radixtree.c revision 1.23 1 1.23 ad /* $NetBSD: radixtree.c,v 1.23 2020/01/28 22:20:45 ad Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.18 ad * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.17 yamt * radixtree.c
31 1.1 yamt *
32 1.18 ad * Overview:
33 1.18 ad *
34 1.18 ad * This is an implementation of radix tree, whose keys are uint64_t and leafs
35 1.17 yamt * are user provided pointers.
36 1.17 yamt *
37 1.18 ad * Leaf nodes are just void * and this implementation doesn't care about
38 1.18 ad * what they actually point to. However, this implementation has an assumption
39 1.18 ad * about their alignment. Specifically, this implementation assumes that their
40 1.18 ad * 2 LSBs are always zero and uses them for internal accounting.
41 1.18 ad *
42 1.18 ad * Intermediate nodes and memory allocation:
43 1.18 ad *
44 1.18 ad * Intermediate nodes are automatically allocated and freed internally and
45 1.18 ad * basically users don't need to care about them. The allocation is done via
46 1.18 ad * pool_cache_get(9) for _KERNEL, malloc(3) for userland, and alloc() for
47 1.18 ad * _STANDALONE environment. Only radix_tree_insert_node function can allocate
48 1.18 ad * memory for intermediate nodes and thus can fail for ENOMEM.
49 1.18 ad *
50 1.18 ad * Memory Efficiency:
51 1.18 ad *
52 1.18 ad * It's designed to work efficiently with dense index distribution.
53 1.18 ad * The memory consumption (number of necessary intermediate nodes) heavily
54 1.18 ad * depends on the index distribution. Basically, more dense index distribution
55 1.18 ad * consumes less nodes per item. Approximately,
56 1.18 ad *
57 1.18 ad * - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
58 1.18 ad * it would look like the following.
59 1.18 ad *
60 1.18 ad * root (t_height=1)
61 1.18 ad * |
62 1.18 ad * v
63 1.18 ad * [ | | | ] (intermediate node. RADIX_TREE_PTR_PER_NODE=4 in this fig)
64 1.18 ad * | | | |
65 1.18 ad * v v v v
66 1.18 ad * p p p p (items)
67 1.18 ad *
68 1.18 ad * - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
69 1.18 ad * it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
70 1.18 ad *
71 1.18 ad * root (t_height=3)
72 1.18 ad * |
73 1.18 ad * v
74 1.18 ad * [ | | | ]
75 1.18 ad * |
76 1.18 ad * v
77 1.18 ad * [ | | | ]
78 1.18 ad * |
79 1.18 ad * v
80 1.18 ad * [ | | | ]
81 1.18 ad * |
82 1.18 ad * v
83 1.18 ad * p
84 1.18 ad *
85 1.18 ad * The height of tree (t_height) is dynamic. It's smaller if only small
86 1.18 ad * index values are used. As an extreme case, if only index 0 is used,
87 1.18 ad * the corresponding value is directly stored in the root of the tree
88 1.18 ad * (struct radix_tree) without allocating any intermediate nodes. In that
89 1.18 ad * case, t_height=0.
90 1.18 ad *
91 1.18 ad * Gang lookup:
92 1.17 yamt *
93 1.18 ad * This implementation provides a way to scan many nodes quickly via
94 1.17 yamt * radix_tree_gang_lookup_node function and its varients.
95 1.17 yamt *
96 1.18 ad * Tags:
97 1.18 ad *
98 1.18 ad * This implementation provides tagging functionality, which allows quick
99 1.18 ad * scanning of a subset of leaf nodes. Leaf nodes are untagged when inserted
100 1.18 ad * into the tree and can be tagged by radix_tree_set_tag function.
101 1.18 ad * radix_tree_gang_lookup_tagged_node function and its variants returns only
102 1.18 ad * leaf nodes with the given tag. To reduce amount of nodes to visit for
103 1.17 yamt * these functions, this implementation keeps tagging information in internal
104 1.17 yamt * intermediate nodes and quickly skips uninterested parts of a tree.
105 1.18 ad *
106 1.18 ad * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
107 1.18 ad * identified by an zero-origin numbers, tagid. For the current implementation,
108 1.18 ad * RADIX_TREE_TAG_ID_MAX is 2. A set of tags is described as a bitmask tagmask,
109 1.18 ad * which is a bitwise OR of (1 << tagid).
110 1.1 yamt */
111 1.1 yamt
112 1.1 yamt #include <sys/cdefs.h>
113 1.1 yamt
114 1.2 yamt #if defined(_KERNEL) || defined(_STANDALONE)
115 1.23 ad __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.23 2020/01/28 22:20:45 ad Exp $");
116 1.1 yamt #include <sys/param.h>
117 1.3 yamt #include <sys/errno.h>
118 1.1 yamt #include <sys/pool.h>
119 1.1 yamt #include <sys/radixtree.h>
120 1.3 yamt #include <lib/libkern/libkern.h>
121 1.3 yamt #if defined(_STANDALONE)
122 1.3 yamt #include <lib/libsa/stand.h>
123 1.3 yamt #endif /* defined(_STANDALONE) */
124 1.2 yamt #else /* defined(_KERNEL) || defined(_STANDALONE) */
125 1.23 ad __RCSID("$NetBSD: radixtree.c,v 1.23 2020/01/28 22:20:45 ad Exp $");
126 1.1 yamt #include <assert.h>
127 1.1 yamt #include <errno.h>
128 1.1 yamt #include <stdbool.h>
129 1.1 yamt #include <stdlib.h>
130 1.8 yamt #include <string.h>
131 1.1 yamt #if 1
132 1.1 yamt #define KASSERT assert
133 1.1 yamt #else
134 1.1 yamt #define KASSERT(a) /* nothing */
135 1.1 yamt #endif
136 1.2 yamt #endif /* defined(_KERNEL) || defined(_STANDALONE) */
137 1.1 yamt
138 1.1 yamt #include <sys/radixtree.h>
139 1.1 yamt
140 1.1 yamt #define RADIX_TREE_BITS_PER_HEIGHT 4 /* XXX tune */
141 1.1 yamt #define RADIX_TREE_PTR_PER_NODE (1 << RADIX_TREE_BITS_PER_HEIGHT)
142 1.1 yamt #define RADIX_TREE_MAX_HEIGHT (64 / RADIX_TREE_BITS_PER_HEIGHT)
143 1.15 yamt #define RADIX_TREE_INVALID_HEIGHT (RADIX_TREE_MAX_HEIGHT + 1)
144 1.2 yamt __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
145 1.1 yamt
146 1.2 yamt __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
147 1.1 yamt #define RADIX_TREE_TAG_MASK ((1 << RADIX_TREE_TAG_ID_MAX) - 1)
148 1.1 yamt
149 1.1 yamt static inline void *
150 1.1 yamt entry_ptr(void *p)
151 1.1 yamt {
152 1.1 yamt
153 1.1 yamt return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
154 1.1 yamt }
155 1.1 yamt
156 1.1 yamt static inline unsigned int
157 1.1 yamt entry_tagmask(void *p)
158 1.1 yamt {
159 1.1 yamt
160 1.1 yamt return (uintptr_t)p & RADIX_TREE_TAG_MASK;
161 1.1 yamt }
162 1.1 yamt
163 1.1 yamt static inline void *
164 1.1 yamt entry_compose(void *p, unsigned int tagmask)
165 1.1 yamt {
166 1.1 yamt
167 1.1 yamt return (void *)((uintptr_t)p | tagmask);
168 1.1 yamt }
169 1.1 yamt
170 1.1 yamt static inline bool
171 1.1 yamt entry_match_p(void *p, unsigned int tagmask)
172 1.1 yamt {
173 1.1 yamt
174 1.1 yamt KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
175 1.1 yamt if (p == NULL) {
176 1.1 yamt return false;
177 1.1 yamt }
178 1.1 yamt if (tagmask == 0) {
179 1.1 yamt return true;
180 1.1 yamt }
181 1.1 yamt return (entry_tagmask(p) & tagmask) != 0;
182 1.1 yamt }
183 1.1 yamt
184 1.1 yamt /*
185 1.1 yamt * radix_tree_node: an intermediate node
186 1.1 yamt *
187 1.1 yamt * we don't care the type of leaf nodes. they are just void *.
188 1.19 ad *
189 1.19 ad * we used to maintain a count of non-NULL nodes in this structure, but it
190 1.19 ad * prevented it from being aligned to a cache line boundary; the performance
191 1.19 ad * benefit from being cache friendly is greater than the benefit of having
192 1.19 ad * a dedicated count value, especially in multi-processor situations where
193 1.19 ad * we need to avoid intra-pool-page false sharing.
194 1.1 yamt */
195 1.1 yamt
196 1.1 yamt struct radix_tree_node {
197 1.1 yamt void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
198 1.1 yamt };
199 1.1 yamt
200 1.7 yamt /*
201 1.7 yamt * any_children_tagmask:
202 1.7 yamt *
203 1.7 yamt * return OR'ed tagmask of the given node's children.
204 1.7 yamt */
205 1.7 yamt
206 1.1 yamt static unsigned int
207 1.13 yamt any_children_tagmask(const struct radix_tree_node *n)
208 1.1 yamt {
209 1.1 yamt unsigned int mask;
210 1.1 yamt int i;
211 1.1 yamt
212 1.1 yamt mask = 0;
213 1.1 yamt for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
214 1.1 yamt mask |= (unsigned int)(uintptr_t)n->n_ptrs[i];
215 1.1 yamt }
216 1.1 yamt return mask & RADIX_TREE_TAG_MASK;
217 1.1 yamt }
218 1.1 yamt
219 1.1 yamt /*
220 1.1 yamt * p_refs[0].pptr == &t->t_root
221 1.1 yamt * :
222 1.1 yamt * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
223 1.1 yamt * :
224 1.1 yamt * :
225 1.1 yamt * p_refs[t->t_height].pptr == &leaf_pointer
226 1.1 yamt */
227 1.1 yamt
228 1.1 yamt struct radix_tree_path {
229 1.1 yamt struct radix_tree_node_ref {
230 1.1 yamt void **pptr;
231 1.1 yamt } p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
232 1.15 yamt /*
233 1.15 yamt * p_lastidx is either the index of the last valid element of p_refs[]
234 1.15 yamt * or RADIX_TREE_INVALID_HEIGHT.
235 1.15 yamt * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
236 1.15 yamt * that the height of the tree is not enough to cover the given index.
237 1.15 yamt */
238 1.10 yamt unsigned int p_lastidx;
239 1.1 yamt };
240 1.1 yamt
241 1.1 yamt static inline void **
242 1.13 yamt path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
243 1.1 yamt unsigned int height)
244 1.1 yamt {
245 1.1 yamt
246 1.1 yamt KASSERT(height <= t->t_height);
247 1.1 yamt return p->p_refs[height].pptr;
248 1.1 yamt }
249 1.1 yamt
250 1.1 yamt static inline struct radix_tree_node *
251 1.13 yamt path_node(const struct radix_tree * t, const struct radix_tree_path *p,
252 1.13 yamt unsigned int height)
253 1.1 yamt {
254 1.1 yamt
255 1.1 yamt KASSERT(height <= t->t_height);
256 1.1 yamt return entry_ptr(*path_pptr(t, p, height));
257 1.1 yamt }
258 1.1 yamt
259 1.1 yamt /*
260 1.1 yamt * radix_tree_init_tree:
261 1.1 yamt *
262 1.18 ad * Initialize a tree.
263 1.1 yamt */
264 1.1 yamt
265 1.1 yamt void
266 1.1 yamt radix_tree_init_tree(struct radix_tree *t)
267 1.1 yamt {
268 1.1 yamt
269 1.1 yamt t->t_height = 0;
270 1.1 yamt t->t_root = NULL;
271 1.1 yamt }
272 1.1 yamt
273 1.1 yamt /*
274 1.18 ad * radix_tree_fini_tree:
275 1.1 yamt *
276 1.18 ad * Finish using a tree.
277 1.1 yamt */
278 1.1 yamt
279 1.1 yamt void
280 1.1 yamt radix_tree_fini_tree(struct radix_tree *t)
281 1.1 yamt {
282 1.1 yamt
283 1.1 yamt KASSERT(t->t_root == NULL);
284 1.1 yamt KASSERT(t->t_height == 0);
285 1.1 yamt }
286 1.1 yamt
287 1.18 ad /*
288 1.18 ad * radix_tree_empty_tree_p:
289 1.18 ad *
290 1.18 ad * Return if the tree is empty.
291 1.18 ad */
292 1.18 ad
293 1.9 yamt bool
294 1.9 yamt radix_tree_empty_tree_p(struct radix_tree *t)
295 1.9 yamt {
296 1.9 yamt
297 1.9 yamt return t->t_root == NULL;
298 1.9 yamt }
299 1.9 yamt
300 1.18 ad /*
301 1.18 ad * radix_tree_empty_tree_p:
302 1.18 ad *
303 1.18 ad * Return true if the tree has any nodes with the given tag. Otherwise
304 1.18 ad * return false.
305 1.18 ad *
306 1.18 ad * It's illegal to call this function with tagmask 0.
307 1.18 ad */
308 1.18 ad
309 1.16 yamt bool
310 1.18 ad radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
311 1.16 yamt {
312 1.16 yamt
313 1.18 ad KASSERT(tagmask != 0);
314 1.16 yamt return (entry_tagmask(t->t_root) & tagmask) == 0;
315 1.16 yamt }
316 1.16 yamt
317 1.3 yamt static void
318 1.3 yamt radix_tree_node_init(struct radix_tree_node *n)
319 1.3 yamt {
320 1.3 yamt
321 1.3 yamt memset(n, 0, sizeof(*n));
322 1.3 yamt }
323 1.3 yamt
324 1.1 yamt #if defined(_KERNEL)
325 1.2 yamt pool_cache_t radix_tree_node_cache __read_mostly;
326 1.1 yamt
327 1.1 yamt static int
328 1.1 yamt radix_tree_node_ctor(void *dummy, void *item, int flags)
329 1.1 yamt {
330 1.1 yamt struct radix_tree_node *n = item;
331 1.1 yamt
332 1.1 yamt KASSERT(dummy == NULL);
333 1.3 yamt radix_tree_node_init(n);
334 1.1 yamt return 0;
335 1.1 yamt }
336 1.1 yamt
337 1.1 yamt /*
338 1.1 yamt * radix_tree_init:
339 1.1 yamt *
340 1.1 yamt * initialize the subsystem.
341 1.1 yamt */
342 1.1 yamt
343 1.1 yamt void
344 1.1 yamt radix_tree_init(void)
345 1.1 yamt {
346 1.1 yamt
347 1.1 yamt radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
348 1.21 para coherency_unit, 0, PR_LARGECACHE, "radixnode", NULL, IPL_NONE,
349 1.19 ad radix_tree_node_ctor, NULL, NULL);
350 1.1 yamt KASSERT(radix_tree_node_cache != NULL);
351 1.1 yamt }
352 1.22 ad
353 1.22 ad /*
354 1.22 ad * radix_tree_await_memory:
355 1.22 ad *
356 1.22 ad * after an insert has failed with ENOMEM, wait for memory to become
357 1.22 ad * available, so the caller can retry.
358 1.22 ad */
359 1.22 ad
360 1.22 ad void
361 1.22 ad radix_tree_await_memory(void)
362 1.22 ad {
363 1.22 ad struct radix_tree_node *n;
364 1.22 ad
365 1.22 ad n = pool_cache_get(radix_tree_node_cache, PR_WAITOK);
366 1.22 ad pool_cache_put(radix_tree_node_cache, n);
367 1.22 ad }
368 1.22 ad
369 1.1 yamt #endif /* defined(_KERNEL) */
370 1.1 yamt
371 1.1 yamt static bool __unused
372 1.1 yamt radix_tree_node_clean_p(const struct radix_tree_node *n)
373 1.1 yamt {
374 1.19 ad #if RADIX_TREE_PTR_PER_NODE > 16
375 1.1 yamt unsigned int i;
376 1.1 yamt
377 1.1 yamt for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
378 1.1 yamt if (n->n_ptrs[i] != NULL) {
379 1.1 yamt return false;
380 1.1 yamt }
381 1.1 yamt }
382 1.1 yamt return true;
383 1.19 ad #else /* RADIX_TREE_PTR_PER_NODE > 16 */
384 1.19 ad uintptr_t sum;
385 1.19 ad
386 1.19 ad /*
387 1.19 ad * Unrolling the above is much better than a tight loop with two
388 1.19 ad * test+branch pairs. On x86 with gcc 5.5.0 this compiles into 19
389 1.19 ad * deterministic instructions including the "return" and prologue &
390 1.19 ad * epilogue.
391 1.19 ad */
392 1.19 ad sum = (uintptr_t)n->n_ptrs[0];
393 1.19 ad sum |= (uintptr_t)n->n_ptrs[1];
394 1.19 ad sum |= (uintptr_t)n->n_ptrs[2];
395 1.19 ad sum |= (uintptr_t)n->n_ptrs[3];
396 1.19 ad #if RADIX_TREE_PTR_PER_NODE > 4
397 1.19 ad sum |= (uintptr_t)n->n_ptrs[4];
398 1.19 ad sum |= (uintptr_t)n->n_ptrs[5];
399 1.19 ad sum |= (uintptr_t)n->n_ptrs[6];
400 1.19 ad sum |= (uintptr_t)n->n_ptrs[7];
401 1.19 ad #endif
402 1.19 ad #if RADIX_TREE_PTR_PER_NODE > 8
403 1.19 ad sum |= (uintptr_t)n->n_ptrs[8];
404 1.19 ad sum |= (uintptr_t)n->n_ptrs[9];
405 1.19 ad sum |= (uintptr_t)n->n_ptrs[10];
406 1.19 ad sum |= (uintptr_t)n->n_ptrs[11];
407 1.19 ad sum |= (uintptr_t)n->n_ptrs[12];
408 1.19 ad sum |= (uintptr_t)n->n_ptrs[13];
409 1.19 ad sum |= (uintptr_t)n->n_ptrs[14];
410 1.19 ad sum |= (uintptr_t)n->n_ptrs[15];
411 1.19 ad #endif
412 1.19 ad return sum == 0;
413 1.19 ad #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
414 1.19 ad }
415 1.19 ad
416 1.19 ad static int __unused
417 1.19 ad radix_tree_node_count_ptrs(const struct radix_tree_node *n)
418 1.19 ad {
419 1.19 ad unsigned int i, c;
420 1.19 ad
421 1.19 ad for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
422 1.19 ad c += (n->n_ptrs[i] != NULL);
423 1.19 ad }
424 1.19 ad return c;
425 1.1 yamt }
426 1.1 yamt
427 1.1 yamt static struct radix_tree_node *
428 1.1 yamt radix_tree_alloc_node(void)
429 1.1 yamt {
430 1.1 yamt struct radix_tree_node *n;
431 1.1 yamt
432 1.1 yamt #if defined(_KERNEL)
433 1.18 ad /*
434 1.18 ad * note that pool_cache_get can block.
435 1.18 ad */
436 1.1 yamt n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
437 1.1 yamt #else /* defined(_KERNEL) */
438 1.3 yamt #if defined(_STANDALONE)
439 1.3 yamt n = alloc(sizeof(*n));
440 1.3 yamt #else /* defined(_STANDALONE) */
441 1.3 yamt n = malloc(sizeof(*n));
442 1.3 yamt #endif /* defined(_STANDALONE) */
443 1.3 yamt if (n != NULL) {
444 1.3 yamt radix_tree_node_init(n);
445 1.3 yamt }
446 1.1 yamt #endif /* defined(_KERNEL) */
447 1.1 yamt KASSERT(n == NULL || radix_tree_node_clean_p(n));
448 1.1 yamt return n;
449 1.1 yamt }
450 1.1 yamt
451 1.1 yamt static void
452 1.1 yamt radix_tree_free_node(struct radix_tree_node *n)
453 1.1 yamt {
454 1.1 yamt
455 1.1 yamt KASSERT(radix_tree_node_clean_p(n));
456 1.1 yamt #if defined(_KERNEL)
457 1.1 yamt pool_cache_put(radix_tree_node_cache, n);
458 1.3 yamt #elif defined(_STANDALONE)
459 1.3 yamt dealloc(n, sizeof(*n));
460 1.3 yamt #else
461 1.1 yamt free(n);
462 1.3 yamt #endif
463 1.1 yamt }
464 1.1 yamt
465 1.1 yamt static int
466 1.1 yamt radix_tree_grow(struct radix_tree *t, unsigned int newheight)
467 1.1 yamt {
468 1.1 yamt const unsigned int tagmask = entry_tagmask(t->t_root);
469 1.1 yamt
470 1.1 yamt KASSERT(newheight <= 64 / RADIX_TREE_BITS_PER_HEIGHT);
471 1.1 yamt if (t->t_root == NULL) {
472 1.1 yamt t->t_height = newheight;
473 1.1 yamt return 0;
474 1.1 yamt }
475 1.1 yamt while (t->t_height < newheight) {
476 1.1 yamt struct radix_tree_node *n;
477 1.1 yamt
478 1.1 yamt n = radix_tree_alloc_node();
479 1.1 yamt if (n == NULL) {
480 1.1 yamt /*
481 1.1 yamt * don't bother to revert our changes.
482 1.1 yamt * the caller will likely retry.
483 1.1 yamt */
484 1.1 yamt return ENOMEM;
485 1.1 yamt }
486 1.1 yamt n->n_ptrs[0] = t->t_root;
487 1.1 yamt t->t_root = entry_compose(n, tagmask);
488 1.1 yamt t->t_height++;
489 1.1 yamt }
490 1.1 yamt return 0;
491 1.1 yamt }
492 1.1 yamt
493 1.5 yamt /*
494 1.5 yamt * radix_tree_lookup_ptr:
495 1.5 yamt *
496 1.5 yamt * an internal helper function used for various exported functions.
497 1.5 yamt *
498 1.5 yamt * return the pointer to store the node for the given index.
499 1.5 yamt *
500 1.5 yamt * if alloc is true, try to allocate the storage. (note for _KERNEL:
501 1.5 yamt * in that case, this function can block.) if the allocation failed or
502 1.5 yamt * alloc is false, return NULL.
503 1.5 yamt *
504 1.5 yamt * if path is not NULL, fill it for the caller's investigation.
505 1.5 yamt *
506 1.5 yamt * if tagmask is not zero, search only for nodes with the tag set.
507 1.15 yamt * note that, however, this function doesn't check the tagmask for the leaf
508 1.15 yamt * pointer. it's a caller's responsibility to investigate the value which
509 1.15 yamt * is pointed by the returned pointer if necessary.
510 1.5 yamt *
511 1.5 yamt * while this function is a bit large, as it's called with some constant
512 1.5 yamt * arguments, inlining might have benefits. anyway, a compiler will decide.
513 1.5 yamt */
514 1.5 yamt
515 1.1 yamt static inline void **
516 1.1 yamt radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
517 1.1 yamt struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
518 1.1 yamt {
519 1.1 yamt struct radix_tree_node *n;
520 1.1 yamt int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
521 1.1 yamt int shift;
522 1.1 yamt void **vpp;
523 1.1 yamt const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
524 1.1 yamt struct radix_tree_node_ref *refs = NULL;
525 1.1 yamt
526 1.5 yamt /*
527 1.5 yamt * check unsupported combinations
528 1.5 yamt */
529 1.1 yamt KASSERT(tagmask == 0 || !alloc);
530 1.1 yamt KASSERT(path == NULL || !alloc);
531 1.1 yamt vpp = &t->t_root;
532 1.1 yamt if (path != NULL) {
533 1.1 yamt refs = path->p_refs;
534 1.1 yamt refs->pptr = vpp;
535 1.1 yamt }
536 1.1 yamt n = NULL;
537 1.1 yamt for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
538 1.1 yamt struct radix_tree_node *c;
539 1.1 yamt void *entry;
540 1.1 yamt const uint64_t i = (idx >> shift) & mask;
541 1.1 yamt
542 1.1 yamt if (shift >= hshift) {
543 1.1 yamt unsigned int newheight;
544 1.1 yamt
545 1.1 yamt KASSERT(vpp == &t->t_root);
546 1.1 yamt if (i == 0) {
547 1.1 yamt shift -= RADIX_TREE_BITS_PER_HEIGHT;
548 1.1 yamt continue;
549 1.1 yamt }
550 1.1 yamt if (!alloc) {
551 1.1 yamt if (path != NULL) {
552 1.1 yamt KASSERT((refs - path->p_refs) == 0);
553 1.15 yamt path->p_lastidx =
554 1.15 yamt RADIX_TREE_INVALID_HEIGHT;
555 1.1 yamt }
556 1.1 yamt return NULL;
557 1.1 yamt }
558 1.1 yamt newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
559 1.1 yamt if (radix_tree_grow(t, newheight)) {
560 1.1 yamt return NULL;
561 1.1 yamt }
562 1.1 yamt hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
563 1.1 yamt }
564 1.1 yamt entry = *vpp;
565 1.1 yamt c = entry_ptr(entry);
566 1.1 yamt if (c == NULL ||
567 1.1 yamt (tagmask != 0 &&
568 1.1 yamt (entry_tagmask(entry) & tagmask) == 0)) {
569 1.1 yamt if (!alloc) {
570 1.1 yamt if (path != NULL) {
571 1.1 yamt path->p_lastidx = refs - path->p_refs;
572 1.1 yamt }
573 1.1 yamt return NULL;
574 1.1 yamt }
575 1.1 yamt c = radix_tree_alloc_node();
576 1.1 yamt if (c == NULL) {
577 1.1 yamt return NULL;
578 1.1 yamt }
579 1.1 yamt *vpp = c;
580 1.1 yamt }
581 1.1 yamt n = c;
582 1.1 yamt vpp = &n->n_ptrs[i];
583 1.1 yamt if (path != NULL) {
584 1.1 yamt refs++;
585 1.1 yamt refs->pptr = vpp;
586 1.1 yamt }
587 1.1 yamt shift -= RADIX_TREE_BITS_PER_HEIGHT;
588 1.1 yamt }
589 1.1 yamt if (alloc) {
590 1.1 yamt KASSERT(*vpp == NULL);
591 1.1 yamt }
592 1.1 yamt if (path != NULL) {
593 1.1 yamt path->p_lastidx = refs - path->p_refs;
594 1.1 yamt }
595 1.1 yamt return vpp;
596 1.1 yamt }
597 1.1 yamt
598 1.1 yamt /*
599 1.1 yamt * radix_tree_insert_node:
600 1.1 yamt *
601 1.18 ad * Insert the node at the given index.
602 1.18 ad *
603 1.18 ad * It's illegal to insert NULL. It's illegal to insert a non-aligned pointer.
604 1.1 yamt *
605 1.18 ad * This function returns ENOMEM if necessary memory allocation failed.
606 1.18 ad * Otherwise, this function returns 0.
607 1.1 yamt *
608 1.18 ad * Note that inserting a node can involves memory allocation for intermediate
609 1.18 ad * nodes. If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
610 1.4 yamt *
611 1.18 ad * For the newly inserted node, all tags are cleared.
612 1.1 yamt */
613 1.1 yamt
614 1.1 yamt int
615 1.1 yamt radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
616 1.1 yamt {
617 1.1 yamt void **vpp;
618 1.1 yamt
619 1.1 yamt KASSERT(p != NULL);
620 1.18 ad KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
621 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
622 1.1 yamt if (vpp == NULL) {
623 1.1 yamt return ENOMEM;
624 1.1 yamt }
625 1.1 yamt KASSERT(*vpp == NULL);
626 1.1 yamt *vpp = p;
627 1.1 yamt return 0;
628 1.1 yamt }
629 1.1 yamt
630 1.4 yamt /*
631 1.4 yamt * radix_tree_replace_node:
632 1.4 yamt *
633 1.18 ad * Replace a node at the given index with the given node and return the
634 1.18 ad * replaced one.
635 1.18 ad *
636 1.18 ad * It's illegal to try to replace a node which has not been inserted.
637 1.4 yamt *
638 1.18 ad * This function keeps tags intact.
639 1.4 yamt */
640 1.4 yamt
641 1.1 yamt void *
642 1.1 yamt radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
643 1.1 yamt {
644 1.1 yamt void **vpp;
645 1.1 yamt void *oldp;
646 1.1 yamt
647 1.1 yamt KASSERT(p != NULL);
648 1.18 ad KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
649 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
650 1.1 yamt KASSERT(vpp != NULL);
651 1.1 yamt oldp = *vpp;
652 1.1 yamt KASSERT(oldp != NULL);
653 1.1 yamt *vpp = entry_compose(p, entry_tagmask(*vpp));
654 1.1 yamt return entry_ptr(oldp);
655 1.1 yamt }
656 1.1 yamt
657 1.1 yamt /*
658 1.1 yamt * radix_tree_remove_node:
659 1.1 yamt *
660 1.18 ad * Remove the node at the given index.
661 1.18 ad *
662 1.18 ad * It's illegal to try to remove a node which has not been inserted.
663 1.1 yamt */
664 1.1 yamt
665 1.1 yamt void *
666 1.1 yamt radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
667 1.1 yamt {
668 1.1 yamt struct radix_tree_path path;
669 1.1 yamt void **vpp;
670 1.1 yamt void *oldp;
671 1.1 yamt int i;
672 1.1 yamt
673 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
674 1.1 yamt KASSERT(vpp != NULL);
675 1.1 yamt oldp = *vpp;
676 1.1 yamt KASSERT(oldp != NULL);
677 1.1 yamt KASSERT(path.p_lastidx == t->t_height);
678 1.1 yamt KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
679 1.1 yamt *vpp = NULL;
680 1.1 yamt for (i = t->t_height - 1; i >= 0; i--) {
681 1.1 yamt void *entry;
682 1.1 yamt struct radix_tree_node ** const pptr =
683 1.1 yamt (struct radix_tree_node **)path_pptr(t, &path, i);
684 1.1 yamt struct radix_tree_node *n;
685 1.1 yamt
686 1.1 yamt KASSERT(pptr != NULL);
687 1.1 yamt entry = *pptr;
688 1.1 yamt n = entry_ptr(entry);
689 1.1 yamt KASSERT(n != NULL);
690 1.19 ad if (!radix_tree_node_clean_p(n)) {
691 1.1 yamt break;
692 1.1 yamt }
693 1.1 yamt radix_tree_free_node(n);
694 1.1 yamt *pptr = NULL;
695 1.1 yamt }
696 1.1 yamt /*
697 1.1 yamt * fix up height
698 1.1 yamt */
699 1.1 yamt if (i < 0) {
700 1.1 yamt KASSERT(t->t_root == NULL);
701 1.1 yamt t->t_height = 0;
702 1.1 yamt }
703 1.1 yamt /*
704 1.1 yamt * update tags
705 1.1 yamt */
706 1.1 yamt for (; i >= 0; i--) {
707 1.1 yamt void *entry;
708 1.1 yamt struct radix_tree_node ** const pptr =
709 1.1 yamt (struct radix_tree_node **)path_pptr(t, &path, i);
710 1.1 yamt struct radix_tree_node *n;
711 1.1 yamt unsigned int newmask;
712 1.1 yamt
713 1.1 yamt KASSERT(pptr != NULL);
714 1.1 yamt entry = *pptr;
715 1.1 yamt n = entry_ptr(entry);
716 1.1 yamt KASSERT(n != NULL);
717 1.19 ad KASSERT(!radix_tree_node_clean_p(n));
718 1.1 yamt newmask = any_children_tagmask(n);
719 1.1 yamt if (newmask == entry_tagmask(entry)) {
720 1.1 yamt break;
721 1.1 yamt }
722 1.1 yamt *pptr = entry_compose(n, newmask);
723 1.1 yamt }
724 1.1 yamt /*
725 1.1 yamt * XXX is it worth to try to reduce height?
726 1.1 yamt * if we do that, make radix_tree_grow rollback its change as well.
727 1.1 yamt */
728 1.1 yamt return entry_ptr(oldp);
729 1.1 yamt }
730 1.1 yamt
731 1.1 yamt /*
732 1.1 yamt * radix_tree_lookup_node:
733 1.1 yamt *
734 1.18 ad * Returns the node at the given index.
735 1.18 ad * Returns NULL if nothing is found at the given index.
736 1.1 yamt */
737 1.1 yamt
738 1.1 yamt void *
739 1.1 yamt radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
740 1.1 yamt {
741 1.1 yamt void **vpp;
742 1.1 yamt
743 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
744 1.1 yamt if (vpp == NULL) {
745 1.1 yamt return NULL;
746 1.1 yamt }
747 1.1 yamt return entry_ptr(*vpp);
748 1.1 yamt }
749 1.1 yamt
750 1.1 yamt static inline void
751 1.1 yamt gang_lookup_init(struct radix_tree *t, uint64_t idx,
752 1.1 yamt struct radix_tree_path *path, const unsigned int tagmask)
753 1.1 yamt {
754 1.18 ad void **vpp __unused;
755 1.1 yamt
756 1.19 ad vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
757 1.1 yamt KASSERT(vpp == NULL ||
758 1.1 yamt vpp == path_pptr(t, path, path->p_lastidx));
759 1.1 yamt KASSERT(&t->t_root == path_pptr(t, path, 0));
760 1.15 yamt KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
761 1.15 yamt path->p_lastidx == t->t_height ||
762 1.15 yamt !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
763 1.1 yamt }
764 1.1 yamt
765 1.15 yamt /*
766 1.15 yamt * gang_lookup_scan:
767 1.15 yamt *
768 1.15 yamt * a helper routine for radix_tree_gang_lookup_node and its variants.
769 1.15 yamt */
770 1.15 yamt
771 1.1 yamt static inline unsigned int
772 1.15 yamt __attribute__((__always_inline__))
773 1.1 yamt gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
774 1.18 ad void **results, const unsigned int maxresults, const unsigned int tagmask,
775 1.18 ad const bool reverse, const bool dense)
776 1.1 yamt {
777 1.15 yamt
778 1.15 yamt /*
779 1.15 yamt * we keep the path updated only for lastidx-1.
780 1.15 yamt * vpp is what path_pptr(t, path, lastidx) would be.
781 1.15 yamt */
782 1.1 yamt void **vpp;
783 1.10 yamt unsigned int nfound;
784 1.1 yamt unsigned int lastidx;
785 1.15 yamt /*
786 1.15 yamt * set up scan direction dependant constants so that we can iterate
787 1.15 yamt * n_ptrs as the following.
788 1.15 yamt *
789 1.15 yamt * for (i = first; i != guard; i += step)
790 1.15 yamt * visit n->n_ptrs[i];
791 1.15 yamt */
792 1.15 yamt const int step = reverse ? -1 : 1;
793 1.15 yamt const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
794 1.15 yamt const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
795 1.15 yamt const unsigned int guard = last + step;
796 1.1 yamt
797 1.1 yamt KASSERT(maxresults > 0);
798 1.15 yamt KASSERT(&t->t_root == path_pptr(t, path, 0));
799 1.1 yamt lastidx = path->p_lastidx;
800 1.15 yamt KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
801 1.15 yamt lastidx == t->t_height ||
802 1.15 yamt !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
803 1.15 yamt nfound = 0;
804 1.15 yamt if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
805 1.18 ad /*
806 1.18 ad * requested idx is beyond the right-most node.
807 1.18 ad */
808 1.18 ad if (reverse && !dense) {
809 1.15 yamt lastidx = 0;
810 1.15 yamt vpp = path_pptr(t, path, lastidx);
811 1.15 yamt goto descend;
812 1.15 yamt }
813 1.1 yamt return 0;
814 1.1 yamt }
815 1.1 yamt vpp = path_pptr(t, path, lastidx);
816 1.1 yamt while (/*CONSTCOND*/true) {
817 1.1 yamt struct radix_tree_node *n;
818 1.10 yamt unsigned int i;
819 1.1 yamt
820 1.1 yamt if (entry_match_p(*vpp, tagmask)) {
821 1.1 yamt KASSERT(lastidx == t->t_height);
822 1.1 yamt /*
823 1.15 yamt * record the matching non-NULL leaf.
824 1.1 yamt */
825 1.1 yamt results[nfound] = entry_ptr(*vpp);
826 1.1 yamt nfound++;
827 1.1 yamt if (nfound == maxresults) {
828 1.1 yamt return nfound;
829 1.1 yamt }
830 1.18 ad } else if (dense) {
831 1.18 ad return nfound;
832 1.1 yamt }
833 1.1 yamt scan_siblings:
834 1.1 yamt /*
835 1.15 yamt * try to find the next matching non-NULL sibling.
836 1.1 yamt */
837 1.15 yamt if (lastidx == 0) {
838 1.15 yamt /*
839 1.15 yamt * the root has no siblings.
840 1.15 yamt * we've done.
841 1.15 yamt */
842 1.15 yamt KASSERT(vpp == &t->t_root);
843 1.15 yamt break;
844 1.15 yamt }
845 1.1 yamt n = path_node(t, path, lastidx - 1);
846 1.15 yamt for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
847 1.15 yamt KASSERT(i < RADIX_TREE_PTR_PER_NODE);
848 1.1 yamt if (entry_match_p(n->n_ptrs[i], tagmask)) {
849 1.1 yamt vpp = &n->n_ptrs[i];
850 1.1 yamt break;
851 1.23 ad } else if (dense) {
852 1.23 ad return nfound;
853 1.1 yamt }
854 1.1 yamt }
855 1.15 yamt if (i == guard) {
856 1.1 yamt /*
857 1.1 yamt * not found. go to parent.
858 1.1 yamt */
859 1.1 yamt lastidx--;
860 1.1 yamt vpp = path_pptr(t, path, lastidx);
861 1.1 yamt goto scan_siblings;
862 1.1 yamt }
863 1.15 yamt descend:
864 1.1 yamt /*
865 1.15 yamt * following the left-most (or right-most in the case of
866 1.15 yamt * reverse scan) child node, decend until reaching the leaf or
867 1.15 yamt * an non-matching entry.
868 1.1 yamt */
869 1.1 yamt while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
870 1.15 yamt /*
871 1.15 yamt * save vpp in the path so that we can come back to this
872 1.15 yamt * node after finishing visiting children.
873 1.15 yamt */
874 1.15 yamt path->p_refs[lastidx].pptr = vpp;
875 1.1 yamt n = entry_ptr(*vpp);
876 1.15 yamt vpp = &n->n_ptrs[first];
877 1.1 yamt lastidx++;
878 1.1 yamt }
879 1.1 yamt }
880 1.15 yamt return nfound;
881 1.1 yamt }
882 1.1 yamt
883 1.1 yamt /*
884 1.1 yamt * radix_tree_gang_lookup_node:
885 1.1 yamt *
886 1.18 ad * Scan the tree starting from the given index in the ascending order and
887 1.18 ad * return found nodes.
888 1.18 ad *
889 1.1 yamt * results should be an array large enough to hold maxresults pointers.
890 1.18 ad * This function returns the number of nodes found, up to maxresults.
891 1.18 ad * Returning less than maxresults means there are no more nodes in the tree.
892 1.1 yamt *
893 1.18 ad * If dense == true, this function stops scanning when it founds a hole of
894 1.18 ad * indexes. I.e. an index for which radix_tree_lookup_node would returns NULL.
895 1.18 ad * If dense == false, this function skips holes and continue scanning until
896 1.18 ad * maxresults nodes are found or it reaches the limit of the index range.
897 1.18 ad *
898 1.18 ad * The result of this function is semantically equivalent to what could be
899 1.1 yamt * obtained by repeated calls of radix_tree_lookup_node with increasing index.
900 1.18 ad * but this function is expected to be computationally cheaper when looking up
901 1.18 ad * multiple nodes at once. Especially, it's expected to be much cheaper when
902 1.18 ad * node indexes are distributed sparsely.
903 1.18 ad *
904 1.18 ad * Note that this function doesn't return index values of found nodes.
905 1.18 ad * Thus, in the case of dense == false, if index values are important for
906 1.18 ad * a caller, it's the caller's responsibility to check them, typically
907 1.18 ad * by examinining the returned nodes using some caller-specific knowledge
908 1.18 ad * about them.
909 1.18 ad * In the case of dense == true, a node returned via results[N] is always for
910 1.18 ad * the index (idx + N).
911 1.1 yamt */
912 1.1 yamt
913 1.1 yamt unsigned int
914 1.1 yamt radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
915 1.18 ad void **results, unsigned int maxresults, bool dense)
916 1.1 yamt {
917 1.1 yamt struct radix_tree_path path;
918 1.1 yamt
919 1.1 yamt gang_lookup_init(t, idx, &path, 0);
920 1.18 ad return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
921 1.15 yamt }
922 1.15 yamt
923 1.15 yamt /*
924 1.15 yamt * radix_tree_gang_lookup_node_reverse:
925 1.15 yamt *
926 1.18 ad * Same as radix_tree_gang_lookup_node except that this one scans the
927 1.18 ad * tree in the reverse order. I.e. descending index values.
928 1.15 yamt */
929 1.15 yamt
930 1.15 yamt unsigned int
931 1.15 yamt radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
932 1.18 ad void **results, unsigned int maxresults, bool dense)
933 1.15 yamt {
934 1.15 yamt struct radix_tree_path path;
935 1.15 yamt
936 1.15 yamt gang_lookup_init(t, idx, &path, 0);
937 1.18 ad return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
938 1.1 yamt }
939 1.1 yamt
940 1.1 yamt /*
941 1.1 yamt * radix_tree_gang_lookup_tagged_node:
942 1.1 yamt *
943 1.18 ad * Same as radix_tree_gang_lookup_node except that this one only returns
944 1.1 yamt * nodes tagged with tagid.
945 1.18 ad *
946 1.18 ad * It's illegal to call this function with tagmask 0.
947 1.1 yamt */
948 1.1 yamt
949 1.1 yamt unsigned int
950 1.1 yamt radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
951 1.18 ad void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
952 1.1 yamt {
953 1.1 yamt struct radix_tree_path path;
954 1.1 yamt
955 1.18 ad KASSERT(tagmask != 0);
956 1.1 yamt gang_lookup_init(t, idx, &path, tagmask);
957 1.18 ad return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
958 1.18 ad dense);
959 1.15 yamt }
960 1.15 yamt
961 1.15 yamt /*
962 1.15 yamt * radix_tree_gang_lookup_tagged_node_reverse:
963 1.15 yamt *
964 1.18 ad * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
965 1.18 ad * tree in the reverse order. I.e. descending index values.
966 1.15 yamt */
967 1.15 yamt
968 1.15 yamt unsigned int
969 1.15 yamt radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
970 1.18 ad void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
971 1.15 yamt {
972 1.15 yamt struct radix_tree_path path;
973 1.15 yamt
974 1.18 ad KASSERT(tagmask != 0);
975 1.15 yamt gang_lookup_init(t, idx, &path, tagmask);
976 1.18 ad return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
977 1.18 ad dense);
978 1.1 yamt }
979 1.1 yamt
980 1.4 yamt /*
981 1.4 yamt * radix_tree_get_tag:
982 1.4 yamt *
983 1.18 ad * Return the tagmask for the node at the given index.
984 1.18 ad *
985 1.18 ad * It's illegal to call this function for a node which has not been inserted.
986 1.4 yamt */
987 1.4 yamt
988 1.18 ad unsigned int
989 1.18 ad radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
990 1.1 yamt {
991 1.18 ad /*
992 1.18 ad * the following two implementations should behave same.
993 1.18 ad * the former one was chosen because it seems faster.
994 1.18 ad */
995 1.1 yamt #if 1
996 1.1 yamt void **vpp;
997 1.1 yamt
998 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
999 1.1 yamt if (vpp == NULL) {
1000 1.1 yamt return false;
1001 1.1 yamt }
1002 1.1 yamt KASSERT(*vpp != NULL);
1003 1.18 ad return (entry_tagmask(*vpp) & tagmask);
1004 1.1 yamt #else
1005 1.1 yamt void **vpp;
1006 1.1 yamt
1007 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
1008 1.1 yamt KASSERT(vpp != NULL);
1009 1.18 ad return (entry_tagmask(*vpp) & tagmask);
1010 1.1 yamt #endif
1011 1.1 yamt }
1012 1.1 yamt
1013 1.4 yamt /*
1014 1.4 yamt * radix_tree_set_tag:
1015 1.4 yamt *
1016 1.18 ad * Set the tag for the node at the given index.
1017 1.18 ad *
1018 1.18 ad * It's illegal to call this function for a node which has not been inserted.
1019 1.18 ad * It's illegal to call this function with tagmask 0.
1020 1.4 yamt */
1021 1.4 yamt
1022 1.1 yamt void
1023 1.18 ad radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1024 1.1 yamt {
1025 1.1 yamt struct radix_tree_path path;
1026 1.18 ad void **vpp __unused;
1027 1.1 yamt int i;
1028 1.1 yamt
1029 1.18 ad KASSERT(tagmask != 0);
1030 1.19 ad vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
1031 1.1 yamt KASSERT(vpp != NULL);
1032 1.1 yamt KASSERT(*vpp != NULL);
1033 1.1 yamt KASSERT(path.p_lastidx == t->t_height);
1034 1.1 yamt KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
1035 1.1 yamt for (i = t->t_height; i >= 0; i--) {
1036 1.1 yamt void ** const pptr = (void **)path_pptr(t, &path, i);
1037 1.1 yamt void *entry;
1038 1.1 yamt
1039 1.1 yamt KASSERT(pptr != NULL);
1040 1.1 yamt entry = *pptr;
1041 1.1 yamt if ((entry_tagmask(entry) & tagmask) != 0) {
1042 1.1 yamt break;
1043 1.1 yamt }
1044 1.1 yamt *pptr = (void *)((uintptr_t)entry | tagmask);
1045 1.1 yamt }
1046 1.1 yamt }
1047 1.1 yamt
1048 1.4 yamt /*
1049 1.4 yamt * radix_tree_clear_tag:
1050 1.4 yamt *
1051 1.18 ad * Clear the tag for the node at the given index.
1052 1.18 ad *
1053 1.18 ad * It's illegal to call this function for a node which has not been inserted.
1054 1.18 ad * It's illegal to call this function with tagmask 0.
1055 1.4 yamt */
1056 1.4 yamt
1057 1.1 yamt void
1058 1.18 ad radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1059 1.1 yamt {
1060 1.1 yamt struct radix_tree_path path;
1061 1.1 yamt void **vpp;
1062 1.1 yamt int i;
1063 1.1 yamt
1064 1.18 ad KASSERT(tagmask != 0);
1065 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
1066 1.1 yamt KASSERT(vpp != NULL);
1067 1.1 yamt KASSERT(*vpp != NULL);
1068 1.1 yamt KASSERT(path.p_lastidx == t->t_height);
1069 1.1 yamt KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
1070 1.7 yamt /*
1071 1.7 yamt * if already cleared, nothing to do
1072 1.7 yamt */
1073 1.1 yamt if ((entry_tagmask(*vpp) & tagmask) == 0) {
1074 1.1 yamt return;
1075 1.1 yamt }
1076 1.7 yamt /*
1077 1.7 yamt * clear the tag only if no children have the tag.
1078 1.7 yamt */
1079 1.1 yamt for (i = t->t_height; i >= 0; i--) {
1080 1.1 yamt void ** const pptr = (void **)path_pptr(t, &path, i);
1081 1.1 yamt void *entry;
1082 1.1 yamt
1083 1.1 yamt KASSERT(pptr != NULL);
1084 1.1 yamt entry = *pptr;
1085 1.1 yamt KASSERT((entry_tagmask(entry) & tagmask) != 0);
1086 1.1 yamt *pptr = entry_compose(entry_ptr(entry),
1087 1.1 yamt entry_tagmask(entry) & ~tagmask);
1088 1.7 yamt /*
1089 1.7 yamt * check if we should proceed to process the next level.
1090 1.7 yamt */
1091 1.7 yamt if (0 < i) {
1092 1.1 yamt struct radix_tree_node *n = path_node(t, &path, i - 1);
1093 1.1 yamt
1094 1.1 yamt if ((any_children_tagmask(n) & tagmask) != 0) {
1095 1.1 yamt break;
1096 1.1 yamt }
1097 1.1 yamt }
1098 1.1 yamt }
1099 1.1 yamt }
1100 1.1 yamt
1101 1.1 yamt #if defined(UNITTEST)
1102 1.1 yamt
1103 1.1 yamt #include <inttypes.h>
1104 1.1 yamt #include <stdio.h>
1105 1.1 yamt
1106 1.1 yamt static void
1107 1.1 yamt radix_tree_dump_node(const struct radix_tree *t, void *vp,
1108 1.1 yamt uint64_t offset, unsigned int height)
1109 1.1 yamt {
1110 1.1 yamt struct radix_tree_node *n;
1111 1.1 yamt unsigned int i;
1112 1.1 yamt
1113 1.1 yamt for (i = 0; i < t->t_height - height; i++) {
1114 1.1 yamt printf(" ");
1115 1.1 yamt }
1116 1.1 yamt if (entry_tagmask(vp) == 0) {
1117 1.1 yamt printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
1118 1.1 yamt } else {
1119 1.1 yamt printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
1120 1.1 yamt entry_tagmask(vp));
1121 1.1 yamt }
1122 1.1 yamt if (height == 0) {
1123 1.1 yamt printf(" (leaf)\n");
1124 1.1 yamt return;
1125 1.1 yamt }
1126 1.1 yamt n = entry_ptr(vp);
1127 1.1 yamt assert(any_children_tagmask(n) == entry_tagmask(vp));
1128 1.19 ad printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
1129 1.1 yamt for (i = 0; i < __arraycount(n->n_ptrs); i++) {
1130 1.1 yamt void *c;
1131 1.1 yamt
1132 1.1 yamt c = n->n_ptrs[i];
1133 1.1 yamt if (c == NULL) {
1134 1.1 yamt continue;
1135 1.1 yamt }
1136 1.1 yamt radix_tree_dump_node(t, c,
1137 1.1 yamt offset + i * (UINT64_C(1) <<
1138 1.1 yamt (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
1139 1.1 yamt }
1140 1.1 yamt }
1141 1.1 yamt
1142 1.1 yamt void radix_tree_dump(const struct radix_tree *);
1143 1.1 yamt
1144 1.1 yamt void
1145 1.1 yamt radix_tree_dump(const struct radix_tree *t)
1146 1.1 yamt {
1147 1.1 yamt
1148 1.1 yamt printf("tree %p height=%u\n", t, t->t_height);
1149 1.1 yamt radix_tree_dump_node(t, t->t_root, 0, t->t_height);
1150 1.1 yamt }
1151 1.1 yamt
1152 1.1 yamt static void
1153 1.1 yamt test1(void)
1154 1.1 yamt {
1155 1.1 yamt struct radix_tree s;
1156 1.1 yamt struct radix_tree *t = &s;
1157 1.1 yamt void *results[3];
1158 1.1 yamt
1159 1.1 yamt radix_tree_init_tree(t);
1160 1.1 yamt radix_tree_dump(t);
1161 1.1 yamt assert(radix_tree_lookup_node(t, 0) == NULL);
1162 1.1 yamt assert(radix_tree_lookup_node(t, 1000) == NULL);
1163 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
1164 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1165 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1166 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1167 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1168 1.18 ad 0);
1169 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1170 1.18 ad 0);
1171 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1172 1.18 ad == 0);
1173 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1174 1.18 ad == 0);
1175 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1176 1.18 ad == 0);
1177 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1178 1.18 ad == 0);
1179 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
1180 1.18 ad == 0);
1181 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
1182 1.15 yamt == 0);
1183 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1184 1.18 ad false, 1) == 0);
1185 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1186 1.18 ad true, 1) == 0);
1187 1.15 yamt assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1188 1.18 ad false, 1) == 0);
1189 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1190 1.18 ad true, 1) == 0);
1191 1.15 yamt assert(radix_tree_empty_tree_p(t));
1192 1.16 yamt assert(radix_tree_empty_tagged_tree_p(t, 1));
1193 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, 2));
1194 1.15 yamt assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
1195 1.15 yamt assert(!radix_tree_empty_tree_p(t));
1196 1.16 yamt assert(radix_tree_empty_tagged_tree_p(t, 1));
1197 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, 2));
1198 1.15 yamt assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
1199 1.15 yamt assert(radix_tree_lookup_node(t, 1000) == NULL);
1200 1.15 yamt memset(results, 0, sizeof(results));
1201 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1202 1.18 ad assert(results[0] == (void *)0xdeadbea0);
1203 1.18 ad memset(results, 0, sizeof(results));
1204 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1205 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1206 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1207 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1208 1.15 yamt memset(results, 0, sizeof(results));
1209 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1210 1.18 ad 1);
1211 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1212 1.15 yamt memset(results, 0, sizeof(results));
1213 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1214 1.18 ad 1);
1215 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1216 1.18 ad memset(results, 0, sizeof(results));
1217 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1218 1.18 ad == 1);
1219 1.18 ad assert(results[0] == (void *)0xdeadbea0);
1220 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1221 1.18 ad == 0);
1222 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1223 1.15 yamt == 0);
1224 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1225 1.15 yamt == 0);
1226 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1227 1.18 ad false, 1) == 0);
1228 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1229 1.18 ad true, 1) == 0);
1230 1.1 yamt assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
1231 1.15 yamt assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
1232 1.15 yamt assert(!radix_tree_empty_tree_p(t));
1233 1.1 yamt radix_tree_dump(t);
1234 1.15 yamt assert(radix_tree_lookup_node(t, 0) == NULL);
1235 1.15 yamt assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1236 1.15 yamt memset(results, 0, sizeof(results));
1237 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1238 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1239 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1240 1.15 yamt memset(results, 0, sizeof(results));
1241 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
1242 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1243 1.15 yamt memset(results, 0, sizeof(results));
1244 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
1245 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1246 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
1247 1.15 yamt == 0);
1248 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
1249 1.15 yamt == 0);
1250 1.18 ad memset(results, 0, sizeof(results));
1251 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1252 1.18 ad == 1);
1253 1.18 ad memset(results, 0, sizeof(results));
1254 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1255 1.18 ad == 1);
1256 1.18 ad assert(results[0] == (void *)0xdeadbea0);
1257 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1258 1.18 ad == 0);
1259 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1260 1.18 ad == 0);
1261 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1262 1.18 ad false, 1) == 0);
1263 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1264 1.18 ad true, 1) == 0);
1265 1.18 ad assert(!radix_tree_get_tag(t, 1000, 1));
1266 1.18 ad assert(!radix_tree_get_tag(t, 1000, 2));
1267 1.18 ad assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
1268 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, 1));
1269 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, 2));
1270 1.18 ad radix_tree_set_tag(t, 1000, 2);
1271 1.1 yamt assert(!radix_tree_get_tag(t, 1000, 1));
1272 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1273 1.18 ad assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1274 1.16 yamt assert(radix_tree_empty_tagged_tree_p(t, 1));
1275 1.18 ad assert(!radix_tree_empty_tagged_tree_p(t, 2));
1276 1.1 yamt radix_tree_dump(t);
1277 1.1 yamt assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1278 1.1 yamt assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
1279 1.1 yamt radix_tree_dump(t);
1280 1.1 yamt assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1281 1.1 yamt assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1282 1.1 yamt assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
1283 1.1 yamt == 0);
1284 1.1 yamt radix_tree_dump(t);
1285 1.1 yamt assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1286 1.1 yamt assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1287 1.1 yamt assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
1288 1.1 yamt (void *)0xdea0);
1289 1.1 yamt radix_tree_dump(t);
1290 1.18 ad assert(!radix_tree_get_tag(t, 0, 2));
1291 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1292 1.1 yamt assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
1293 1.18 ad radix_tree_set_tag(t, 0, 2);;
1294 1.18 ad radix_tree_set_tag(t, UINT64_C(10000000000), 2);
1295 1.1 yamt radix_tree_dump(t);
1296 1.18 ad assert(radix_tree_get_tag(t, 0, 2));
1297 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1298 1.18 ad assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1299 1.18 ad radix_tree_clear_tag(t, 0, 2);;
1300 1.18 ad radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
1301 1.1 yamt radix_tree_dump(t);
1302 1.18 ad assert(!radix_tree_get_tag(t, 0, 2));
1303 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1304 1.18 ad assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1305 1.1 yamt radix_tree_dump(t);
1306 1.1 yamt assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
1307 1.1 yamt (void *)0xdeadbea0);
1308 1.18 ad assert(!radix_tree_get_tag(t, 1000, 1));
1309 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1310 1.18 ad assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1311 1.18 ad memset(results, 0, sizeof(results));
1312 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
1313 1.1 yamt assert(results[0] == (void *)0xbea0);
1314 1.1 yamt assert(results[1] == (void *)0x12345678);
1315 1.1 yamt assert(results[2] == (void *)0xdea0);
1316 1.18 ad memset(results, 0, sizeof(results));
1317 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1318 1.18 ad assert(results[0] == (void *)0xbea0);
1319 1.18 ad memset(results, 0, sizeof(results));
1320 1.18 ad assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
1321 1.1 yamt assert(results[0] == (void *)0x12345678);
1322 1.1 yamt assert(results[1] == (void *)0xdea0);
1323 1.18 ad assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
1324 1.18 ad memset(results, 0, sizeof(results));
1325 1.18 ad assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
1326 1.1 yamt assert(results[0] == (void *)0xdea0);
1327 1.18 ad assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
1328 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1329 1.18 ad false) == 0);
1330 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1331 1.18 ad true) == 0);
1332 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1333 1.18 ad 3, false) == 0);
1334 1.1 yamt assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1335 1.18 ad 3, true) == 0);
1336 1.18 ad memset(results, 0, sizeof(results));
1337 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
1338 1.18 ad == 1);
1339 1.1 yamt assert(results[0] == (void *)0x12345678);
1340 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
1341 1.18 ad == 0);
1342 1.1 yamt assert(entry_tagmask(t->t_root) != 0);
1343 1.1 yamt assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
1344 1.1 yamt assert(entry_tagmask(t->t_root) == 0);
1345 1.1 yamt radix_tree_dump(t);
1346 1.18 ad assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
1347 1.18 ad == 0);
1348 1.18 ad memset(results, 0, sizeof(results));
1349 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1350 1.18 ad false) == 2);
1351 1.18 ad assert(results[0] == (void *)0xdea0);
1352 1.18 ad assert(results[1] == (void *)0xfff0);
1353 1.18 ad memset(results, 0, sizeof(results));
1354 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1355 1.18 ad true) == 2);
1356 1.18 ad assert(results[0] == (void *)0xdea0);
1357 1.18 ad assert(results[1] == (void *)0xfff0);
1358 1.18 ad memset(results, 0, sizeof(results));
1359 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1360 1.18 ad results, 3, false) == 3);
1361 1.18 ad assert(results[0] == (void *)0xfff0);
1362 1.18 ad assert(results[1] == (void *)0xdea0);
1363 1.18 ad assert(results[2] == (void *)0xbea0);
1364 1.18 ad memset(results, 0, sizeof(results));
1365 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1366 1.18 ad results, 3, true) == 2);
1367 1.18 ad assert(results[0] == (void *)0xfff0);
1368 1.18 ad assert(results[1] == (void *)0xdea0);
1369 1.1 yamt assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
1370 1.1 yamt (void *)0xdea0);
1371 1.18 ad assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
1372 1.18 ad (void *)0xfff0);
1373 1.1 yamt radix_tree_dump(t);
1374 1.1 yamt assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
1375 1.1 yamt radix_tree_dump(t);
1376 1.1 yamt radix_tree_fini_tree(t);
1377 1.1 yamt }
1378 1.1 yamt
1379 1.1 yamt #include <sys/time.h>
1380 1.1 yamt
1381 1.1 yamt struct testnode {
1382 1.1 yamt uint64_t idx;
1383 1.12 yamt bool tagged[RADIX_TREE_TAG_ID_MAX];
1384 1.1 yamt };
1385 1.1 yamt
1386 1.1 yamt static void
1387 1.11 yamt printops(const char *title, const char *name, int tag, unsigned int n,
1388 1.11 yamt const struct timeval *stv, const struct timeval *etv)
1389 1.1 yamt {
1390 1.1 yamt uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
1391 1.1 yamt uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
1392 1.1 yamt
1393 1.11 yamt printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
1394 1.11 yamt (double)n / (e - s) * 1000000);
1395 1.1 yamt }
1396 1.1 yamt
1397 1.1 yamt #define TEST2_GANG_LOOKUP_NODES 16
1398 1.1 yamt
1399 1.1 yamt static bool
1400 1.18 ad test2_should_tag(unsigned int i, unsigned int tagid)
1401 1.1 yamt {
1402 1.1 yamt
1403 1.1 yamt if (tagid == 0) {
1404 1.18 ad return (i % 4) == 0; /* 25% */
1405 1.1 yamt } else {
1406 1.11 yamt return (i % 7) == 0; /* 14% */
1407 1.1 yamt }
1408 1.18 ad return 1;
1409 1.18 ad }
1410 1.18 ad
1411 1.18 ad static void
1412 1.18 ad check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
1413 1.18 ad unsigned int count)
1414 1.18 ad {
1415 1.18 ad unsigned int tag;
1416 1.18 ad
1417 1.18 ad for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1418 1.18 ad if ((tagmask & (1 << tag)) == 0) {
1419 1.18 ad continue;
1420 1.18 ad }
1421 1.18 ad if (((tagmask - 1) & tagmask) == 0) {
1422 1.18 ad assert(count == ntagged[tag]);
1423 1.18 ad } else {
1424 1.18 ad assert(count >= ntagged[tag]);
1425 1.18 ad }
1426 1.18 ad }
1427 1.1 yamt }
1428 1.1 yamt
1429 1.1 yamt static void
1430 1.11 yamt test2(const char *title, bool dense)
1431 1.1 yamt {
1432 1.1 yamt struct radix_tree s;
1433 1.1 yamt struct radix_tree *t = &s;
1434 1.1 yamt struct testnode *n;
1435 1.1 yamt unsigned int i;
1436 1.1 yamt unsigned int nnodes = 100000;
1437 1.1 yamt unsigned int removed;
1438 1.18 ad unsigned int tag;
1439 1.18 ad unsigned int tagmask;
1440 1.1 yamt unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
1441 1.1 yamt struct testnode *nodes;
1442 1.1 yamt struct timeval stv;
1443 1.1 yamt struct timeval etv;
1444 1.1 yamt
1445 1.1 yamt nodes = malloc(nnodes * sizeof(*nodes));
1446 1.1 yamt for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1447 1.1 yamt ntagged[tag] = 0;
1448 1.1 yamt }
1449 1.1 yamt radix_tree_init_tree(t);
1450 1.1 yamt for (i = 0; i < nnodes; i++) {
1451 1.1 yamt n = &nodes[i];
1452 1.1 yamt n->idx = random();
1453 1.1 yamt if (sizeof(long) == 4) {
1454 1.1 yamt n->idx <<= 32;
1455 1.1 yamt n->idx |= (uint32_t)random();
1456 1.1 yamt }
1457 1.1 yamt if (dense) {
1458 1.1 yamt n->idx %= nnodes * 2;
1459 1.1 yamt }
1460 1.1 yamt while (radix_tree_lookup_node(t, n->idx) != NULL) {
1461 1.1 yamt n->idx++;
1462 1.1 yamt }
1463 1.1 yamt radix_tree_insert_node(t, n->idx, n);
1464 1.1 yamt for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1465 1.18 ad tagmask = 1 << tag;
1466 1.18 ad
1467 1.12 yamt n->tagged[tag] = test2_should_tag(i, tag);
1468 1.12 yamt if (n->tagged[tag]) {
1469 1.18 ad radix_tree_set_tag(t, n->idx, tagmask);
1470 1.1 yamt ntagged[tag]++;
1471 1.1 yamt }
1472 1.18 ad assert((n->tagged[tag] ? tagmask : 0) ==
1473 1.18 ad radix_tree_get_tag(t, n->idx, tagmask));
1474 1.1 yamt }
1475 1.1 yamt }
1476 1.1 yamt
1477 1.1 yamt gettimeofday(&stv, NULL);
1478 1.1 yamt for (i = 0; i < nnodes; i++) {
1479 1.1 yamt n = &nodes[i];
1480 1.1 yamt assert(radix_tree_lookup_node(t, n->idx) == n);
1481 1.1 yamt }
1482 1.1 yamt gettimeofday(&etv, NULL);
1483 1.11 yamt printops(title, "lookup", 0, nnodes, &stv, &etv);
1484 1.1 yamt
1485 1.18 ad for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1486 1.12 yamt unsigned int count = 0;
1487 1.12 yamt
1488 1.1 yamt gettimeofday(&stv, NULL);
1489 1.1 yamt for (i = 0; i < nnodes; i++) {
1490 1.18 ad unsigned int tagged;
1491 1.12 yamt
1492 1.1 yamt n = &nodes[i];
1493 1.18 ad tagged = radix_tree_get_tag(t, n->idx, tagmask);
1494 1.18 ad assert((tagged & ~tagmask) == 0);
1495 1.18 ad for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1496 1.18 ad assert((tagmask & (1 << tag)) == 0 ||
1497 1.18 ad n->tagged[tag] == !!(tagged & (1 << tag)));
1498 1.18 ad }
1499 1.12 yamt if (tagged) {
1500 1.12 yamt count++;
1501 1.12 yamt }
1502 1.1 yamt }
1503 1.1 yamt gettimeofday(&etv, NULL);
1504 1.18 ad check_tag_count(ntagged, tagmask, count);
1505 1.18 ad printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
1506 1.1 yamt }
1507 1.1 yamt
1508 1.1 yamt gettimeofday(&stv, NULL);
1509 1.1 yamt for (i = 0; i < nnodes; i++) {
1510 1.1 yamt n = &nodes[i];
1511 1.1 yamt radix_tree_remove_node(t, n->idx);
1512 1.1 yamt }
1513 1.1 yamt gettimeofday(&etv, NULL);
1514 1.11 yamt printops(title, "remove", 0, nnodes, &stv, &etv);
1515 1.1 yamt
1516 1.1 yamt gettimeofday(&stv, NULL);
1517 1.1 yamt for (i = 0; i < nnodes; i++) {
1518 1.1 yamt n = &nodes[i];
1519 1.1 yamt radix_tree_insert_node(t, n->idx, n);
1520 1.1 yamt }
1521 1.1 yamt gettimeofday(&etv, NULL);
1522 1.11 yamt printops(title, "insert", 0, nnodes, &stv, &etv);
1523 1.1 yamt
1524 1.1 yamt for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1525 1.18 ad tagmask = 1 << tag;
1526 1.18 ad
1527 1.1 yamt ntagged[tag] = 0;
1528 1.1 yamt gettimeofday(&stv, NULL);
1529 1.1 yamt for (i = 0; i < nnodes; i++) {
1530 1.1 yamt n = &nodes[i];
1531 1.12 yamt if (n->tagged[tag]) {
1532 1.18 ad radix_tree_set_tag(t, n->idx, tagmask);
1533 1.1 yamt ntagged[tag]++;
1534 1.1 yamt }
1535 1.1 yamt }
1536 1.1 yamt gettimeofday(&etv, NULL);
1537 1.11 yamt printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
1538 1.1 yamt }
1539 1.1 yamt
1540 1.1 yamt gettimeofday(&stv, NULL);
1541 1.1 yamt {
1542 1.1 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1543 1.1 yamt uint64_t nextidx;
1544 1.1 yamt unsigned int nfound;
1545 1.1 yamt unsigned int total;
1546 1.1 yamt
1547 1.1 yamt nextidx = 0;
1548 1.1 yamt total = 0;
1549 1.1 yamt while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1550 1.18 ad (void *)results, __arraycount(results), false)) > 0) {
1551 1.1 yamt nextidx = results[nfound - 1]->idx + 1;
1552 1.1 yamt total += nfound;
1553 1.15 yamt if (nextidx == 0) {
1554 1.15 yamt break;
1555 1.15 yamt }
1556 1.1 yamt }
1557 1.1 yamt assert(total == nnodes);
1558 1.1 yamt }
1559 1.1 yamt gettimeofday(&etv, NULL);
1560 1.11 yamt printops(title, "ganglookup", 0, nnodes, &stv, &etv);
1561 1.1 yamt
1562 1.15 yamt gettimeofday(&stv, NULL);
1563 1.15 yamt {
1564 1.15 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1565 1.15 yamt uint64_t nextidx;
1566 1.15 yamt unsigned int nfound;
1567 1.15 yamt unsigned int total;
1568 1.15 yamt
1569 1.15 yamt nextidx = UINT64_MAX;
1570 1.15 yamt total = 0;
1571 1.15 yamt while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
1572 1.18 ad (void *)results, __arraycount(results), false)) > 0) {
1573 1.15 yamt nextidx = results[nfound - 1]->idx - 1;
1574 1.15 yamt total += nfound;
1575 1.15 yamt if (nextidx == UINT64_MAX) {
1576 1.15 yamt break;
1577 1.15 yamt }
1578 1.15 yamt }
1579 1.15 yamt assert(total == nnodes);
1580 1.15 yamt }
1581 1.15 yamt gettimeofday(&etv, NULL);
1582 1.15 yamt printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
1583 1.15 yamt
1584 1.18 ad for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1585 1.18 ad unsigned int total = 0;
1586 1.18 ad
1587 1.1 yamt gettimeofday(&stv, NULL);
1588 1.1 yamt {
1589 1.1 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1590 1.1 yamt uint64_t nextidx;
1591 1.1 yamt unsigned int nfound;
1592 1.1 yamt
1593 1.1 yamt nextidx = 0;
1594 1.1 yamt while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1595 1.1 yamt nextidx, (void *)results, __arraycount(results),
1596 1.18 ad false, tagmask)) > 0) {
1597 1.1 yamt nextidx = results[nfound - 1]->idx + 1;
1598 1.1 yamt total += nfound;
1599 1.1 yamt }
1600 1.1 yamt }
1601 1.1 yamt gettimeofday(&etv, NULL);
1602 1.18 ad check_tag_count(ntagged, tagmask, total);
1603 1.18 ad assert(tagmask != 0 || total == 0);
1604 1.18 ad printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
1605 1.1 yamt }
1606 1.1 yamt
1607 1.18 ad for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1608 1.18 ad unsigned int total = 0;
1609 1.18 ad
1610 1.15 yamt gettimeofday(&stv, NULL);
1611 1.15 yamt {
1612 1.15 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1613 1.15 yamt uint64_t nextidx;
1614 1.15 yamt unsigned int nfound;
1615 1.15 yamt
1616 1.15 yamt nextidx = UINT64_MAX;
1617 1.15 yamt while ((nfound =
1618 1.15 yamt radix_tree_gang_lookup_tagged_node_reverse(t,
1619 1.15 yamt nextidx, (void *)results, __arraycount(results),
1620 1.18 ad false, tagmask)) > 0) {
1621 1.15 yamt nextidx = results[nfound - 1]->idx - 1;
1622 1.15 yamt total += nfound;
1623 1.15 yamt if (nextidx == UINT64_MAX) {
1624 1.15 yamt break;
1625 1.15 yamt }
1626 1.15 yamt }
1627 1.15 yamt }
1628 1.15 yamt gettimeofday(&etv, NULL);
1629 1.18 ad check_tag_count(ntagged, tagmask, total);
1630 1.18 ad assert(tagmask != 0 || total == 0);
1631 1.18 ad printops(title, "ganglookup_tag_reverse", tagmask, total,
1632 1.15 yamt &stv, &etv);
1633 1.15 yamt }
1634 1.15 yamt
1635 1.1 yamt removed = 0;
1636 1.1 yamt for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1637 1.1 yamt unsigned int total;
1638 1.1 yamt
1639 1.1 yamt total = 0;
1640 1.18 ad tagmask = 1 << tag;
1641 1.1 yamt gettimeofday(&stv, NULL);
1642 1.1 yamt {
1643 1.1 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1644 1.1 yamt uint64_t nextidx;
1645 1.1 yamt unsigned int nfound;
1646 1.1 yamt
1647 1.1 yamt nextidx = 0;
1648 1.1 yamt while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1649 1.1 yamt nextidx, (void *)results, __arraycount(results),
1650 1.18 ad false, tagmask)) > 0) {
1651 1.1 yamt for (i = 0; i < nfound; i++) {
1652 1.1 yamt radix_tree_remove_node(t,
1653 1.1 yamt results[i]->idx);
1654 1.1 yamt }
1655 1.1 yamt nextidx = results[nfound - 1]->idx + 1;
1656 1.1 yamt total += nfound;
1657 1.15 yamt if (nextidx == 0) {
1658 1.15 yamt break;
1659 1.15 yamt }
1660 1.1 yamt }
1661 1.18 ad }
1662 1.18 ad gettimeofday(&etv, NULL);
1663 1.18 ad if (tag == 0) {
1664 1.18 ad check_tag_count(ntagged, tagmask, total);
1665 1.18 ad } else {
1666 1.1 yamt assert(total <= ntagged[tag]);
1667 1.1 yamt }
1668 1.18 ad printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
1669 1.11 yamt &etv);
1670 1.1 yamt removed += total;
1671 1.1 yamt }
1672 1.1 yamt
1673 1.1 yamt gettimeofday(&stv, NULL);
1674 1.1 yamt {
1675 1.1 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1676 1.1 yamt uint64_t nextidx;
1677 1.1 yamt unsigned int nfound;
1678 1.1 yamt unsigned int total;
1679 1.1 yamt
1680 1.1 yamt nextidx = 0;
1681 1.1 yamt total = 0;
1682 1.1 yamt while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1683 1.18 ad (void *)results, __arraycount(results), false)) > 0) {
1684 1.1 yamt for (i = 0; i < nfound; i++) {
1685 1.1 yamt assert(results[i] == radix_tree_remove_node(t,
1686 1.1 yamt results[i]->idx));
1687 1.1 yamt }
1688 1.1 yamt nextidx = results[nfound - 1]->idx + 1;
1689 1.1 yamt total += nfound;
1690 1.15 yamt if (nextidx == 0) {
1691 1.15 yamt break;
1692 1.15 yamt }
1693 1.1 yamt }
1694 1.1 yamt assert(total == nnodes - removed);
1695 1.1 yamt }
1696 1.1 yamt gettimeofday(&etv, NULL);
1697 1.11 yamt printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
1698 1.1 yamt
1699 1.16 yamt assert(radix_tree_empty_tree_p(t));
1700 1.18 ad for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1701 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, tagmask));
1702 1.18 ad }
1703 1.1 yamt radix_tree_fini_tree(t);
1704 1.1 yamt free(nodes);
1705 1.1 yamt }
1706 1.1 yamt
1707 1.1 yamt int
1708 1.1 yamt main(int argc, char *argv[])
1709 1.1 yamt {
1710 1.1 yamt
1711 1.1 yamt test1();
1712 1.11 yamt test2("dense", true);
1713 1.11 yamt test2("sparse", false);
1714 1.1 yamt return 0;
1715 1.1 yamt }
1716 1.1 yamt
1717 1.1 yamt #endif /* defined(UNITTEST) */
1718