifndef PTNOMASK
748 mask_node = PT_NULL;
749 #endif /* !PTNOMASK */
750 next_node = PTN_BRANCH_SLOT(ptn, slot - 1);
751 }
752 }
753 }
754 if (PT_NODE(node) != target)
755 return NULL;
756 #ifndef PTNOMASK
757 if (PT_BRANCH_P(node)) {
758 pt_node_t *ptn = PT_NODE(node);
759 KASSERT(PTN_ISMASK_P(PT_NODE(node)) && PTN_BRANCH_BITLEN(PT_NODE(node)) == 0);
760 if (direction == PT_ASCENDING) {
761 next_node = PTN_BRANCH_ROOT_SLOT(ptn);
762 ptn = PT_NODE(next_node);
763 }
764 }
765 /*
766 * When descending, if we countered a mask node then that's
767 * we want to return.
768 */
769 if (direction == PT_DESCENDING && !PT_NULL_P(mask_node)) {
770 KASSERT(PT_NULL_P(next_node));
771 return NODETOITEM(pt, PT_NODE(mask_node));
772 }
773 #endif /* !PTNOMASK */
774 }
775
776 node = next_node;
777 if (PT_NULL_P(node))
778 return NULL;
779
780 while (!PT_LEAF_P(node)) {
781 pt_node_t * const ptn = PT_NODE(node);
782 pt_slot_t slot;
783 if (direction == PT_ASCENDING) {
784 #ifndef PTNOMASK
785 if (PT_BRANCH_P(node)
786 && PTN_ISMASK_P(ptn)
787 && PTN_BRANCH_BITLEN(ptn) == 0)
788 return NODETOITEM(pt, ptn);
789 #endif /* !PTNOMASK */
790 slot = PT_SLOT_LEFT;
791 } else {
792 slot = (1 << PTN_BRANCH_BITLEN(ptn)) - 1;
793 }
794 node = PTN_BRANCH_SLOT(ptn, slot);
795 }
796 return NODETOITEM(pt, PT_NODE(node));
797 }
798
799 void
800 ptree_remove_node(pt_tree_t *pt, void *item)
801 {
802 pt_node_t * const target = ITEMTONODE(pt, item);
803 const pt_slot_t leaf_slot = PTN_LEAF_POSITION(target);
804 const pt_slot_t branch_slot = PTN_BRANCH_POSITION(target);
805 pt_node_t *ptn, *parent;
806 uintptr_t node;
807 uintptr_t *removep;
808 uintptr_t *nodep;
809 pt_bitoff_t bitoff;
810 pt_slot_t parent_slot;
811 #ifndef PTNOMASK
812 bool at_mask;
813 #endif
814
815 if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode))) {
816 KASSERT(!PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)));
817 return;
818 }
819
820 bitoff = 0;
821 removep = NULL;
822 nodep = NULL;
823 parent = &pt->pt_rootnode;
824 parent_slot = PT_SLOT_ROOT;
825 for (;;) {
826 node = PTN_BRANCH_SLOT(parent, parent_slot);
827 ptn = PT_NODE(node);
828 #ifndef PTNOMASK
829 at_mask = PTN_ISMASK_P(ptn);
830 #endif
831
832 if (PT_LEAF_P(node))
833 break;
834
835 /*
836 * If we are at the target, then we are looking at its branch
837 * identity. We need to remember who's pointing at it so we
838 * stop them from doing that.
839 */
840 if (__predict_false(ptn == target)) {
841 KASSERT(nodep == NULL);
842 #ifndef PTNOMASK
843 /*
844 * Interior mask nodes are trivial to get rid of.
845 */
846 if (at_mask && PTN_BRANCH_BITLEN(ptn) == 0) {
847 PTN_BRANCH_SLOT(parent, parent_slot) =
848 PTN_BRANCH_ROOT_SLOT(ptn);
849 KASSERT(PT_NULL_P(PTN_BRANCH_ODDMAN_SLOT(ptn)));
850 PTREE_CHECK(pt);
851 return;
852 }
853 #endif /* !PTNOMASK */
854 nodep = &PTN_BRANCH_SLOT(parent, parent_slot);
855 KASSERT(*nodep == PTN_BRANCH(target));
856 }
857 /*
858 * We need also need to know who's pointing at our parent.
859 * After we remove ourselves from our parent, he'll only
860 * have one child and that's unacceptable. So we replace
861 * the pointer to the parent with our abadoned sibling.
862 */
863 removep = &PTN_BRANCH_SLOT(parent, parent_slot);
864
865 /*
866 * Descend into the tree.
867 */
868 parent = ptn;
869 parent_slot = ptree_testnode(pt, target, parent);
870 bitoff += PTN_BRANCH_BITLEN(parent);
871 }
872
873 /*
874 * We better have found that the leaf we are looking for is target.
875 */
876 if (target != ptn) {
877 KASSERT(target == ptn);
878 return;
879 }
880
881 /*
882 * If we didn't encounter target as branch, then target must be the
883 * oddman-out.
884 */
885 if (nodep == NULL) {
886 KASSERT(PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) == PTN_LEAF(target));
887 KASSERT(nodep == NULL);
888 nodep = &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode);
889 }
890
891 KASSERT((removep == NULL) == (parent == &pt->pt_rootnode));
892
893 /*
894 * We have to special remove the last leaf from the root since
895 * the only time the tree can a PT_NULL node is when it's empty.
896 */
897 if (__predict_false(PTN_ISROOT_P(pt, parent))) {
898 KASSERT(removep == NULL);
899 KASSERT(parent == &pt->pt_rootnode);
900 KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
901 KASSERT(*nodep == PTN_LEAF(target));
902 PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PT_NULL;
903 PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PT_NULL;
904 return;
905 }
906
907 KASSERT((parent == target) == (removep == nodep));
908 if (PTN_BRANCH(parent) == PTN_BRANCH_SLOT(target, PTN_BRANCH_POSITION(parent))) {
909 /*
910 * The pointer to the parent actually lives in the target's
911 * branch identity. We can't just move the target's branch
912 * identity since that would result in the parent pointing
913 * to its own branch identity and that's fobidden.
914 */
915 const pt_slot_t slot = PTN_BRANCH_POSITION(parent);
916 const pt_slot_t other_slot = slot ^ PT_SLOT_OTHER;
917 const pt_bitlen_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
918
919 KASSERT(PTN_BRANCH_BITOFF(target) < PTN_BRANCH_BITOFF(parent));
920
921 /*
922 * This gets so confusing. The target's branch identity
923 * points to the branch identity of the parent of the target's
924 * leaf identity:
925 *
926 * TB = { X, PB = { TL, Y } }
927 * or TB = { X, PB = { TL } }
928 *
929 * So we can't move the target's branch identity to the parent
930 * because that would corrupt the tree.
931 */
932 if (__predict_true(parent_bitlen > 0)) {
933 /*
934 * The parent is a two-way branch. We have to have
935 * do to this chang in two steps to keep internally
936 * consistent. First step is to copy our sibling from
937 * our parent to where we are pointing to parent's
938 * branch identiy. This remove all references to his
939 * branch identity from the tree. We then simply make
940 * the parent assume the target's branching duties.
941 *
942 * TB = { X, PB = { Y, TL } } --> PB = { X, Y }.
943 * TB = { X, PB = { TL, Y } } --> PB = { X, Y }.
944 * TB = { PB = { Y, TL }, X } --> PB = { Y, X }.
945 * TB = { PB = { TL, Y }, X } --> PB = { Y, X }.
946 */
947 PTN_BRANCH_SLOT(target, slot) =
948 PTN_BRANCH_SLOT(parent, parent_slot ^ PT_SLOT_OTHER);
949 *nodep = ptree_move_branch(pt, parent, target);
950 PTREE_CHECK(pt);
951 return;
952 } else {
953 /*
954 * If parent was a one-way branch, it must have been
955 * mask which pointed to a single leaf which we are
956 * removing. This means we have to convert the
957 * parent back to a leaf node. So in the same
958 * position that target pointed to parent, we place
959 * leaf pointer to parent. In the other position,
960 * we just put the other node from target.
961 *
962 * TB = { X, PB = { TL } } --> PB = { X, PL }
963 */
964 KASSERT(PTN_ISMASK_P(parent));
965 KASSERT(slot == ptree_testnode(pt, parent, target));
966 PTN_BRANCH_SLOT(parent, slot) = PTN_LEAF(parent);
967 PTN_BRANCH_SLOT(parent, other_slot) =
968 PTN_BRANCH_SLOT(target, other_slot);
969 PTN_SET_LEAF_POSITION(parent,slot);
970 PTN_SET_BRANCH_BITLEN(parent, 1);
971 }
972 PTN_SET_BRANCH_BITOFF(parent, PTN_BRANCH_BITOFF(target));
973 PTN_SET_BRANCH_POSITION(parent, PTN_BRANCH_POSITION(target));
974
975 *nodep = PTN_BRANCH(parent);
976 PTREE_CHECK(pt);
977 return;
978 }
979
980 #ifndef PTNOMASK
981 if (__predict_false(PTN_BRANCH_BITLEN(parent) == 0)) {
982 /*
983 * Parent was a one-way branch which is changing back to a leaf.
984 * Since parent is no longer a one-way branch, it can take over
985 * target's branching duties.
986 *
987 * GB = { PB = { TL } } --> GB = { PL }
988 * TB = { X, Y } --> PB = { X, Y }
989 */
990 KASSERT(PTN_ISMASK_P(parent));
991 KASSERT(parent != target);
992 *removep = PTN_LEAF(parent);
993 } else
994 #endif /* !PTNOMASK */
995 {
996 /*
997 * Now we are the normal removal case. Since after the
998 * target's leaf identity is removed from the its parent,
999 * that parent will only have one decendent. So we can
1000 * just as easily replace the node that has the parent's
1001 * branch identity with the surviving node. This freeing
1002 * parent from its branching duties which means it can
1003 * take over target's branching duties.
1004 *
1005 * GB = { PB = { X, TL } } --> GB = { X }
1006 * TB = { V, W } --> PB = { V, W }
1007 */
1008 const pt_slot_t other_slot = parent_slot ^ PT_SLOT_OTHER;
1009 uintptr_t other_node = PTN_BRANCH_SLOT(parent, other_slot);
1010 const pt_slot_t target_slot = (parent == target ? branch_slot : leaf_slot);
1011
1012 *removep = other_node;
1013
1014 ptree_set_position(other_node, target_slot);
1015
1016 /*
1017 * If target's branch identity contained its leaf identity, we
1018 * have nothing left to do. We've already moved 'X' so there
1019 * is no longer anything in the target's branch identiy that
1020 * has to be preserved.
1021 */
1022 if (parent == target) {
1023 /*
1024 * GB = { TB = { X, TL } } --> GB = { X }
1025 * TB = { X, TL } --> don't care
1026 */
1027 PTREE_CHECK(pt);
1028 return;
1029 }
1030 }
1031
1032 /*
1033 * If target wasn't used as a branch, then it must have been the
1034 * oddman-out of the tree (the one node that doesn't have a branch
1035 * identity). This makes parent the new oddman-out.
1036 */
1037 if (*nodep == PTN_LEAF(target)) {
1038 KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
1039 PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(parent);
1040 PTREE_CHECK(pt);
1041 return;
1042 }
1043
1044 /*
1045 * Finally move the target's branching duties to the parent.
1046 */
1047 KASSERT(PTN_BRANCH_BITOFF(parent) > PTN_BRANCH_BITOFF(target));
1048 *nodep = ptree_move_branch(pt, parent, target);
1049 PTREE_CHECK(pt);
1050 }
1051
1052 #ifdef PTCHECK
1053 static const pt_node_t *
1054 ptree_check_find_node2(const pt_tree_t *pt, const pt_node_t *parent,
1055 uintptr_t target)
1056 {
1057 const pt_bitlen_t slots = 1 << PTN_BRANCH_BITLEN(parent);
1058 pt_slot_t slot;
1059
1060 for (slot = 0; slot < slots; slot++) {
1061 const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
1062 if (PTN_BRANCH_SLOT(parent, slot) == node)
1063 return parent;
1064 }
1065 for (slot = 0; slot < slots; slot++) {
1066 const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
1067 const pt_node_t *branch;
1068 if (!PT_BRANCH_P(node))
1069 continue;
1070 branch = ptree_check_find_node2(pt, PT_NODE(node), target);
1071 if (branch != NULL)
1072 return branch;
1073 }
1074
1075 return NULL;
1076 }
1077
1078 static bool
1079 ptree_check_leaf(const pt_tree_t *pt, const pt_node_t *parent,
1080 const pt_node_t *ptn)
1081 {
1082 const pt_bitoff_t leaf_position = PTN_LEAF_POSITION(ptn);
1083 const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
1084 const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
1085 const uintptr_t leaf_node = PTN_LEAF(ptn);
1086 const bool is_parent_root = (parent == &pt->pt_rootnode);
1087 const bool is_mask = PTN_ISMASK_P(ptn);
1088 bool ok = true;
1089
1090 if (is_parent_root) {
1091 ok = ok && PTN_BRANCH_ODDMAN_SLOT(parent) == leaf_node;
1092 KASSERT(ok);
1093 return ok;
1094 }
1095
1096 if (is_mask && PTN_ISMASK_P(parent) && PTN_BRANCH_BITLEN(parent) == 0) {
1097 ok = ok && PTN_MASK_BITLEN(parent) < mask_len;
1098 KASSERT(ok);
1099 ok = ok && PTN_BRANCH_BITOFF(parent) < mask_len;
1100 KASSERT(ok);
1101 }
1102 ok = ok && PTN_BRANCH_SLOT(parent, leaf_position) == leaf_node;
1103 KASSERT(ok);
1104 ok = ok && leaf_position == ptree_testnode(pt, ptn, parent);
1105 KASSERT(ok);
1106 if (PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) != leaf_node) {
1107 ok = ok && bitlen > 0;
1108 KASSERT(ok);
1109 ok = ok && ptn == ptree_check_find_node2(pt, ptn, PTN_LEAF(ptn));
1110 KASSERT(ok);
1111 }
1112 return ok;
1113 }
1114
1115 static bool
1116 ptree_check_branch(const pt_tree_t *pt, const pt_node_t *parent,
1117 const pt_node_t *ptn)
1118 {
1119 const bool is_parent_root = (parent == &pt->pt_rootnode);
1120 const pt_slot_t branch_slot = PTN_BRANCH_POSITION(ptn);
1121 const pt_bitoff_t bitoff = PTN_BRANCH_BITOFF(ptn);
1122 const pt_bitoff_t bitlen = PTN_BRANCH_BITLEN(ptn);
1123 const pt_bitoff_t parent_bitoff = PTN_BRANCH_BITOFF(parent);
1124 const pt_bitoff_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
1125 const bool is_parent_mask = PTN_ISMASK_P(parent) && parent_bitlen == 0;
1126 const bool is_mask = PTN_ISMASK_P(ptn) && bitlen == 0;
1127 const pt_bitoff_t parent_mask_len = PTN_MASK_BITLEN(parent);
1128 const pt_bitoff_t mask_len = PTN_MASK_BITLEN(ptn);
1129 const pt_bitlen_t slots = 1 << bitlen;
1130 pt_slot_t slot;
1131 bool ok = true;
1132
1133 ok = ok && PTN_BRANCH_SLOT(parent, branch_slot) == PTN_BRANCH(ptn);
1134 KASSERT(ok);
1135 ok = ok && branch_slot == ptree_testnode(pt, ptn, parent);
1136 KASSERT(ok);
1137
1138 if (is_mask) {
1139 ok = ok && bitoff == mask_len;
1140 KASSERT(ok);
1141 if (is_parent_mask) {
1142 ok = ok && parent_mask_len < mask_len;
1143 KASSERT(ok);
1144 ok = ok && parent_bitoff < bitoff;
1145 KASSERT(ok);
1146 }
1147 } else {
1148 if (is_parent_mask) {
1149 ok = ok && parent_bitoff <= bitoff;
1150 } else if (!is_parent_root) {
1151 ok = ok && parent_bitoff < bitoff;
1152 }
1153 KASSERT(ok);
1154 }
1155
1156 for (slot = 0; slot < slots; slot++) {
1157 const uintptr_t node = PTN_BRANCH_SLOT(ptn, slot);
1158 pt_bitoff_t tmp_bitoff = 0;
1159 pt_slot_t tmp_slot;
1160 ok = ok && node != PTN_BRANCH(ptn);
1161 KASSERT(ok);
1162 if (bitlen > 0) {
1163 ok = ok && ptree_matchnode(pt, PT_NODE(node), ptn, bitoff, &tmp_bitoff, &tmp_slot);
1164 KASSERT(ok);
1165 tmp_slot = ptree_testnode(pt, PT_NODE(node), ptn);
1166 ok = ok && slot == tmp_slot;
1167 KASSERT(ok);
1168 }
1169 if (PT_LEAF_P(node))
1170 ok = ok && ptree_check_leaf(pt, ptn, PT_NODE(node));
1171 else
1172 ok = ok && ptree_check_branch(pt, ptn, PT_NODE(node));
1173 }
1174
1175 return ok;
1176 }
1177 #endif /* PTCHECK */
1178
1179 /*ARGSUSED*/
1180 bool
1181 ptree_check(const pt_tree_t *pt)
1182 {
1183 bool ok = true;
1184 #ifdef PTCHECK
1185 const pt_node_t * const parent = &pt->pt_rootnode;
1186 const uintptr_t node = pt->pt_root;
1187 const pt_node_t * const ptn = PT_NODE(node);
1188
1189 ok = ok && PTN_BRANCH_BITOFF(parent) == 0;
1190 ok = ok && !PTN_ISMASK_P(parent);
1191
1192 if (PT_NULL_P(node))
1193 return ok;
1194
1195 if (PT_LEAF_P(node))
1196 ok = ok && ptree_check_leaf(pt, parent, ptn);
1197 else
1198 ok = ok && ptree_check_branch(pt, parent, ptn);
1199 #endif
1200 return ok;
1201 }
1202