Home | History | Annotate | Line # | Download | only in gen
radixtree.c revision 1.22
      1  1.22    ad /*	$NetBSD: radixtree.c,v 1.22 2020/01/28 16:33:34 ad Exp $	*/
      2   1.1  yamt 
      3   1.1  yamt /*-
      4  1.18    ad  * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
      5   1.1  yamt  * All rights reserved.
      6   1.1  yamt  *
      7   1.1  yamt  * Redistribution and use in source and binary forms, with or without
      8   1.1  yamt  * modification, are permitted provided that the following conditions
      9   1.1  yamt  * are met:
     10   1.1  yamt  * 1. Redistributions of source code must retain the above copyright
     11   1.1  yamt  *    notice, this list of conditions and the following disclaimer.
     12   1.1  yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  yamt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  yamt  *    documentation and/or other materials provided with the distribution.
     15   1.1  yamt  *
     16   1.1  yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1  yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1  yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1  yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1  yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1  yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1  yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1  yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1  yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1  yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1  yamt  * SUCH DAMAGE.
     27   1.1  yamt  */
     28   1.1  yamt 
     29   1.1  yamt /*
     30  1.17  yamt  * radixtree.c
     31   1.1  yamt  *
     32  1.18    ad  * Overview:
     33  1.18    ad  *
     34  1.18    ad  * This is an implementation of radix tree, whose keys are uint64_t and leafs
     35  1.17  yamt  * are user provided pointers.
     36  1.17  yamt  *
     37  1.18    ad  * Leaf nodes are just void * and this implementation doesn't care about
     38  1.18    ad  * what they actually point to.  However, this implementation has an assumption
     39  1.18    ad  * about their alignment.  Specifically, this implementation assumes that their
     40  1.18    ad  * 2 LSBs are always zero and uses them for internal accounting.
     41  1.18    ad  *
     42  1.18    ad  * Intermediate nodes and memory allocation:
     43  1.18    ad  *
     44  1.18    ad  * Intermediate nodes are automatically allocated and freed internally and
     45  1.18    ad  * basically users don't need to care about them.  The allocation is done via
     46  1.18    ad  * pool_cache_get(9) for _KERNEL, malloc(3) for userland, and alloc() for
     47  1.18    ad  * _STANDALONE environment.  Only radix_tree_insert_node function can allocate
     48  1.18    ad  * memory for intermediate nodes and thus can fail for ENOMEM.
     49  1.18    ad  *
     50  1.18    ad  * Memory Efficiency:
     51  1.18    ad  *
     52  1.18    ad  * It's designed to work efficiently with dense index distribution.
     53  1.18    ad  * The memory consumption (number of necessary intermediate nodes) heavily
     54  1.18    ad  * depends on the index distribution.  Basically, more dense index distribution
     55  1.18    ad  * consumes less nodes per item.  Approximately,
     56  1.18    ad  *
     57  1.18    ad  *  - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
     58  1.18    ad  *    it would look like the following.
     59  1.18    ad  *
     60  1.18    ad  *     root (t_height=1)
     61  1.18    ad  *      |
     62  1.18    ad  *      v
     63  1.18    ad  *      [ | | | ]   (intermediate node.  RADIX_TREE_PTR_PER_NODE=4 in this fig)
     64  1.18    ad  *       | | | |
     65  1.18    ad  *       v v v v
     66  1.18    ad  *       p p p p    (items)
     67  1.18    ad  *
     68  1.18    ad  *  - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
     69  1.18    ad  *    it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
     70  1.18    ad  *
     71  1.18    ad  *     root (t_height=3)
     72  1.18    ad  *      |
     73  1.18    ad  *      v
     74  1.18    ad  *      [ | | | ]
     75  1.18    ad  *           |
     76  1.18    ad  *           v
     77  1.18    ad  *           [ | | | ]
     78  1.18    ad  *                |
     79  1.18    ad  *                v
     80  1.18    ad  *                [ | | | ]
     81  1.18    ad  *                   |
     82  1.18    ad  *                   v
     83  1.18    ad  *                   p
     84  1.18    ad  *
     85  1.18    ad  * The height of tree (t_height) is dynamic.  It's smaller if only small
     86  1.18    ad  * index values are used.  As an extreme case, if only index 0 is used,
     87  1.18    ad  * the corresponding value is directly stored in the root of the tree
     88  1.18    ad  * (struct radix_tree) without allocating any intermediate nodes.  In that
     89  1.18    ad  * case, t_height=0.
     90  1.18    ad  *
     91  1.18    ad  * Gang lookup:
     92  1.17  yamt  *
     93  1.18    ad  * This implementation provides a way to scan many nodes quickly via
     94  1.17  yamt  * radix_tree_gang_lookup_node function and its varients.
     95  1.17  yamt  *
     96  1.18    ad  * Tags:
     97  1.18    ad  *
     98  1.18    ad  * This implementation provides tagging functionality, which allows quick
     99  1.18    ad  * scanning of a subset of leaf nodes.  Leaf nodes are untagged when inserted
    100  1.18    ad  * into the tree and can be tagged by radix_tree_set_tag function.
    101  1.18    ad  * radix_tree_gang_lookup_tagged_node function and its variants returns only
    102  1.18    ad  * leaf nodes with the given tag.  To reduce amount of nodes to visit for
    103  1.17  yamt  * these functions, this implementation keeps tagging information in internal
    104  1.17  yamt  * intermediate nodes and quickly skips uninterested parts of a tree.
    105  1.18    ad  *
    106  1.18    ad  * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
    107  1.18    ad  * identified by an zero-origin numbers, tagid.  For the current implementation,
    108  1.18    ad  * RADIX_TREE_TAG_ID_MAX is 2.  A set of tags is described as a bitmask tagmask,
    109  1.18    ad  * which is a bitwise OR of (1 << tagid).
    110   1.1  yamt  */
    111   1.1  yamt 
    112   1.1  yamt #include <sys/cdefs.h>
    113   1.1  yamt 
    114   1.2  yamt #if defined(_KERNEL) || defined(_STANDALONE)
    115  1.22    ad __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.22 2020/01/28 16:33:34 ad Exp $");
    116   1.1  yamt #include <sys/param.h>
    117   1.3  yamt #include <sys/errno.h>
    118   1.1  yamt #include <sys/pool.h>
    119   1.1  yamt #include <sys/radixtree.h>
    120   1.3  yamt #include <lib/libkern/libkern.h>
    121   1.3  yamt #if defined(_STANDALONE)
    122   1.3  yamt #include <lib/libsa/stand.h>
    123   1.3  yamt #endif /* defined(_STANDALONE) */
    124   1.2  yamt #else /* defined(_KERNEL) || defined(_STANDALONE) */
    125  1.22    ad __RCSID("$NetBSD: radixtree.c,v 1.22 2020/01/28 16:33:34 ad Exp $");
    126   1.1  yamt #include <assert.h>
    127   1.1  yamt #include <errno.h>
    128   1.1  yamt #include <stdbool.h>
    129   1.1  yamt #include <stdlib.h>
    130   1.8  yamt #include <string.h>
    131   1.1  yamt #if 1
    132   1.1  yamt #define KASSERT assert
    133   1.1  yamt #else
    134   1.1  yamt #define KASSERT(a)	/* nothing */
    135   1.1  yamt #endif
    136   1.2  yamt #endif /* defined(_KERNEL) || defined(_STANDALONE) */
    137   1.1  yamt 
    138   1.1  yamt #include <sys/radixtree.h>
    139   1.1  yamt 
    140   1.1  yamt #define	RADIX_TREE_BITS_PER_HEIGHT	4	/* XXX tune */
    141   1.1  yamt #define	RADIX_TREE_PTR_PER_NODE		(1 << RADIX_TREE_BITS_PER_HEIGHT)
    142   1.1  yamt #define	RADIX_TREE_MAX_HEIGHT		(64 / RADIX_TREE_BITS_PER_HEIGHT)
    143  1.15  yamt #define	RADIX_TREE_INVALID_HEIGHT	(RADIX_TREE_MAX_HEIGHT + 1)
    144   1.2  yamt __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
    145   1.1  yamt 
    146   1.2  yamt __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
    147   1.1  yamt #define	RADIX_TREE_TAG_MASK	((1 << RADIX_TREE_TAG_ID_MAX) - 1)
    148   1.1  yamt 
    149   1.1  yamt static inline void *
    150   1.1  yamt entry_ptr(void *p)
    151   1.1  yamt {
    152   1.1  yamt 
    153   1.1  yamt 	return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
    154   1.1  yamt }
    155   1.1  yamt 
    156   1.1  yamt static inline unsigned int
    157   1.1  yamt entry_tagmask(void *p)
    158   1.1  yamt {
    159   1.1  yamt 
    160   1.1  yamt 	return (uintptr_t)p & RADIX_TREE_TAG_MASK;
    161   1.1  yamt }
    162   1.1  yamt 
    163   1.1  yamt static inline void *
    164   1.1  yamt entry_compose(void *p, unsigned int tagmask)
    165   1.1  yamt {
    166   1.1  yamt 
    167   1.1  yamt 	return (void *)((uintptr_t)p | tagmask);
    168   1.1  yamt }
    169   1.1  yamt 
    170   1.1  yamt static inline bool
    171   1.1  yamt entry_match_p(void *p, unsigned int tagmask)
    172   1.1  yamt {
    173   1.1  yamt 
    174   1.1  yamt 	KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
    175   1.1  yamt 	if (p == NULL) {
    176   1.1  yamt 		return false;
    177   1.1  yamt 	}
    178   1.1  yamt 	if (tagmask == 0) {
    179   1.1  yamt 		return true;
    180   1.1  yamt 	}
    181   1.1  yamt 	return (entry_tagmask(p) & tagmask) != 0;
    182   1.1  yamt }
    183   1.1  yamt 
    184   1.1  yamt /*
    185   1.1  yamt  * radix_tree_node: an intermediate node
    186   1.1  yamt  *
    187   1.1  yamt  * we don't care the type of leaf nodes.  they are just void *.
    188  1.19    ad  *
    189  1.19    ad  * we used to maintain a count of non-NULL nodes in this structure, but it
    190  1.19    ad  * prevented it from being aligned to a cache line boundary; the performance
    191  1.19    ad  * benefit from being cache friendly is greater than the benefit of having
    192  1.19    ad  * a dedicated count value, especially in multi-processor situations where
    193  1.19    ad  * we need to avoid intra-pool-page false sharing.
    194   1.1  yamt  */
    195   1.1  yamt 
    196   1.1  yamt struct radix_tree_node {
    197   1.1  yamt 	void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
    198   1.1  yamt };
    199   1.1  yamt 
    200   1.7  yamt /*
    201   1.7  yamt  * any_children_tagmask:
    202   1.7  yamt  *
    203   1.7  yamt  * return OR'ed tagmask of the given node's children.
    204   1.7  yamt  */
    205   1.7  yamt 
    206   1.1  yamt static unsigned int
    207  1.13  yamt any_children_tagmask(const struct radix_tree_node *n)
    208   1.1  yamt {
    209   1.1  yamt 	unsigned int mask;
    210   1.1  yamt 	int i;
    211   1.1  yamt 
    212   1.1  yamt 	mask = 0;
    213   1.1  yamt 	for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    214   1.1  yamt 		mask |= (unsigned int)(uintptr_t)n->n_ptrs[i];
    215   1.1  yamt 	}
    216   1.1  yamt 	return mask & RADIX_TREE_TAG_MASK;
    217   1.1  yamt }
    218   1.1  yamt 
    219   1.1  yamt /*
    220   1.1  yamt  * p_refs[0].pptr == &t->t_root
    221   1.1  yamt  *	:
    222   1.1  yamt  * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
    223   1.1  yamt  *	:
    224   1.1  yamt  *	:
    225   1.1  yamt  * p_refs[t->t_height].pptr == &leaf_pointer
    226   1.1  yamt  */
    227   1.1  yamt 
    228   1.1  yamt struct radix_tree_path {
    229   1.1  yamt 	struct radix_tree_node_ref {
    230   1.1  yamt 		void **pptr;
    231   1.1  yamt 	} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
    232  1.15  yamt 	/*
    233  1.15  yamt 	 * p_lastidx is either the index of the last valid element of p_refs[]
    234  1.15  yamt 	 * or RADIX_TREE_INVALID_HEIGHT.
    235  1.15  yamt 	 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
    236  1.15  yamt 	 * that the height of the tree is not enough to cover the given index.
    237  1.15  yamt 	 */
    238  1.10  yamt 	unsigned int p_lastidx;
    239   1.1  yamt };
    240   1.1  yamt 
    241   1.1  yamt static inline void **
    242  1.13  yamt path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
    243   1.1  yamt     unsigned int height)
    244   1.1  yamt {
    245   1.1  yamt 
    246   1.1  yamt 	KASSERT(height <= t->t_height);
    247   1.1  yamt 	return p->p_refs[height].pptr;
    248   1.1  yamt }
    249   1.1  yamt 
    250   1.1  yamt static inline struct radix_tree_node *
    251  1.13  yamt path_node(const struct radix_tree * t, const struct radix_tree_path *p,
    252  1.13  yamt     unsigned int height)
    253   1.1  yamt {
    254   1.1  yamt 
    255   1.1  yamt 	KASSERT(height <= t->t_height);
    256   1.1  yamt 	return entry_ptr(*path_pptr(t, p, height));
    257   1.1  yamt }
    258   1.1  yamt 
    259   1.1  yamt /*
    260   1.1  yamt  * radix_tree_init_tree:
    261   1.1  yamt  *
    262  1.18    ad  * Initialize a tree.
    263   1.1  yamt  */
    264   1.1  yamt 
    265   1.1  yamt void
    266   1.1  yamt radix_tree_init_tree(struct radix_tree *t)
    267   1.1  yamt {
    268   1.1  yamt 
    269   1.1  yamt 	t->t_height = 0;
    270   1.1  yamt 	t->t_root = NULL;
    271   1.1  yamt }
    272   1.1  yamt 
    273   1.1  yamt /*
    274  1.18    ad  * radix_tree_fini_tree:
    275   1.1  yamt  *
    276  1.18    ad  * Finish using a tree.
    277   1.1  yamt  */
    278   1.1  yamt 
    279   1.1  yamt void
    280   1.1  yamt radix_tree_fini_tree(struct radix_tree *t)
    281   1.1  yamt {
    282   1.1  yamt 
    283   1.1  yamt 	KASSERT(t->t_root == NULL);
    284   1.1  yamt 	KASSERT(t->t_height == 0);
    285   1.1  yamt }
    286   1.1  yamt 
    287  1.18    ad /*
    288  1.18    ad  * radix_tree_empty_tree_p:
    289  1.18    ad  *
    290  1.18    ad  * Return if the tree is empty.
    291  1.18    ad  */
    292  1.18    ad 
    293   1.9  yamt bool
    294   1.9  yamt radix_tree_empty_tree_p(struct radix_tree *t)
    295   1.9  yamt {
    296   1.9  yamt 
    297   1.9  yamt 	return t->t_root == NULL;
    298   1.9  yamt }
    299   1.9  yamt 
    300  1.18    ad /*
    301  1.18    ad  * radix_tree_empty_tree_p:
    302  1.18    ad  *
    303  1.18    ad  * Return true if the tree has any nodes with the given tag.  Otherwise
    304  1.18    ad  * return false.
    305  1.18    ad  *
    306  1.18    ad  * It's illegal to call this function with tagmask 0.
    307  1.18    ad  */
    308  1.18    ad 
    309  1.16  yamt bool
    310  1.18    ad radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
    311  1.16  yamt {
    312  1.16  yamt 
    313  1.18    ad 	KASSERT(tagmask != 0);
    314  1.16  yamt 	return (entry_tagmask(t->t_root) & tagmask) == 0;
    315  1.16  yamt }
    316  1.16  yamt 
    317   1.3  yamt static void
    318   1.3  yamt radix_tree_node_init(struct radix_tree_node *n)
    319   1.3  yamt {
    320   1.3  yamt 
    321   1.3  yamt 	memset(n, 0, sizeof(*n));
    322   1.3  yamt }
    323   1.3  yamt 
    324   1.1  yamt #if defined(_KERNEL)
    325   1.2  yamt pool_cache_t radix_tree_node_cache __read_mostly;
    326   1.1  yamt 
    327   1.1  yamt static int
    328   1.1  yamt radix_tree_node_ctor(void *dummy, void *item, int flags)
    329   1.1  yamt {
    330   1.1  yamt 	struct radix_tree_node *n = item;
    331   1.1  yamt 
    332   1.1  yamt 	KASSERT(dummy == NULL);
    333   1.3  yamt 	radix_tree_node_init(n);
    334   1.1  yamt 	return 0;
    335   1.1  yamt }
    336   1.1  yamt 
    337   1.1  yamt /*
    338   1.1  yamt  * radix_tree_init:
    339   1.1  yamt  *
    340   1.1  yamt  * initialize the subsystem.
    341   1.1  yamt  */
    342   1.1  yamt 
    343   1.1  yamt void
    344   1.1  yamt radix_tree_init(void)
    345   1.1  yamt {
    346   1.1  yamt 
    347   1.1  yamt 	radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
    348  1.21  para 	    coherency_unit, 0, PR_LARGECACHE, "radixnode", NULL, IPL_NONE,
    349  1.19    ad 	    radix_tree_node_ctor, NULL, NULL);
    350   1.1  yamt 	KASSERT(radix_tree_node_cache != NULL);
    351   1.1  yamt }
    352  1.22    ad 
    353  1.22    ad /*
    354  1.22    ad  * radix_tree_await_memory:
    355  1.22    ad  *
    356  1.22    ad  * after an insert has failed with ENOMEM, wait for memory to become
    357  1.22    ad  * available, so the caller can retry.
    358  1.22    ad  */
    359  1.22    ad 
    360  1.22    ad void
    361  1.22    ad radix_tree_await_memory(void)
    362  1.22    ad {
    363  1.22    ad 	struct radix_tree_node *n;
    364  1.22    ad 
    365  1.22    ad 	n = pool_cache_get(radix_tree_node_cache, PR_WAITOK);
    366  1.22    ad 	pool_cache_put(radix_tree_node_cache, n);
    367  1.22    ad }
    368  1.22    ad 
    369   1.1  yamt #endif /* defined(_KERNEL) */
    370   1.1  yamt 
    371   1.1  yamt static bool __unused
    372   1.1  yamt radix_tree_node_clean_p(const struct radix_tree_node *n)
    373   1.1  yamt {
    374  1.19    ad #if RADIX_TREE_PTR_PER_NODE > 16
    375   1.1  yamt 	unsigned int i;
    376   1.1  yamt 
    377   1.1  yamt 	for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    378   1.1  yamt 		if (n->n_ptrs[i] != NULL) {
    379   1.1  yamt 			return false;
    380   1.1  yamt 		}
    381   1.1  yamt 	}
    382   1.1  yamt 	return true;
    383  1.19    ad #else /* RADIX_TREE_PTR_PER_NODE > 16 */
    384  1.19    ad 	uintptr_t sum;
    385  1.19    ad 
    386  1.19    ad 	/*
    387  1.19    ad 	 * Unrolling the above is much better than a tight loop with two
    388  1.19    ad 	 * test+branch pairs.  On x86 with gcc 5.5.0 this compiles into 19
    389  1.19    ad 	 * deterministic instructions including the "return" and prologue &
    390  1.19    ad 	 * epilogue.
    391  1.19    ad 	 */
    392  1.19    ad 	sum = (uintptr_t)n->n_ptrs[0];
    393  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[1];
    394  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[2];
    395  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[3];
    396  1.19    ad #if RADIX_TREE_PTR_PER_NODE > 4
    397  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[4];
    398  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[5];
    399  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[6];
    400  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[7];
    401  1.19    ad #endif
    402  1.19    ad #if RADIX_TREE_PTR_PER_NODE > 8
    403  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[8];
    404  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[9];
    405  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[10];
    406  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[11];
    407  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[12];
    408  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[13];
    409  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[14];
    410  1.19    ad 	sum |= (uintptr_t)n->n_ptrs[15];
    411  1.19    ad #endif
    412  1.19    ad 	return sum == 0;
    413  1.19    ad #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
    414  1.19    ad }
    415  1.19    ad 
    416  1.19    ad static int __unused
    417  1.19    ad radix_tree_node_count_ptrs(const struct radix_tree_node *n)
    418  1.19    ad {
    419  1.19    ad 	unsigned int i, c;
    420  1.19    ad 
    421  1.19    ad 	for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    422  1.19    ad 		c += (n->n_ptrs[i] != NULL);
    423  1.19    ad 	}
    424  1.19    ad 	return c;
    425   1.1  yamt }
    426   1.1  yamt 
    427   1.1  yamt static struct radix_tree_node *
    428   1.1  yamt radix_tree_alloc_node(void)
    429   1.1  yamt {
    430   1.1  yamt 	struct radix_tree_node *n;
    431   1.1  yamt 
    432   1.1  yamt #if defined(_KERNEL)
    433  1.18    ad 	/*
    434  1.18    ad 	 * note that pool_cache_get can block.
    435  1.18    ad 	 */
    436   1.1  yamt 	n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
    437   1.1  yamt #else /* defined(_KERNEL) */
    438   1.3  yamt #if defined(_STANDALONE)
    439   1.3  yamt 	n = alloc(sizeof(*n));
    440   1.3  yamt #else /* defined(_STANDALONE) */
    441   1.3  yamt 	n = malloc(sizeof(*n));
    442   1.3  yamt #endif /* defined(_STANDALONE) */
    443   1.3  yamt 	if (n != NULL) {
    444   1.3  yamt 		radix_tree_node_init(n);
    445   1.3  yamt 	}
    446   1.1  yamt #endif /* defined(_KERNEL) */
    447   1.1  yamt 	KASSERT(n == NULL || radix_tree_node_clean_p(n));
    448   1.1  yamt 	return n;
    449   1.1  yamt }
    450   1.1  yamt 
    451   1.1  yamt static void
    452   1.1  yamt radix_tree_free_node(struct radix_tree_node *n)
    453   1.1  yamt {
    454   1.1  yamt 
    455   1.1  yamt 	KASSERT(radix_tree_node_clean_p(n));
    456   1.1  yamt #if defined(_KERNEL)
    457   1.1  yamt 	pool_cache_put(radix_tree_node_cache, n);
    458   1.3  yamt #elif defined(_STANDALONE)
    459   1.3  yamt 	dealloc(n, sizeof(*n));
    460   1.3  yamt #else
    461   1.1  yamt 	free(n);
    462   1.3  yamt #endif
    463   1.1  yamt }
    464   1.1  yamt 
    465   1.1  yamt static int
    466   1.1  yamt radix_tree_grow(struct radix_tree *t, unsigned int newheight)
    467   1.1  yamt {
    468   1.1  yamt 	const unsigned int tagmask = entry_tagmask(t->t_root);
    469   1.1  yamt 
    470   1.1  yamt 	KASSERT(newheight <= 64 / RADIX_TREE_BITS_PER_HEIGHT);
    471   1.1  yamt 	if (t->t_root == NULL) {
    472   1.1  yamt 		t->t_height = newheight;
    473   1.1  yamt 		return 0;
    474   1.1  yamt 	}
    475   1.1  yamt 	while (t->t_height < newheight) {
    476   1.1  yamt 		struct radix_tree_node *n;
    477   1.1  yamt 
    478   1.1  yamt 		n = radix_tree_alloc_node();
    479   1.1  yamt 		if (n == NULL) {
    480   1.1  yamt 			/*
    481   1.1  yamt 			 * don't bother to revert our changes.
    482   1.1  yamt 			 * the caller will likely retry.
    483   1.1  yamt 			 */
    484   1.1  yamt 			return ENOMEM;
    485   1.1  yamt 		}
    486   1.1  yamt 		n->n_ptrs[0] = t->t_root;
    487   1.1  yamt 		t->t_root = entry_compose(n, tagmask);
    488   1.1  yamt 		t->t_height++;
    489   1.1  yamt 	}
    490   1.1  yamt 	return 0;
    491   1.1  yamt }
    492   1.1  yamt 
    493   1.5  yamt /*
    494   1.5  yamt  * radix_tree_lookup_ptr:
    495   1.5  yamt  *
    496   1.5  yamt  * an internal helper function used for various exported functions.
    497   1.5  yamt  *
    498   1.5  yamt  * return the pointer to store the node for the given index.
    499   1.5  yamt  *
    500   1.5  yamt  * if alloc is true, try to allocate the storage.  (note for _KERNEL:
    501   1.5  yamt  * in that case, this function can block.)  if the allocation failed or
    502   1.5  yamt  * alloc is false, return NULL.
    503   1.5  yamt  *
    504   1.5  yamt  * if path is not NULL, fill it for the caller's investigation.
    505   1.5  yamt  *
    506   1.5  yamt  * if tagmask is not zero, search only for nodes with the tag set.
    507  1.15  yamt  * note that, however, this function doesn't check the tagmask for the leaf
    508  1.15  yamt  * pointer.  it's a caller's responsibility to investigate the value which
    509  1.15  yamt  * is pointed by the returned pointer if necessary.
    510   1.5  yamt  *
    511   1.5  yamt  * while this function is a bit large, as it's called with some constant
    512   1.5  yamt  * arguments, inlining might have benefits.  anyway, a compiler will decide.
    513   1.5  yamt  */
    514   1.5  yamt 
    515   1.1  yamt static inline void **
    516   1.1  yamt radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
    517   1.1  yamt     struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
    518   1.1  yamt {
    519   1.1  yamt 	struct radix_tree_node *n;
    520   1.1  yamt 	int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    521   1.1  yamt 	int shift;
    522   1.1  yamt 	void **vpp;
    523   1.1  yamt 	const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
    524   1.1  yamt 	struct radix_tree_node_ref *refs = NULL;
    525   1.1  yamt 
    526   1.5  yamt 	/*
    527   1.5  yamt 	 * check unsupported combinations
    528   1.5  yamt 	 */
    529   1.1  yamt 	KASSERT(tagmask == 0 || !alloc);
    530   1.1  yamt 	KASSERT(path == NULL || !alloc);
    531   1.1  yamt 	vpp = &t->t_root;
    532   1.1  yamt 	if (path != NULL) {
    533   1.1  yamt 		refs = path->p_refs;
    534   1.1  yamt 		refs->pptr = vpp;
    535   1.1  yamt 	}
    536   1.1  yamt 	n = NULL;
    537   1.1  yamt 	for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
    538   1.1  yamt 		struct radix_tree_node *c;
    539   1.1  yamt 		void *entry;
    540   1.1  yamt 		const uint64_t i = (idx >> shift) & mask;
    541   1.1  yamt 
    542   1.1  yamt 		if (shift >= hshift) {
    543   1.1  yamt 			unsigned int newheight;
    544   1.1  yamt 
    545   1.1  yamt 			KASSERT(vpp == &t->t_root);
    546   1.1  yamt 			if (i == 0) {
    547   1.1  yamt 				shift -= RADIX_TREE_BITS_PER_HEIGHT;
    548   1.1  yamt 				continue;
    549   1.1  yamt 			}
    550   1.1  yamt 			if (!alloc) {
    551   1.1  yamt 				if (path != NULL) {
    552   1.1  yamt 					KASSERT((refs - path->p_refs) == 0);
    553  1.15  yamt 					path->p_lastidx =
    554  1.15  yamt 					    RADIX_TREE_INVALID_HEIGHT;
    555   1.1  yamt 				}
    556   1.1  yamt 				return NULL;
    557   1.1  yamt 			}
    558   1.1  yamt 			newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
    559   1.1  yamt 			if (radix_tree_grow(t, newheight)) {
    560   1.1  yamt 				return NULL;
    561   1.1  yamt 			}
    562   1.1  yamt 			hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    563   1.1  yamt 		}
    564   1.1  yamt 		entry = *vpp;
    565   1.1  yamt 		c = entry_ptr(entry);
    566   1.1  yamt 		if (c == NULL ||
    567   1.1  yamt 		    (tagmask != 0 &&
    568   1.1  yamt 		    (entry_tagmask(entry) & tagmask) == 0)) {
    569   1.1  yamt 			if (!alloc) {
    570   1.1  yamt 				if (path != NULL) {
    571   1.1  yamt 					path->p_lastidx = refs - path->p_refs;
    572   1.1  yamt 				}
    573   1.1  yamt 				return NULL;
    574   1.1  yamt 			}
    575   1.1  yamt 			c = radix_tree_alloc_node();
    576   1.1  yamt 			if (c == NULL) {
    577   1.1  yamt 				return NULL;
    578   1.1  yamt 			}
    579   1.1  yamt 			*vpp = c;
    580   1.1  yamt 		}
    581   1.1  yamt 		n = c;
    582   1.1  yamt 		vpp = &n->n_ptrs[i];
    583   1.1  yamt 		if (path != NULL) {
    584   1.1  yamt 			refs++;
    585   1.1  yamt 			refs->pptr = vpp;
    586   1.1  yamt 		}
    587   1.1  yamt 		shift -= RADIX_TREE_BITS_PER_HEIGHT;
    588   1.1  yamt 	}
    589   1.1  yamt 	if (alloc) {
    590   1.1  yamt 		KASSERT(*vpp == NULL);
    591   1.1  yamt 	}
    592   1.1  yamt 	if (path != NULL) {
    593   1.1  yamt 		path->p_lastidx = refs - path->p_refs;
    594   1.1  yamt 	}
    595   1.1  yamt 	return vpp;
    596   1.1  yamt }
    597   1.1  yamt 
    598   1.1  yamt /*
    599   1.1  yamt  * radix_tree_insert_node:
    600   1.1  yamt  *
    601  1.18    ad  * Insert the node at the given index.
    602  1.18    ad  *
    603  1.18    ad  * It's illegal to insert NULL.  It's illegal to insert a non-aligned pointer.
    604   1.1  yamt  *
    605  1.18    ad  * This function returns ENOMEM if necessary memory allocation failed.
    606  1.18    ad  * Otherwise, this function returns 0.
    607   1.1  yamt  *
    608  1.18    ad  * Note that inserting a node can involves memory allocation for intermediate
    609  1.18    ad  * nodes.  If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
    610   1.4  yamt  *
    611  1.18    ad  * For the newly inserted node, all tags are cleared.
    612   1.1  yamt  */
    613   1.1  yamt 
    614   1.1  yamt int
    615   1.1  yamt radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
    616   1.1  yamt {
    617   1.1  yamt 	void **vpp;
    618   1.1  yamt 
    619   1.1  yamt 	KASSERT(p != NULL);
    620  1.18    ad 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    621   1.1  yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
    622   1.1  yamt 	if (vpp == NULL) {
    623   1.1  yamt 		return ENOMEM;
    624   1.1  yamt 	}
    625   1.1  yamt 	KASSERT(*vpp == NULL);
    626   1.1  yamt 	*vpp = p;
    627   1.1  yamt 	return 0;
    628   1.1  yamt }
    629   1.1  yamt 
    630   1.4  yamt /*
    631   1.4  yamt  * radix_tree_replace_node:
    632   1.4  yamt  *
    633  1.18    ad  * Replace a node at the given index with the given node and return the
    634  1.18    ad  * replaced one.
    635  1.18    ad  *
    636  1.18    ad  * It's illegal to try to replace a node which has not been inserted.
    637   1.4  yamt  *
    638  1.18    ad  * This function keeps tags intact.
    639   1.4  yamt  */
    640   1.4  yamt 
    641   1.1  yamt void *
    642   1.1  yamt radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
    643   1.1  yamt {
    644   1.1  yamt 	void **vpp;
    645   1.1  yamt 	void *oldp;
    646   1.1  yamt 
    647   1.1  yamt 	KASSERT(p != NULL);
    648  1.18    ad 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    649   1.1  yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    650   1.1  yamt 	KASSERT(vpp != NULL);
    651   1.1  yamt 	oldp = *vpp;
    652   1.1  yamt 	KASSERT(oldp != NULL);
    653   1.1  yamt 	*vpp = entry_compose(p, entry_tagmask(*vpp));
    654   1.1  yamt 	return entry_ptr(oldp);
    655   1.1  yamt }
    656   1.1  yamt 
    657   1.1  yamt /*
    658   1.1  yamt  * radix_tree_remove_node:
    659   1.1  yamt  *
    660  1.18    ad  * Remove the node at the given index.
    661  1.18    ad  *
    662  1.18    ad  * It's illegal to try to remove a node which has not been inserted.
    663   1.1  yamt  */
    664   1.1  yamt 
    665   1.1  yamt void *
    666   1.1  yamt radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
    667   1.1  yamt {
    668   1.1  yamt 	struct radix_tree_path path;
    669   1.1  yamt 	void **vpp;
    670   1.1  yamt 	void *oldp;
    671   1.1  yamt 	int i;
    672   1.1  yamt 
    673   1.1  yamt 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
    674   1.1  yamt 	KASSERT(vpp != NULL);
    675   1.1  yamt 	oldp = *vpp;
    676   1.1  yamt 	KASSERT(oldp != NULL);
    677   1.1  yamt 	KASSERT(path.p_lastidx == t->t_height);
    678   1.1  yamt 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
    679   1.1  yamt 	*vpp = NULL;
    680   1.1  yamt 	for (i = t->t_height - 1; i >= 0; i--) {
    681   1.1  yamt 		void *entry;
    682   1.1  yamt 		struct radix_tree_node ** const pptr =
    683   1.1  yamt 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    684   1.1  yamt 		struct radix_tree_node *n;
    685   1.1  yamt 
    686   1.1  yamt 		KASSERT(pptr != NULL);
    687   1.1  yamt 		entry = *pptr;
    688   1.1  yamt 		n = entry_ptr(entry);
    689   1.1  yamt 		KASSERT(n != NULL);
    690  1.19    ad 		if (!radix_tree_node_clean_p(n)) {
    691   1.1  yamt 			break;
    692   1.1  yamt 		}
    693   1.1  yamt 		radix_tree_free_node(n);
    694   1.1  yamt 		*pptr = NULL;
    695   1.1  yamt 	}
    696   1.1  yamt 	/*
    697   1.1  yamt 	 * fix up height
    698   1.1  yamt 	 */
    699   1.1  yamt 	if (i < 0) {
    700   1.1  yamt 		KASSERT(t->t_root == NULL);
    701   1.1  yamt 		t->t_height = 0;
    702   1.1  yamt 	}
    703   1.1  yamt 	/*
    704   1.1  yamt 	 * update tags
    705   1.1  yamt 	 */
    706   1.1  yamt 	for (; i >= 0; i--) {
    707   1.1  yamt 		void *entry;
    708   1.1  yamt 		struct radix_tree_node ** const pptr =
    709   1.1  yamt 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    710   1.1  yamt 		struct radix_tree_node *n;
    711   1.1  yamt 		unsigned int newmask;
    712   1.1  yamt 
    713   1.1  yamt 		KASSERT(pptr != NULL);
    714   1.1  yamt 		entry = *pptr;
    715   1.1  yamt 		n = entry_ptr(entry);
    716   1.1  yamt 		KASSERT(n != NULL);
    717  1.19    ad 		KASSERT(!radix_tree_node_clean_p(n));
    718   1.1  yamt 		newmask = any_children_tagmask(n);
    719   1.1  yamt 		if (newmask == entry_tagmask(entry)) {
    720   1.1  yamt 			break;
    721   1.1  yamt 		}
    722   1.1  yamt 		*pptr = entry_compose(n, newmask);
    723   1.1  yamt 	}
    724   1.1  yamt 	/*
    725   1.1  yamt 	 * XXX is it worth to try to reduce height?
    726   1.1  yamt 	 * if we do that, make radix_tree_grow rollback its change as well.
    727   1.1  yamt 	 */
    728   1.1  yamt 	return entry_ptr(oldp);
    729   1.1  yamt }
    730   1.1  yamt 
    731   1.1  yamt /*
    732   1.1  yamt  * radix_tree_lookup_node:
    733   1.1  yamt  *
    734  1.18    ad  * Returns the node at the given index.
    735  1.18    ad  * Returns NULL if nothing is found at the given index.
    736   1.1  yamt  */
    737   1.1  yamt 
    738   1.1  yamt void *
    739   1.1  yamt radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
    740   1.1  yamt {
    741   1.1  yamt 	void **vpp;
    742   1.1  yamt 
    743   1.1  yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    744   1.1  yamt 	if (vpp == NULL) {
    745   1.1  yamt 		return NULL;
    746   1.1  yamt 	}
    747   1.1  yamt 	return entry_ptr(*vpp);
    748   1.1  yamt }
    749   1.1  yamt 
    750   1.1  yamt static inline void
    751   1.1  yamt gang_lookup_init(struct radix_tree *t, uint64_t idx,
    752   1.1  yamt     struct radix_tree_path *path, const unsigned int tagmask)
    753   1.1  yamt {
    754  1.18    ad 	void **vpp __unused;
    755   1.1  yamt 
    756  1.19    ad 	vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
    757   1.1  yamt 	KASSERT(vpp == NULL ||
    758   1.1  yamt 	    vpp == path_pptr(t, path, path->p_lastidx));
    759   1.1  yamt 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    760  1.15  yamt 	KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
    761  1.15  yamt 	   path->p_lastidx == t->t_height ||
    762  1.15  yamt 	   !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
    763   1.1  yamt }
    764   1.1  yamt 
    765  1.15  yamt /*
    766  1.15  yamt  * gang_lookup_scan:
    767  1.15  yamt  *
    768  1.15  yamt  * a helper routine for radix_tree_gang_lookup_node and its variants.
    769  1.15  yamt  */
    770  1.15  yamt 
    771   1.1  yamt static inline unsigned int
    772  1.15  yamt __attribute__((__always_inline__))
    773   1.1  yamt gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
    774  1.18    ad     void **results, const unsigned int maxresults, const unsigned int tagmask,
    775  1.18    ad     const bool reverse, const bool dense)
    776   1.1  yamt {
    777  1.15  yamt 
    778  1.15  yamt 	/*
    779  1.15  yamt 	 * we keep the path updated only for lastidx-1.
    780  1.15  yamt 	 * vpp is what path_pptr(t, path, lastidx) would be.
    781  1.15  yamt 	 */
    782   1.1  yamt 	void **vpp;
    783  1.10  yamt 	unsigned int nfound;
    784   1.1  yamt 	unsigned int lastidx;
    785  1.15  yamt 	/*
    786  1.15  yamt 	 * set up scan direction dependant constants so that we can iterate
    787  1.15  yamt 	 * n_ptrs as the following.
    788  1.15  yamt 	 *
    789  1.15  yamt 	 *	for (i = first; i != guard; i += step)
    790  1.15  yamt 	 *		visit n->n_ptrs[i];
    791  1.15  yamt 	 */
    792  1.15  yamt 	const int step = reverse ? -1 : 1;
    793  1.15  yamt 	const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
    794  1.15  yamt 	const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
    795  1.15  yamt 	const unsigned int guard = last + step;
    796   1.1  yamt 
    797   1.1  yamt 	KASSERT(maxresults > 0);
    798  1.15  yamt 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    799   1.1  yamt 	lastidx = path->p_lastidx;
    800  1.15  yamt 	KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
    801  1.15  yamt 	   lastidx == t->t_height ||
    802  1.15  yamt 	   !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
    803  1.15  yamt 	nfound = 0;
    804  1.15  yamt 	if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
    805  1.18    ad 		/*
    806  1.18    ad 		 * requested idx is beyond the right-most node.
    807  1.18    ad 		 */
    808  1.18    ad 		if (reverse && !dense) {
    809  1.15  yamt 			lastidx = 0;
    810  1.15  yamt 			vpp = path_pptr(t, path, lastidx);
    811  1.15  yamt 			goto descend;
    812  1.15  yamt 		}
    813   1.1  yamt 		return 0;
    814   1.1  yamt 	}
    815   1.1  yamt 	vpp = path_pptr(t, path, lastidx);
    816   1.1  yamt 	while (/*CONSTCOND*/true) {
    817   1.1  yamt 		struct radix_tree_node *n;
    818  1.10  yamt 		unsigned int i;
    819   1.1  yamt 
    820   1.1  yamt 		if (entry_match_p(*vpp, tagmask)) {
    821   1.1  yamt 			KASSERT(lastidx == t->t_height);
    822   1.1  yamt 			/*
    823  1.15  yamt 			 * record the matching non-NULL leaf.
    824   1.1  yamt 			 */
    825   1.1  yamt 			results[nfound] = entry_ptr(*vpp);
    826   1.1  yamt 			nfound++;
    827   1.1  yamt 			if (nfound == maxresults) {
    828   1.1  yamt 				return nfound;
    829   1.1  yamt 			}
    830  1.18    ad 		} else if (dense) {
    831  1.18    ad 			return nfound;
    832   1.1  yamt 		}
    833   1.1  yamt scan_siblings:
    834   1.1  yamt 		/*
    835  1.15  yamt 		 * try to find the next matching non-NULL sibling.
    836   1.1  yamt 		 */
    837  1.15  yamt 		if (lastidx == 0) {
    838  1.15  yamt 			/*
    839  1.15  yamt 			 * the root has no siblings.
    840  1.15  yamt 			 * we've done.
    841  1.15  yamt 			 */
    842  1.15  yamt 			KASSERT(vpp == &t->t_root);
    843  1.15  yamt 			break;
    844  1.15  yamt 		}
    845   1.1  yamt 		n = path_node(t, path, lastidx - 1);
    846  1.19    ad 		/*
    847  1.19    ad 		 * we used to have an integer counter in the node, and this
    848  1.19    ad 		 * optimization made sense then, even though marginal.  it
    849  1.19    ad 		 * no longer provides benefit with the structure cache line
    850  1.19    ad 		 * aligned and the counter replaced by an unrolled sequence
    851  1.19    ad 		 * testing the pointers in batch.
    852  1.19    ad 		 */
    853  1.19    ad #if 0
    854  1.19    ad 		if (*vpp != NULL && radix_tree_node_count_ptrs(n) == 1) {
    855   1.1  yamt 			/*
    856  1.15  yamt 			 * optimization; if the node has only a single pointer
    857  1.15  yamt 			 * and we've already visited it, there's no point to
    858  1.15  yamt 			 * keep scanning in this node.
    859   1.1  yamt 			 */
    860   1.1  yamt 			goto no_siblings;
    861   1.1  yamt 		}
    862  1.19    ad #endif /* 0 */
    863  1.15  yamt 		for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
    864  1.15  yamt 			KASSERT(i < RADIX_TREE_PTR_PER_NODE);
    865   1.1  yamt 			if (entry_match_p(n->n_ptrs[i], tagmask)) {
    866   1.1  yamt 				vpp = &n->n_ptrs[i];
    867   1.1  yamt 				break;
    868   1.1  yamt 			}
    869   1.1  yamt 		}
    870  1.15  yamt 		if (i == guard) {
    871  1.20    ad #if 0
    872   1.1  yamt no_siblings:
    873  1.20    ad #endif /* 0 */
    874   1.1  yamt 			/*
    875   1.1  yamt 			 * not found.  go to parent.
    876   1.1  yamt 			 */
    877   1.1  yamt 			lastidx--;
    878   1.1  yamt 			vpp = path_pptr(t, path, lastidx);
    879   1.1  yamt 			goto scan_siblings;
    880   1.1  yamt 		}
    881  1.15  yamt descend:
    882   1.1  yamt 		/*
    883  1.15  yamt 		 * following the left-most (or right-most in the case of
    884  1.15  yamt 		 * reverse scan) child node, decend until reaching the leaf or
    885  1.15  yamt 		 * an non-matching entry.
    886   1.1  yamt 		 */
    887   1.1  yamt 		while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
    888  1.15  yamt 			/*
    889  1.15  yamt 			 * save vpp in the path so that we can come back to this
    890  1.15  yamt 			 * node after finishing visiting children.
    891  1.15  yamt 			 */
    892  1.15  yamt 			path->p_refs[lastidx].pptr = vpp;
    893   1.1  yamt 			n = entry_ptr(*vpp);
    894  1.15  yamt 			vpp = &n->n_ptrs[first];
    895   1.1  yamt 			lastidx++;
    896   1.1  yamt 		}
    897   1.1  yamt 	}
    898  1.15  yamt 	return nfound;
    899   1.1  yamt }
    900   1.1  yamt 
    901   1.1  yamt /*
    902   1.1  yamt  * radix_tree_gang_lookup_node:
    903   1.1  yamt  *
    904  1.18    ad  * Scan the tree starting from the given index in the ascending order and
    905  1.18    ad  * return found nodes.
    906  1.18    ad  *
    907   1.1  yamt  * results should be an array large enough to hold maxresults pointers.
    908  1.18    ad  * This function returns the number of nodes found, up to maxresults.
    909  1.18    ad  * Returning less than maxresults means there are no more nodes in the tree.
    910   1.1  yamt  *
    911  1.18    ad  * If dense == true, this function stops scanning when it founds a hole of
    912  1.18    ad  * indexes.  I.e. an index for which radix_tree_lookup_node would returns NULL.
    913  1.18    ad  * If dense == false, this function skips holes and continue scanning until
    914  1.18    ad  * maxresults nodes are found or it reaches the limit of the index range.
    915  1.18    ad  *
    916  1.18    ad  * The result of this function is semantically equivalent to what could be
    917   1.1  yamt  * obtained by repeated calls of radix_tree_lookup_node with increasing index.
    918  1.18    ad  * but this function is expected to be computationally cheaper when looking up
    919  1.18    ad  * multiple nodes at once.  Especially, it's expected to be much cheaper when
    920  1.18    ad  * node indexes are distributed sparsely.
    921  1.18    ad  *
    922  1.18    ad  * Note that this function doesn't return index values of found nodes.
    923  1.18    ad  * Thus, in the case of dense == false, if index values are important for
    924  1.18    ad  * a caller, it's the caller's responsibility to check them, typically
    925  1.18    ad  * by examinining the returned nodes using some caller-specific knowledge
    926  1.18    ad  * about them.
    927  1.18    ad  * In the case of dense == true, a node returned via results[N] is always for
    928  1.18    ad  * the index (idx + N).
    929   1.1  yamt  */
    930   1.1  yamt 
    931   1.1  yamt unsigned int
    932   1.1  yamt radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
    933  1.18    ad     void **results, unsigned int maxresults, bool dense)
    934   1.1  yamt {
    935   1.1  yamt 	struct radix_tree_path path;
    936   1.1  yamt 
    937   1.1  yamt 	gang_lookup_init(t, idx, &path, 0);
    938  1.18    ad 	return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
    939  1.15  yamt }
    940  1.15  yamt 
    941  1.15  yamt /*
    942  1.15  yamt  * radix_tree_gang_lookup_node_reverse:
    943  1.15  yamt  *
    944  1.18    ad  * Same as radix_tree_gang_lookup_node except that this one scans the
    945  1.18    ad  * tree in the reverse order.  I.e. descending index values.
    946  1.15  yamt  */
    947  1.15  yamt 
    948  1.15  yamt unsigned int
    949  1.15  yamt radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
    950  1.18    ad     void **results, unsigned int maxresults, bool dense)
    951  1.15  yamt {
    952  1.15  yamt 	struct radix_tree_path path;
    953  1.15  yamt 
    954  1.15  yamt 	gang_lookup_init(t, idx, &path, 0);
    955  1.18    ad 	return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
    956   1.1  yamt }
    957   1.1  yamt 
    958   1.1  yamt /*
    959   1.1  yamt  * radix_tree_gang_lookup_tagged_node:
    960   1.1  yamt  *
    961  1.18    ad  * Same as radix_tree_gang_lookup_node except that this one only returns
    962   1.1  yamt  * nodes tagged with tagid.
    963  1.18    ad  *
    964  1.18    ad  * It's illegal to call this function with tagmask 0.
    965   1.1  yamt  */
    966   1.1  yamt 
    967   1.1  yamt unsigned int
    968   1.1  yamt radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
    969  1.18    ad     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
    970   1.1  yamt {
    971   1.1  yamt 	struct radix_tree_path path;
    972   1.1  yamt 
    973  1.18    ad 	KASSERT(tagmask != 0);
    974   1.1  yamt 	gang_lookup_init(t, idx, &path, tagmask);
    975  1.18    ad 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
    976  1.18    ad 	    dense);
    977  1.15  yamt }
    978  1.15  yamt 
    979  1.15  yamt /*
    980  1.15  yamt  * radix_tree_gang_lookup_tagged_node_reverse:
    981  1.15  yamt  *
    982  1.18    ad  * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
    983  1.18    ad  * tree in the reverse order.  I.e. descending index values.
    984  1.15  yamt  */
    985  1.15  yamt 
    986  1.15  yamt unsigned int
    987  1.15  yamt radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
    988  1.18    ad     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
    989  1.15  yamt {
    990  1.15  yamt 	struct radix_tree_path path;
    991  1.15  yamt 
    992  1.18    ad 	KASSERT(tagmask != 0);
    993  1.15  yamt 	gang_lookup_init(t, idx, &path, tagmask);
    994  1.18    ad 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
    995  1.18    ad 	    dense);
    996   1.1  yamt }
    997   1.1  yamt 
    998   1.4  yamt /*
    999   1.4  yamt  * radix_tree_get_tag:
   1000   1.4  yamt  *
   1001  1.18    ad  * Return the tagmask for the node at the given index.
   1002  1.18    ad  *
   1003  1.18    ad  * It's illegal to call this function for a node which has not been inserted.
   1004   1.4  yamt  */
   1005   1.4  yamt 
   1006  1.18    ad unsigned int
   1007  1.18    ad radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1008   1.1  yamt {
   1009  1.18    ad 	/*
   1010  1.18    ad 	 * the following two implementations should behave same.
   1011  1.18    ad 	 * the former one was chosen because it seems faster.
   1012  1.18    ad 	 */
   1013   1.1  yamt #if 1
   1014   1.1  yamt 	void **vpp;
   1015   1.1  yamt 
   1016   1.1  yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
   1017   1.1  yamt 	if (vpp == NULL) {
   1018   1.1  yamt 		return false;
   1019   1.1  yamt 	}
   1020   1.1  yamt 	KASSERT(*vpp != NULL);
   1021  1.18    ad 	return (entry_tagmask(*vpp) & tagmask);
   1022   1.1  yamt #else
   1023   1.1  yamt 	void **vpp;
   1024   1.1  yamt 
   1025   1.1  yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
   1026   1.1  yamt 	KASSERT(vpp != NULL);
   1027  1.18    ad 	return (entry_tagmask(*vpp) & tagmask);
   1028   1.1  yamt #endif
   1029   1.1  yamt }
   1030   1.1  yamt 
   1031   1.4  yamt /*
   1032   1.4  yamt  * radix_tree_set_tag:
   1033   1.4  yamt  *
   1034  1.18    ad  * Set the tag for the node at the given index.
   1035  1.18    ad  *
   1036  1.18    ad  * It's illegal to call this function for a node which has not been inserted.
   1037  1.18    ad  * It's illegal to call this function with tagmask 0.
   1038   1.4  yamt  */
   1039   1.4  yamt 
   1040   1.1  yamt void
   1041  1.18    ad radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1042   1.1  yamt {
   1043   1.1  yamt 	struct radix_tree_path path;
   1044  1.18    ad 	void **vpp __unused;
   1045   1.1  yamt 	int i;
   1046   1.1  yamt 
   1047  1.18    ad 	KASSERT(tagmask != 0);
   1048  1.19    ad 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1049   1.1  yamt 	KASSERT(vpp != NULL);
   1050   1.1  yamt 	KASSERT(*vpp != NULL);
   1051   1.1  yamt 	KASSERT(path.p_lastidx == t->t_height);
   1052   1.1  yamt 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1053   1.1  yamt 	for (i = t->t_height; i >= 0; i--) {
   1054   1.1  yamt 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1055   1.1  yamt 		void *entry;
   1056   1.1  yamt 
   1057   1.1  yamt 		KASSERT(pptr != NULL);
   1058   1.1  yamt 		entry = *pptr;
   1059   1.1  yamt 		if ((entry_tagmask(entry) & tagmask) != 0) {
   1060   1.1  yamt 			break;
   1061   1.1  yamt 		}
   1062   1.1  yamt 		*pptr = (void *)((uintptr_t)entry | tagmask);
   1063   1.1  yamt 	}
   1064   1.1  yamt }
   1065   1.1  yamt 
   1066   1.4  yamt /*
   1067   1.4  yamt  * radix_tree_clear_tag:
   1068   1.4  yamt  *
   1069  1.18    ad  * Clear the tag for the node at the given index.
   1070  1.18    ad  *
   1071  1.18    ad  * It's illegal to call this function for a node which has not been inserted.
   1072  1.18    ad  * It's illegal to call this function with tagmask 0.
   1073   1.4  yamt  */
   1074   1.4  yamt 
   1075   1.1  yamt void
   1076  1.18    ad radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1077   1.1  yamt {
   1078   1.1  yamt 	struct radix_tree_path path;
   1079   1.1  yamt 	void **vpp;
   1080   1.1  yamt 	int i;
   1081   1.1  yamt 
   1082  1.18    ad 	KASSERT(tagmask != 0);
   1083   1.1  yamt 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1084   1.1  yamt 	KASSERT(vpp != NULL);
   1085   1.1  yamt 	KASSERT(*vpp != NULL);
   1086   1.1  yamt 	KASSERT(path.p_lastidx == t->t_height);
   1087   1.1  yamt 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1088   1.7  yamt 	/*
   1089   1.7  yamt 	 * if already cleared, nothing to do
   1090   1.7  yamt 	 */
   1091   1.1  yamt 	if ((entry_tagmask(*vpp) & tagmask) == 0) {
   1092   1.1  yamt 		return;
   1093   1.1  yamt 	}
   1094   1.7  yamt 	/*
   1095   1.7  yamt 	 * clear the tag only if no children have the tag.
   1096   1.7  yamt 	 */
   1097   1.1  yamt 	for (i = t->t_height; i >= 0; i--) {
   1098   1.1  yamt 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1099   1.1  yamt 		void *entry;
   1100   1.1  yamt 
   1101   1.1  yamt 		KASSERT(pptr != NULL);
   1102   1.1  yamt 		entry = *pptr;
   1103   1.1  yamt 		KASSERT((entry_tagmask(entry) & tagmask) != 0);
   1104   1.1  yamt 		*pptr = entry_compose(entry_ptr(entry),
   1105   1.1  yamt 		    entry_tagmask(entry) & ~tagmask);
   1106   1.7  yamt 		/*
   1107   1.7  yamt 		 * check if we should proceed to process the next level.
   1108   1.7  yamt 		 */
   1109   1.7  yamt 		if (0 < i) {
   1110   1.1  yamt 			struct radix_tree_node *n = path_node(t, &path, i - 1);
   1111   1.1  yamt 
   1112   1.1  yamt 			if ((any_children_tagmask(n) & tagmask) != 0) {
   1113   1.1  yamt 				break;
   1114   1.1  yamt 			}
   1115   1.1  yamt 		}
   1116   1.1  yamt 	}
   1117   1.1  yamt }
   1118   1.1  yamt 
   1119   1.1  yamt #if defined(UNITTEST)
   1120   1.1  yamt 
   1121   1.1  yamt #include <inttypes.h>
   1122   1.1  yamt #include <stdio.h>
   1123   1.1  yamt 
   1124   1.1  yamt static void
   1125   1.1  yamt radix_tree_dump_node(const struct radix_tree *t, void *vp,
   1126   1.1  yamt     uint64_t offset, unsigned int height)
   1127   1.1  yamt {
   1128   1.1  yamt 	struct radix_tree_node *n;
   1129   1.1  yamt 	unsigned int i;
   1130   1.1  yamt 
   1131   1.1  yamt 	for (i = 0; i < t->t_height - height; i++) {
   1132   1.1  yamt 		printf(" ");
   1133   1.1  yamt 	}
   1134   1.1  yamt 	if (entry_tagmask(vp) == 0) {
   1135   1.1  yamt 		printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
   1136   1.1  yamt 	} else {
   1137   1.1  yamt 		printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
   1138   1.1  yamt 		    entry_tagmask(vp));
   1139   1.1  yamt 	}
   1140   1.1  yamt 	if (height == 0) {
   1141   1.1  yamt 		printf(" (leaf)\n");
   1142   1.1  yamt 		return;
   1143   1.1  yamt 	}
   1144   1.1  yamt 	n = entry_ptr(vp);
   1145   1.1  yamt 	assert(any_children_tagmask(n) == entry_tagmask(vp));
   1146  1.19    ad 	printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
   1147   1.1  yamt 	for (i = 0; i < __arraycount(n->n_ptrs); i++) {
   1148   1.1  yamt 		void *c;
   1149   1.1  yamt 
   1150   1.1  yamt 		c = n->n_ptrs[i];
   1151   1.1  yamt 		if (c == NULL) {
   1152   1.1  yamt 			continue;
   1153   1.1  yamt 		}
   1154   1.1  yamt 		radix_tree_dump_node(t, c,
   1155   1.1  yamt 		    offset + i * (UINT64_C(1) <<
   1156   1.1  yamt 		    (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
   1157   1.1  yamt 	}
   1158   1.1  yamt }
   1159   1.1  yamt 
   1160   1.1  yamt void radix_tree_dump(const struct radix_tree *);
   1161   1.1  yamt 
   1162   1.1  yamt void
   1163   1.1  yamt radix_tree_dump(const struct radix_tree *t)
   1164   1.1  yamt {
   1165   1.1  yamt 
   1166   1.1  yamt 	printf("tree %p height=%u\n", t, t->t_height);
   1167   1.1  yamt 	radix_tree_dump_node(t, t->t_root, 0, t->t_height);
   1168   1.1  yamt }
   1169   1.1  yamt 
   1170   1.1  yamt static void
   1171   1.1  yamt test1(void)
   1172   1.1  yamt {
   1173   1.1  yamt 	struct radix_tree s;
   1174   1.1  yamt 	struct radix_tree *t = &s;
   1175   1.1  yamt 	void *results[3];
   1176   1.1  yamt 
   1177   1.1  yamt 	radix_tree_init_tree(t);
   1178   1.1  yamt 	radix_tree_dump(t);
   1179   1.1  yamt 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1180   1.1  yamt 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1181  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
   1182  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1183  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1184  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1185  1.18    ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1186  1.18    ad 	    0);
   1187  1.18    ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1188  1.18    ad 	    0);
   1189  1.18    ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1190  1.18    ad 	    == 0);
   1191  1.18    ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1192  1.18    ad 	    == 0);
   1193  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1194  1.18    ad 	    == 0);
   1195  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1196  1.18    ad 	    == 0);
   1197  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
   1198  1.18    ad 	    == 0);
   1199  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
   1200  1.15  yamt 	    == 0);
   1201  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1202  1.18    ad 	    false, 1) == 0);
   1203  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1204  1.18    ad 	    true, 1) == 0);
   1205  1.15  yamt 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1206  1.18    ad 	    false, 1) == 0);
   1207  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1208  1.18    ad 	    true, 1) == 0);
   1209  1.15  yamt 	assert(radix_tree_empty_tree_p(t));
   1210  1.16  yamt 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1211  1.18    ad 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1212  1.15  yamt 	assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
   1213  1.15  yamt 	assert(!radix_tree_empty_tree_p(t));
   1214  1.16  yamt 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1215  1.18    ad 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1216  1.15  yamt 	assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
   1217  1.15  yamt 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1218  1.15  yamt 	memset(results, 0, sizeof(results));
   1219  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1220  1.18    ad 	assert(results[0] == (void *)0xdeadbea0);
   1221  1.18    ad 	memset(results, 0, sizeof(results));
   1222  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1223  1.15  yamt 	assert(results[0] == (void *)0xdeadbea0);
   1224  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1225  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1226  1.15  yamt 	memset(results, 0, sizeof(results));
   1227  1.18    ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1228  1.18    ad 	    1);
   1229  1.15  yamt 	assert(results[0] == (void *)0xdeadbea0);
   1230  1.15  yamt 	memset(results, 0, sizeof(results));
   1231  1.18    ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1232  1.18    ad 	    1);
   1233  1.15  yamt 	assert(results[0] == (void *)0xdeadbea0);
   1234  1.18    ad 	memset(results, 0, sizeof(results));
   1235  1.18    ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1236  1.18    ad 	    == 1);
   1237  1.18    ad 	assert(results[0] == (void *)0xdeadbea0);
   1238  1.18    ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1239  1.18    ad 	    == 0);
   1240  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1241  1.15  yamt 	    == 0);
   1242  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1243  1.15  yamt 	    == 0);
   1244  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1245  1.18    ad 	    false, 1) == 0);
   1246  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1247  1.18    ad 	    true, 1) == 0);
   1248   1.1  yamt 	assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
   1249  1.15  yamt 	assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
   1250  1.15  yamt 	assert(!radix_tree_empty_tree_p(t));
   1251   1.1  yamt 	radix_tree_dump(t);
   1252  1.15  yamt 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1253  1.15  yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1254  1.15  yamt 	memset(results, 0, sizeof(results));
   1255  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1256  1.15  yamt 	assert(results[0] == (void *)0xdeadbea0);
   1257  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1258  1.15  yamt 	memset(results, 0, sizeof(results));
   1259  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
   1260  1.15  yamt 	assert(results[0] == (void *)0xdeadbea0);
   1261  1.15  yamt 	memset(results, 0, sizeof(results));
   1262  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
   1263  1.15  yamt 	assert(results[0] == (void *)0xdeadbea0);
   1264  1.18    ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
   1265  1.15  yamt 	    == 0);
   1266  1.18    ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
   1267  1.15  yamt 	    == 0);
   1268  1.18    ad 	memset(results, 0, sizeof(results));
   1269  1.18    ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1270  1.18    ad 	    == 1);
   1271  1.18    ad 	memset(results, 0, sizeof(results));
   1272  1.18    ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1273  1.18    ad 	    == 1);
   1274  1.18    ad 	assert(results[0] == (void *)0xdeadbea0);
   1275  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1276  1.18    ad 	    == 0);
   1277  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1278  1.18    ad 	    == 0);
   1279  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1280  1.18    ad 	    false, 1) == 0);
   1281  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1282  1.18    ad 	    true, 1) == 0);
   1283  1.18    ad 	assert(!radix_tree_get_tag(t, 1000, 1));
   1284  1.18    ad 	assert(!radix_tree_get_tag(t, 1000, 2));
   1285  1.18    ad 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
   1286  1.18    ad 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1287  1.18    ad 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1288  1.18    ad 	radix_tree_set_tag(t, 1000, 2);
   1289   1.1  yamt 	assert(!radix_tree_get_tag(t, 1000, 1));
   1290  1.18    ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1291  1.18    ad 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1292  1.16  yamt 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1293  1.18    ad 	assert(!radix_tree_empty_tagged_tree_p(t, 2));
   1294   1.1  yamt 	radix_tree_dump(t);
   1295   1.1  yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1296   1.1  yamt 	assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
   1297   1.1  yamt 	radix_tree_dump(t);
   1298   1.1  yamt 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1299   1.1  yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1300   1.1  yamt 	assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
   1301   1.1  yamt 	    == 0);
   1302   1.1  yamt 	radix_tree_dump(t);
   1303   1.1  yamt 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1304   1.1  yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1305   1.1  yamt 	assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
   1306   1.1  yamt 	    (void *)0xdea0);
   1307   1.1  yamt 	radix_tree_dump(t);
   1308  1.18    ad 	assert(!radix_tree_get_tag(t, 0, 2));
   1309  1.18    ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1310   1.1  yamt 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
   1311  1.18    ad 	radix_tree_set_tag(t, 0, 2);;
   1312  1.18    ad 	radix_tree_set_tag(t, UINT64_C(10000000000), 2);
   1313   1.1  yamt 	radix_tree_dump(t);
   1314  1.18    ad 	assert(radix_tree_get_tag(t, 0, 2));
   1315  1.18    ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1316  1.18    ad 	assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1317  1.18    ad 	radix_tree_clear_tag(t, 0, 2);;
   1318  1.18    ad 	radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
   1319   1.1  yamt 	radix_tree_dump(t);
   1320  1.18    ad 	assert(!radix_tree_get_tag(t, 0, 2));
   1321  1.18    ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1322  1.18    ad 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1323   1.1  yamt 	radix_tree_dump(t);
   1324   1.1  yamt 	assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
   1325   1.1  yamt 	    (void *)0xdeadbea0);
   1326  1.18    ad 	assert(!radix_tree_get_tag(t, 1000, 1));
   1327  1.18    ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1328  1.18    ad 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1329  1.18    ad 	memset(results, 0, sizeof(results));
   1330  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
   1331   1.1  yamt 	assert(results[0] == (void *)0xbea0);
   1332   1.1  yamt 	assert(results[1] == (void *)0x12345678);
   1333   1.1  yamt 	assert(results[2] == (void *)0xdea0);
   1334  1.18    ad 	memset(results, 0, sizeof(results));
   1335  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1336  1.18    ad 	assert(results[0] == (void *)0xbea0);
   1337  1.18    ad 	memset(results, 0, sizeof(results));
   1338  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
   1339   1.1  yamt 	assert(results[0] == (void *)0x12345678);
   1340   1.1  yamt 	assert(results[1] == (void *)0xdea0);
   1341  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
   1342  1.18    ad 	memset(results, 0, sizeof(results));
   1343  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
   1344   1.1  yamt 	assert(results[0] == (void *)0xdea0);
   1345  1.18    ad 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
   1346  1.18    ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1347  1.18    ad 	    false) == 0);
   1348  1.18    ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1349  1.18    ad 	    true) == 0);
   1350  1.18    ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1351  1.18    ad 	    3, false) == 0);
   1352   1.1  yamt 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1353  1.18    ad 	    3, true) == 0);
   1354  1.18    ad 	memset(results, 0, sizeof(results));
   1355  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
   1356  1.18    ad 	    == 1);
   1357   1.1  yamt 	assert(results[0] == (void *)0x12345678);
   1358  1.18    ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
   1359  1.18    ad 	    == 0);
   1360   1.1  yamt 	assert(entry_tagmask(t->t_root) != 0);
   1361   1.1  yamt 	assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
   1362   1.1  yamt 	assert(entry_tagmask(t->t_root) == 0);
   1363   1.1  yamt 	radix_tree_dump(t);
   1364  1.18    ad 	assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
   1365  1.18    ad 	    == 0);
   1366  1.18    ad 	memset(results, 0, sizeof(results));
   1367  1.18    ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1368  1.18    ad 	    false) == 2);
   1369  1.18    ad 	assert(results[0] == (void *)0xdea0);
   1370  1.18    ad 	assert(results[1] == (void *)0xfff0);
   1371  1.18    ad 	memset(results, 0, sizeof(results));
   1372  1.18    ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1373  1.18    ad 	    true) == 2);
   1374  1.18    ad 	assert(results[0] == (void *)0xdea0);
   1375  1.18    ad 	assert(results[1] == (void *)0xfff0);
   1376  1.18    ad 	memset(results, 0, sizeof(results));
   1377  1.18    ad 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1378  1.18    ad 	    results, 3, false) == 3);
   1379  1.18    ad 	assert(results[0] == (void *)0xfff0);
   1380  1.18    ad 	assert(results[1] == (void *)0xdea0);
   1381  1.18    ad 	assert(results[2] == (void *)0xbea0);
   1382  1.18    ad 	memset(results, 0, sizeof(results));
   1383  1.18    ad 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1384  1.18    ad 	    results, 3, true) == 2);
   1385  1.18    ad 	assert(results[0] == (void *)0xfff0);
   1386  1.18    ad 	assert(results[1] == (void *)0xdea0);
   1387   1.1  yamt 	assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
   1388   1.1  yamt 	    (void *)0xdea0);
   1389  1.18    ad 	assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
   1390  1.18    ad 	    (void *)0xfff0);
   1391   1.1  yamt 	radix_tree_dump(t);
   1392   1.1  yamt 	assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
   1393   1.1  yamt 	radix_tree_dump(t);
   1394   1.1  yamt 	radix_tree_fini_tree(t);
   1395   1.1  yamt }
   1396   1.1  yamt 
   1397   1.1  yamt #include <sys/time.h>
   1398   1.1  yamt 
   1399   1.1  yamt struct testnode {
   1400   1.1  yamt 	uint64_t idx;
   1401  1.12  yamt 	bool tagged[RADIX_TREE_TAG_ID_MAX];
   1402   1.1  yamt };
   1403   1.1  yamt 
   1404   1.1  yamt static void
   1405  1.11  yamt printops(const char *title, const char *name, int tag, unsigned int n,
   1406  1.11  yamt     const struct timeval *stv, const struct timeval *etv)
   1407   1.1  yamt {
   1408   1.1  yamt 	uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
   1409   1.1  yamt 	uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
   1410   1.1  yamt 
   1411  1.11  yamt 	printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
   1412  1.11  yamt 	    (double)n / (e - s) * 1000000);
   1413   1.1  yamt }
   1414   1.1  yamt 
   1415   1.1  yamt #define	TEST2_GANG_LOOKUP_NODES	16
   1416   1.1  yamt 
   1417   1.1  yamt static bool
   1418  1.18    ad test2_should_tag(unsigned int i, unsigned int tagid)
   1419   1.1  yamt {
   1420   1.1  yamt 
   1421   1.1  yamt 	if (tagid == 0) {
   1422  1.18    ad 		return (i % 4) == 0;	/* 25% */
   1423   1.1  yamt 	} else {
   1424  1.11  yamt 		return (i % 7) == 0;	/* 14% */
   1425   1.1  yamt 	}
   1426  1.18    ad 	return 1;
   1427  1.18    ad }
   1428  1.18    ad 
   1429  1.18    ad static void
   1430  1.18    ad check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
   1431  1.18    ad     unsigned int count)
   1432  1.18    ad {
   1433  1.18    ad 	unsigned int tag;
   1434  1.18    ad 
   1435  1.18    ad 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1436  1.18    ad 		if ((tagmask & (1 << tag)) == 0) {
   1437  1.18    ad 			continue;
   1438  1.18    ad 		}
   1439  1.18    ad 		if (((tagmask - 1) & tagmask) == 0) {
   1440  1.18    ad 			assert(count == ntagged[tag]);
   1441  1.18    ad 		} else {
   1442  1.18    ad 			assert(count >= ntagged[tag]);
   1443  1.18    ad 		}
   1444  1.18    ad 	}
   1445   1.1  yamt }
   1446   1.1  yamt 
   1447   1.1  yamt static void
   1448  1.11  yamt test2(const char *title, bool dense)
   1449   1.1  yamt {
   1450   1.1  yamt 	struct radix_tree s;
   1451   1.1  yamt 	struct radix_tree *t = &s;
   1452   1.1  yamt 	struct testnode *n;
   1453   1.1  yamt 	unsigned int i;
   1454   1.1  yamt 	unsigned int nnodes = 100000;
   1455   1.1  yamt 	unsigned int removed;
   1456  1.18    ad 	unsigned int tag;
   1457  1.18    ad 	unsigned int tagmask;
   1458   1.1  yamt 	unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
   1459   1.1  yamt 	struct testnode *nodes;
   1460   1.1  yamt 	struct timeval stv;
   1461   1.1  yamt 	struct timeval etv;
   1462   1.1  yamt 
   1463   1.1  yamt 	nodes = malloc(nnodes * sizeof(*nodes));
   1464   1.1  yamt 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1465   1.1  yamt 		ntagged[tag] = 0;
   1466   1.1  yamt 	}
   1467   1.1  yamt 	radix_tree_init_tree(t);
   1468   1.1  yamt 	for (i = 0; i < nnodes; i++) {
   1469   1.1  yamt 		n = &nodes[i];
   1470   1.1  yamt 		n->idx = random();
   1471   1.1  yamt 		if (sizeof(long) == 4) {
   1472   1.1  yamt 			n->idx <<= 32;
   1473   1.1  yamt 			n->idx |= (uint32_t)random();
   1474   1.1  yamt 		}
   1475   1.1  yamt 		if (dense) {
   1476   1.1  yamt 			n->idx %= nnodes * 2;
   1477   1.1  yamt 		}
   1478   1.1  yamt 		while (radix_tree_lookup_node(t, n->idx) != NULL) {
   1479   1.1  yamt 			n->idx++;
   1480   1.1  yamt 		}
   1481   1.1  yamt 		radix_tree_insert_node(t, n->idx, n);
   1482   1.1  yamt 		for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1483  1.18    ad 			tagmask = 1 << tag;
   1484  1.18    ad 
   1485  1.12  yamt 			n->tagged[tag] = test2_should_tag(i, tag);
   1486  1.12  yamt 			if (n->tagged[tag]) {
   1487  1.18    ad 				radix_tree_set_tag(t, n->idx, tagmask);
   1488   1.1  yamt 				ntagged[tag]++;
   1489   1.1  yamt 			}
   1490  1.18    ad 			assert((n->tagged[tag] ? tagmask : 0) ==
   1491  1.18    ad 			    radix_tree_get_tag(t, n->idx, tagmask));
   1492   1.1  yamt 		}
   1493   1.1  yamt 	}
   1494   1.1  yamt 
   1495   1.1  yamt 	gettimeofday(&stv, NULL);
   1496   1.1  yamt 	for (i = 0; i < nnodes; i++) {
   1497   1.1  yamt 		n = &nodes[i];
   1498   1.1  yamt 		assert(radix_tree_lookup_node(t, n->idx) == n);
   1499   1.1  yamt 	}
   1500   1.1  yamt 	gettimeofday(&etv, NULL);
   1501  1.11  yamt 	printops(title, "lookup", 0, nnodes, &stv, &etv);
   1502   1.1  yamt 
   1503  1.18    ad 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1504  1.12  yamt 		unsigned int count = 0;
   1505  1.12  yamt 
   1506   1.1  yamt 		gettimeofday(&stv, NULL);
   1507   1.1  yamt 		for (i = 0; i < nnodes; i++) {
   1508  1.18    ad 			unsigned int tagged;
   1509  1.12  yamt 
   1510   1.1  yamt 			n = &nodes[i];
   1511  1.18    ad 			tagged = radix_tree_get_tag(t, n->idx, tagmask);
   1512  1.18    ad 			assert((tagged & ~tagmask) == 0);
   1513  1.18    ad 			for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1514  1.18    ad 				assert((tagmask & (1 << tag)) == 0 ||
   1515  1.18    ad 				    n->tagged[tag] == !!(tagged & (1 << tag)));
   1516  1.18    ad 			}
   1517  1.12  yamt 			if (tagged) {
   1518  1.12  yamt 				count++;
   1519  1.12  yamt 			}
   1520   1.1  yamt 		}
   1521   1.1  yamt 		gettimeofday(&etv, NULL);
   1522  1.18    ad 		check_tag_count(ntagged, tagmask, count);
   1523  1.18    ad 		printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
   1524   1.1  yamt 	}
   1525   1.1  yamt 
   1526   1.1  yamt 	gettimeofday(&stv, NULL);
   1527   1.1  yamt 	for (i = 0; i < nnodes; i++) {
   1528   1.1  yamt 		n = &nodes[i];
   1529   1.1  yamt 		radix_tree_remove_node(t, n->idx);
   1530   1.1  yamt 	}
   1531   1.1  yamt 	gettimeofday(&etv, NULL);
   1532  1.11  yamt 	printops(title, "remove", 0, nnodes, &stv, &etv);
   1533   1.1  yamt 
   1534   1.1  yamt 	gettimeofday(&stv, NULL);
   1535   1.1  yamt 	for (i = 0; i < nnodes; i++) {
   1536   1.1  yamt 		n = &nodes[i];
   1537   1.1  yamt 		radix_tree_insert_node(t, n->idx, n);
   1538   1.1  yamt 	}
   1539   1.1  yamt 	gettimeofday(&etv, NULL);
   1540  1.11  yamt 	printops(title, "insert", 0, nnodes, &stv, &etv);
   1541   1.1  yamt 
   1542   1.1  yamt 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1543  1.18    ad 		tagmask = 1 << tag;
   1544  1.18    ad 
   1545   1.1  yamt 		ntagged[tag] = 0;
   1546   1.1  yamt 		gettimeofday(&stv, NULL);
   1547   1.1  yamt 		for (i = 0; i < nnodes; i++) {
   1548   1.1  yamt 			n = &nodes[i];
   1549  1.12  yamt 			if (n->tagged[tag]) {
   1550  1.18    ad 				radix_tree_set_tag(t, n->idx, tagmask);
   1551   1.1  yamt 				ntagged[tag]++;
   1552   1.1  yamt 			}
   1553   1.1  yamt 		}
   1554   1.1  yamt 		gettimeofday(&etv, NULL);
   1555  1.11  yamt 		printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
   1556   1.1  yamt 	}
   1557   1.1  yamt 
   1558   1.1  yamt 	gettimeofday(&stv, NULL);
   1559   1.1  yamt 	{
   1560   1.1  yamt 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1561   1.1  yamt 		uint64_t nextidx;
   1562   1.1  yamt 		unsigned int nfound;
   1563   1.1  yamt 		unsigned int total;
   1564   1.1  yamt 
   1565   1.1  yamt 		nextidx = 0;
   1566   1.1  yamt 		total = 0;
   1567   1.1  yamt 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1568  1.18    ad 		    (void *)results, __arraycount(results), false)) > 0) {
   1569   1.1  yamt 			nextidx = results[nfound - 1]->idx + 1;
   1570   1.1  yamt 			total += nfound;
   1571  1.15  yamt 			if (nextidx == 0) {
   1572  1.15  yamt 				break;
   1573  1.15  yamt 			}
   1574   1.1  yamt 		}
   1575   1.1  yamt 		assert(total == nnodes);
   1576   1.1  yamt 	}
   1577   1.1  yamt 	gettimeofday(&etv, NULL);
   1578  1.11  yamt 	printops(title, "ganglookup", 0, nnodes, &stv, &etv);
   1579   1.1  yamt 
   1580  1.15  yamt 	gettimeofday(&stv, NULL);
   1581  1.15  yamt 	{
   1582  1.15  yamt 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1583  1.15  yamt 		uint64_t nextidx;
   1584  1.15  yamt 		unsigned int nfound;
   1585  1.15  yamt 		unsigned int total;
   1586  1.15  yamt 
   1587  1.15  yamt 		nextidx = UINT64_MAX;
   1588  1.15  yamt 		total = 0;
   1589  1.15  yamt 		while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
   1590  1.18    ad 		    (void *)results, __arraycount(results), false)) > 0) {
   1591  1.15  yamt 			nextidx = results[nfound - 1]->idx - 1;
   1592  1.15  yamt 			total += nfound;
   1593  1.15  yamt 			if (nextidx == UINT64_MAX) {
   1594  1.15  yamt 				break;
   1595  1.15  yamt 			}
   1596  1.15  yamt 		}
   1597  1.15  yamt 		assert(total == nnodes);
   1598  1.15  yamt 	}
   1599  1.15  yamt 	gettimeofday(&etv, NULL);
   1600  1.15  yamt 	printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
   1601  1.15  yamt 
   1602  1.18    ad 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1603  1.18    ad 		unsigned int total = 0;
   1604  1.18    ad 
   1605   1.1  yamt 		gettimeofday(&stv, NULL);
   1606   1.1  yamt 		{
   1607   1.1  yamt 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1608   1.1  yamt 			uint64_t nextidx;
   1609   1.1  yamt 			unsigned int nfound;
   1610   1.1  yamt 
   1611   1.1  yamt 			nextidx = 0;
   1612   1.1  yamt 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1613   1.1  yamt 			    nextidx, (void *)results, __arraycount(results),
   1614  1.18    ad 			    false, tagmask)) > 0) {
   1615   1.1  yamt 				nextidx = results[nfound - 1]->idx + 1;
   1616   1.1  yamt 				total += nfound;
   1617   1.1  yamt 			}
   1618   1.1  yamt 		}
   1619   1.1  yamt 		gettimeofday(&etv, NULL);
   1620  1.18    ad 		check_tag_count(ntagged, tagmask, total);
   1621  1.18    ad 		assert(tagmask != 0 || total == 0);
   1622  1.18    ad 		printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
   1623   1.1  yamt 	}
   1624   1.1  yamt 
   1625  1.18    ad 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1626  1.18    ad 		unsigned int total = 0;
   1627  1.18    ad 
   1628  1.15  yamt 		gettimeofday(&stv, NULL);
   1629  1.15  yamt 		{
   1630  1.15  yamt 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1631  1.15  yamt 			uint64_t nextidx;
   1632  1.15  yamt 			unsigned int nfound;
   1633  1.15  yamt 
   1634  1.15  yamt 			nextidx = UINT64_MAX;
   1635  1.15  yamt 			while ((nfound =
   1636  1.15  yamt 			    radix_tree_gang_lookup_tagged_node_reverse(t,
   1637  1.15  yamt 			    nextidx, (void *)results, __arraycount(results),
   1638  1.18    ad 			    false, tagmask)) > 0) {
   1639  1.15  yamt 				nextidx = results[nfound - 1]->idx - 1;
   1640  1.15  yamt 				total += nfound;
   1641  1.15  yamt 				if (nextidx == UINT64_MAX) {
   1642  1.15  yamt 					break;
   1643  1.15  yamt 				}
   1644  1.15  yamt 			}
   1645  1.15  yamt 		}
   1646  1.15  yamt 		gettimeofday(&etv, NULL);
   1647  1.18    ad 		check_tag_count(ntagged, tagmask, total);
   1648  1.18    ad 		assert(tagmask != 0 || total == 0);
   1649  1.18    ad 		printops(title, "ganglookup_tag_reverse", tagmask, total,
   1650  1.15  yamt 		    &stv, &etv);
   1651  1.15  yamt 	}
   1652  1.15  yamt 
   1653   1.1  yamt 	removed = 0;
   1654   1.1  yamt 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1655   1.1  yamt 		unsigned int total;
   1656   1.1  yamt 
   1657   1.1  yamt 		total = 0;
   1658  1.18    ad 		tagmask = 1 << tag;
   1659   1.1  yamt 		gettimeofday(&stv, NULL);
   1660   1.1  yamt 		{
   1661   1.1  yamt 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1662   1.1  yamt 			uint64_t nextidx;
   1663   1.1  yamt 			unsigned int nfound;
   1664   1.1  yamt 
   1665   1.1  yamt 			nextidx = 0;
   1666   1.1  yamt 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1667   1.1  yamt 			    nextidx, (void *)results, __arraycount(results),
   1668  1.18    ad 			    false, tagmask)) > 0) {
   1669   1.1  yamt 				for (i = 0; i < nfound; i++) {
   1670   1.1  yamt 					radix_tree_remove_node(t,
   1671   1.1  yamt 					    results[i]->idx);
   1672   1.1  yamt 				}
   1673   1.1  yamt 				nextidx = results[nfound - 1]->idx + 1;
   1674   1.1  yamt 				total += nfound;
   1675  1.15  yamt 				if (nextidx == 0) {
   1676  1.15  yamt 					break;
   1677  1.15  yamt 				}
   1678   1.1  yamt 			}
   1679  1.18    ad 		}
   1680  1.18    ad 		gettimeofday(&etv, NULL);
   1681  1.18    ad 		if (tag == 0) {
   1682  1.18    ad 			check_tag_count(ntagged, tagmask, total);
   1683  1.18    ad 		} else {
   1684   1.1  yamt 			assert(total <= ntagged[tag]);
   1685   1.1  yamt 		}
   1686  1.18    ad 		printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
   1687  1.11  yamt 		    &etv);
   1688   1.1  yamt 		removed += total;
   1689   1.1  yamt 	}
   1690   1.1  yamt 
   1691   1.1  yamt 	gettimeofday(&stv, NULL);
   1692   1.1  yamt 	{
   1693   1.1  yamt 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1694   1.1  yamt 		uint64_t nextidx;
   1695   1.1  yamt 		unsigned int nfound;
   1696   1.1  yamt 		unsigned int total;
   1697   1.1  yamt 
   1698   1.1  yamt 		nextidx = 0;
   1699   1.1  yamt 		total = 0;
   1700   1.1  yamt 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1701  1.18    ad 		    (void *)results, __arraycount(results), false)) > 0) {
   1702   1.1  yamt 			for (i = 0; i < nfound; i++) {
   1703   1.1  yamt 				assert(results[i] == radix_tree_remove_node(t,
   1704   1.1  yamt 				    results[i]->idx));
   1705   1.1  yamt 			}
   1706   1.1  yamt 			nextidx = results[nfound - 1]->idx + 1;
   1707   1.1  yamt 			total += nfound;
   1708  1.15  yamt 			if (nextidx == 0) {
   1709  1.15  yamt 				break;
   1710  1.15  yamt 			}
   1711   1.1  yamt 		}
   1712   1.1  yamt 		assert(total == nnodes - removed);
   1713   1.1  yamt 	}
   1714   1.1  yamt 	gettimeofday(&etv, NULL);
   1715  1.11  yamt 	printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
   1716   1.1  yamt 
   1717  1.16  yamt 	assert(radix_tree_empty_tree_p(t));
   1718  1.18    ad 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1719  1.18    ad 		assert(radix_tree_empty_tagged_tree_p(t, tagmask));
   1720  1.18    ad 	}
   1721   1.1  yamt 	radix_tree_fini_tree(t);
   1722   1.1  yamt 	free(nodes);
   1723   1.1  yamt }
   1724   1.1  yamt 
   1725   1.1  yamt int
   1726   1.1  yamt main(int argc, char *argv[])
   1727   1.1  yamt {
   1728   1.1  yamt 
   1729   1.1  yamt 	test1();
   1730  1.11  yamt 	test2("dense", true);
   1731  1.11  yamt 	test2("sparse", false);
   1732   1.1  yamt 	return 0;
   1733   1.1  yamt }
   1734   1.1  yamt 
   1735   1.1  yamt #endif /* defined(UNITTEST) */
   1736