Home | History | Annotate | Line # | Download | only in gen
radixtree.c revision 1.17.44.1
      1  1.17.44.1  martin /*	$NetBSD: radixtree.c,v 1.17.44.1 2020/04/08 14:03:05 martin Exp $	*/
      2        1.1    yamt 
      3        1.1    yamt /*-
      4  1.17.44.1  martin  * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
      5        1.1    yamt  * All rights reserved.
      6        1.1    yamt  *
      7        1.1    yamt  * Redistribution and use in source and binary forms, with or without
      8        1.1    yamt  * modification, are permitted provided that the following conditions
      9        1.1    yamt  * are met:
     10        1.1    yamt  * 1. Redistributions of source code must retain the above copyright
     11        1.1    yamt  *    notice, this list of conditions and the following disclaimer.
     12        1.1    yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13        1.1    yamt  *    notice, this list of conditions and the following disclaimer in the
     14        1.1    yamt  *    documentation and/or other materials provided with the distribution.
     15        1.1    yamt  *
     16        1.1    yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17        1.1    yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18        1.1    yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19        1.1    yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20        1.1    yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21        1.1    yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22        1.1    yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23        1.1    yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24        1.1    yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25        1.1    yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26        1.1    yamt  * SUCH DAMAGE.
     27        1.1    yamt  */
     28        1.1    yamt 
     29        1.1    yamt /*
     30       1.17    yamt  * radixtree.c
     31        1.1    yamt  *
     32  1.17.44.1  martin  * Overview:
     33  1.17.44.1  martin  *
     34  1.17.44.1  martin  * This is an implementation of radix tree, whose keys are uint64_t and leafs
     35       1.17    yamt  * are user provided pointers.
     36       1.17    yamt  *
     37  1.17.44.1  martin  * Leaf nodes are just void * and this implementation doesn't care about
     38  1.17.44.1  martin  * what they actually point to.  However, this implementation has an assumption
     39  1.17.44.1  martin  * about their alignment.  Specifically, this implementation assumes that their
     40  1.17.44.1  martin  * 2 LSBs are always zero and uses them for internal accounting.
     41  1.17.44.1  martin  *
     42  1.17.44.1  martin  * Intermediate nodes and memory allocation:
     43  1.17.44.1  martin  *
     44  1.17.44.1  martin  * Intermediate nodes are automatically allocated and freed internally and
     45  1.17.44.1  martin  * basically users don't need to care about them.  The allocation is done via
     46  1.17.44.1  martin  * pool_cache_get(9) for _KERNEL, malloc(3) for userland, and alloc() for
     47  1.17.44.1  martin  * _STANDALONE environment.  Only radix_tree_insert_node function can allocate
     48  1.17.44.1  martin  * memory for intermediate nodes and thus can fail for ENOMEM.
     49  1.17.44.1  martin  *
     50  1.17.44.1  martin  * Memory Efficiency:
     51  1.17.44.1  martin  *
     52  1.17.44.1  martin  * It's designed to work efficiently with dense index distribution.
     53  1.17.44.1  martin  * The memory consumption (number of necessary intermediate nodes) heavily
     54  1.17.44.1  martin  * depends on the index distribution.  Basically, more dense index distribution
     55  1.17.44.1  martin  * consumes less nodes per item.  Approximately,
     56  1.17.44.1  martin  *
     57  1.17.44.1  martin  *  - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
     58  1.17.44.1  martin  *    it would look like the following.
     59  1.17.44.1  martin  *
     60  1.17.44.1  martin  *     root (t_height=1)
     61  1.17.44.1  martin  *      |
     62  1.17.44.1  martin  *      v
     63  1.17.44.1  martin  *      [ | | | ]   (intermediate node.  RADIX_TREE_PTR_PER_NODE=4 in this fig)
     64  1.17.44.1  martin  *       | | | |
     65  1.17.44.1  martin  *       v v v v
     66  1.17.44.1  martin  *       p p p p    (items)
     67  1.17.44.1  martin  *
     68  1.17.44.1  martin  *  - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
     69  1.17.44.1  martin  *    it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
     70  1.17.44.1  martin  *
     71  1.17.44.1  martin  *     root (t_height=3)
     72  1.17.44.1  martin  *      |
     73  1.17.44.1  martin  *      v
     74  1.17.44.1  martin  *      [ | | | ]
     75  1.17.44.1  martin  *           |
     76  1.17.44.1  martin  *           v
     77  1.17.44.1  martin  *           [ | | | ]
     78  1.17.44.1  martin  *                |
     79  1.17.44.1  martin  *                v
     80  1.17.44.1  martin  *                [ | | | ]
     81  1.17.44.1  martin  *                   |
     82  1.17.44.1  martin  *                   v
     83  1.17.44.1  martin  *                   p
     84  1.17.44.1  martin  *
     85  1.17.44.1  martin  * The height of tree (t_height) is dynamic.  It's smaller if only small
     86  1.17.44.1  martin  * index values are used.  As an extreme case, if only index 0 is used,
     87  1.17.44.1  martin  * the corresponding value is directly stored in the root of the tree
     88  1.17.44.1  martin  * (struct radix_tree) without allocating any intermediate nodes.  In that
     89  1.17.44.1  martin  * case, t_height=0.
     90  1.17.44.1  martin  *
     91  1.17.44.1  martin  * Gang lookup:
     92       1.17    yamt  *
     93  1.17.44.1  martin  * This implementation provides a way to scan many nodes quickly via
     94       1.17    yamt  * radix_tree_gang_lookup_node function and its varients.
     95       1.17    yamt  *
     96  1.17.44.1  martin  * Tags:
     97  1.17.44.1  martin  *
     98  1.17.44.1  martin  * This implementation provides tagging functionality, which allows quick
     99  1.17.44.1  martin  * scanning of a subset of leaf nodes.  Leaf nodes are untagged when inserted
    100  1.17.44.1  martin  * into the tree and can be tagged by radix_tree_set_tag function.
    101  1.17.44.1  martin  * radix_tree_gang_lookup_tagged_node function and its variants returns only
    102  1.17.44.1  martin  * leaf nodes with the given tag.  To reduce amount of nodes to visit for
    103       1.17    yamt  * these functions, this implementation keeps tagging information in internal
    104       1.17    yamt  * intermediate nodes and quickly skips uninterested parts of a tree.
    105  1.17.44.1  martin  *
    106  1.17.44.1  martin  * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
    107  1.17.44.1  martin  * identified by an zero-origin numbers, tagid.  For the current implementation,
    108  1.17.44.1  martin  * RADIX_TREE_TAG_ID_MAX is 2.  A set of tags is described as a bitmask tagmask,
    109  1.17.44.1  martin  * which is a bitwise OR of (1 << tagid).
    110        1.1    yamt  */
    111        1.1    yamt 
    112        1.1    yamt #include <sys/cdefs.h>
    113        1.1    yamt 
    114        1.2    yamt #if defined(_KERNEL) || defined(_STANDALONE)
    115  1.17.44.1  martin __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.17.44.1 2020/04/08 14:03:05 martin Exp $");
    116        1.1    yamt #include <sys/param.h>
    117        1.3    yamt #include <sys/errno.h>
    118        1.1    yamt #include <sys/pool.h>
    119        1.1    yamt #include <sys/radixtree.h>
    120        1.3    yamt #include <lib/libkern/libkern.h>
    121        1.3    yamt #if defined(_STANDALONE)
    122        1.3    yamt #include <lib/libsa/stand.h>
    123        1.3    yamt #endif /* defined(_STANDALONE) */
    124        1.2    yamt #else /* defined(_KERNEL) || defined(_STANDALONE) */
    125  1.17.44.1  martin __RCSID("$NetBSD: radixtree.c,v 1.17.44.1 2020/04/08 14:03:05 martin Exp $");
    126        1.1    yamt #include <assert.h>
    127        1.1    yamt #include <errno.h>
    128        1.1    yamt #include <stdbool.h>
    129        1.1    yamt #include <stdlib.h>
    130        1.8    yamt #include <string.h>
    131        1.1    yamt #if 1
    132        1.1    yamt #define KASSERT assert
    133        1.1    yamt #else
    134        1.1    yamt #define KASSERT(a)	/* nothing */
    135        1.1    yamt #endif
    136        1.2    yamt #endif /* defined(_KERNEL) || defined(_STANDALONE) */
    137        1.1    yamt 
    138        1.1    yamt #include <sys/radixtree.h>
    139        1.1    yamt 
    140        1.1    yamt #define	RADIX_TREE_BITS_PER_HEIGHT	4	/* XXX tune */
    141        1.1    yamt #define	RADIX_TREE_PTR_PER_NODE		(1 << RADIX_TREE_BITS_PER_HEIGHT)
    142        1.1    yamt #define	RADIX_TREE_MAX_HEIGHT		(64 / RADIX_TREE_BITS_PER_HEIGHT)
    143       1.15    yamt #define	RADIX_TREE_INVALID_HEIGHT	(RADIX_TREE_MAX_HEIGHT + 1)
    144        1.2    yamt __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
    145        1.1    yamt 
    146        1.2    yamt __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
    147        1.1    yamt #define	RADIX_TREE_TAG_MASK	((1 << RADIX_TREE_TAG_ID_MAX) - 1)
    148        1.1    yamt 
    149        1.1    yamt static inline void *
    150        1.1    yamt entry_ptr(void *p)
    151        1.1    yamt {
    152        1.1    yamt 
    153        1.1    yamt 	return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
    154        1.1    yamt }
    155        1.1    yamt 
    156        1.1    yamt static inline unsigned int
    157        1.1    yamt entry_tagmask(void *p)
    158        1.1    yamt {
    159        1.1    yamt 
    160        1.1    yamt 	return (uintptr_t)p & RADIX_TREE_TAG_MASK;
    161        1.1    yamt }
    162        1.1    yamt 
    163        1.1    yamt static inline void *
    164        1.1    yamt entry_compose(void *p, unsigned int tagmask)
    165        1.1    yamt {
    166        1.1    yamt 
    167        1.1    yamt 	return (void *)((uintptr_t)p | tagmask);
    168        1.1    yamt }
    169        1.1    yamt 
    170        1.1    yamt static inline bool
    171        1.1    yamt entry_match_p(void *p, unsigned int tagmask)
    172        1.1    yamt {
    173        1.1    yamt 
    174        1.1    yamt 	KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
    175        1.1    yamt 	if (p == NULL) {
    176        1.1    yamt 		return false;
    177        1.1    yamt 	}
    178        1.1    yamt 	if (tagmask == 0) {
    179        1.1    yamt 		return true;
    180        1.1    yamt 	}
    181        1.1    yamt 	return (entry_tagmask(p) & tagmask) != 0;
    182        1.1    yamt }
    183        1.1    yamt 
    184        1.1    yamt /*
    185        1.1    yamt  * radix_tree_node: an intermediate node
    186        1.1    yamt  *
    187        1.1    yamt  * we don't care the type of leaf nodes.  they are just void *.
    188  1.17.44.1  martin  *
    189  1.17.44.1  martin  * we used to maintain a count of non-NULL nodes in this structure, but it
    190  1.17.44.1  martin  * prevented it from being aligned to a cache line boundary; the performance
    191  1.17.44.1  martin  * benefit from being cache friendly is greater than the benefit of having
    192  1.17.44.1  martin  * a dedicated count value, especially in multi-processor situations where
    193  1.17.44.1  martin  * we need to avoid intra-pool-page false sharing.
    194        1.1    yamt  */
    195        1.1    yamt 
    196        1.1    yamt struct radix_tree_node {
    197        1.1    yamt 	void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
    198        1.1    yamt };
    199        1.1    yamt 
    200        1.7    yamt /*
    201        1.7    yamt  * any_children_tagmask:
    202        1.7    yamt  *
    203        1.7    yamt  * return OR'ed tagmask of the given node's children.
    204        1.7    yamt  */
    205        1.7    yamt 
    206        1.1    yamt static unsigned int
    207       1.13    yamt any_children_tagmask(const struct radix_tree_node *n)
    208        1.1    yamt {
    209        1.1    yamt 	unsigned int mask;
    210        1.1    yamt 	int i;
    211        1.1    yamt 
    212        1.1    yamt 	mask = 0;
    213        1.1    yamt 	for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    214        1.1    yamt 		mask |= (unsigned int)(uintptr_t)n->n_ptrs[i];
    215        1.1    yamt 	}
    216        1.1    yamt 	return mask & RADIX_TREE_TAG_MASK;
    217        1.1    yamt }
    218        1.1    yamt 
    219        1.1    yamt /*
    220        1.1    yamt  * p_refs[0].pptr == &t->t_root
    221        1.1    yamt  *	:
    222        1.1    yamt  * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
    223        1.1    yamt  *	:
    224        1.1    yamt  *	:
    225        1.1    yamt  * p_refs[t->t_height].pptr == &leaf_pointer
    226        1.1    yamt  */
    227        1.1    yamt 
    228        1.1    yamt struct radix_tree_path {
    229        1.1    yamt 	struct radix_tree_node_ref {
    230        1.1    yamt 		void **pptr;
    231        1.1    yamt 	} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
    232       1.15    yamt 	/*
    233       1.15    yamt 	 * p_lastidx is either the index of the last valid element of p_refs[]
    234       1.15    yamt 	 * or RADIX_TREE_INVALID_HEIGHT.
    235       1.15    yamt 	 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
    236       1.15    yamt 	 * that the height of the tree is not enough to cover the given index.
    237       1.15    yamt 	 */
    238       1.10    yamt 	unsigned int p_lastidx;
    239        1.1    yamt };
    240        1.1    yamt 
    241        1.1    yamt static inline void **
    242       1.13    yamt path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
    243        1.1    yamt     unsigned int height)
    244        1.1    yamt {
    245        1.1    yamt 
    246        1.1    yamt 	KASSERT(height <= t->t_height);
    247        1.1    yamt 	return p->p_refs[height].pptr;
    248        1.1    yamt }
    249        1.1    yamt 
    250        1.1    yamt static inline struct radix_tree_node *
    251       1.13    yamt path_node(const struct radix_tree * t, const struct radix_tree_path *p,
    252       1.13    yamt     unsigned int height)
    253        1.1    yamt {
    254        1.1    yamt 
    255        1.1    yamt 	KASSERT(height <= t->t_height);
    256        1.1    yamt 	return entry_ptr(*path_pptr(t, p, height));
    257        1.1    yamt }
    258        1.1    yamt 
    259        1.1    yamt /*
    260        1.1    yamt  * radix_tree_init_tree:
    261        1.1    yamt  *
    262  1.17.44.1  martin  * Initialize a tree.
    263        1.1    yamt  */
    264        1.1    yamt 
    265        1.1    yamt void
    266        1.1    yamt radix_tree_init_tree(struct radix_tree *t)
    267        1.1    yamt {
    268        1.1    yamt 
    269        1.1    yamt 	t->t_height = 0;
    270        1.1    yamt 	t->t_root = NULL;
    271        1.1    yamt }
    272        1.1    yamt 
    273        1.1    yamt /*
    274  1.17.44.1  martin  * radix_tree_fini_tree:
    275        1.1    yamt  *
    276  1.17.44.1  martin  * Finish using a tree.
    277        1.1    yamt  */
    278        1.1    yamt 
    279        1.1    yamt void
    280        1.1    yamt radix_tree_fini_tree(struct radix_tree *t)
    281        1.1    yamt {
    282        1.1    yamt 
    283        1.1    yamt 	KASSERT(t->t_root == NULL);
    284        1.1    yamt 	KASSERT(t->t_height == 0);
    285        1.1    yamt }
    286        1.1    yamt 
    287  1.17.44.1  martin /*
    288  1.17.44.1  martin  * radix_tree_empty_tree_p:
    289  1.17.44.1  martin  *
    290  1.17.44.1  martin  * Return if the tree is empty.
    291  1.17.44.1  martin  */
    292  1.17.44.1  martin 
    293        1.9    yamt bool
    294        1.9    yamt radix_tree_empty_tree_p(struct radix_tree *t)
    295        1.9    yamt {
    296        1.9    yamt 
    297        1.9    yamt 	return t->t_root == NULL;
    298        1.9    yamt }
    299        1.9    yamt 
    300  1.17.44.1  martin /*
    301  1.17.44.1  martin  * radix_tree_empty_tree_p:
    302  1.17.44.1  martin  *
    303  1.17.44.1  martin  * Return true if the tree has any nodes with the given tag.  Otherwise
    304  1.17.44.1  martin  * return false.
    305  1.17.44.1  martin  *
    306  1.17.44.1  martin  * It's illegal to call this function with tagmask 0.
    307  1.17.44.1  martin  */
    308  1.17.44.1  martin 
    309       1.16    yamt bool
    310  1.17.44.1  martin radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
    311       1.16    yamt {
    312       1.16    yamt 
    313  1.17.44.1  martin 	KASSERT(tagmask != 0);
    314       1.16    yamt 	return (entry_tagmask(t->t_root) & tagmask) == 0;
    315       1.16    yamt }
    316       1.16    yamt 
    317        1.3    yamt static void
    318        1.3    yamt radix_tree_node_init(struct radix_tree_node *n)
    319        1.3    yamt {
    320        1.3    yamt 
    321        1.3    yamt 	memset(n, 0, sizeof(*n));
    322        1.3    yamt }
    323        1.3    yamt 
    324        1.1    yamt #if defined(_KERNEL)
    325        1.2    yamt pool_cache_t radix_tree_node_cache __read_mostly;
    326        1.1    yamt 
    327        1.1    yamt static int
    328        1.1    yamt radix_tree_node_ctor(void *dummy, void *item, int flags)
    329        1.1    yamt {
    330        1.1    yamt 	struct radix_tree_node *n = item;
    331        1.1    yamt 
    332        1.1    yamt 	KASSERT(dummy == NULL);
    333        1.3    yamt 	radix_tree_node_init(n);
    334        1.1    yamt 	return 0;
    335        1.1    yamt }
    336        1.1    yamt 
    337        1.1    yamt /*
    338        1.1    yamt  * radix_tree_init:
    339        1.1    yamt  *
    340        1.1    yamt  * initialize the subsystem.
    341        1.1    yamt  */
    342        1.1    yamt 
    343        1.1    yamt void
    344        1.1    yamt radix_tree_init(void)
    345        1.1    yamt {
    346        1.1    yamt 
    347        1.1    yamt 	radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
    348  1.17.44.1  martin 	    coherency_unit, 0, PR_LARGECACHE, "radixnode", NULL, IPL_NONE,
    349  1.17.44.1  martin 	    radix_tree_node_ctor, NULL, NULL);
    350        1.1    yamt 	KASSERT(radix_tree_node_cache != NULL);
    351        1.1    yamt }
    352  1.17.44.1  martin 
    353  1.17.44.1  martin /*
    354  1.17.44.1  martin  * radix_tree_await_memory:
    355  1.17.44.1  martin  *
    356  1.17.44.1  martin  * after an insert has failed with ENOMEM, wait for memory to become
    357  1.17.44.1  martin  * available, so the caller can retry.
    358  1.17.44.1  martin  */
    359  1.17.44.1  martin 
    360  1.17.44.1  martin void
    361  1.17.44.1  martin radix_tree_await_memory(void)
    362  1.17.44.1  martin {
    363  1.17.44.1  martin 	struct radix_tree_node *n;
    364  1.17.44.1  martin 
    365  1.17.44.1  martin 	n = pool_cache_get(radix_tree_node_cache, PR_WAITOK);
    366  1.17.44.1  martin 	pool_cache_put(radix_tree_node_cache, n);
    367  1.17.44.1  martin }
    368  1.17.44.1  martin 
    369        1.1    yamt #endif /* defined(_KERNEL) */
    370        1.1    yamt 
    371        1.1    yamt static bool __unused
    372        1.1    yamt radix_tree_node_clean_p(const struct radix_tree_node *n)
    373        1.1    yamt {
    374  1.17.44.1  martin #if RADIX_TREE_PTR_PER_NODE > 16
    375        1.1    yamt 	unsigned int i;
    376        1.1    yamt 
    377        1.1    yamt 	for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    378        1.1    yamt 		if (n->n_ptrs[i] != NULL) {
    379        1.1    yamt 			return false;
    380        1.1    yamt 		}
    381        1.1    yamt 	}
    382        1.1    yamt 	return true;
    383  1.17.44.1  martin #else /* RADIX_TREE_PTR_PER_NODE > 16 */
    384  1.17.44.1  martin 	uintptr_t sum;
    385  1.17.44.1  martin 
    386  1.17.44.1  martin 	/*
    387  1.17.44.1  martin 	 * Unrolling the above is much better than a tight loop with two
    388  1.17.44.1  martin 	 * test+branch pairs.  On x86 with gcc 5.5.0 this compiles into 19
    389  1.17.44.1  martin 	 * deterministic instructions including the "return" and prologue &
    390  1.17.44.1  martin 	 * epilogue.
    391  1.17.44.1  martin 	 */
    392  1.17.44.1  martin 	sum = (uintptr_t)n->n_ptrs[0];
    393  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[1];
    394  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[2];
    395  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[3];
    396  1.17.44.1  martin #if RADIX_TREE_PTR_PER_NODE > 4
    397  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[4];
    398  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[5];
    399  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[6];
    400  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[7];
    401  1.17.44.1  martin #endif
    402  1.17.44.1  martin #if RADIX_TREE_PTR_PER_NODE > 8
    403  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[8];
    404  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[9];
    405  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[10];
    406  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[11];
    407  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[12];
    408  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[13];
    409  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[14];
    410  1.17.44.1  martin 	sum |= (uintptr_t)n->n_ptrs[15];
    411  1.17.44.1  martin #endif
    412  1.17.44.1  martin 	return sum == 0;
    413  1.17.44.1  martin #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
    414  1.17.44.1  martin }
    415  1.17.44.1  martin 
    416  1.17.44.1  martin static int __unused
    417  1.17.44.1  martin radix_tree_node_count_ptrs(const struct radix_tree_node *n)
    418  1.17.44.1  martin {
    419  1.17.44.1  martin 	unsigned int i, c;
    420  1.17.44.1  martin 
    421  1.17.44.1  martin 	for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    422  1.17.44.1  martin 		c += (n->n_ptrs[i] != NULL);
    423  1.17.44.1  martin 	}
    424  1.17.44.1  martin 	return c;
    425        1.1    yamt }
    426        1.1    yamt 
    427        1.1    yamt static struct radix_tree_node *
    428        1.1    yamt radix_tree_alloc_node(void)
    429        1.1    yamt {
    430        1.1    yamt 	struct radix_tree_node *n;
    431        1.1    yamt 
    432        1.1    yamt #if defined(_KERNEL)
    433  1.17.44.1  martin 	/*
    434  1.17.44.1  martin 	 * note that pool_cache_get can block.
    435  1.17.44.1  martin 	 */
    436        1.1    yamt 	n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
    437        1.1    yamt #else /* defined(_KERNEL) */
    438        1.3    yamt #if defined(_STANDALONE)
    439        1.3    yamt 	n = alloc(sizeof(*n));
    440        1.3    yamt #else /* defined(_STANDALONE) */
    441        1.3    yamt 	n = malloc(sizeof(*n));
    442        1.3    yamt #endif /* defined(_STANDALONE) */
    443        1.3    yamt 	if (n != NULL) {
    444        1.3    yamt 		radix_tree_node_init(n);
    445        1.3    yamt 	}
    446        1.1    yamt #endif /* defined(_KERNEL) */
    447        1.1    yamt 	KASSERT(n == NULL || radix_tree_node_clean_p(n));
    448        1.1    yamt 	return n;
    449        1.1    yamt }
    450        1.1    yamt 
    451        1.1    yamt static void
    452        1.1    yamt radix_tree_free_node(struct radix_tree_node *n)
    453        1.1    yamt {
    454        1.1    yamt 
    455        1.1    yamt 	KASSERT(radix_tree_node_clean_p(n));
    456        1.1    yamt #if defined(_KERNEL)
    457        1.1    yamt 	pool_cache_put(radix_tree_node_cache, n);
    458        1.3    yamt #elif defined(_STANDALONE)
    459        1.3    yamt 	dealloc(n, sizeof(*n));
    460        1.3    yamt #else
    461        1.1    yamt 	free(n);
    462        1.3    yamt #endif
    463        1.1    yamt }
    464        1.1    yamt 
    465        1.1    yamt static int
    466        1.1    yamt radix_tree_grow(struct radix_tree *t, unsigned int newheight)
    467        1.1    yamt {
    468        1.1    yamt 	const unsigned int tagmask = entry_tagmask(t->t_root);
    469        1.1    yamt 
    470        1.1    yamt 	KASSERT(newheight <= 64 / RADIX_TREE_BITS_PER_HEIGHT);
    471        1.1    yamt 	if (t->t_root == NULL) {
    472        1.1    yamt 		t->t_height = newheight;
    473        1.1    yamt 		return 0;
    474        1.1    yamt 	}
    475        1.1    yamt 	while (t->t_height < newheight) {
    476        1.1    yamt 		struct radix_tree_node *n;
    477        1.1    yamt 
    478        1.1    yamt 		n = radix_tree_alloc_node();
    479        1.1    yamt 		if (n == NULL) {
    480        1.1    yamt 			/*
    481        1.1    yamt 			 * don't bother to revert our changes.
    482        1.1    yamt 			 * the caller will likely retry.
    483        1.1    yamt 			 */
    484        1.1    yamt 			return ENOMEM;
    485        1.1    yamt 		}
    486        1.1    yamt 		n->n_ptrs[0] = t->t_root;
    487        1.1    yamt 		t->t_root = entry_compose(n, tagmask);
    488        1.1    yamt 		t->t_height++;
    489        1.1    yamt 	}
    490        1.1    yamt 	return 0;
    491        1.1    yamt }
    492        1.1    yamt 
    493        1.5    yamt /*
    494        1.5    yamt  * radix_tree_lookup_ptr:
    495        1.5    yamt  *
    496        1.5    yamt  * an internal helper function used for various exported functions.
    497        1.5    yamt  *
    498        1.5    yamt  * return the pointer to store the node for the given index.
    499        1.5    yamt  *
    500        1.5    yamt  * if alloc is true, try to allocate the storage.  (note for _KERNEL:
    501        1.5    yamt  * in that case, this function can block.)  if the allocation failed or
    502        1.5    yamt  * alloc is false, return NULL.
    503        1.5    yamt  *
    504        1.5    yamt  * if path is not NULL, fill it for the caller's investigation.
    505        1.5    yamt  *
    506        1.5    yamt  * if tagmask is not zero, search only for nodes with the tag set.
    507       1.15    yamt  * note that, however, this function doesn't check the tagmask for the leaf
    508       1.15    yamt  * pointer.  it's a caller's responsibility to investigate the value which
    509       1.15    yamt  * is pointed by the returned pointer if necessary.
    510        1.5    yamt  *
    511        1.5    yamt  * while this function is a bit large, as it's called with some constant
    512        1.5    yamt  * arguments, inlining might have benefits.  anyway, a compiler will decide.
    513        1.5    yamt  */
    514        1.5    yamt 
    515        1.1    yamt static inline void **
    516        1.1    yamt radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
    517        1.1    yamt     struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
    518        1.1    yamt {
    519        1.1    yamt 	struct radix_tree_node *n;
    520        1.1    yamt 	int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    521        1.1    yamt 	int shift;
    522        1.1    yamt 	void **vpp;
    523        1.1    yamt 	const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
    524        1.1    yamt 	struct radix_tree_node_ref *refs = NULL;
    525        1.1    yamt 
    526        1.5    yamt 	/*
    527        1.5    yamt 	 * check unsupported combinations
    528        1.5    yamt 	 */
    529        1.1    yamt 	KASSERT(tagmask == 0 || !alloc);
    530        1.1    yamt 	KASSERT(path == NULL || !alloc);
    531        1.1    yamt 	vpp = &t->t_root;
    532        1.1    yamt 	if (path != NULL) {
    533        1.1    yamt 		refs = path->p_refs;
    534        1.1    yamt 		refs->pptr = vpp;
    535        1.1    yamt 	}
    536        1.1    yamt 	n = NULL;
    537        1.1    yamt 	for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
    538        1.1    yamt 		struct radix_tree_node *c;
    539        1.1    yamt 		void *entry;
    540        1.1    yamt 		const uint64_t i = (idx >> shift) & mask;
    541        1.1    yamt 
    542        1.1    yamt 		if (shift >= hshift) {
    543        1.1    yamt 			unsigned int newheight;
    544        1.1    yamt 
    545        1.1    yamt 			KASSERT(vpp == &t->t_root);
    546        1.1    yamt 			if (i == 0) {
    547        1.1    yamt 				shift -= RADIX_TREE_BITS_PER_HEIGHT;
    548        1.1    yamt 				continue;
    549        1.1    yamt 			}
    550        1.1    yamt 			if (!alloc) {
    551        1.1    yamt 				if (path != NULL) {
    552        1.1    yamt 					KASSERT((refs - path->p_refs) == 0);
    553       1.15    yamt 					path->p_lastidx =
    554       1.15    yamt 					    RADIX_TREE_INVALID_HEIGHT;
    555        1.1    yamt 				}
    556        1.1    yamt 				return NULL;
    557        1.1    yamt 			}
    558        1.1    yamt 			newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
    559        1.1    yamt 			if (radix_tree_grow(t, newheight)) {
    560        1.1    yamt 				return NULL;
    561        1.1    yamt 			}
    562        1.1    yamt 			hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    563        1.1    yamt 		}
    564        1.1    yamt 		entry = *vpp;
    565        1.1    yamt 		c = entry_ptr(entry);
    566        1.1    yamt 		if (c == NULL ||
    567        1.1    yamt 		    (tagmask != 0 &&
    568        1.1    yamt 		    (entry_tagmask(entry) & tagmask) == 0)) {
    569        1.1    yamt 			if (!alloc) {
    570        1.1    yamt 				if (path != NULL) {
    571        1.1    yamt 					path->p_lastidx = refs - path->p_refs;
    572        1.1    yamt 				}
    573        1.1    yamt 				return NULL;
    574        1.1    yamt 			}
    575        1.1    yamt 			c = radix_tree_alloc_node();
    576        1.1    yamt 			if (c == NULL) {
    577        1.1    yamt 				return NULL;
    578        1.1    yamt 			}
    579        1.1    yamt 			*vpp = c;
    580        1.1    yamt 		}
    581        1.1    yamt 		n = c;
    582        1.1    yamt 		vpp = &n->n_ptrs[i];
    583        1.1    yamt 		if (path != NULL) {
    584        1.1    yamt 			refs++;
    585        1.1    yamt 			refs->pptr = vpp;
    586        1.1    yamt 		}
    587        1.1    yamt 		shift -= RADIX_TREE_BITS_PER_HEIGHT;
    588        1.1    yamt 	}
    589        1.1    yamt 	if (alloc) {
    590        1.1    yamt 		KASSERT(*vpp == NULL);
    591        1.1    yamt 	}
    592        1.1    yamt 	if (path != NULL) {
    593        1.1    yamt 		path->p_lastidx = refs - path->p_refs;
    594        1.1    yamt 	}
    595        1.1    yamt 	return vpp;
    596        1.1    yamt }
    597        1.1    yamt 
    598        1.1    yamt /*
    599        1.1    yamt  * radix_tree_insert_node:
    600        1.1    yamt  *
    601  1.17.44.1  martin  * Insert the node at the given index.
    602        1.1    yamt  *
    603  1.17.44.1  martin  * It's illegal to insert NULL.  It's illegal to insert a non-aligned pointer.
    604        1.1    yamt  *
    605  1.17.44.1  martin  * This function returns ENOMEM if necessary memory allocation failed.
    606  1.17.44.1  martin  * Otherwise, this function returns 0.
    607        1.4    yamt  *
    608  1.17.44.1  martin  * Note that inserting a node can involves memory allocation for intermediate
    609  1.17.44.1  martin  * nodes.  If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
    610  1.17.44.1  martin  *
    611  1.17.44.1  martin  * For the newly inserted node, all tags are cleared.
    612        1.1    yamt  */
    613        1.1    yamt 
    614        1.1    yamt int
    615        1.1    yamt radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
    616        1.1    yamt {
    617        1.1    yamt 	void **vpp;
    618        1.1    yamt 
    619        1.1    yamt 	KASSERT(p != NULL);
    620  1.17.44.1  martin 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    621        1.1    yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
    622        1.1    yamt 	if (vpp == NULL) {
    623        1.1    yamt 		return ENOMEM;
    624        1.1    yamt 	}
    625        1.1    yamt 	KASSERT(*vpp == NULL);
    626        1.1    yamt 	*vpp = p;
    627        1.1    yamt 	return 0;
    628        1.1    yamt }
    629        1.1    yamt 
    630        1.4    yamt /*
    631        1.4    yamt  * radix_tree_replace_node:
    632        1.4    yamt  *
    633  1.17.44.1  martin  * Replace a node at the given index with the given node and return the
    634  1.17.44.1  martin  * replaced one.
    635  1.17.44.1  martin  *
    636  1.17.44.1  martin  * It's illegal to try to replace a node which has not been inserted.
    637        1.4    yamt  *
    638  1.17.44.1  martin  * This function keeps tags intact.
    639        1.4    yamt  */
    640        1.4    yamt 
    641        1.1    yamt void *
    642        1.1    yamt radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
    643        1.1    yamt {
    644        1.1    yamt 	void **vpp;
    645        1.1    yamt 	void *oldp;
    646        1.1    yamt 
    647        1.1    yamt 	KASSERT(p != NULL);
    648  1.17.44.1  martin 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    649        1.1    yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    650        1.1    yamt 	KASSERT(vpp != NULL);
    651        1.1    yamt 	oldp = *vpp;
    652        1.1    yamt 	KASSERT(oldp != NULL);
    653        1.1    yamt 	*vpp = entry_compose(p, entry_tagmask(*vpp));
    654        1.1    yamt 	return entry_ptr(oldp);
    655        1.1    yamt }
    656        1.1    yamt 
    657        1.1    yamt /*
    658        1.1    yamt  * radix_tree_remove_node:
    659        1.1    yamt  *
    660  1.17.44.1  martin  * Remove the node at the given index.
    661  1.17.44.1  martin  *
    662  1.17.44.1  martin  * It's illegal to try to remove a node which has not been inserted.
    663        1.1    yamt  */
    664        1.1    yamt 
    665        1.1    yamt void *
    666        1.1    yamt radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
    667        1.1    yamt {
    668        1.1    yamt 	struct radix_tree_path path;
    669        1.1    yamt 	void **vpp;
    670        1.1    yamt 	void *oldp;
    671        1.1    yamt 	int i;
    672        1.1    yamt 
    673        1.1    yamt 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
    674        1.1    yamt 	KASSERT(vpp != NULL);
    675        1.1    yamt 	oldp = *vpp;
    676        1.1    yamt 	KASSERT(oldp != NULL);
    677        1.1    yamt 	KASSERT(path.p_lastidx == t->t_height);
    678        1.1    yamt 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
    679        1.1    yamt 	*vpp = NULL;
    680        1.1    yamt 	for (i = t->t_height - 1; i >= 0; i--) {
    681        1.1    yamt 		void *entry;
    682        1.1    yamt 		struct radix_tree_node ** const pptr =
    683        1.1    yamt 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    684        1.1    yamt 		struct radix_tree_node *n;
    685        1.1    yamt 
    686        1.1    yamt 		KASSERT(pptr != NULL);
    687        1.1    yamt 		entry = *pptr;
    688        1.1    yamt 		n = entry_ptr(entry);
    689        1.1    yamt 		KASSERT(n != NULL);
    690  1.17.44.1  martin 		if (!radix_tree_node_clean_p(n)) {
    691        1.1    yamt 			break;
    692        1.1    yamt 		}
    693        1.1    yamt 		radix_tree_free_node(n);
    694        1.1    yamt 		*pptr = NULL;
    695        1.1    yamt 	}
    696        1.1    yamt 	/*
    697        1.1    yamt 	 * fix up height
    698        1.1    yamt 	 */
    699        1.1    yamt 	if (i < 0) {
    700        1.1    yamt 		KASSERT(t->t_root == NULL);
    701        1.1    yamt 		t->t_height = 0;
    702        1.1    yamt 	}
    703        1.1    yamt 	/*
    704        1.1    yamt 	 * update tags
    705        1.1    yamt 	 */
    706        1.1    yamt 	for (; i >= 0; i--) {
    707        1.1    yamt 		void *entry;
    708        1.1    yamt 		struct radix_tree_node ** const pptr =
    709        1.1    yamt 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    710        1.1    yamt 		struct radix_tree_node *n;
    711        1.1    yamt 		unsigned int newmask;
    712        1.1    yamt 
    713        1.1    yamt 		KASSERT(pptr != NULL);
    714        1.1    yamt 		entry = *pptr;
    715        1.1    yamt 		n = entry_ptr(entry);
    716        1.1    yamt 		KASSERT(n != NULL);
    717  1.17.44.1  martin 		KASSERT(!radix_tree_node_clean_p(n));
    718        1.1    yamt 		newmask = any_children_tagmask(n);
    719        1.1    yamt 		if (newmask == entry_tagmask(entry)) {
    720        1.1    yamt 			break;
    721        1.1    yamt 		}
    722        1.1    yamt 		*pptr = entry_compose(n, newmask);
    723        1.1    yamt 	}
    724        1.1    yamt 	/*
    725        1.1    yamt 	 * XXX is it worth to try to reduce height?
    726        1.1    yamt 	 * if we do that, make radix_tree_grow rollback its change as well.
    727        1.1    yamt 	 */
    728        1.1    yamt 	return entry_ptr(oldp);
    729        1.1    yamt }
    730        1.1    yamt 
    731        1.1    yamt /*
    732        1.1    yamt  * radix_tree_lookup_node:
    733        1.1    yamt  *
    734  1.17.44.1  martin  * Returns the node at the given index.
    735  1.17.44.1  martin  * Returns NULL if nothing is found at the given index.
    736        1.1    yamt  */
    737        1.1    yamt 
    738        1.1    yamt void *
    739        1.1    yamt radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
    740        1.1    yamt {
    741        1.1    yamt 	void **vpp;
    742        1.1    yamt 
    743        1.1    yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    744        1.1    yamt 	if (vpp == NULL) {
    745        1.1    yamt 		return NULL;
    746        1.1    yamt 	}
    747        1.1    yamt 	return entry_ptr(*vpp);
    748        1.1    yamt }
    749        1.1    yamt 
    750        1.1    yamt static inline void
    751        1.1    yamt gang_lookup_init(struct radix_tree *t, uint64_t idx,
    752        1.1    yamt     struct radix_tree_path *path, const unsigned int tagmask)
    753        1.1    yamt {
    754  1.17.44.1  martin 	void **vpp __unused;
    755        1.1    yamt 
    756        1.1    yamt 	vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
    757        1.1    yamt 	KASSERT(vpp == NULL ||
    758        1.1    yamt 	    vpp == path_pptr(t, path, path->p_lastidx));
    759        1.1    yamt 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    760       1.15    yamt 	KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
    761       1.15    yamt 	   path->p_lastidx == t->t_height ||
    762       1.15    yamt 	   !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
    763        1.1    yamt }
    764        1.1    yamt 
    765       1.15    yamt /*
    766       1.15    yamt  * gang_lookup_scan:
    767       1.15    yamt  *
    768       1.15    yamt  * a helper routine for radix_tree_gang_lookup_node and its variants.
    769       1.15    yamt  */
    770       1.15    yamt 
    771        1.1    yamt static inline unsigned int
    772       1.15    yamt __attribute__((__always_inline__))
    773        1.1    yamt gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
    774  1.17.44.1  martin     void **results, const unsigned int maxresults, const unsigned int tagmask,
    775  1.17.44.1  martin     const bool reverse, const bool dense)
    776        1.1    yamt {
    777       1.15    yamt 
    778       1.15    yamt 	/*
    779       1.15    yamt 	 * we keep the path updated only for lastidx-1.
    780       1.15    yamt 	 * vpp is what path_pptr(t, path, lastidx) would be.
    781       1.15    yamt 	 */
    782        1.1    yamt 	void **vpp;
    783       1.10    yamt 	unsigned int nfound;
    784        1.1    yamt 	unsigned int lastidx;
    785       1.15    yamt 	/*
    786       1.15    yamt 	 * set up scan direction dependant constants so that we can iterate
    787       1.15    yamt 	 * n_ptrs as the following.
    788       1.15    yamt 	 *
    789       1.15    yamt 	 *	for (i = first; i != guard; i += step)
    790       1.15    yamt 	 *		visit n->n_ptrs[i];
    791       1.15    yamt 	 */
    792       1.15    yamt 	const int step = reverse ? -1 : 1;
    793       1.15    yamt 	const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
    794       1.15    yamt 	const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
    795       1.15    yamt 	const unsigned int guard = last + step;
    796        1.1    yamt 
    797        1.1    yamt 	KASSERT(maxresults > 0);
    798       1.15    yamt 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    799        1.1    yamt 	lastidx = path->p_lastidx;
    800       1.15    yamt 	KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
    801       1.15    yamt 	   lastidx == t->t_height ||
    802       1.15    yamt 	   !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
    803       1.15    yamt 	nfound = 0;
    804       1.15    yamt 	if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
    805  1.17.44.1  martin 		/*
    806  1.17.44.1  martin 		 * requested idx is beyond the right-most node.
    807  1.17.44.1  martin 		 */
    808  1.17.44.1  martin 		if (reverse && !dense) {
    809       1.15    yamt 			lastidx = 0;
    810       1.15    yamt 			vpp = path_pptr(t, path, lastidx);
    811       1.15    yamt 			goto descend;
    812       1.15    yamt 		}
    813        1.1    yamt 		return 0;
    814        1.1    yamt 	}
    815        1.1    yamt 	vpp = path_pptr(t, path, lastidx);
    816        1.1    yamt 	while (/*CONSTCOND*/true) {
    817        1.1    yamt 		struct radix_tree_node *n;
    818       1.10    yamt 		unsigned int i;
    819        1.1    yamt 
    820        1.1    yamt 		if (entry_match_p(*vpp, tagmask)) {
    821        1.1    yamt 			KASSERT(lastidx == t->t_height);
    822        1.1    yamt 			/*
    823       1.15    yamt 			 * record the matching non-NULL leaf.
    824        1.1    yamt 			 */
    825        1.1    yamt 			results[nfound] = entry_ptr(*vpp);
    826        1.1    yamt 			nfound++;
    827        1.1    yamt 			if (nfound == maxresults) {
    828        1.1    yamt 				return nfound;
    829        1.1    yamt 			}
    830  1.17.44.1  martin 		} else if (dense) {
    831  1.17.44.1  martin 			return nfound;
    832        1.1    yamt 		}
    833        1.1    yamt scan_siblings:
    834        1.1    yamt 		/*
    835       1.15    yamt 		 * try to find the next matching non-NULL sibling.
    836        1.1    yamt 		 */
    837       1.15    yamt 		if (lastidx == 0) {
    838       1.15    yamt 			/*
    839       1.15    yamt 			 * the root has no siblings.
    840       1.15    yamt 			 * we've done.
    841       1.15    yamt 			 */
    842       1.15    yamt 			KASSERT(vpp == &t->t_root);
    843       1.15    yamt 			break;
    844       1.15    yamt 		}
    845        1.1    yamt 		n = path_node(t, path, lastidx - 1);
    846       1.15    yamt 		for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
    847       1.15    yamt 			KASSERT(i < RADIX_TREE_PTR_PER_NODE);
    848        1.1    yamt 			if (entry_match_p(n->n_ptrs[i], tagmask)) {
    849        1.1    yamt 				vpp = &n->n_ptrs[i];
    850        1.1    yamt 				break;
    851  1.17.44.1  martin 			} else if (dense) {
    852  1.17.44.1  martin 				return nfound;
    853        1.1    yamt 			}
    854        1.1    yamt 		}
    855       1.15    yamt 		if (i == guard) {
    856        1.1    yamt 			/*
    857        1.1    yamt 			 * not found.  go to parent.
    858        1.1    yamt 			 */
    859        1.1    yamt 			lastidx--;
    860        1.1    yamt 			vpp = path_pptr(t, path, lastidx);
    861        1.1    yamt 			goto scan_siblings;
    862        1.1    yamt 		}
    863       1.15    yamt descend:
    864        1.1    yamt 		/*
    865       1.15    yamt 		 * following the left-most (or right-most in the case of
    866       1.15    yamt 		 * reverse scan) child node, decend until reaching the leaf or
    867       1.15    yamt 		 * an non-matching entry.
    868        1.1    yamt 		 */
    869        1.1    yamt 		while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
    870       1.15    yamt 			/*
    871       1.15    yamt 			 * save vpp in the path so that we can come back to this
    872       1.15    yamt 			 * node after finishing visiting children.
    873       1.15    yamt 			 */
    874       1.15    yamt 			path->p_refs[lastidx].pptr = vpp;
    875        1.1    yamt 			n = entry_ptr(*vpp);
    876       1.15    yamt 			vpp = &n->n_ptrs[first];
    877        1.1    yamt 			lastidx++;
    878        1.1    yamt 		}
    879        1.1    yamt 	}
    880       1.15    yamt 	return nfound;
    881        1.1    yamt }
    882        1.1    yamt 
    883        1.1    yamt /*
    884        1.1    yamt  * radix_tree_gang_lookup_node:
    885        1.1    yamt  *
    886  1.17.44.1  martin  * Scan the tree starting from the given index in the ascending order and
    887  1.17.44.1  martin  * return found nodes.
    888  1.17.44.1  martin  *
    889        1.1    yamt  * results should be an array large enough to hold maxresults pointers.
    890  1.17.44.1  martin  * This function returns the number of nodes found, up to maxresults.
    891  1.17.44.1  martin  * Returning less than maxresults means there are no more nodes in the tree.
    892        1.1    yamt  *
    893  1.17.44.1  martin  * If dense == true, this function stops scanning when it founds a hole of
    894  1.17.44.1  martin  * indexes.  I.e. an index for which radix_tree_lookup_node would returns NULL.
    895  1.17.44.1  martin  * If dense == false, this function skips holes and continue scanning until
    896  1.17.44.1  martin  * maxresults nodes are found or it reaches the limit of the index range.
    897        1.1    yamt  *
    898  1.17.44.1  martin  * The result of this function is semantically equivalent to what could be
    899  1.17.44.1  martin  * obtained by repeated calls of radix_tree_lookup_node with increasing index.
    900  1.17.44.1  martin  * but this function is expected to be computationally cheaper when looking up
    901  1.17.44.1  martin  * multiple nodes at once.  Especially, it's expected to be much cheaper when
    902  1.17.44.1  martin  * node indexes are distributed sparsely.
    903  1.17.44.1  martin  *
    904  1.17.44.1  martin  * Note that this function doesn't return index values of found nodes.
    905  1.17.44.1  martin  * Thus, in the case of dense == false, if index values are important for
    906  1.17.44.1  martin  * a caller, it's the caller's responsibility to check them, typically
    907  1.17.44.1  martin  * by examinining the returned nodes using some caller-specific knowledge
    908  1.17.44.1  martin  * about them.
    909  1.17.44.1  martin  * In the case of dense == true, a node returned via results[N] is always for
    910  1.17.44.1  martin  * the index (idx + N).
    911        1.1    yamt  */
    912        1.1    yamt 
    913        1.1    yamt unsigned int
    914        1.1    yamt radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
    915  1.17.44.1  martin     void **results, unsigned int maxresults, bool dense)
    916        1.1    yamt {
    917        1.1    yamt 	struct radix_tree_path path;
    918        1.1    yamt 
    919        1.1    yamt 	gang_lookup_init(t, idx, &path, 0);
    920  1.17.44.1  martin 	return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
    921       1.15    yamt }
    922       1.15    yamt 
    923       1.15    yamt /*
    924       1.15    yamt  * radix_tree_gang_lookup_node_reverse:
    925       1.15    yamt  *
    926  1.17.44.1  martin  * Same as radix_tree_gang_lookup_node except that this one scans the
    927  1.17.44.1  martin  * tree in the reverse order.  I.e. descending index values.
    928       1.15    yamt  */
    929       1.15    yamt 
    930       1.15    yamt unsigned int
    931       1.15    yamt radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
    932  1.17.44.1  martin     void **results, unsigned int maxresults, bool dense)
    933       1.15    yamt {
    934       1.15    yamt 	struct radix_tree_path path;
    935       1.15    yamt 
    936       1.15    yamt 	gang_lookup_init(t, idx, &path, 0);
    937  1.17.44.1  martin 	return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
    938        1.1    yamt }
    939        1.1    yamt 
    940        1.1    yamt /*
    941        1.1    yamt  * radix_tree_gang_lookup_tagged_node:
    942        1.1    yamt  *
    943  1.17.44.1  martin  * Same as radix_tree_gang_lookup_node except that this one only returns
    944        1.1    yamt  * nodes tagged with tagid.
    945  1.17.44.1  martin  *
    946  1.17.44.1  martin  * It's illegal to call this function with tagmask 0.
    947        1.1    yamt  */
    948        1.1    yamt 
    949        1.1    yamt unsigned int
    950        1.1    yamt radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
    951  1.17.44.1  martin     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
    952        1.1    yamt {
    953        1.1    yamt 	struct radix_tree_path path;
    954        1.1    yamt 
    955  1.17.44.1  martin 	KASSERT(tagmask != 0);
    956        1.1    yamt 	gang_lookup_init(t, idx, &path, tagmask);
    957  1.17.44.1  martin 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
    958  1.17.44.1  martin 	    dense);
    959       1.15    yamt }
    960       1.15    yamt 
    961       1.15    yamt /*
    962       1.15    yamt  * radix_tree_gang_lookup_tagged_node_reverse:
    963       1.15    yamt  *
    964  1.17.44.1  martin  * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
    965  1.17.44.1  martin  * tree in the reverse order.  I.e. descending index values.
    966       1.15    yamt  */
    967       1.15    yamt 
    968       1.15    yamt unsigned int
    969       1.15    yamt radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
    970  1.17.44.1  martin     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
    971       1.15    yamt {
    972       1.15    yamt 	struct radix_tree_path path;
    973       1.15    yamt 
    974  1.17.44.1  martin 	KASSERT(tagmask != 0);
    975       1.15    yamt 	gang_lookup_init(t, idx, &path, tagmask);
    976  1.17.44.1  martin 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
    977  1.17.44.1  martin 	    dense);
    978        1.1    yamt }
    979        1.1    yamt 
    980        1.4    yamt /*
    981        1.4    yamt  * radix_tree_get_tag:
    982        1.4    yamt  *
    983  1.17.44.1  martin  * Return the tagmask for the node at the given index.
    984  1.17.44.1  martin  *
    985  1.17.44.1  martin  * It's illegal to call this function for a node which has not been inserted.
    986        1.4    yamt  */
    987        1.4    yamt 
    988  1.17.44.1  martin unsigned int
    989  1.17.44.1  martin radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
    990        1.1    yamt {
    991  1.17.44.1  martin 	/*
    992  1.17.44.1  martin 	 * the following two implementations should behave same.
    993  1.17.44.1  martin 	 * the former one was chosen because it seems faster.
    994  1.17.44.1  martin 	 */
    995        1.1    yamt #if 1
    996        1.1    yamt 	void **vpp;
    997        1.1    yamt 
    998        1.1    yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
    999        1.1    yamt 	if (vpp == NULL) {
   1000        1.1    yamt 		return false;
   1001        1.1    yamt 	}
   1002        1.1    yamt 	KASSERT(*vpp != NULL);
   1003  1.17.44.1  martin 	return (entry_tagmask(*vpp) & tagmask);
   1004        1.1    yamt #else
   1005        1.1    yamt 	void **vpp;
   1006        1.1    yamt 
   1007        1.1    yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
   1008        1.1    yamt 	KASSERT(vpp != NULL);
   1009  1.17.44.1  martin 	return (entry_tagmask(*vpp) & tagmask);
   1010        1.1    yamt #endif
   1011        1.1    yamt }
   1012        1.1    yamt 
   1013        1.4    yamt /*
   1014        1.4    yamt  * radix_tree_set_tag:
   1015        1.4    yamt  *
   1016  1.17.44.1  martin  * Set the tag for the node at the given index.
   1017  1.17.44.1  martin  *
   1018  1.17.44.1  martin  * It's illegal to call this function for a node which has not been inserted.
   1019  1.17.44.1  martin  * It's illegal to call this function with tagmask 0.
   1020        1.4    yamt  */
   1021        1.4    yamt 
   1022        1.1    yamt void
   1023  1.17.44.1  martin radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1024        1.1    yamt {
   1025        1.1    yamt 	struct radix_tree_path path;
   1026  1.17.44.1  martin 	void **vpp __unused;
   1027        1.1    yamt 	int i;
   1028        1.1    yamt 
   1029  1.17.44.1  martin 	KASSERT(tagmask != 0);
   1030        1.1    yamt 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1031        1.1    yamt 	KASSERT(vpp != NULL);
   1032        1.1    yamt 	KASSERT(*vpp != NULL);
   1033        1.1    yamt 	KASSERT(path.p_lastidx == t->t_height);
   1034        1.1    yamt 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1035        1.1    yamt 	for (i = t->t_height; i >= 0; i--) {
   1036        1.1    yamt 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1037        1.1    yamt 		void *entry;
   1038        1.1    yamt 
   1039        1.1    yamt 		KASSERT(pptr != NULL);
   1040        1.1    yamt 		entry = *pptr;
   1041        1.1    yamt 		if ((entry_tagmask(entry) & tagmask) != 0) {
   1042        1.1    yamt 			break;
   1043        1.1    yamt 		}
   1044        1.1    yamt 		*pptr = (void *)((uintptr_t)entry | tagmask);
   1045        1.1    yamt 	}
   1046        1.1    yamt }
   1047        1.1    yamt 
   1048        1.4    yamt /*
   1049        1.4    yamt  * radix_tree_clear_tag:
   1050        1.4    yamt  *
   1051  1.17.44.1  martin  * Clear the tag for the node at the given index.
   1052  1.17.44.1  martin  *
   1053  1.17.44.1  martin  * It's illegal to call this function for a node which has not been inserted.
   1054  1.17.44.1  martin  * It's illegal to call this function with tagmask 0.
   1055        1.4    yamt  */
   1056        1.4    yamt 
   1057        1.1    yamt void
   1058  1.17.44.1  martin radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1059        1.1    yamt {
   1060        1.1    yamt 	struct radix_tree_path path;
   1061        1.1    yamt 	void **vpp;
   1062        1.1    yamt 	int i;
   1063        1.1    yamt 
   1064  1.17.44.1  martin 	KASSERT(tagmask != 0);
   1065        1.1    yamt 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1066        1.1    yamt 	KASSERT(vpp != NULL);
   1067        1.1    yamt 	KASSERT(*vpp != NULL);
   1068        1.1    yamt 	KASSERT(path.p_lastidx == t->t_height);
   1069        1.1    yamt 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1070        1.7    yamt 	/*
   1071        1.7    yamt 	 * if already cleared, nothing to do
   1072        1.7    yamt 	 */
   1073        1.1    yamt 	if ((entry_tagmask(*vpp) & tagmask) == 0) {
   1074        1.1    yamt 		return;
   1075        1.1    yamt 	}
   1076        1.7    yamt 	/*
   1077        1.7    yamt 	 * clear the tag only if no children have the tag.
   1078        1.7    yamt 	 */
   1079        1.1    yamt 	for (i = t->t_height; i >= 0; i--) {
   1080        1.1    yamt 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1081        1.1    yamt 		void *entry;
   1082        1.1    yamt 
   1083        1.1    yamt 		KASSERT(pptr != NULL);
   1084        1.1    yamt 		entry = *pptr;
   1085        1.1    yamt 		KASSERT((entry_tagmask(entry) & tagmask) != 0);
   1086        1.1    yamt 		*pptr = entry_compose(entry_ptr(entry),
   1087        1.1    yamt 		    entry_tagmask(entry) & ~tagmask);
   1088        1.7    yamt 		/*
   1089        1.7    yamt 		 * check if we should proceed to process the next level.
   1090        1.7    yamt 		 */
   1091        1.7    yamt 		if (0 < i) {
   1092        1.1    yamt 			struct radix_tree_node *n = path_node(t, &path, i - 1);
   1093        1.1    yamt 
   1094        1.1    yamt 			if ((any_children_tagmask(n) & tagmask) != 0) {
   1095        1.1    yamt 				break;
   1096        1.1    yamt 			}
   1097        1.1    yamt 		}
   1098        1.1    yamt 	}
   1099        1.1    yamt }
   1100        1.1    yamt 
   1101        1.1    yamt #if defined(UNITTEST)
   1102        1.1    yamt 
   1103        1.1    yamt #include <inttypes.h>
   1104        1.1    yamt #include <stdio.h>
   1105        1.1    yamt 
   1106        1.1    yamt static void
   1107        1.1    yamt radix_tree_dump_node(const struct radix_tree *t, void *vp,
   1108        1.1    yamt     uint64_t offset, unsigned int height)
   1109        1.1    yamt {
   1110        1.1    yamt 	struct radix_tree_node *n;
   1111        1.1    yamt 	unsigned int i;
   1112        1.1    yamt 
   1113        1.1    yamt 	for (i = 0; i < t->t_height - height; i++) {
   1114        1.1    yamt 		printf(" ");
   1115        1.1    yamt 	}
   1116        1.1    yamt 	if (entry_tagmask(vp) == 0) {
   1117        1.1    yamt 		printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
   1118        1.1    yamt 	} else {
   1119        1.1    yamt 		printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
   1120        1.1    yamt 		    entry_tagmask(vp));
   1121        1.1    yamt 	}
   1122        1.1    yamt 	if (height == 0) {
   1123        1.1    yamt 		printf(" (leaf)\n");
   1124        1.1    yamt 		return;
   1125        1.1    yamt 	}
   1126        1.1    yamt 	n = entry_ptr(vp);
   1127        1.1    yamt 	assert(any_children_tagmask(n) == entry_tagmask(vp));
   1128  1.17.44.1  martin 	printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
   1129        1.1    yamt 	for (i = 0; i < __arraycount(n->n_ptrs); i++) {
   1130        1.1    yamt 		void *c;
   1131        1.1    yamt 
   1132        1.1    yamt 		c = n->n_ptrs[i];
   1133        1.1    yamt 		if (c == NULL) {
   1134        1.1    yamt 			continue;
   1135        1.1    yamt 		}
   1136        1.1    yamt 		radix_tree_dump_node(t, c,
   1137        1.1    yamt 		    offset + i * (UINT64_C(1) <<
   1138        1.1    yamt 		    (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
   1139        1.1    yamt 	}
   1140        1.1    yamt }
   1141        1.1    yamt 
   1142        1.1    yamt void radix_tree_dump(const struct radix_tree *);
   1143        1.1    yamt 
   1144        1.1    yamt void
   1145        1.1    yamt radix_tree_dump(const struct radix_tree *t)
   1146        1.1    yamt {
   1147        1.1    yamt 
   1148        1.1    yamt 	printf("tree %p height=%u\n", t, t->t_height);
   1149        1.1    yamt 	radix_tree_dump_node(t, t->t_root, 0, t->t_height);
   1150        1.1    yamt }
   1151        1.1    yamt 
   1152        1.1    yamt static void
   1153        1.1    yamt test1(void)
   1154        1.1    yamt {
   1155        1.1    yamt 	struct radix_tree s;
   1156        1.1    yamt 	struct radix_tree *t = &s;
   1157        1.1    yamt 	void *results[3];
   1158        1.1    yamt 
   1159        1.1    yamt 	radix_tree_init_tree(t);
   1160        1.1    yamt 	radix_tree_dump(t);
   1161        1.1    yamt 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1162        1.1    yamt 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1163  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
   1164  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1165  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1166  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1167  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1168  1.17.44.1  martin 	    0);
   1169  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1170  1.17.44.1  martin 	    0);
   1171  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1172  1.17.44.1  martin 	    == 0);
   1173  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1174  1.17.44.1  martin 	    == 0);
   1175  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1176  1.17.44.1  martin 	    == 0);
   1177  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1178  1.17.44.1  martin 	    == 0);
   1179  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
   1180  1.17.44.1  martin 	    == 0);
   1181  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
   1182       1.15    yamt 	    == 0);
   1183  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1184  1.17.44.1  martin 	    false, 1) == 0);
   1185  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1186  1.17.44.1  martin 	    true, 1) == 0);
   1187       1.15    yamt 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1188  1.17.44.1  martin 	    false, 1) == 0);
   1189  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1190  1.17.44.1  martin 	    true, 1) == 0);
   1191       1.15    yamt 	assert(radix_tree_empty_tree_p(t));
   1192       1.16    yamt 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1193  1.17.44.1  martin 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1194       1.15    yamt 	assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
   1195       1.15    yamt 	assert(!radix_tree_empty_tree_p(t));
   1196       1.16    yamt 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1197  1.17.44.1  martin 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1198       1.15    yamt 	assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
   1199       1.15    yamt 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1200       1.15    yamt 	memset(results, 0, sizeof(results));
   1201  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1202  1.17.44.1  martin 	assert(results[0] == (void *)0xdeadbea0);
   1203  1.17.44.1  martin 	memset(results, 0, sizeof(results));
   1204  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1205  1.17.44.1  martin 	assert(results[0] == (void *)0xdeadbea0);
   1206  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1207  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1208  1.17.44.1  martin 	memset(results, 0, sizeof(results));
   1209  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1210  1.17.44.1  martin 	    1);
   1211       1.15    yamt 	assert(results[0] == (void *)0xdeadbea0);
   1212       1.15    yamt 	memset(results, 0, sizeof(results));
   1213  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1214  1.17.44.1  martin 	    1);
   1215       1.15    yamt 	assert(results[0] == (void *)0xdeadbea0);
   1216       1.15    yamt 	memset(results, 0, sizeof(results));
   1217  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1218  1.17.44.1  martin 	    == 1);
   1219       1.15    yamt 	assert(results[0] == (void *)0xdeadbea0);
   1220  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1221  1.17.44.1  martin 	    == 0);
   1222  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1223       1.15    yamt 	    == 0);
   1224  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1225       1.15    yamt 	    == 0);
   1226  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1227  1.17.44.1  martin 	    false, 1) == 0);
   1228  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1229  1.17.44.1  martin 	    true, 1) == 0);
   1230        1.1    yamt 	assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
   1231       1.15    yamt 	assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
   1232       1.15    yamt 	assert(!radix_tree_empty_tree_p(t));
   1233        1.1    yamt 	radix_tree_dump(t);
   1234       1.15    yamt 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1235       1.15    yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1236       1.15    yamt 	memset(results, 0, sizeof(results));
   1237  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1238       1.15    yamt 	assert(results[0] == (void *)0xdeadbea0);
   1239  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1240       1.15    yamt 	memset(results, 0, sizeof(results));
   1241  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
   1242       1.15    yamt 	assert(results[0] == (void *)0xdeadbea0);
   1243       1.15    yamt 	memset(results, 0, sizeof(results));
   1244  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
   1245       1.15    yamt 	assert(results[0] == (void *)0xdeadbea0);
   1246  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
   1247       1.15    yamt 	    == 0);
   1248  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
   1249       1.15    yamt 	    == 0);
   1250  1.17.44.1  martin 	memset(results, 0, sizeof(results));
   1251  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1252  1.17.44.1  martin 	    == 1);
   1253  1.17.44.1  martin 	memset(results, 0, sizeof(results));
   1254  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1255  1.17.44.1  martin 	    == 1);
   1256  1.17.44.1  martin 	assert(results[0] == (void *)0xdeadbea0);
   1257  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1258  1.17.44.1  martin 	    == 0);
   1259  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1260  1.17.44.1  martin 	    == 0);
   1261  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1262  1.17.44.1  martin 	    false, 1) == 0);
   1263  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1264  1.17.44.1  martin 	    true, 1) == 0);
   1265  1.17.44.1  martin 	assert(!radix_tree_get_tag(t, 1000, 1));
   1266  1.17.44.1  martin 	assert(!radix_tree_get_tag(t, 1000, 2));
   1267  1.17.44.1  martin 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
   1268  1.17.44.1  martin 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1269  1.17.44.1  martin 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1270  1.17.44.1  martin 	radix_tree_set_tag(t, 1000, 2);
   1271        1.1    yamt 	assert(!radix_tree_get_tag(t, 1000, 1));
   1272  1.17.44.1  martin 	assert(radix_tree_get_tag(t, 1000, 2));
   1273  1.17.44.1  martin 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1274       1.16    yamt 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1275  1.17.44.1  martin 	assert(!radix_tree_empty_tagged_tree_p(t, 2));
   1276        1.1    yamt 	radix_tree_dump(t);
   1277        1.1    yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1278        1.1    yamt 	assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
   1279        1.1    yamt 	radix_tree_dump(t);
   1280        1.1    yamt 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1281        1.1    yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1282        1.1    yamt 	assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
   1283        1.1    yamt 	    == 0);
   1284        1.1    yamt 	radix_tree_dump(t);
   1285        1.1    yamt 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1286        1.1    yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1287        1.1    yamt 	assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
   1288        1.1    yamt 	    (void *)0xdea0);
   1289        1.1    yamt 	radix_tree_dump(t);
   1290  1.17.44.1  martin 	assert(!radix_tree_get_tag(t, 0, 2));
   1291  1.17.44.1  martin 	assert(radix_tree_get_tag(t, 1000, 2));
   1292        1.1    yamt 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
   1293  1.17.44.1  martin 	radix_tree_set_tag(t, 0, 2);;
   1294  1.17.44.1  martin 	radix_tree_set_tag(t, UINT64_C(10000000000), 2);
   1295        1.1    yamt 	radix_tree_dump(t);
   1296  1.17.44.1  martin 	assert(radix_tree_get_tag(t, 0, 2));
   1297  1.17.44.1  martin 	assert(radix_tree_get_tag(t, 1000, 2));
   1298  1.17.44.1  martin 	assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1299  1.17.44.1  martin 	radix_tree_clear_tag(t, 0, 2);;
   1300  1.17.44.1  martin 	radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
   1301        1.1    yamt 	radix_tree_dump(t);
   1302  1.17.44.1  martin 	assert(!radix_tree_get_tag(t, 0, 2));
   1303  1.17.44.1  martin 	assert(radix_tree_get_tag(t, 1000, 2));
   1304  1.17.44.1  martin 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1305        1.1    yamt 	radix_tree_dump(t);
   1306        1.1    yamt 	assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
   1307        1.1    yamt 	    (void *)0xdeadbea0);
   1308  1.17.44.1  martin 	assert(!radix_tree_get_tag(t, 1000, 1));
   1309  1.17.44.1  martin 	assert(radix_tree_get_tag(t, 1000, 2));
   1310  1.17.44.1  martin 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1311  1.17.44.1  martin 	memset(results, 0, sizeof(results));
   1312  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
   1313        1.1    yamt 	assert(results[0] == (void *)0xbea0);
   1314        1.1    yamt 	assert(results[1] == (void *)0x12345678);
   1315        1.1    yamt 	assert(results[2] == (void *)0xdea0);
   1316  1.17.44.1  martin 	memset(results, 0, sizeof(results));
   1317  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1318  1.17.44.1  martin 	assert(results[0] == (void *)0xbea0);
   1319  1.17.44.1  martin 	memset(results, 0, sizeof(results));
   1320  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
   1321        1.1    yamt 	assert(results[0] == (void *)0x12345678);
   1322        1.1    yamt 	assert(results[1] == (void *)0xdea0);
   1323  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
   1324  1.17.44.1  martin 	memset(results, 0, sizeof(results));
   1325  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
   1326        1.1    yamt 	assert(results[0] == (void *)0xdea0);
   1327  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
   1328  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1329  1.17.44.1  martin 	    false) == 0);
   1330  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1331  1.17.44.1  martin 	    true) == 0);
   1332  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1333  1.17.44.1  martin 	    3, false) == 0);
   1334        1.1    yamt 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1335  1.17.44.1  martin 	    3, true) == 0);
   1336  1.17.44.1  martin 	memset(results, 0, sizeof(results));
   1337  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
   1338  1.17.44.1  martin 	    == 1);
   1339        1.1    yamt 	assert(results[0] == (void *)0x12345678);
   1340  1.17.44.1  martin 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
   1341  1.17.44.1  martin 	    == 0);
   1342        1.1    yamt 	assert(entry_tagmask(t->t_root) != 0);
   1343        1.1    yamt 	assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
   1344        1.1    yamt 	assert(entry_tagmask(t->t_root) == 0);
   1345        1.1    yamt 	radix_tree_dump(t);
   1346  1.17.44.1  martin 	assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
   1347  1.17.44.1  martin 	    == 0);
   1348  1.17.44.1  martin 	memset(results, 0, sizeof(results));
   1349  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1350  1.17.44.1  martin 	    false) == 2);
   1351  1.17.44.1  martin 	assert(results[0] == (void *)0xdea0);
   1352  1.17.44.1  martin 	assert(results[1] == (void *)0xfff0);
   1353  1.17.44.1  martin 	memset(results, 0, sizeof(results));
   1354  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1355  1.17.44.1  martin 	    true) == 2);
   1356  1.17.44.1  martin 	assert(results[0] == (void *)0xdea0);
   1357  1.17.44.1  martin 	assert(results[1] == (void *)0xfff0);
   1358  1.17.44.1  martin 	memset(results, 0, sizeof(results));
   1359  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1360  1.17.44.1  martin 	    results, 3, false) == 3);
   1361  1.17.44.1  martin 	assert(results[0] == (void *)0xfff0);
   1362  1.17.44.1  martin 	assert(results[1] == (void *)0xdea0);
   1363  1.17.44.1  martin 	assert(results[2] == (void *)0xbea0);
   1364  1.17.44.1  martin 	memset(results, 0, sizeof(results));
   1365  1.17.44.1  martin 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1366  1.17.44.1  martin 	    results, 3, true) == 2);
   1367  1.17.44.1  martin 	assert(results[0] == (void *)0xfff0);
   1368  1.17.44.1  martin 	assert(results[1] == (void *)0xdea0);
   1369        1.1    yamt 	assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
   1370        1.1    yamt 	    (void *)0xdea0);
   1371  1.17.44.1  martin 	assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
   1372  1.17.44.1  martin 	    (void *)0xfff0);
   1373        1.1    yamt 	radix_tree_dump(t);
   1374        1.1    yamt 	assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
   1375        1.1    yamt 	radix_tree_dump(t);
   1376        1.1    yamt 	radix_tree_fini_tree(t);
   1377        1.1    yamt }
   1378        1.1    yamt 
   1379        1.1    yamt #include <sys/time.h>
   1380        1.1    yamt 
   1381        1.1    yamt struct testnode {
   1382        1.1    yamt 	uint64_t idx;
   1383       1.12    yamt 	bool tagged[RADIX_TREE_TAG_ID_MAX];
   1384        1.1    yamt };
   1385        1.1    yamt 
   1386        1.1    yamt static void
   1387       1.11    yamt printops(const char *title, const char *name, int tag, unsigned int n,
   1388       1.11    yamt     const struct timeval *stv, const struct timeval *etv)
   1389        1.1    yamt {
   1390        1.1    yamt 	uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
   1391        1.1    yamt 	uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
   1392        1.1    yamt 
   1393       1.11    yamt 	printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
   1394       1.11    yamt 	    (double)n / (e - s) * 1000000);
   1395        1.1    yamt }
   1396        1.1    yamt 
   1397        1.1    yamt #define	TEST2_GANG_LOOKUP_NODES	16
   1398        1.1    yamt 
   1399        1.1    yamt static bool
   1400  1.17.44.1  martin test2_should_tag(unsigned int i, unsigned int tagid)
   1401        1.1    yamt {
   1402        1.1    yamt 
   1403        1.1    yamt 	if (tagid == 0) {
   1404  1.17.44.1  martin 		return (i % 4) == 0;	/* 25% */
   1405        1.1    yamt 	} else {
   1406       1.11    yamt 		return (i % 7) == 0;	/* 14% */
   1407        1.1    yamt 	}
   1408  1.17.44.1  martin 	return 1;
   1409  1.17.44.1  martin }
   1410  1.17.44.1  martin 
   1411  1.17.44.1  martin static void
   1412  1.17.44.1  martin check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
   1413  1.17.44.1  martin     unsigned int count)
   1414  1.17.44.1  martin {
   1415  1.17.44.1  martin 	unsigned int tag;
   1416  1.17.44.1  martin 
   1417  1.17.44.1  martin 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1418  1.17.44.1  martin 		if ((tagmask & (1 << tag)) == 0) {
   1419  1.17.44.1  martin 			continue;
   1420  1.17.44.1  martin 		}
   1421  1.17.44.1  martin 		if (((tagmask - 1) & tagmask) == 0) {
   1422  1.17.44.1  martin 			assert(count == ntagged[tag]);
   1423  1.17.44.1  martin 		} else {
   1424  1.17.44.1  martin 			assert(count >= ntagged[tag]);
   1425  1.17.44.1  martin 		}
   1426  1.17.44.1  martin 	}
   1427        1.1    yamt }
   1428        1.1    yamt 
   1429        1.1    yamt static void
   1430       1.11    yamt test2(const char *title, bool dense)
   1431        1.1    yamt {
   1432        1.1    yamt 	struct radix_tree s;
   1433        1.1    yamt 	struct radix_tree *t = &s;
   1434        1.1    yamt 	struct testnode *n;
   1435        1.1    yamt 	unsigned int i;
   1436        1.1    yamt 	unsigned int nnodes = 100000;
   1437        1.1    yamt 	unsigned int removed;
   1438  1.17.44.1  martin 	unsigned int tag;
   1439  1.17.44.1  martin 	unsigned int tagmask;
   1440        1.1    yamt 	unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
   1441        1.1    yamt 	struct testnode *nodes;
   1442        1.1    yamt 	struct timeval stv;
   1443        1.1    yamt 	struct timeval etv;
   1444        1.1    yamt 
   1445        1.1    yamt 	nodes = malloc(nnodes * sizeof(*nodes));
   1446        1.1    yamt 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1447        1.1    yamt 		ntagged[tag] = 0;
   1448        1.1    yamt 	}
   1449        1.1    yamt 	radix_tree_init_tree(t);
   1450        1.1    yamt 	for (i = 0; i < nnodes; i++) {
   1451        1.1    yamt 		n = &nodes[i];
   1452        1.1    yamt 		n->idx = random();
   1453        1.1    yamt 		if (sizeof(long) == 4) {
   1454        1.1    yamt 			n->idx <<= 32;
   1455        1.1    yamt 			n->idx |= (uint32_t)random();
   1456        1.1    yamt 		}
   1457        1.1    yamt 		if (dense) {
   1458        1.1    yamt 			n->idx %= nnodes * 2;
   1459        1.1    yamt 		}
   1460        1.1    yamt 		while (radix_tree_lookup_node(t, n->idx) != NULL) {
   1461        1.1    yamt 			n->idx++;
   1462        1.1    yamt 		}
   1463        1.1    yamt 		radix_tree_insert_node(t, n->idx, n);
   1464        1.1    yamt 		for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1465  1.17.44.1  martin 			tagmask = 1 << tag;
   1466  1.17.44.1  martin 
   1467       1.12    yamt 			n->tagged[tag] = test2_should_tag(i, tag);
   1468       1.12    yamt 			if (n->tagged[tag]) {
   1469  1.17.44.1  martin 				radix_tree_set_tag(t, n->idx, tagmask);
   1470        1.1    yamt 				ntagged[tag]++;
   1471        1.1    yamt 			}
   1472  1.17.44.1  martin 			assert((n->tagged[tag] ? tagmask : 0) ==
   1473  1.17.44.1  martin 			    radix_tree_get_tag(t, n->idx, tagmask));
   1474        1.1    yamt 		}
   1475        1.1    yamt 	}
   1476        1.1    yamt 
   1477        1.1    yamt 	gettimeofday(&stv, NULL);
   1478        1.1    yamt 	for (i = 0; i < nnodes; i++) {
   1479        1.1    yamt 		n = &nodes[i];
   1480        1.1    yamt 		assert(radix_tree_lookup_node(t, n->idx) == n);
   1481        1.1    yamt 	}
   1482        1.1    yamt 	gettimeofday(&etv, NULL);
   1483       1.11    yamt 	printops(title, "lookup", 0, nnodes, &stv, &etv);
   1484        1.1    yamt 
   1485  1.17.44.1  martin 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1486       1.12    yamt 		unsigned int count = 0;
   1487       1.12    yamt 
   1488        1.1    yamt 		gettimeofday(&stv, NULL);
   1489        1.1    yamt 		for (i = 0; i < nnodes; i++) {
   1490  1.17.44.1  martin 			unsigned int tagged;
   1491       1.12    yamt 
   1492        1.1    yamt 			n = &nodes[i];
   1493  1.17.44.1  martin 			tagged = radix_tree_get_tag(t, n->idx, tagmask);
   1494  1.17.44.1  martin 			assert((tagged & ~tagmask) == 0);
   1495  1.17.44.1  martin 			for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1496  1.17.44.1  martin 				assert((tagmask & (1 << tag)) == 0 ||
   1497  1.17.44.1  martin 				    n->tagged[tag] == !!(tagged & (1 << tag)));
   1498  1.17.44.1  martin 			}
   1499       1.12    yamt 			if (tagged) {
   1500       1.12    yamt 				count++;
   1501       1.12    yamt 			}
   1502        1.1    yamt 		}
   1503        1.1    yamt 		gettimeofday(&etv, NULL);
   1504  1.17.44.1  martin 		check_tag_count(ntagged, tagmask, count);
   1505  1.17.44.1  martin 		printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
   1506        1.1    yamt 	}
   1507        1.1    yamt 
   1508        1.1    yamt 	gettimeofday(&stv, NULL);
   1509        1.1    yamt 	for (i = 0; i < nnodes; i++) {
   1510        1.1    yamt 		n = &nodes[i];
   1511        1.1    yamt 		radix_tree_remove_node(t, n->idx);
   1512        1.1    yamt 	}
   1513        1.1    yamt 	gettimeofday(&etv, NULL);
   1514       1.11    yamt 	printops(title, "remove", 0, nnodes, &stv, &etv);
   1515        1.1    yamt 
   1516        1.1    yamt 	gettimeofday(&stv, NULL);
   1517        1.1    yamt 	for (i = 0; i < nnodes; i++) {
   1518        1.1    yamt 		n = &nodes[i];
   1519        1.1    yamt 		radix_tree_insert_node(t, n->idx, n);
   1520        1.1    yamt 	}
   1521        1.1    yamt 	gettimeofday(&etv, NULL);
   1522       1.11    yamt 	printops(title, "insert", 0, nnodes, &stv, &etv);
   1523        1.1    yamt 
   1524        1.1    yamt 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1525  1.17.44.1  martin 		tagmask = 1 << tag;
   1526  1.17.44.1  martin 
   1527        1.1    yamt 		ntagged[tag] = 0;
   1528        1.1    yamt 		gettimeofday(&stv, NULL);
   1529        1.1    yamt 		for (i = 0; i < nnodes; i++) {
   1530        1.1    yamt 			n = &nodes[i];
   1531       1.12    yamt 			if (n->tagged[tag]) {
   1532  1.17.44.1  martin 				radix_tree_set_tag(t, n->idx, tagmask);
   1533        1.1    yamt 				ntagged[tag]++;
   1534        1.1    yamt 			}
   1535        1.1    yamt 		}
   1536        1.1    yamt 		gettimeofday(&etv, NULL);
   1537       1.11    yamt 		printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
   1538        1.1    yamt 	}
   1539        1.1    yamt 
   1540        1.1    yamt 	gettimeofday(&stv, NULL);
   1541        1.1    yamt 	{
   1542        1.1    yamt 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1543        1.1    yamt 		uint64_t nextidx;
   1544        1.1    yamt 		unsigned int nfound;
   1545        1.1    yamt 		unsigned int total;
   1546        1.1    yamt 
   1547        1.1    yamt 		nextidx = 0;
   1548        1.1    yamt 		total = 0;
   1549        1.1    yamt 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1550  1.17.44.1  martin 		    (void *)results, __arraycount(results), false)) > 0) {
   1551        1.1    yamt 			nextidx = results[nfound - 1]->idx + 1;
   1552        1.1    yamt 			total += nfound;
   1553       1.15    yamt 			if (nextidx == 0) {
   1554       1.15    yamt 				break;
   1555       1.15    yamt 			}
   1556        1.1    yamt 		}
   1557        1.1    yamt 		assert(total == nnodes);
   1558        1.1    yamt 	}
   1559        1.1    yamt 	gettimeofday(&etv, NULL);
   1560       1.11    yamt 	printops(title, "ganglookup", 0, nnodes, &stv, &etv);
   1561        1.1    yamt 
   1562       1.15    yamt 	gettimeofday(&stv, NULL);
   1563       1.15    yamt 	{
   1564       1.15    yamt 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1565       1.15    yamt 		uint64_t nextidx;
   1566       1.15    yamt 		unsigned int nfound;
   1567       1.15    yamt 		unsigned int total;
   1568       1.15    yamt 
   1569       1.15    yamt 		nextidx = UINT64_MAX;
   1570       1.15    yamt 		total = 0;
   1571       1.15    yamt 		while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
   1572  1.17.44.1  martin 		    (void *)results, __arraycount(results), false)) > 0) {
   1573       1.15    yamt 			nextidx = results[nfound - 1]->idx - 1;
   1574       1.15    yamt 			total += nfound;
   1575       1.15    yamt 			if (nextidx == UINT64_MAX) {
   1576       1.15    yamt 				break;
   1577       1.15    yamt 			}
   1578       1.15    yamt 		}
   1579       1.15    yamt 		assert(total == nnodes);
   1580       1.15    yamt 	}
   1581       1.15    yamt 	gettimeofday(&etv, NULL);
   1582       1.15    yamt 	printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
   1583       1.15    yamt 
   1584  1.17.44.1  martin 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1585  1.17.44.1  martin 		unsigned int total = 0;
   1586  1.17.44.1  martin 
   1587        1.1    yamt 		gettimeofday(&stv, NULL);
   1588        1.1    yamt 		{
   1589        1.1    yamt 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1590        1.1    yamt 			uint64_t nextidx;
   1591        1.1    yamt 			unsigned int nfound;
   1592        1.1    yamt 
   1593        1.1    yamt 			nextidx = 0;
   1594        1.1    yamt 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1595        1.1    yamt 			    nextidx, (void *)results, __arraycount(results),
   1596  1.17.44.1  martin 			    false, tagmask)) > 0) {
   1597        1.1    yamt 				nextidx = results[nfound - 1]->idx + 1;
   1598        1.1    yamt 				total += nfound;
   1599        1.1    yamt 			}
   1600        1.1    yamt 		}
   1601        1.1    yamt 		gettimeofday(&etv, NULL);
   1602  1.17.44.1  martin 		check_tag_count(ntagged, tagmask, total);
   1603  1.17.44.1  martin 		assert(tagmask != 0 || total == 0);
   1604  1.17.44.1  martin 		printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
   1605        1.1    yamt 	}
   1606        1.1    yamt 
   1607  1.17.44.1  martin 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1608  1.17.44.1  martin 		unsigned int total = 0;
   1609  1.17.44.1  martin 
   1610       1.15    yamt 		gettimeofday(&stv, NULL);
   1611       1.15    yamt 		{
   1612       1.15    yamt 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1613       1.15    yamt 			uint64_t nextidx;
   1614       1.15    yamt 			unsigned int nfound;
   1615       1.15    yamt 
   1616       1.15    yamt 			nextidx = UINT64_MAX;
   1617       1.15    yamt 			while ((nfound =
   1618       1.15    yamt 			    radix_tree_gang_lookup_tagged_node_reverse(t,
   1619       1.15    yamt 			    nextidx, (void *)results, __arraycount(results),
   1620  1.17.44.1  martin 			    false, tagmask)) > 0) {
   1621       1.15    yamt 				nextidx = results[nfound - 1]->idx - 1;
   1622       1.15    yamt 				total += nfound;
   1623       1.15    yamt 				if (nextidx == UINT64_MAX) {
   1624       1.15    yamt 					break;
   1625       1.15    yamt 				}
   1626       1.15    yamt 			}
   1627       1.15    yamt 		}
   1628       1.15    yamt 		gettimeofday(&etv, NULL);
   1629  1.17.44.1  martin 		check_tag_count(ntagged, tagmask, total);
   1630  1.17.44.1  martin 		assert(tagmask != 0 || total == 0);
   1631  1.17.44.1  martin 		printops(title, "ganglookup_tag_reverse", tagmask, total,
   1632       1.15    yamt 		    &stv, &etv);
   1633       1.15    yamt 	}
   1634       1.15    yamt 
   1635        1.1    yamt 	removed = 0;
   1636        1.1    yamt 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1637        1.1    yamt 		unsigned int total;
   1638        1.1    yamt 
   1639        1.1    yamt 		total = 0;
   1640  1.17.44.1  martin 		tagmask = 1 << tag;
   1641        1.1    yamt 		gettimeofday(&stv, NULL);
   1642        1.1    yamt 		{
   1643        1.1    yamt 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1644        1.1    yamt 			uint64_t nextidx;
   1645        1.1    yamt 			unsigned int nfound;
   1646        1.1    yamt 
   1647        1.1    yamt 			nextidx = 0;
   1648        1.1    yamt 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1649        1.1    yamt 			    nextidx, (void *)results, __arraycount(results),
   1650  1.17.44.1  martin 			    false, tagmask)) > 0) {
   1651        1.1    yamt 				for (i = 0; i < nfound; i++) {
   1652        1.1    yamt 					radix_tree_remove_node(t,
   1653        1.1    yamt 					    results[i]->idx);
   1654        1.1    yamt 				}
   1655        1.1    yamt 				nextidx = results[nfound - 1]->idx + 1;
   1656        1.1    yamt 				total += nfound;
   1657       1.15    yamt 				if (nextidx == 0) {
   1658       1.15    yamt 					break;
   1659       1.15    yamt 				}
   1660        1.1    yamt 			}
   1661        1.1    yamt 		}
   1662        1.1    yamt 		gettimeofday(&etv, NULL);
   1663  1.17.44.1  martin 		if (tag == 0) {
   1664  1.17.44.1  martin 			check_tag_count(ntagged, tagmask, total);
   1665  1.17.44.1  martin 		} else {
   1666  1.17.44.1  martin 			assert(total <= ntagged[tag]);
   1667  1.17.44.1  martin 		}
   1668  1.17.44.1  martin 		printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
   1669       1.11    yamt 		    &etv);
   1670        1.1    yamt 		removed += total;
   1671        1.1    yamt 	}
   1672        1.1    yamt 
   1673        1.1    yamt 	gettimeofday(&stv, NULL);
   1674        1.1    yamt 	{
   1675        1.1    yamt 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1676        1.1    yamt 		uint64_t nextidx;
   1677        1.1    yamt 		unsigned int nfound;
   1678        1.1    yamt 		unsigned int total;
   1679        1.1    yamt 
   1680        1.1    yamt 		nextidx = 0;
   1681        1.1    yamt 		total = 0;
   1682        1.1    yamt 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1683  1.17.44.1  martin 		    (void *)results, __arraycount(results), false)) > 0) {
   1684        1.1    yamt 			for (i = 0; i < nfound; i++) {
   1685        1.1    yamt 				assert(results[i] == radix_tree_remove_node(t,
   1686        1.1    yamt 				    results[i]->idx));
   1687        1.1    yamt 			}
   1688        1.1    yamt 			nextidx = results[nfound - 1]->idx + 1;
   1689        1.1    yamt 			total += nfound;
   1690       1.15    yamt 			if (nextidx == 0) {
   1691       1.15    yamt 				break;
   1692       1.15    yamt 			}
   1693        1.1    yamt 		}
   1694        1.1    yamt 		assert(total == nnodes - removed);
   1695        1.1    yamt 	}
   1696        1.1    yamt 	gettimeofday(&etv, NULL);
   1697       1.11    yamt 	printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
   1698        1.1    yamt 
   1699       1.16    yamt 	assert(radix_tree_empty_tree_p(t));
   1700  1.17.44.1  martin 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1701  1.17.44.1  martin 		assert(radix_tree_empty_tagged_tree_p(t, tagmask));
   1702  1.17.44.1  martin 	}
   1703        1.1    yamt 	radix_tree_fini_tree(t);
   1704        1.1    yamt 	free(nodes);
   1705        1.1    yamt }
   1706        1.1    yamt 
   1707        1.1    yamt int
   1708        1.1    yamt main(int argc, char *argv[])
   1709        1.1    yamt {
   1710        1.1    yamt 
   1711        1.1    yamt 	test1();
   1712       1.11    yamt 	test2("dense", true);
   1713       1.11    yamt 	test2("sparse", false);
   1714        1.1    yamt 	return 0;
   1715        1.1    yamt }
   1716        1.1    yamt 
   1717        1.1    yamt #endif /* defined(UNITTEST) */
   1718