Home | History | Annotate | Line # | Download | only in gen
radixtree.c revision 1.27
      1  1.27  msaitoh /*	$NetBSD: radixtree.c,v 1.27 2020/05/14 08:34:19 msaitoh Exp $	*/
      2   1.1     yamt 
      3   1.1     yamt /*-
      4  1.18       ad  * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
      5   1.1     yamt  * All rights reserved.
      6   1.1     yamt  *
      7   1.1     yamt  * Redistribution and use in source and binary forms, with or without
      8   1.1     yamt  * modification, are permitted provided that the following conditions
      9   1.1     yamt  * are met:
     10   1.1     yamt  * 1. Redistributions of source code must retain the above copyright
     11   1.1     yamt  *    notice, this list of conditions and the following disclaimer.
     12   1.1     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1     yamt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1     yamt  *    documentation and/or other materials provided with the distribution.
     15   1.1     yamt  *
     16   1.1     yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1     yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1     yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1     yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1     yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1     yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1     yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1     yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1     yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1     yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1     yamt  * SUCH DAMAGE.
     27   1.1     yamt  */
     28   1.1     yamt 
     29   1.1     yamt /*
     30  1.17     yamt  * radixtree.c
     31   1.1     yamt  *
     32  1.18       ad  * Overview:
     33  1.18       ad  *
     34  1.18       ad  * This is an implementation of radix tree, whose keys are uint64_t and leafs
     35  1.17     yamt  * are user provided pointers.
     36  1.17     yamt  *
     37  1.18       ad  * Leaf nodes are just void * and this implementation doesn't care about
     38  1.18       ad  * what they actually point to.  However, this implementation has an assumption
     39  1.18       ad  * about their alignment.  Specifically, this implementation assumes that their
     40  1.18       ad  * 2 LSBs are always zero and uses them for internal accounting.
     41  1.18       ad  *
     42  1.18       ad  * Intermediate nodes and memory allocation:
     43  1.18       ad  *
     44  1.18       ad  * Intermediate nodes are automatically allocated and freed internally and
     45  1.18       ad  * basically users don't need to care about them.  The allocation is done via
     46  1.18       ad  * pool_cache_get(9) for _KERNEL, malloc(3) for userland, and alloc() for
     47  1.18       ad  * _STANDALONE environment.  Only radix_tree_insert_node function can allocate
     48  1.18       ad  * memory for intermediate nodes and thus can fail for ENOMEM.
     49  1.18       ad  *
     50  1.18       ad  * Memory Efficiency:
     51  1.18       ad  *
     52  1.18       ad  * It's designed to work efficiently with dense index distribution.
     53  1.18       ad  * The memory consumption (number of necessary intermediate nodes) heavily
     54  1.18       ad  * depends on the index distribution.  Basically, more dense index distribution
     55  1.18       ad  * consumes less nodes per item.  Approximately,
     56  1.18       ad  *
     57  1.18       ad  *  - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
     58  1.18       ad  *    it would look like the following.
     59  1.18       ad  *
     60  1.18       ad  *     root (t_height=1)
     61  1.18       ad  *      |
     62  1.18       ad  *      v
     63  1.18       ad  *      [ | | | ]   (intermediate node.  RADIX_TREE_PTR_PER_NODE=4 in this fig)
     64  1.18       ad  *       | | | |
     65  1.18       ad  *       v v v v
     66  1.18       ad  *       p p p p    (items)
     67  1.18       ad  *
     68  1.18       ad  *  - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
     69  1.18       ad  *    it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
     70  1.18       ad  *
     71  1.18       ad  *     root (t_height=3)
     72  1.18       ad  *      |
     73  1.18       ad  *      v
     74  1.18       ad  *      [ | | | ]
     75  1.18       ad  *           |
     76  1.18       ad  *           v
     77  1.18       ad  *           [ | | | ]
     78  1.18       ad  *                |
     79  1.18       ad  *                v
     80  1.18       ad  *                [ | | | ]
     81  1.18       ad  *                   |
     82  1.18       ad  *                   v
     83  1.18       ad  *                   p
     84  1.18       ad  *
     85  1.18       ad  * The height of tree (t_height) is dynamic.  It's smaller if only small
     86  1.18       ad  * index values are used.  As an extreme case, if only index 0 is used,
     87  1.18       ad  * the corresponding value is directly stored in the root of the tree
     88  1.18       ad  * (struct radix_tree) without allocating any intermediate nodes.  In that
     89  1.18       ad  * case, t_height=0.
     90  1.18       ad  *
     91  1.18       ad  * Gang lookup:
     92  1.17     yamt  *
     93  1.18       ad  * This implementation provides a way to scan many nodes quickly via
     94  1.17     yamt  * radix_tree_gang_lookup_node function and its varients.
     95  1.17     yamt  *
     96  1.18       ad  * Tags:
     97  1.18       ad  *
     98  1.18       ad  * This implementation provides tagging functionality, which allows quick
     99  1.18       ad  * scanning of a subset of leaf nodes.  Leaf nodes are untagged when inserted
    100  1.18       ad  * into the tree and can be tagged by radix_tree_set_tag function.
    101  1.18       ad  * radix_tree_gang_lookup_tagged_node function and its variants returns only
    102  1.18       ad  * leaf nodes with the given tag.  To reduce amount of nodes to visit for
    103  1.17     yamt  * these functions, this implementation keeps tagging information in internal
    104  1.17     yamt  * intermediate nodes and quickly skips uninterested parts of a tree.
    105  1.18       ad  *
    106  1.18       ad  * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
    107  1.18       ad  * identified by an zero-origin numbers, tagid.  For the current implementation,
    108  1.18       ad  * RADIX_TREE_TAG_ID_MAX is 2.  A set of tags is described as a bitmask tagmask,
    109  1.18       ad  * which is a bitwise OR of (1 << tagid).
    110   1.1     yamt  */
    111   1.1     yamt 
    112   1.1     yamt #include <sys/cdefs.h>
    113   1.1     yamt 
    114   1.2     yamt #if defined(_KERNEL) || defined(_STANDALONE)
    115  1.27  msaitoh __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.27 2020/05/14 08:34:19 msaitoh Exp $");
    116   1.1     yamt #include <sys/param.h>
    117   1.3     yamt #include <sys/errno.h>
    118   1.1     yamt #include <sys/pool.h>
    119   1.1     yamt #include <sys/radixtree.h>
    120   1.3     yamt #include <lib/libkern/libkern.h>
    121   1.3     yamt #if defined(_STANDALONE)
    122   1.3     yamt #include <lib/libsa/stand.h>
    123   1.3     yamt #endif /* defined(_STANDALONE) */
    124   1.2     yamt #else /* defined(_KERNEL) || defined(_STANDALONE) */
    125  1.27  msaitoh __RCSID("$NetBSD: radixtree.c,v 1.27 2020/05/14 08:34:19 msaitoh Exp $");
    126   1.1     yamt #include <assert.h>
    127   1.1     yamt #include <errno.h>
    128   1.1     yamt #include <stdbool.h>
    129   1.1     yamt #include <stdlib.h>
    130   1.8     yamt #include <string.h>
    131   1.1     yamt #if 1
    132   1.1     yamt #define KASSERT assert
    133   1.1     yamt #else
    134   1.1     yamt #define KASSERT(a)	/* nothing */
    135   1.1     yamt #endif
    136   1.2     yamt #endif /* defined(_KERNEL) || defined(_STANDALONE) */
    137   1.1     yamt 
    138   1.1     yamt #include <sys/radixtree.h>
    139   1.1     yamt 
    140   1.1     yamt #define	RADIX_TREE_BITS_PER_HEIGHT	4	/* XXX tune */
    141   1.1     yamt #define	RADIX_TREE_PTR_PER_NODE		(1 << RADIX_TREE_BITS_PER_HEIGHT)
    142   1.1     yamt #define	RADIX_TREE_MAX_HEIGHT		(64 / RADIX_TREE_BITS_PER_HEIGHT)
    143  1.15     yamt #define	RADIX_TREE_INVALID_HEIGHT	(RADIX_TREE_MAX_HEIGHT + 1)
    144   1.2     yamt __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
    145   1.1     yamt 
    146   1.2     yamt __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
    147   1.1     yamt #define	RADIX_TREE_TAG_MASK	((1 << RADIX_TREE_TAG_ID_MAX) - 1)
    148   1.1     yamt 
    149   1.1     yamt static inline void *
    150   1.1     yamt entry_ptr(void *p)
    151   1.1     yamt {
    152   1.1     yamt 
    153   1.1     yamt 	return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
    154   1.1     yamt }
    155   1.1     yamt 
    156   1.1     yamt static inline unsigned int
    157   1.1     yamt entry_tagmask(void *p)
    158   1.1     yamt {
    159   1.1     yamt 
    160   1.1     yamt 	return (uintptr_t)p & RADIX_TREE_TAG_MASK;
    161   1.1     yamt }
    162   1.1     yamt 
    163   1.1     yamt static inline void *
    164   1.1     yamt entry_compose(void *p, unsigned int tagmask)
    165   1.1     yamt {
    166   1.1     yamt 
    167   1.1     yamt 	return (void *)((uintptr_t)p | tagmask);
    168   1.1     yamt }
    169   1.1     yamt 
    170   1.1     yamt static inline bool
    171   1.1     yamt entry_match_p(void *p, unsigned int tagmask)
    172   1.1     yamt {
    173   1.1     yamt 
    174   1.1     yamt 	KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
    175   1.1     yamt 	if (p == NULL) {
    176   1.1     yamt 		return false;
    177   1.1     yamt 	}
    178   1.1     yamt 	if (tagmask == 0) {
    179   1.1     yamt 		return true;
    180   1.1     yamt 	}
    181   1.1     yamt 	return (entry_tagmask(p) & tagmask) != 0;
    182   1.1     yamt }
    183   1.1     yamt 
    184   1.1     yamt /*
    185   1.1     yamt  * radix_tree_node: an intermediate node
    186   1.1     yamt  *
    187   1.1     yamt  * we don't care the type of leaf nodes.  they are just void *.
    188  1.19       ad  *
    189  1.19       ad  * we used to maintain a count of non-NULL nodes in this structure, but it
    190  1.19       ad  * prevented it from being aligned to a cache line boundary; the performance
    191  1.19       ad  * benefit from being cache friendly is greater than the benefit of having
    192  1.19       ad  * a dedicated count value, especially in multi-processor situations where
    193  1.19       ad  * we need to avoid intra-pool-page false sharing.
    194   1.1     yamt  */
    195   1.1     yamt 
    196   1.1     yamt struct radix_tree_node {
    197   1.1     yamt 	void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
    198   1.1     yamt };
    199   1.1     yamt 
    200   1.7     yamt /*
    201   1.1     yamt  * p_refs[0].pptr == &t->t_root
    202   1.1     yamt  *	:
    203   1.1     yamt  * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
    204   1.1     yamt  *	:
    205   1.1     yamt  *	:
    206   1.1     yamt  * p_refs[t->t_height].pptr == &leaf_pointer
    207   1.1     yamt  */
    208   1.1     yamt 
    209   1.1     yamt struct radix_tree_path {
    210   1.1     yamt 	struct radix_tree_node_ref {
    211   1.1     yamt 		void **pptr;
    212   1.1     yamt 	} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
    213  1.15     yamt 	/*
    214  1.15     yamt 	 * p_lastidx is either the index of the last valid element of p_refs[]
    215  1.15     yamt 	 * or RADIX_TREE_INVALID_HEIGHT.
    216  1.15     yamt 	 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
    217  1.15     yamt 	 * that the height of the tree is not enough to cover the given index.
    218  1.15     yamt 	 */
    219  1.10     yamt 	unsigned int p_lastidx;
    220   1.1     yamt };
    221   1.1     yamt 
    222   1.1     yamt static inline void **
    223  1.13     yamt path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
    224   1.1     yamt     unsigned int height)
    225   1.1     yamt {
    226   1.1     yamt 
    227   1.1     yamt 	KASSERT(height <= t->t_height);
    228   1.1     yamt 	return p->p_refs[height].pptr;
    229   1.1     yamt }
    230   1.1     yamt 
    231   1.1     yamt static inline struct radix_tree_node *
    232  1.13     yamt path_node(const struct radix_tree * t, const struct radix_tree_path *p,
    233  1.13     yamt     unsigned int height)
    234   1.1     yamt {
    235   1.1     yamt 
    236   1.1     yamt 	KASSERT(height <= t->t_height);
    237   1.1     yamt 	return entry_ptr(*path_pptr(t, p, height));
    238   1.1     yamt }
    239   1.1     yamt 
    240   1.1     yamt /*
    241   1.1     yamt  * radix_tree_init_tree:
    242   1.1     yamt  *
    243  1.18       ad  * Initialize a tree.
    244   1.1     yamt  */
    245   1.1     yamt 
    246   1.1     yamt void
    247   1.1     yamt radix_tree_init_tree(struct radix_tree *t)
    248   1.1     yamt {
    249   1.1     yamt 
    250   1.1     yamt 	t->t_height = 0;
    251   1.1     yamt 	t->t_root = NULL;
    252   1.1     yamt }
    253   1.1     yamt 
    254   1.1     yamt /*
    255  1.18       ad  * radix_tree_fini_tree:
    256   1.1     yamt  *
    257  1.18       ad  * Finish using a tree.
    258   1.1     yamt  */
    259   1.1     yamt 
    260   1.1     yamt void
    261   1.1     yamt radix_tree_fini_tree(struct radix_tree *t)
    262   1.1     yamt {
    263   1.1     yamt 
    264   1.1     yamt 	KASSERT(t->t_root == NULL);
    265   1.1     yamt 	KASSERT(t->t_height == 0);
    266   1.1     yamt }
    267   1.1     yamt 
    268  1.18       ad /*
    269  1.18       ad  * radix_tree_empty_tree_p:
    270  1.18       ad  *
    271  1.18       ad  * Return if the tree is empty.
    272  1.18       ad  */
    273  1.18       ad 
    274   1.9     yamt bool
    275   1.9     yamt radix_tree_empty_tree_p(struct radix_tree *t)
    276   1.9     yamt {
    277   1.9     yamt 
    278   1.9     yamt 	return t->t_root == NULL;
    279   1.9     yamt }
    280   1.9     yamt 
    281  1.18       ad /*
    282  1.18       ad  * radix_tree_empty_tree_p:
    283  1.18       ad  *
    284  1.18       ad  * Return true if the tree has any nodes with the given tag.  Otherwise
    285  1.18       ad  * return false.
    286  1.18       ad  *
    287  1.18       ad  * It's illegal to call this function with tagmask 0.
    288  1.18       ad  */
    289  1.18       ad 
    290  1.16     yamt bool
    291  1.18       ad radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
    292  1.16     yamt {
    293  1.16     yamt 
    294  1.18       ad 	KASSERT(tagmask != 0);
    295  1.16     yamt 	return (entry_tagmask(t->t_root) & tagmask) == 0;
    296  1.16     yamt }
    297  1.16     yamt 
    298   1.3     yamt static void
    299   1.3     yamt radix_tree_node_init(struct radix_tree_node *n)
    300   1.3     yamt {
    301   1.3     yamt 
    302   1.3     yamt 	memset(n, 0, sizeof(*n));
    303   1.3     yamt }
    304   1.3     yamt 
    305   1.1     yamt #if defined(_KERNEL)
    306   1.2     yamt pool_cache_t radix_tree_node_cache __read_mostly;
    307   1.1     yamt 
    308   1.1     yamt static int
    309   1.1     yamt radix_tree_node_ctor(void *dummy, void *item, int flags)
    310   1.1     yamt {
    311   1.1     yamt 	struct radix_tree_node *n = item;
    312   1.1     yamt 
    313   1.1     yamt 	KASSERT(dummy == NULL);
    314   1.3     yamt 	radix_tree_node_init(n);
    315   1.1     yamt 	return 0;
    316   1.1     yamt }
    317   1.1     yamt 
    318   1.1     yamt /*
    319   1.1     yamt  * radix_tree_init:
    320   1.1     yamt  *
    321   1.1     yamt  * initialize the subsystem.
    322   1.1     yamt  */
    323   1.1     yamt 
    324   1.1     yamt void
    325   1.1     yamt radix_tree_init(void)
    326   1.1     yamt {
    327   1.1     yamt 
    328   1.1     yamt 	radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
    329  1.21     para 	    coherency_unit, 0, PR_LARGECACHE, "radixnode", NULL, IPL_NONE,
    330  1.19       ad 	    radix_tree_node_ctor, NULL, NULL);
    331   1.1     yamt 	KASSERT(radix_tree_node_cache != NULL);
    332   1.1     yamt }
    333  1.22       ad 
    334  1.22       ad /*
    335  1.22       ad  * radix_tree_await_memory:
    336  1.22       ad  *
    337  1.22       ad  * after an insert has failed with ENOMEM, wait for memory to become
    338  1.25       ad  * available, so the caller can retry.  this needs to ensure that the
    339  1.25       ad  * maximum possible required number of nodes is available.
    340  1.22       ad  */
    341  1.22       ad 
    342  1.22       ad void
    343  1.22       ad radix_tree_await_memory(void)
    344  1.22       ad {
    345  1.25       ad 	struct radix_tree_node *nodes[RADIX_TREE_MAX_HEIGHT];
    346  1.25       ad 	int i;
    347  1.22       ad 
    348  1.25       ad 	for (i = 0; i < __arraycount(nodes); i++) {
    349  1.25       ad 		nodes[i] = pool_cache_get(radix_tree_node_cache, PR_WAITOK);
    350  1.25       ad 	}
    351  1.25       ad 	while (--i >= 0) {
    352  1.25       ad 		pool_cache_put(radix_tree_node_cache, nodes[i]);
    353  1.25       ad 	}
    354  1.22       ad }
    355  1.22       ad 
    356   1.1     yamt #endif /* defined(_KERNEL) */
    357   1.1     yamt 
    358  1.24       ad /*
    359  1.26       ad  * radix_tree_sum_node:
    360  1.24       ad  *
    361  1.24       ad  * return the logical sum of all entries in the given node.  used to quickly
    362  1.24       ad  * check for tag masks or empty nodes.
    363  1.24       ad  */
    364  1.24       ad 
    365  1.24       ad static uintptr_t
    366  1.26       ad radix_tree_sum_node(const struct radix_tree_node *n)
    367   1.1     yamt {
    368  1.19       ad #if RADIX_TREE_PTR_PER_NODE > 16
    369  1.25       ad 	unsigned int i;
    370  1.24       ad 	uintptr_t sum;
    371   1.1     yamt 
    372  1.24       ad 	for (i = 0, sum = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    373  1.24       ad 		sum |= (uintptr_t)n->n_ptrs[i];
    374   1.1     yamt 	}
    375  1.24       ad 	return sum;
    376  1.19       ad #else /* RADIX_TREE_PTR_PER_NODE > 16 */
    377  1.19       ad 	uintptr_t sum;
    378  1.19       ad 
    379  1.19       ad 	/*
    380  1.19       ad 	 * Unrolling the above is much better than a tight loop with two
    381  1.19       ad 	 * test+branch pairs.  On x86 with gcc 5.5.0 this compiles into 19
    382  1.19       ad 	 * deterministic instructions including the "return" and prologue &
    383  1.19       ad 	 * epilogue.
    384  1.19       ad 	 */
    385  1.19       ad 	sum = (uintptr_t)n->n_ptrs[0];
    386  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[1];
    387  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[2];
    388  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[3];
    389  1.19       ad #if RADIX_TREE_PTR_PER_NODE > 4
    390  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[4];
    391  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[5];
    392  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[6];
    393  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[7];
    394  1.19       ad #endif
    395  1.19       ad #if RADIX_TREE_PTR_PER_NODE > 8
    396  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[8];
    397  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[9];
    398  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[10];
    399  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[11];
    400  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[12];
    401  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[13];
    402  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[14];
    403  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[15];
    404  1.19       ad #endif
    405  1.24       ad 	return sum;
    406  1.19       ad #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
    407  1.19       ad }
    408  1.19       ad 
    409  1.19       ad static int __unused
    410  1.19       ad radix_tree_node_count_ptrs(const struct radix_tree_node *n)
    411  1.19       ad {
    412  1.19       ad 	unsigned int i, c;
    413  1.19       ad 
    414  1.19       ad 	for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    415  1.19       ad 		c += (n->n_ptrs[i] != NULL);
    416  1.19       ad 	}
    417  1.19       ad 	return c;
    418   1.1     yamt }
    419   1.1     yamt 
    420   1.1     yamt static struct radix_tree_node *
    421   1.1     yamt radix_tree_alloc_node(void)
    422   1.1     yamt {
    423   1.1     yamt 	struct radix_tree_node *n;
    424   1.1     yamt 
    425   1.1     yamt #if defined(_KERNEL)
    426  1.18       ad 	/*
    427  1.18       ad 	 * note that pool_cache_get can block.
    428  1.18       ad 	 */
    429   1.1     yamt 	n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
    430   1.1     yamt #else /* defined(_KERNEL) */
    431   1.3     yamt #if defined(_STANDALONE)
    432   1.3     yamt 	n = alloc(sizeof(*n));
    433   1.3     yamt #else /* defined(_STANDALONE) */
    434   1.3     yamt 	n = malloc(sizeof(*n));
    435   1.3     yamt #endif /* defined(_STANDALONE) */
    436   1.3     yamt 	if (n != NULL) {
    437   1.3     yamt 		radix_tree_node_init(n);
    438   1.3     yamt 	}
    439   1.1     yamt #endif /* defined(_KERNEL) */
    440  1.26       ad 	KASSERT(n == NULL || radix_tree_sum_node(n) == 0);
    441   1.1     yamt 	return n;
    442   1.1     yamt }
    443   1.1     yamt 
    444   1.1     yamt static void
    445   1.1     yamt radix_tree_free_node(struct radix_tree_node *n)
    446   1.1     yamt {
    447   1.1     yamt 
    448  1.26       ad 	KASSERT(radix_tree_sum_node(n) == 0);
    449   1.1     yamt #if defined(_KERNEL)
    450   1.1     yamt 	pool_cache_put(radix_tree_node_cache, n);
    451   1.3     yamt #elif defined(_STANDALONE)
    452   1.3     yamt 	dealloc(n, sizeof(*n));
    453   1.3     yamt #else
    454   1.1     yamt 	free(n);
    455   1.3     yamt #endif
    456   1.1     yamt }
    457   1.1     yamt 
    458  1.25       ad /*
    459  1.25       ad  * radix_tree_grow:
    460  1.25       ad  *
    461  1.25       ad  * increase the height of the tree.
    462  1.25       ad  */
    463  1.25       ad 
    464  1.25       ad static __noinline int
    465   1.1     yamt radix_tree_grow(struct radix_tree *t, unsigned int newheight)
    466   1.1     yamt {
    467   1.1     yamt 	const unsigned int tagmask = entry_tagmask(t->t_root);
    468  1.25       ad 	struct radix_tree_node *newnodes[RADIX_TREE_MAX_HEIGHT];
    469  1.25       ad 	void *root;
    470  1.25       ad 	int h;
    471   1.1     yamt 
    472  1.25       ad 	KASSERT(newheight <= RADIX_TREE_MAX_HEIGHT);
    473  1.25       ad 	if ((root = t->t_root) == NULL) {
    474   1.1     yamt 		t->t_height = newheight;
    475   1.1     yamt 		return 0;
    476   1.1     yamt 	}
    477  1.25       ad 	for (h = t->t_height; h < newheight; h++) {
    478  1.25       ad 		newnodes[h] = radix_tree_alloc_node();
    479  1.25       ad 		if (__predict_false(newnodes[h] == NULL)) {
    480  1.25       ad 			while (--h >= (int)t->t_height) {
    481  1.25       ad 				newnodes[h]->n_ptrs[0] = NULL;
    482  1.25       ad 				radix_tree_free_node(newnodes[h]);
    483  1.25       ad 			}
    484   1.1     yamt 			return ENOMEM;
    485   1.1     yamt 		}
    486  1.25       ad 		newnodes[h]->n_ptrs[0] = root;
    487  1.25       ad 		root = entry_compose(newnodes[h], tagmask);
    488   1.1     yamt 	}
    489  1.25       ad 	t->t_root = root;
    490  1.25       ad 	t->t_height = h;
    491   1.1     yamt 	return 0;
    492   1.1     yamt }
    493   1.1     yamt 
    494   1.5     yamt /*
    495   1.5     yamt  * radix_tree_lookup_ptr:
    496   1.5     yamt  *
    497   1.5     yamt  * an internal helper function used for various exported functions.
    498   1.5     yamt  *
    499   1.5     yamt  * return the pointer to store the node for the given index.
    500   1.5     yamt  *
    501   1.5     yamt  * if alloc is true, try to allocate the storage.  (note for _KERNEL:
    502   1.5     yamt  * in that case, this function can block.)  if the allocation failed or
    503   1.5     yamt  * alloc is false, return NULL.
    504   1.5     yamt  *
    505   1.5     yamt  * if path is not NULL, fill it for the caller's investigation.
    506   1.5     yamt  *
    507   1.5     yamt  * if tagmask is not zero, search only for nodes with the tag set.
    508  1.15     yamt  * note that, however, this function doesn't check the tagmask for the leaf
    509  1.15     yamt  * pointer.  it's a caller's responsibility to investigate the value which
    510  1.15     yamt  * is pointed by the returned pointer if necessary.
    511   1.5     yamt  *
    512   1.5     yamt  * while this function is a bit large, as it's called with some constant
    513   1.5     yamt  * arguments, inlining might have benefits.  anyway, a compiler will decide.
    514   1.5     yamt  */
    515   1.5     yamt 
    516   1.1     yamt static inline void **
    517   1.1     yamt radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
    518   1.1     yamt     struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
    519   1.1     yamt {
    520   1.1     yamt 	struct radix_tree_node *n;
    521   1.1     yamt 	int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    522   1.1     yamt 	int shift;
    523   1.1     yamt 	void **vpp;
    524   1.1     yamt 	const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
    525   1.1     yamt 	struct radix_tree_node_ref *refs = NULL;
    526   1.1     yamt 
    527   1.5     yamt 	/*
    528   1.5     yamt 	 * check unsupported combinations
    529   1.5     yamt 	 */
    530   1.1     yamt 	KASSERT(tagmask == 0 || !alloc);
    531   1.1     yamt 	KASSERT(path == NULL || !alloc);
    532   1.1     yamt 	vpp = &t->t_root;
    533   1.1     yamt 	if (path != NULL) {
    534   1.1     yamt 		refs = path->p_refs;
    535   1.1     yamt 		refs->pptr = vpp;
    536   1.1     yamt 	}
    537   1.1     yamt 	n = NULL;
    538   1.1     yamt 	for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
    539   1.1     yamt 		struct radix_tree_node *c;
    540   1.1     yamt 		void *entry;
    541   1.1     yamt 		const uint64_t i = (idx >> shift) & mask;
    542   1.1     yamt 
    543   1.1     yamt 		if (shift >= hshift) {
    544   1.1     yamt 			unsigned int newheight;
    545   1.1     yamt 
    546   1.1     yamt 			KASSERT(vpp == &t->t_root);
    547   1.1     yamt 			if (i == 0) {
    548   1.1     yamt 				shift -= RADIX_TREE_BITS_PER_HEIGHT;
    549   1.1     yamt 				continue;
    550   1.1     yamt 			}
    551   1.1     yamt 			if (!alloc) {
    552   1.1     yamt 				if (path != NULL) {
    553   1.1     yamt 					KASSERT((refs - path->p_refs) == 0);
    554  1.15     yamt 					path->p_lastidx =
    555  1.15     yamt 					    RADIX_TREE_INVALID_HEIGHT;
    556   1.1     yamt 				}
    557   1.1     yamt 				return NULL;
    558   1.1     yamt 			}
    559   1.1     yamt 			newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
    560   1.1     yamt 			if (radix_tree_grow(t, newheight)) {
    561   1.1     yamt 				return NULL;
    562   1.1     yamt 			}
    563   1.1     yamt 			hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    564   1.1     yamt 		}
    565   1.1     yamt 		entry = *vpp;
    566   1.1     yamt 		c = entry_ptr(entry);
    567   1.1     yamt 		if (c == NULL ||
    568   1.1     yamt 		    (tagmask != 0 &&
    569   1.1     yamt 		    (entry_tagmask(entry) & tagmask) == 0)) {
    570   1.1     yamt 			if (!alloc) {
    571   1.1     yamt 				if (path != NULL) {
    572   1.1     yamt 					path->p_lastidx = refs - path->p_refs;
    573   1.1     yamt 				}
    574   1.1     yamt 				return NULL;
    575   1.1     yamt 			}
    576   1.1     yamt 			c = radix_tree_alloc_node();
    577   1.1     yamt 			if (c == NULL) {
    578   1.1     yamt 				return NULL;
    579   1.1     yamt 			}
    580   1.1     yamt 			*vpp = c;
    581   1.1     yamt 		}
    582   1.1     yamt 		n = c;
    583   1.1     yamt 		vpp = &n->n_ptrs[i];
    584   1.1     yamt 		if (path != NULL) {
    585   1.1     yamt 			refs++;
    586   1.1     yamt 			refs->pptr = vpp;
    587   1.1     yamt 		}
    588   1.1     yamt 		shift -= RADIX_TREE_BITS_PER_HEIGHT;
    589   1.1     yamt 	}
    590   1.1     yamt 	if (alloc) {
    591   1.1     yamt 		KASSERT(*vpp == NULL);
    592   1.1     yamt 	}
    593   1.1     yamt 	if (path != NULL) {
    594   1.1     yamt 		path->p_lastidx = refs - path->p_refs;
    595   1.1     yamt 	}
    596   1.1     yamt 	return vpp;
    597   1.1     yamt }
    598   1.1     yamt 
    599   1.1     yamt /*
    600  1.25       ad  * radix_tree_undo_insert_node:
    601  1.25       ad  *
    602  1.25       ad  * Undo the effects of a failed insert.  The conditions that led to the
    603  1.25       ad  * insert may change and it may not be retried.  If the insert is not
    604  1.25       ad  * retried, there will be no corresponding radix_tree_remove_node() for
    605  1.25       ad  * this index in the future.  Therefore any adjustments made to the tree
    606  1.25       ad  * before memory was exhausted must be reverted.
    607  1.25       ad  */
    608  1.25       ad 
    609  1.25       ad static __noinline void
    610  1.25       ad radix_tree_undo_insert_node(struct radix_tree *t, uint64_t idx)
    611  1.25       ad {
    612  1.25       ad 	struct radix_tree_path path;
    613  1.25       ad 	int i;
    614  1.25       ad 
    615  1.25       ad 	(void)radix_tree_lookup_ptr(t, idx, &path, false, 0);
    616  1.25       ad 	if (path.p_lastidx == RADIX_TREE_INVALID_HEIGHT) {
    617  1.25       ad 		/*
    618  1.25       ad 		 * no nodes were inserted.
    619  1.25       ad 		 */
    620  1.25       ad 		return;
    621  1.25       ad 	}
    622  1.25       ad 	for (i = path.p_lastidx - 1; i >= 0; i--) {
    623  1.25       ad 		struct radix_tree_node ** const pptr =
    624  1.25       ad 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    625  1.25       ad 		struct radix_tree_node *n;
    626  1.25       ad 
    627  1.25       ad 		KASSERT(pptr != NULL);
    628  1.25       ad 		n = entry_ptr(*pptr);
    629  1.25       ad 		KASSERT(n != NULL);
    630  1.26       ad 		if (radix_tree_sum_node(n) != 0) {
    631  1.25       ad 			break;
    632  1.25       ad 		}
    633  1.25       ad 		radix_tree_free_node(n);
    634  1.25       ad 		*pptr = NULL;
    635  1.25       ad 	}
    636  1.25       ad 	/*
    637  1.25       ad 	 * fix up height
    638  1.25       ad 	 */
    639  1.25       ad 	if (i < 0) {
    640  1.25       ad 		KASSERT(t->t_root == NULL);
    641  1.25       ad 		t->t_height = 0;
    642  1.25       ad 	}
    643  1.25       ad }
    644  1.25       ad 
    645  1.25       ad /*
    646   1.1     yamt  * radix_tree_insert_node:
    647   1.1     yamt  *
    648  1.18       ad  * Insert the node at the given index.
    649  1.18       ad  *
    650  1.18       ad  * It's illegal to insert NULL.  It's illegal to insert a non-aligned pointer.
    651   1.1     yamt  *
    652  1.18       ad  * This function returns ENOMEM if necessary memory allocation failed.
    653  1.18       ad  * Otherwise, this function returns 0.
    654   1.1     yamt  *
    655  1.18       ad  * Note that inserting a node can involves memory allocation for intermediate
    656  1.18       ad  * nodes.  If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
    657   1.4     yamt  *
    658  1.18       ad  * For the newly inserted node, all tags are cleared.
    659   1.1     yamt  */
    660   1.1     yamt 
    661   1.1     yamt int
    662   1.1     yamt radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
    663   1.1     yamt {
    664   1.1     yamt 	void **vpp;
    665   1.1     yamt 
    666   1.1     yamt 	KASSERT(p != NULL);
    667  1.18       ad 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    668   1.1     yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
    669  1.25       ad 	if (__predict_false(vpp == NULL)) {
    670  1.25       ad 		radix_tree_undo_insert_node(t, idx);
    671   1.1     yamt 		return ENOMEM;
    672   1.1     yamt 	}
    673   1.1     yamt 	KASSERT(*vpp == NULL);
    674   1.1     yamt 	*vpp = p;
    675   1.1     yamt 	return 0;
    676   1.1     yamt }
    677   1.1     yamt 
    678   1.4     yamt /*
    679   1.4     yamt  * radix_tree_replace_node:
    680   1.4     yamt  *
    681  1.18       ad  * Replace a node at the given index with the given node and return the
    682  1.18       ad  * replaced one.
    683  1.18       ad  *
    684  1.18       ad  * It's illegal to try to replace a node which has not been inserted.
    685   1.4     yamt  *
    686  1.18       ad  * This function keeps tags intact.
    687   1.4     yamt  */
    688   1.4     yamt 
    689   1.1     yamt void *
    690   1.1     yamt radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
    691   1.1     yamt {
    692   1.1     yamt 	void **vpp;
    693   1.1     yamt 	void *oldp;
    694   1.1     yamt 
    695   1.1     yamt 	KASSERT(p != NULL);
    696  1.18       ad 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    697   1.1     yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    698   1.1     yamt 	KASSERT(vpp != NULL);
    699   1.1     yamt 	oldp = *vpp;
    700   1.1     yamt 	KASSERT(oldp != NULL);
    701   1.1     yamt 	*vpp = entry_compose(p, entry_tagmask(*vpp));
    702   1.1     yamt 	return entry_ptr(oldp);
    703   1.1     yamt }
    704   1.1     yamt 
    705   1.1     yamt /*
    706   1.1     yamt  * radix_tree_remove_node:
    707   1.1     yamt  *
    708  1.18       ad  * Remove the node at the given index.
    709  1.18       ad  *
    710  1.18       ad  * It's illegal to try to remove a node which has not been inserted.
    711   1.1     yamt  */
    712   1.1     yamt 
    713   1.1     yamt void *
    714   1.1     yamt radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
    715   1.1     yamt {
    716   1.1     yamt 	struct radix_tree_path path;
    717   1.1     yamt 	void **vpp;
    718   1.1     yamt 	void *oldp;
    719   1.1     yamt 	int i;
    720   1.1     yamt 
    721   1.1     yamt 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
    722   1.1     yamt 	KASSERT(vpp != NULL);
    723   1.1     yamt 	oldp = *vpp;
    724   1.1     yamt 	KASSERT(oldp != NULL);
    725   1.1     yamt 	KASSERT(path.p_lastidx == t->t_height);
    726   1.1     yamt 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
    727   1.1     yamt 	*vpp = NULL;
    728   1.1     yamt 	for (i = t->t_height - 1; i >= 0; i--) {
    729   1.1     yamt 		void *entry;
    730   1.1     yamt 		struct radix_tree_node ** const pptr =
    731   1.1     yamt 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    732   1.1     yamt 		struct radix_tree_node *n;
    733   1.1     yamt 
    734   1.1     yamt 		KASSERT(pptr != NULL);
    735   1.1     yamt 		entry = *pptr;
    736   1.1     yamt 		n = entry_ptr(entry);
    737   1.1     yamt 		KASSERT(n != NULL);
    738  1.26       ad 		if (radix_tree_sum_node(n) != 0) {
    739   1.1     yamt 			break;
    740   1.1     yamt 		}
    741   1.1     yamt 		radix_tree_free_node(n);
    742   1.1     yamt 		*pptr = NULL;
    743   1.1     yamt 	}
    744   1.1     yamt 	/*
    745   1.1     yamt 	 * fix up height
    746   1.1     yamt 	 */
    747   1.1     yamt 	if (i < 0) {
    748   1.1     yamt 		KASSERT(t->t_root == NULL);
    749   1.1     yamt 		t->t_height = 0;
    750   1.1     yamt 	}
    751   1.1     yamt 	/*
    752   1.1     yamt 	 * update tags
    753   1.1     yamt 	 */
    754   1.1     yamt 	for (; i >= 0; i--) {
    755   1.1     yamt 		void *entry;
    756   1.1     yamt 		struct radix_tree_node ** const pptr =
    757   1.1     yamt 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    758   1.1     yamt 		struct radix_tree_node *n;
    759   1.1     yamt 		unsigned int newmask;
    760   1.1     yamt 
    761   1.1     yamt 		KASSERT(pptr != NULL);
    762   1.1     yamt 		entry = *pptr;
    763   1.1     yamt 		n = entry_ptr(entry);
    764   1.1     yamt 		KASSERT(n != NULL);
    765  1.26       ad 		KASSERT(radix_tree_sum_node(n) != 0);
    766  1.26       ad 		newmask = radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK;
    767   1.1     yamt 		if (newmask == entry_tagmask(entry)) {
    768   1.1     yamt 			break;
    769   1.1     yamt 		}
    770   1.1     yamt 		*pptr = entry_compose(n, newmask);
    771   1.1     yamt 	}
    772   1.1     yamt 	/*
    773   1.1     yamt 	 * XXX is it worth to try to reduce height?
    774   1.1     yamt 	 * if we do that, make radix_tree_grow rollback its change as well.
    775   1.1     yamt 	 */
    776   1.1     yamt 	return entry_ptr(oldp);
    777   1.1     yamt }
    778   1.1     yamt 
    779   1.1     yamt /*
    780   1.1     yamt  * radix_tree_lookup_node:
    781   1.1     yamt  *
    782  1.18       ad  * Returns the node at the given index.
    783  1.18       ad  * Returns NULL if nothing is found at the given index.
    784   1.1     yamt  */
    785   1.1     yamt 
    786   1.1     yamt void *
    787   1.1     yamt radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
    788   1.1     yamt {
    789   1.1     yamt 	void **vpp;
    790   1.1     yamt 
    791   1.1     yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    792   1.1     yamt 	if (vpp == NULL) {
    793   1.1     yamt 		return NULL;
    794   1.1     yamt 	}
    795   1.1     yamt 	return entry_ptr(*vpp);
    796   1.1     yamt }
    797   1.1     yamt 
    798   1.1     yamt static inline void
    799   1.1     yamt gang_lookup_init(struct radix_tree *t, uint64_t idx,
    800   1.1     yamt     struct radix_tree_path *path, const unsigned int tagmask)
    801   1.1     yamt {
    802  1.18       ad 	void **vpp __unused;
    803   1.1     yamt 
    804  1.19       ad 	vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
    805   1.1     yamt 	KASSERT(vpp == NULL ||
    806   1.1     yamt 	    vpp == path_pptr(t, path, path->p_lastidx));
    807   1.1     yamt 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    808  1.15     yamt 	KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
    809  1.15     yamt 	   path->p_lastidx == t->t_height ||
    810  1.15     yamt 	   !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
    811   1.1     yamt }
    812   1.1     yamt 
    813  1.15     yamt /*
    814  1.15     yamt  * gang_lookup_scan:
    815  1.15     yamt  *
    816  1.15     yamt  * a helper routine for radix_tree_gang_lookup_node and its variants.
    817  1.15     yamt  */
    818  1.15     yamt 
    819   1.1     yamt static inline unsigned int
    820  1.15     yamt __attribute__((__always_inline__))
    821   1.1     yamt gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
    822  1.18       ad     void **results, const unsigned int maxresults, const unsigned int tagmask,
    823  1.18       ad     const bool reverse, const bool dense)
    824   1.1     yamt {
    825  1.15     yamt 
    826  1.15     yamt 	/*
    827  1.15     yamt 	 * we keep the path updated only for lastidx-1.
    828  1.15     yamt 	 * vpp is what path_pptr(t, path, lastidx) would be.
    829  1.15     yamt 	 */
    830   1.1     yamt 	void **vpp;
    831  1.10     yamt 	unsigned int nfound;
    832   1.1     yamt 	unsigned int lastidx;
    833  1.15     yamt 	/*
    834  1.15     yamt 	 * set up scan direction dependant constants so that we can iterate
    835  1.15     yamt 	 * n_ptrs as the following.
    836  1.15     yamt 	 *
    837  1.15     yamt 	 *	for (i = first; i != guard; i += step)
    838  1.15     yamt 	 *		visit n->n_ptrs[i];
    839  1.15     yamt 	 */
    840  1.15     yamt 	const int step = reverse ? -1 : 1;
    841  1.15     yamt 	const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
    842  1.15     yamt 	const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
    843  1.15     yamt 	const unsigned int guard = last + step;
    844   1.1     yamt 
    845   1.1     yamt 	KASSERT(maxresults > 0);
    846  1.15     yamt 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    847   1.1     yamt 	lastidx = path->p_lastidx;
    848  1.15     yamt 	KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
    849  1.15     yamt 	   lastidx == t->t_height ||
    850  1.15     yamt 	   !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
    851  1.15     yamt 	nfound = 0;
    852  1.15     yamt 	if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
    853  1.18       ad 		/*
    854  1.18       ad 		 * requested idx is beyond the right-most node.
    855  1.18       ad 		 */
    856  1.18       ad 		if (reverse && !dense) {
    857  1.15     yamt 			lastidx = 0;
    858  1.15     yamt 			vpp = path_pptr(t, path, lastidx);
    859  1.15     yamt 			goto descend;
    860  1.15     yamt 		}
    861   1.1     yamt 		return 0;
    862   1.1     yamt 	}
    863   1.1     yamt 	vpp = path_pptr(t, path, lastidx);
    864   1.1     yamt 	while (/*CONSTCOND*/true) {
    865   1.1     yamt 		struct radix_tree_node *n;
    866  1.10     yamt 		unsigned int i;
    867   1.1     yamt 
    868   1.1     yamt 		if (entry_match_p(*vpp, tagmask)) {
    869   1.1     yamt 			KASSERT(lastidx == t->t_height);
    870   1.1     yamt 			/*
    871  1.15     yamt 			 * record the matching non-NULL leaf.
    872   1.1     yamt 			 */
    873   1.1     yamt 			results[nfound] = entry_ptr(*vpp);
    874   1.1     yamt 			nfound++;
    875   1.1     yamt 			if (nfound == maxresults) {
    876   1.1     yamt 				return nfound;
    877   1.1     yamt 			}
    878  1.18       ad 		} else if (dense) {
    879  1.18       ad 			return nfound;
    880   1.1     yamt 		}
    881   1.1     yamt scan_siblings:
    882   1.1     yamt 		/*
    883  1.15     yamt 		 * try to find the next matching non-NULL sibling.
    884   1.1     yamt 		 */
    885  1.15     yamt 		if (lastidx == 0) {
    886  1.15     yamt 			/*
    887  1.15     yamt 			 * the root has no siblings.
    888  1.15     yamt 			 * we've done.
    889  1.15     yamt 			 */
    890  1.15     yamt 			KASSERT(vpp == &t->t_root);
    891  1.15     yamt 			break;
    892  1.15     yamt 		}
    893   1.1     yamt 		n = path_node(t, path, lastidx - 1);
    894  1.15     yamt 		for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
    895  1.15     yamt 			KASSERT(i < RADIX_TREE_PTR_PER_NODE);
    896   1.1     yamt 			if (entry_match_p(n->n_ptrs[i], tagmask)) {
    897   1.1     yamt 				vpp = &n->n_ptrs[i];
    898   1.1     yamt 				break;
    899  1.23       ad 			} else if (dense) {
    900  1.23       ad 				return nfound;
    901   1.1     yamt 			}
    902   1.1     yamt 		}
    903  1.15     yamt 		if (i == guard) {
    904   1.1     yamt 			/*
    905   1.1     yamt 			 * not found.  go to parent.
    906   1.1     yamt 			 */
    907   1.1     yamt 			lastidx--;
    908   1.1     yamt 			vpp = path_pptr(t, path, lastidx);
    909   1.1     yamt 			goto scan_siblings;
    910   1.1     yamt 		}
    911  1.15     yamt descend:
    912   1.1     yamt 		/*
    913  1.15     yamt 		 * following the left-most (or right-most in the case of
    914  1.15     yamt 		 * reverse scan) child node, decend until reaching the leaf or
    915  1.15     yamt 		 * an non-matching entry.
    916   1.1     yamt 		 */
    917   1.1     yamt 		while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
    918  1.15     yamt 			/*
    919  1.15     yamt 			 * save vpp in the path so that we can come back to this
    920  1.15     yamt 			 * node after finishing visiting children.
    921  1.15     yamt 			 */
    922  1.15     yamt 			path->p_refs[lastidx].pptr = vpp;
    923   1.1     yamt 			n = entry_ptr(*vpp);
    924  1.15     yamt 			vpp = &n->n_ptrs[first];
    925   1.1     yamt 			lastidx++;
    926   1.1     yamt 		}
    927   1.1     yamt 	}
    928  1.15     yamt 	return nfound;
    929   1.1     yamt }
    930   1.1     yamt 
    931   1.1     yamt /*
    932   1.1     yamt  * radix_tree_gang_lookup_node:
    933   1.1     yamt  *
    934  1.18       ad  * Scan the tree starting from the given index in the ascending order and
    935  1.18       ad  * return found nodes.
    936  1.18       ad  *
    937   1.1     yamt  * results should be an array large enough to hold maxresults pointers.
    938  1.18       ad  * This function returns the number of nodes found, up to maxresults.
    939  1.18       ad  * Returning less than maxresults means there are no more nodes in the tree.
    940   1.1     yamt  *
    941  1.18       ad  * If dense == true, this function stops scanning when it founds a hole of
    942  1.18       ad  * indexes.  I.e. an index for which radix_tree_lookup_node would returns NULL.
    943  1.18       ad  * If dense == false, this function skips holes and continue scanning until
    944  1.18       ad  * maxresults nodes are found or it reaches the limit of the index range.
    945  1.18       ad  *
    946  1.18       ad  * The result of this function is semantically equivalent to what could be
    947   1.1     yamt  * obtained by repeated calls of radix_tree_lookup_node with increasing index.
    948  1.18       ad  * but this function is expected to be computationally cheaper when looking up
    949  1.18       ad  * multiple nodes at once.  Especially, it's expected to be much cheaper when
    950  1.18       ad  * node indexes are distributed sparsely.
    951  1.18       ad  *
    952  1.18       ad  * Note that this function doesn't return index values of found nodes.
    953  1.18       ad  * Thus, in the case of dense == false, if index values are important for
    954  1.18       ad  * a caller, it's the caller's responsibility to check them, typically
    955  1.18       ad  * by examinining the returned nodes using some caller-specific knowledge
    956  1.18       ad  * about them.
    957  1.18       ad  * In the case of dense == true, a node returned via results[N] is always for
    958  1.18       ad  * the index (idx + N).
    959   1.1     yamt  */
    960   1.1     yamt 
    961   1.1     yamt unsigned int
    962   1.1     yamt radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
    963  1.18       ad     void **results, unsigned int maxresults, bool dense)
    964   1.1     yamt {
    965   1.1     yamt 	struct radix_tree_path path;
    966   1.1     yamt 
    967   1.1     yamt 	gang_lookup_init(t, idx, &path, 0);
    968  1.18       ad 	return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
    969  1.15     yamt }
    970  1.15     yamt 
    971  1.15     yamt /*
    972  1.15     yamt  * radix_tree_gang_lookup_node_reverse:
    973  1.15     yamt  *
    974  1.18       ad  * Same as radix_tree_gang_lookup_node except that this one scans the
    975  1.18       ad  * tree in the reverse order.  I.e. descending index values.
    976  1.15     yamt  */
    977  1.15     yamt 
    978  1.15     yamt unsigned int
    979  1.15     yamt radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
    980  1.18       ad     void **results, unsigned int maxresults, bool dense)
    981  1.15     yamt {
    982  1.15     yamt 	struct radix_tree_path path;
    983  1.15     yamt 
    984  1.15     yamt 	gang_lookup_init(t, idx, &path, 0);
    985  1.18       ad 	return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
    986   1.1     yamt }
    987   1.1     yamt 
    988   1.1     yamt /*
    989   1.1     yamt  * radix_tree_gang_lookup_tagged_node:
    990   1.1     yamt  *
    991  1.18       ad  * Same as radix_tree_gang_lookup_node except that this one only returns
    992   1.1     yamt  * nodes tagged with tagid.
    993  1.18       ad  *
    994  1.18       ad  * It's illegal to call this function with tagmask 0.
    995   1.1     yamt  */
    996   1.1     yamt 
    997   1.1     yamt unsigned int
    998   1.1     yamt radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
    999  1.18       ad     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
   1000   1.1     yamt {
   1001   1.1     yamt 	struct radix_tree_path path;
   1002   1.1     yamt 
   1003  1.18       ad 	KASSERT(tagmask != 0);
   1004   1.1     yamt 	gang_lookup_init(t, idx, &path, tagmask);
   1005  1.18       ad 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
   1006  1.18       ad 	    dense);
   1007  1.15     yamt }
   1008  1.15     yamt 
   1009  1.15     yamt /*
   1010  1.15     yamt  * radix_tree_gang_lookup_tagged_node_reverse:
   1011  1.15     yamt  *
   1012  1.18       ad  * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
   1013  1.18       ad  * tree in the reverse order.  I.e. descending index values.
   1014  1.15     yamt  */
   1015  1.15     yamt 
   1016  1.15     yamt unsigned int
   1017  1.15     yamt radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
   1018  1.18       ad     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
   1019  1.15     yamt {
   1020  1.15     yamt 	struct radix_tree_path path;
   1021  1.15     yamt 
   1022  1.18       ad 	KASSERT(tagmask != 0);
   1023  1.15     yamt 	gang_lookup_init(t, idx, &path, tagmask);
   1024  1.18       ad 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
   1025  1.18       ad 	    dense);
   1026   1.1     yamt }
   1027   1.1     yamt 
   1028   1.4     yamt /*
   1029   1.4     yamt  * radix_tree_get_tag:
   1030   1.4     yamt  *
   1031  1.18       ad  * Return the tagmask for the node at the given index.
   1032  1.18       ad  *
   1033  1.18       ad  * It's illegal to call this function for a node which has not been inserted.
   1034   1.4     yamt  */
   1035   1.4     yamt 
   1036  1.18       ad unsigned int
   1037  1.18       ad radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1038   1.1     yamt {
   1039  1.18       ad 	/*
   1040  1.18       ad 	 * the following two implementations should behave same.
   1041  1.18       ad 	 * the former one was chosen because it seems faster.
   1042  1.18       ad 	 */
   1043   1.1     yamt #if 1
   1044   1.1     yamt 	void **vpp;
   1045   1.1     yamt 
   1046   1.1     yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
   1047   1.1     yamt 	if (vpp == NULL) {
   1048   1.1     yamt 		return false;
   1049   1.1     yamt 	}
   1050   1.1     yamt 	KASSERT(*vpp != NULL);
   1051  1.18       ad 	return (entry_tagmask(*vpp) & tagmask);
   1052   1.1     yamt #else
   1053   1.1     yamt 	void **vpp;
   1054   1.1     yamt 
   1055   1.1     yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
   1056   1.1     yamt 	KASSERT(vpp != NULL);
   1057  1.18       ad 	return (entry_tagmask(*vpp) & tagmask);
   1058   1.1     yamt #endif
   1059   1.1     yamt }
   1060   1.1     yamt 
   1061   1.4     yamt /*
   1062   1.4     yamt  * radix_tree_set_tag:
   1063   1.4     yamt  *
   1064  1.18       ad  * Set the tag for the node at the given index.
   1065  1.18       ad  *
   1066  1.18       ad  * It's illegal to call this function for a node which has not been inserted.
   1067  1.18       ad  * It's illegal to call this function with tagmask 0.
   1068   1.4     yamt  */
   1069   1.4     yamt 
   1070   1.1     yamt void
   1071  1.18       ad radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1072   1.1     yamt {
   1073   1.1     yamt 	struct radix_tree_path path;
   1074  1.18       ad 	void **vpp __unused;
   1075   1.1     yamt 	int i;
   1076   1.1     yamt 
   1077  1.18       ad 	KASSERT(tagmask != 0);
   1078  1.19       ad 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1079   1.1     yamt 	KASSERT(vpp != NULL);
   1080   1.1     yamt 	KASSERT(*vpp != NULL);
   1081   1.1     yamt 	KASSERT(path.p_lastidx == t->t_height);
   1082   1.1     yamt 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1083   1.1     yamt 	for (i = t->t_height; i >= 0; i--) {
   1084   1.1     yamt 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1085   1.1     yamt 		void *entry;
   1086   1.1     yamt 
   1087   1.1     yamt 		KASSERT(pptr != NULL);
   1088   1.1     yamt 		entry = *pptr;
   1089   1.1     yamt 		if ((entry_tagmask(entry) & tagmask) != 0) {
   1090   1.1     yamt 			break;
   1091   1.1     yamt 		}
   1092   1.1     yamt 		*pptr = (void *)((uintptr_t)entry | tagmask);
   1093   1.1     yamt 	}
   1094   1.1     yamt }
   1095   1.1     yamt 
   1096   1.4     yamt /*
   1097   1.4     yamt  * radix_tree_clear_tag:
   1098   1.4     yamt  *
   1099  1.18       ad  * Clear the tag for the node at the given index.
   1100  1.18       ad  *
   1101  1.18       ad  * It's illegal to call this function for a node which has not been inserted.
   1102  1.18       ad  * It's illegal to call this function with tagmask 0.
   1103   1.4     yamt  */
   1104   1.4     yamt 
   1105   1.1     yamt void
   1106  1.18       ad radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1107   1.1     yamt {
   1108   1.1     yamt 	struct radix_tree_path path;
   1109   1.1     yamt 	void **vpp;
   1110   1.1     yamt 	int i;
   1111   1.1     yamt 
   1112  1.18       ad 	KASSERT(tagmask != 0);
   1113   1.1     yamt 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1114   1.1     yamt 	KASSERT(vpp != NULL);
   1115   1.1     yamt 	KASSERT(*vpp != NULL);
   1116   1.1     yamt 	KASSERT(path.p_lastidx == t->t_height);
   1117   1.1     yamt 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1118   1.7     yamt 	/*
   1119   1.7     yamt 	 * if already cleared, nothing to do
   1120   1.7     yamt 	 */
   1121   1.1     yamt 	if ((entry_tagmask(*vpp) & tagmask) == 0) {
   1122   1.1     yamt 		return;
   1123   1.1     yamt 	}
   1124   1.7     yamt 	/*
   1125   1.7     yamt 	 * clear the tag only if no children have the tag.
   1126   1.7     yamt 	 */
   1127   1.1     yamt 	for (i = t->t_height; i >= 0; i--) {
   1128   1.1     yamt 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1129   1.1     yamt 		void *entry;
   1130   1.1     yamt 
   1131   1.1     yamt 		KASSERT(pptr != NULL);
   1132   1.1     yamt 		entry = *pptr;
   1133   1.1     yamt 		KASSERT((entry_tagmask(entry) & tagmask) != 0);
   1134   1.1     yamt 		*pptr = entry_compose(entry_ptr(entry),
   1135   1.1     yamt 		    entry_tagmask(entry) & ~tagmask);
   1136   1.7     yamt 		/*
   1137   1.7     yamt 		 * check if we should proceed to process the next level.
   1138   1.7     yamt 		 */
   1139   1.7     yamt 		if (0 < i) {
   1140   1.1     yamt 			struct radix_tree_node *n = path_node(t, &path, i - 1);
   1141   1.1     yamt 
   1142  1.26       ad 			if ((radix_tree_sum_node(n) & tagmask) != 0) {
   1143   1.1     yamt 				break;
   1144   1.1     yamt 			}
   1145   1.1     yamt 		}
   1146   1.1     yamt 	}
   1147   1.1     yamt }
   1148   1.1     yamt 
   1149   1.1     yamt #if defined(UNITTEST)
   1150   1.1     yamt 
   1151   1.1     yamt #include <inttypes.h>
   1152   1.1     yamt #include <stdio.h>
   1153   1.1     yamt 
   1154   1.1     yamt static void
   1155   1.1     yamt radix_tree_dump_node(const struct radix_tree *t, void *vp,
   1156   1.1     yamt     uint64_t offset, unsigned int height)
   1157   1.1     yamt {
   1158   1.1     yamt 	struct radix_tree_node *n;
   1159   1.1     yamt 	unsigned int i;
   1160   1.1     yamt 
   1161   1.1     yamt 	for (i = 0; i < t->t_height - height; i++) {
   1162   1.1     yamt 		printf(" ");
   1163   1.1     yamt 	}
   1164   1.1     yamt 	if (entry_tagmask(vp) == 0) {
   1165   1.1     yamt 		printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
   1166   1.1     yamt 	} else {
   1167   1.1     yamt 		printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
   1168   1.1     yamt 		    entry_tagmask(vp));
   1169   1.1     yamt 	}
   1170   1.1     yamt 	if (height == 0) {
   1171   1.1     yamt 		printf(" (leaf)\n");
   1172   1.1     yamt 		return;
   1173   1.1     yamt 	}
   1174   1.1     yamt 	n = entry_ptr(vp);
   1175  1.26       ad 	assert((radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK) ==
   1176  1.24       ad 	    entry_tagmask(vp));
   1177  1.19       ad 	printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
   1178   1.1     yamt 	for (i = 0; i < __arraycount(n->n_ptrs); i++) {
   1179   1.1     yamt 		void *c;
   1180   1.1     yamt 
   1181   1.1     yamt 		c = n->n_ptrs[i];
   1182   1.1     yamt 		if (c == NULL) {
   1183   1.1     yamt 			continue;
   1184   1.1     yamt 		}
   1185   1.1     yamt 		radix_tree_dump_node(t, c,
   1186   1.1     yamt 		    offset + i * (UINT64_C(1) <<
   1187   1.1     yamt 		    (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
   1188   1.1     yamt 	}
   1189   1.1     yamt }
   1190   1.1     yamt 
   1191   1.1     yamt void radix_tree_dump(const struct radix_tree *);
   1192   1.1     yamt 
   1193   1.1     yamt void
   1194   1.1     yamt radix_tree_dump(const struct radix_tree *t)
   1195   1.1     yamt {
   1196   1.1     yamt 
   1197   1.1     yamt 	printf("tree %p height=%u\n", t, t->t_height);
   1198   1.1     yamt 	radix_tree_dump_node(t, t->t_root, 0, t->t_height);
   1199   1.1     yamt }
   1200   1.1     yamt 
   1201   1.1     yamt static void
   1202   1.1     yamt test1(void)
   1203   1.1     yamt {
   1204   1.1     yamt 	struct radix_tree s;
   1205   1.1     yamt 	struct radix_tree *t = &s;
   1206   1.1     yamt 	void *results[3];
   1207   1.1     yamt 
   1208   1.1     yamt 	radix_tree_init_tree(t);
   1209   1.1     yamt 	radix_tree_dump(t);
   1210   1.1     yamt 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1211   1.1     yamt 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1212  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
   1213  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1214  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1215  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1216  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1217  1.18       ad 	    0);
   1218  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1219  1.18       ad 	    0);
   1220  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1221  1.18       ad 	    == 0);
   1222  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1223  1.18       ad 	    == 0);
   1224  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1225  1.18       ad 	    == 0);
   1226  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1227  1.18       ad 	    == 0);
   1228  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
   1229  1.18       ad 	    == 0);
   1230  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
   1231  1.15     yamt 	    == 0);
   1232  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1233  1.18       ad 	    false, 1) == 0);
   1234  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1235  1.18       ad 	    true, 1) == 0);
   1236  1.15     yamt 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1237  1.18       ad 	    false, 1) == 0);
   1238  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1239  1.18       ad 	    true, 1) == 0);
   1240  1.15     yamt 	assert(radix_tree_empty_tree_p(t));
   1241  1.16     yamt 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1242  1.18       ad 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1243  1.15     yamt 	assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
   1244  1.15     yamt 	assert(!radix_tree_empty_tree_p(t));
   1245  1.16     yamt 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1246  1.18       ad 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1247  1.15     yamt 	assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
   1248  1.15     yamt 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1249  1.15     yamt 	memset(results, 0, sizeof(results));
   1250  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1251  1.18       ad 	assert(results[0] == (void *)0xdeadbea0);
   1252  1.18       ad 	memset(results, 0, sizeof(results));
   1253  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1254  1.15     yamt 	assert(results[0] == (void *)0xdeadbea0);
   1255  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1256  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1257  1.15     yamt 	memset(results, 0, sizeof(results));
   1258  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1259  1.18       ad 	    1);
   1260  1.15     yamt 	assert(results[0] == (void *)0xdeadbea0);
   1261  1.15     yamt 	memset(results, 0, sizeof(results));
   1262  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1263  1.18       ad 	    1);
   1264  1.15     yamt 	assert(results[0] == (void *)0xdeadbea0);
   1265  1.18       ad 	memset(results, 0, sizeof(results));
   1266  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1267  1.18       ad 	    == 1);
   1268  1.18       ad 	assert(results[0] == (void *)0xdeadbea0);
   1269  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1270  1.18       ad 	    == 0);
   1271  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1272  1.15     yamt 	    == 0);
   1273  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1274  1.15     yamt 	    == 0);
   1275  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1276  1.18       ad 	    false, 1) == 0);
   1277  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1278  1.18       ad 	    true, 1) == 0);
   1279   1.1     yamt 	assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
   1280  1.15     yamt 	assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
   1281  1.15     yamt 	assert(!radix_tree_empty_tree_p(t));
   1282   1.1     yamt 	radix_tree_dump(t);
   1283  1.15     yamt 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1284  1.15     yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1285  1.15     yamt 	memset(results, 0, sizeof(results));
   1286  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1287  1.15     yamt 	assert(results[0] == (void *)0xdeadbea0);
   1288  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1289  1.15     yamt 	memset(results, 0, sizeof(results));
   1290  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
   1291  1.15     yamt 	assert(results[0] == (void *)0xdeadbea0);
   1292  1.15     yamt 	memset(results, 0, sizeof(results));
   1293  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
   1294  1.15     yamt 	assert(results[0] == (void *)0xdeadbea0);
   1295  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
   1296  1.15     yamt 	    == 0);
   1297  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
   1298  1.15     yamt 	    == 0);
   1299  1.18       ad 	memset(results, 0, sizeof(results));
   1300  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1301  1.18       ad 	    == 1);
   1302  1.18       ad 	memset(results, 0, sizeof(results));
   1303  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1304  1.18       ad 	    == 1);
   1305  1.18       ad 	assert(results[0] == (void *)0xdeadbea0);
   1306  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1307  1.18       ad 	    == 0);
   1308  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1309  1.18       ad 	    == 0);
   1310  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1311  1.18       ad 	    false, 1) == 0);
   1312  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1313  1.18       ad 	    true, 1) == 0);
   1314  1.18       ad 	assert(!radix_tree_get_tag(t, 1000, 1));
   1315  1.18       ad 	assert(!radix_tree_get_tag(t, 1000, 2));
   1316  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
   1317  1.18       ad 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1318  1.18       ad 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1319  1.18       ad 	radix_tree_set_tag(t, 1000, 2);
   1320   1.1     yamt 	assert(!radix_tree_get_tag(t, 1000, 1));
   1321  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1322  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1323  1.16     yamt 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1324  1.18       ad 	assert(!radix_tree_empty_tagged_tree_p(t, 2));
   1325   1.1     yamt 	radix_tree_dump(t);
   1326   1.1     yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1327   1.1     yamt 	assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
   1328   1.1     yamt 	radix_tree_dump(t);
   1329   1.1     yamt 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1330   1.1     yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1331   1.1     yamt 	assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
   1332   1.1     yamt 	    == 0);
   1333   1.1     yamt 	radix_tree_dump(t);
   1334   1.1     yamt 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1335   1.1     yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1336   1.1     yamt 	assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
   1337   1.1     yamt 	    (void *)0xdea0);
   1338   1.1     yamt 	radix_tree_dump(t);
   1339  1.18       ad 	assert(!radix_tree_get_tag(t, 0, 2));
   1340  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1341   1.1     yamt 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
   1342  1.27  msaitoh 	radix_tree_set_tag(t, 0, 2);
   1343  1.18       ad 	radix_tree_set_tag(t, UINT64_C(10000000000), 2);
   1344   1.1     yamt 	radix_tree_dump(t);
   1345  1.18       ad 	assert(radix_tree_get_tag(t, 0, 2));
   1346  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1347  1.18       ad 	assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1348  1.27  msaitoh 	radix_tree_clear_tag(t, 0, 2);
   1349  1.18       ad 	radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
   1350   1.1     yamt 	radix_tree_dump(t);
   1351  1.18       ad 	assert(!radix_tree_get_tag(t, 0, 2));
   1352  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1353  1.18       ad 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1354   1.1     yamt 	radix_tree_dump(t);
   1355   1.1     yamt 	assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
   1356   1.1     yamt 	    (void *)0xdeadbea0);
   1357  1.18       ad 	assert(!radix_tree_get_tag(t, 1000, 1));
   1358  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1359  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1360  1.18       ad 	memset(results, 0, sizeof(results));
   1361  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
   1362   1.1     yamt 	assert(results[0] == (void *)0xbea0);
   1363   1.1     yamt 	assert(results[1] == (void *)0x12345678);
   1364   1.1     yamt 	assert(results[2] == (void *)0xdea0);
   1365  1.18       ad 	memset(results, 0, sizeof(results));
   1366  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1367  1.18       ad 	assert(results[0] == (void *)0xbea0);
   1368  1.18       ad 	memset(results, 0, sizeof(results));
   1369  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
   1370   1.1     yamt 	assert(results[0] == (void *)0x12345678);
   1371   1.1     yamt 	assert(results[1] == (void *)0xdea0);
   1372  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
   1373  1.18       ad 	memset(results, 0, sizeof(results));
   1374  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
   1375   1.1     yamt 	assert(results[0] == (void *)0xdea0);
   1376  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
   1377  1.18       ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1378  1.18       ad 	    false) == 0);
   1379  1.18       ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1380  1.18       ad 	    true) == 0);
   1381  1.18       ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1382  1.18       ad 	    3, false) == 0);
   1383   1.1     yamt 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1384  1.18       ad 	    3, true) == 0);
   1385  1.18       ad 	memset(results, 0, sizeof(results));
   1386  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
   1387  1.18       ad 	    == 1);
   1388   1.1     yamt 	assert(results[0] == (void *)0x12345678);
   1389  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
   1390  1.18       ad 	    == 0);
   1391   1.1     yamt 	assert(entry_tagmask(t->t_root) != 0);
   1392   1.1     yamt 	assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
   1393   1.1     yamt 	assert(entry_tagmask(t->t_root) == 0);
   1394   1.1     yamt 	radix_tree_dump(t);
   1395  1.18       ad 	assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
   1396  1.18       ad 	    == 0);
   1397  1.18       ad 	memset(results, 0, sizeof(results));
   1398  1.18       ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1399  1.18       ad 	    false) == 2);
   1400  1.18       ad 	assert(results[0] == (void *)0xdea0);
   1401  1.18       ad 	assert(results[1] == (void *)0xfff0);
   1402  1.18       ad 	memset(results, 0, sizeof(results));
   1403  1.18       ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1404  1.18       ad 	    true) == 2);
   1405  1.18       ad 	assert(results[0] == (void *)0xdea0);
   1406  1.18       ad 	assert(results[1] == (void *)0xfff0);
   1407  1.18       ad 	memset(results, 0, sizeof(results));
   1408  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1409  1.18       ad 	    results, 3, false) == 3);
   1410  1.18       ad 	assert(results[0] == (void *)0xfff0);
   1411  1.18       ad 	assert(results[1] == (void *)0xdea0);
   1412  1.18       ad 	assert(results[2] == (void *)0xbea0);
   1413  1.18       ad 	memset(results, 0, sizeof(results));
   1414  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1415  1.18       ad 	    results, 3, true) == 2);
   1416  1.18       ad 	assert(results[0] == (void *)0xfff0);
   1417  1.18       ad 	assert(results[1] == (void *)0xdea0);
   1418   1.1     yamt 	assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
   1419   1.1     yamt 	    (void *)0xdea0);
   1420  1.18       ad 	assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
   1421  1.18       ad 	    (void *)0xfff0);
   1422   1.1     yamt 	radix_tree_dump(t);
   1423   1.1     yamt 	assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
   1424   1.1     yamt 	radix_tree_dump(t);
   1425   1.1     yamt 	radix_tree_fini_tree(t);
   1426   1.1     yamt }
   1427   1.1     yamt 
   1428   1.1     yamt #include <sys/time.h>
   1429   1.1     yamt 
   1430   1.1     yamt struct testnode {
   1431   1.1     yamt 	uint64_t idx;
   1432  1.12     yamt 	bool tagged[RADIX_TREE_TAG_ID_MAX];
   1433   1.1     yamt };
   1434   1.1     yamt 
   1435   1.1     yamt static void
   1436  1.11     yamt printops(const char *title, const char *name, int tag, unsigned int n,
   1437  1.11     yamt     const struct timeval *stv, const struct timeval *etv)
   1438   1.1     yamt {
   1439   1.1     yamt 	uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
   1440   1.1     yamt 	uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
   1441   1.1     yamt 
   1442  1.11     yamt 	printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
   1443  1.11     yamt 	    (double)n / (e - s) * 1000000);
   1444   1.1     yamt }
   1445   1.1     yamt 
   1446   1.1     yamt #define	TEST2_GANG_LOOKUP_NODES	16
   1447   1.1     yamt 
   1448   1.1     yamt static bool
   1449  1.18       ad test2_should_tag(unsigned int i, unsigned int tagid)
   1450   1.1     yamt {
   1451   1.1     yamt 
   1452   1.1     yamt 	if (tagid == 0) {
   1453  1.18       ad 		return (i % 4) == 0;	/* 25% */
   1454   1.1     yamt 	} else {
   1455  1.11     yamt 		return (i % 7) == 0;	/* 14% */
   1456   1.1     yamt 	}
   1457  1.18       ad 	return 1;
   1458  1.18       ad }
   1459  1.18       ad 
   1460  1.18       ad static void
   1461  1.18       ad check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
   1462  1.18       ad     unsigned int count)
   1463  1.18       ad {
   1464  1.18       ad 	unsigned int tag;
   1465  1.18       ad 
   1466  1.18       ad 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1467  1.18       ad 		if ((tagmask & (1 << tag)) == 0) {
   1468  1.18       ad 			continue;
   1469  1.18       ad 		}
   1470  1.18       ad 		if (((tagmask - 1) & tagmask) == 0) {
   1471  1.18       ad 			assert(count == ntagged[tag]);
   1472  1.18       ad 		} else {
   1473  1.18       ad 			assert(count >= ntagged[tag]);
   1474  1.18       ad 		}
   1475  1.18       ad 	}
   1476   1.1     yamt }
   1477   1.1     yamt 
   1478   1.1     yamt static void
   1479  1.11     yamt test2(const char *title, bool dense)
   1480   1.1     yamt {
   1481   1.1     yamt 	struct radix_tree s;
   1482   1.1     yamt 	struct radix_tree *t = &s;
   1483   1.1     yamt 	struct testnode *n;
   1484   1.1     yamt 	unsigned int i;
   1485   1.1     yamt 	unsigned int nnodes = 100000;
   1486   1.1     yamt 	unsigned int removed;
   1487  1.18       ad 	unsigned int tag;
   1488  1.18       ad 	unsigned int tagmask;
   1489   1.1     yamt 	unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
   1490   1.1     yamt 	struct testnode *nodes;
   1491   1.1     yamt 	struct timeval stv;
   1492   1.1     yamt 	struct timeval etv;
   1493   1.1     yamt 
   1494   1.1     yamt 	nodes = malloc(nnodes * sizeof(*nodes));
   1495   1.1     yamt 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1496   1.1     yamt 		ntagged[tag] = 0;
   1497   1.1     yamt 	}
   1498   1.1     yamt 	radix_tree_init_tree(t);
   1499   1.1     yamt 	for (i = 0; i < nnodes; i++) {
   1500   1.1     yamt 		n = &nodes[i];
   1501   1.1     yamt 		n->idx = random();
   1502   1.1     yamt 		if (sizeof(long) == 4) {
   1503   1.1     yamt 			n->idx <<= 32;
   1504   1.1     yamt 			n->idx |= (uint32_t)random();
   1505   1.1     yamt 		}
   1506   1.1     yamt 		if (dense) {
   1507   1.1     yamt 			n->idx %= nnodes * 2;
   1508   1.1     yamt 		}
   1509   1.1     yamt 		while (radix_tree_lookup_node(t, n->idx) != NULL) {
   1510   1.1     yamt 			n->idx++;
   1511   1.1     yamt 		}
   1512   1.1     yamt 		radix_tree_insert_node(t, n->idx, n);
   1513   1.1     yamt 		for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1514  1.18       ad 			tagmask = 1 << tag;
   1515  1.18       ad 
   1516  1.12     yamt 			n->tagged[tag] = test2_should_tag(i, tag);
   1517  1.12     yamt 			if (n->tagged[tag]) {
   1518  1.18       ad 				radix_tree_set_tag(t, n->idx, tagmask);
   1519   1.1     yamt 				ntagged[tag]++;
   1520   1.1     yamt 			}
   1521  1.18       ad 			assert((n->tagged[tag] ? tagmask : 0) ==
   1522  1.18       ad 			    radix_tree_get_tag(t, n->idx, tagmask));
   1523   1.1     yamt 		}
   1524   1.1     yamt 	}
   1525   1.1     yamt 
   1526   1.1     yamt 	gettimeofday(&stv, NULL);
   1527   1.1     yamt 	for (i = 0; i < nnodes; i++) {
   1528   1.1     yamt 		n = &nodes[i];
   1529   1.1     yamt 		assert(radix_tree_lookup_node(t, n->idx) == n);
   1530   1.1     yamt 	}
   1531   1.1     yamt 	gettimeofday(&etv, NULL);
   1532  1.11     yamt 	printops(title, "lookup", 0, nnodes, &stv, &etv);
   1533   1.1     yamt 
   1534  1.18       ad 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1535  1.12     yamt 		unsigned int count = 0;
   1536  1.12     yamt 
   1537   1.1     yamt 		gettimeofday(&stv, NULL);
   1538   1.1     yamt 		for (i = 0; i < nnodes; i++) {
   1539  1.18       ad 			unsigned int tagged;
   1540  1.12     yamt 
   1541   1.1     yamt 			n = &nodes[i];
   1542  1.18       ad 			tagged = radix_tree_get_tag(t, n->idx, tagmask);
   1543  1.18       ad 			assert((tagged & ~tagmask) == 0);
   1544  1.18       ad 			for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1545  1.18       ad 				assert((tagmask & (1 << tag)) == 0 ||
   1546  1.18       ad 				    n->tagged[tag] == !!(tagged & (1 << tag)));
   1547  1.18       ad 			}
   1548  1.12     yamt 			if (tagged) {
   1549  1.12     yamt 				count++;
   1550  1.12     yamt 			}
   1551   1.1     yamt 		}
   1552   1.1     yamt 		gettimeofday(&etv, NULL);
   1553  1.18       ad 		check_tag_count(ntagged, tagmask, count);
   1554  1.18       ad 		printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
   1555   1.1     yamt 	}
   1556   1.1     yamt 
   1557   1.1     yamt 	gettimeofday(&stv, NULL);
   1558   1.1     yamt 	for (i = 0; i < nnodes; i++) {
   1559   1.1     yamt 		n = &nodes[i];
   1560   1.1     yamt 		radix_tree_remove_node(t, n->idx);
   1561   1.1     yamt 	}
   1562   1.1     yamt 	gettimeofday(&etv, NULL);
   1563  1.11     yamt 	printops(title, "remove", 0, nnodes, &stv, &etv);
   1564   1.1     yamt 
   1565   1.1     yamt 	gettimeofday(&stv, NULL);
   1566   1.1     yamt 	for (i = 0; i < nnodes; i++) {
   1567   1.1     yamt 		n = &nodes[i];
   1568   1.1     yamt 		radix_tree_insert_node(t, n->idx, n);
   1569   1.1     yamt 	}
   1570   1.1     yamt 	gettimeofday(&etv, NULL);
   1571  1.11     yamt 	printops(title, "insert", 0, nnodes, &stv, &etv);
   1572   1.1     yamt 
   1573   1.1     yamt 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1574  1.18       ad 		tagmask = 1 << tag;
   1575  1.18       ad 
   1576   1.1     yamt 		ntagged[tag] = 0;
   1577   1.1     yamt 		gettimeofday(&stv, NULL);
   1578   1.1     yamt 		for (i = 0; i < nnodes; i++) {
   1579   1.1     yamt 			n = &nodes[i];
   1580  1.12     yamt 			if (n->tagged[tag]) {
   1581  1.18       ad 				radix_tree_set_tag(t, n->idx, tagmask);
   1582   1.1     yamt 				ntagged[tag]++;
   1583   1.1     yamt 			}
   1584   1.1     yamt 		}
   1585   1.1     yamt 		gettimeofday(&etv, NULL);
   1586  1.11     yamt 		printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
   1587   1.1     yamt 	}
   1588   1.1     yamt 
   1589   1.1     yamt 	gettimeofday(&stv, NULL);
   1590   1.1     yamt 	{
   1591   1.1     yamt 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1592   1.1     yamt 		uint64_t nextidx;
   1593   1.1     yamt 		unsigned int nfound;
   1594   1.1     yamt 		unsigned int total;
   1595   1.1     yamt 
   1596   1.1     yamt 		nextidx = 0;
   1597   1.1     yamt 		total = 0;
   1598   1.1     yamt 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1599  1.18       ad 		    (void *)results, __arraycount(results), false)) > 0) {
   1600   1.1     yamt 			nextidx = results[nfound - 1]->idx + 1;
   1601   1.1     yamt 			total += nfound;
   1602  1.15     yamt 			if (nextidx == 0) {
   1603  1.15     yamt 				break;
   1604  1.15     yamt 			}
   1605   1.1     yamt 		}
   1606   1.1     yamt 		assert(total == nnodes);
   1607   1.1     yamt 	}
   1608   1.1     yamt 	gettimeofday(&etv, NULL);
   1609  1.11     yamt 	printops(title, "ganglookup", 0, nnodes, &stv, &etv);
   1610   1.1     yamt 
   1611  1.15     yamt 	gettimeofday(&stv, NULL);
   1612  1.15     yamt 	{
   1613  1.15     yamt 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1614  1.15     yamt 		uint64_t nextidx;
   1615  1.15     yamt 		unsigned int nfound;
   1616  1.15     yamt 		unsigned int total;
   1617  1.15     yamt 
   1618  1.15     yamt 		nextidx = UINT64_MAX;
   1619  1.15     yamt 		total = 0;
   1620  1.15     yamt 		while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
   1621  1.18       ad 		    (void *)results, __arraycount(results), false)) > 0) {
   1622  1.15     yamt 			nextidx = results[nfound - 1]->idx - 1;
   1623  1.15     yamt 			total += nfound;
   1624  1.15     yamt 			if (nextidx == UINT64_MAX) {
   1625  1.15     yamt 				break;
   1626  1.15     yamt 			}
   1627  1.15     yamt 		}
   1628  1.15     yamt 		assert(total == nnodes);
   1629  1.15     yamt 	}
   1630  1.15     yamt 	gettimeofday(&etv, NULL);
   1631  1.15     yamt 	printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
   1632  1.15     yamt 
   1633  1.18       ad 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1634  1.18       ad 		unsigned int total = 0;
   1635  1.18       ad 
   1636   1.1     yamt 		gettimeofday(&stv, NULL);
   1637   1.1     yamt 		{
   1638   1.1     yamt 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1639   1.1     yamt 			uint64_t nextidx;
   1640   1.1     yamt 			unsigned int nfound;
   1641   1.1     yamt 
   1642   1.1     yamt 			nextidx = 0;
   1643   1.1     yamt 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1644   1.1     yamt 			    nextidx, (void *)results, __arraycount(results),
   1645  1.18       ad 			    false, tagmask)) > 0) {
   1646   1.1     yamt 				nextidx = results[nfound - 1]->idx + 1;
   1647   1.1     yamt 				total += nfound;
   1648   1.1     yamt 			}
   1649   1.1     yamt 		}
   1650   1.1     yamt 		gettimeofday(&etv, NULL);
   1651  1.18       ad 		check_tag_count(ntagged, tagmask, total);
   1652  1.18       ad 		assert(tagmask != 0 || total == 0);
   1653  1.18       ad 		printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
   1654   1.1     yamt 	}
   1655   1.1     yamt 
   1656  1.18       ad 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1657  1.18       ad 		unsigned int total = 0;
   1658  1.18       ad 
   1659  1.15     yamt 		gettimeofday(&stv, NULL);
   1660  1.15     yamt 		{
   1661  1.15     yamt 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1662  1.15     yamt 			uint64_t nextidx;
   1663  1.15     yamt 			unsigned int nfound;
   1664  1.15     yamt 
   1665  1.15     yamt 			nextidx = UINT64_MAX;
   1666  1.15     yamt 			while ((nfound =
   1667  1.15     yamt 			    radix_tree_gang_lookup_tagged_node_reverse(t,
   1668  1.15     yamt 			    nextidx, (void *)results, __arraycount(results),
   1669  1.18       ad 			    false, tagmask)) > 0) {
   1670  1.15     yamt 				nextidx = results[nfound - 1]->idx - 1;
   1671  1.15     yamt 				total += nfound;
   1672  1.15     yamt 				if (nextidx == UINT64_MAX) {
   1673  1.15     yamt 					break;
   1674  1.15     yamt 				}
   1675  1.15     yamt 			}
   1676  1.15     yamt 		}
   1677  1.15     yamt 		gettimeofday(&etv, NULL);
   1678  1.18       ad 		check_tag_count(ntagged, tagmask, total);
   1679  1.18       ad 		assert(tagmask != 0 || total == 0);
   1680  1.18       ad 		printops(title, "ganglookup_tag_reverse", tagmask, total,
   1681  1.15     yamt 		    &stv, &etv);
   1682  1.15     yamt 	}
   1683  1.15     yamt 
   1684   1.1     yamt 	removed = 0;
   1685   1.1     yamt 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1686   1.1     yamt 		unsigned int total;
   1687   1.1     yamt 
   1688   1.1     yamt 		total = 0;
   1689  1.18       ad 		tagmask = 1 << tag;
   1690   1.1     yamt 		gettimeofday(&stv, NULL);
   1691   1.1     yamt 		{
   1692   1.1     yamt 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1693   1.1     yamt 			uint64_t nextidx;
   1694   1.1     yamt 			unsigned int nfound;
   1695   1.1     yamt 
   1696   1.1     yamt 			nextidx = 0;
   1697   1.1     yamt 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1698   1.1     yamt 			    nextidx, (void *)results, __arraycount(results),
   1699  1.18       ad 			    false, tagmask)) > 0) {
   1700   1.1     yamt 				for (i = 0; i < nfound; i++) {
   1701   1.1     yamt 					radix_tree_remove_node(t,
   1702   1.1     yamt 					    results[i]->idx);
   1703   1.1     yamt 				}
   1704   1.1     yamt 				nextidx = results[nfound - 1]->idx + 1;
   1705   1.1     yamt 				total += nfound;
   1706  1.15     yamt 				if (nextidx == 0) {
   1707  1.15     yamt 					break;
   1708  1.15     yamt 				}
   1709   1.1     yamt 			}
   1710  1.18       ad 		}
   1711  1.18       ad 		gettimeofday(&etv, NULL);
   1712  1.18       ad 		if (tag == 0) {
   1713  1.18       ad 			check_tag_count(ntagged, tagmask, total);
   1714  1.18       ad 		} else {
   1715   1.1     yamt 			assert(total <= ntagged[tag]);
   1716   1.1     yamt 		}
   1717  1.18       ad 		printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
   1718  1.11     yamt 		    &etv);
   1719   1.1     yamt 		removed += total;
   1720   1.1     yamt 	}
   1721   1.1     yamt 
   1722   1.1     yamt 	gettimeofday(&stv, NULL);
   1723   1.1     yamt 	{
   1724   1.1     yamt 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1725   1.1     yamt 		uint64_t nextidx;
   1726   1.1     yamt 		unsigned int nfound;
   1727   1.1     yamt 		unsigned int total;
   1728   1.1     yamt 
   1729   1.1     yamt 		nextidx = 0;
   1730   1.1     yamt 		total = 0;
   1731   1.1     yamt 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1732  1.18       ad 		    (void *)results, __arraycount(results), false)) > 0) {
   1733   1.1     yamt 			for (i = 0; i < nfound; i++) {
   1734   1.1     yamt 				assert(results[i] == radix_tree_remove_node(t,
   1735   1.1     yamt 				    results[i]->idx));
   1736   1.1     yamt 			}
   1737   1.1     yamt 			nextidx = results[nfound - 1]->idx + 1;
   1738   1.1     yamt 			total += nfound;
   1739  1.15     yamt 			if (nextidx == 0) {
   1740  1.15     yamt 				break;
   1741  1.15     yamt 			}
   1742   1.1     yamt 		}
   1743   1.1     yamt 		assert(total == nnodes - removed);
   1744   1.1     yamt 	}
   1745   1.1     yamt 	gettimeofday(&etv, NULL);
   1746  1.11     yamt 	printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
   1747   1.1     yamt 
   1748  1.16     yamt 	assert(radix_tree_empty_tree_p(t));
   1749  1.18       ad 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1750  1.18       ad 		assert(radix_tree_empty_tagged_tree_p(t, tagmask));
   1751  1.18       ad 	}
   1752   1.1     yamt 	radix_tree_fini_tree(t);
   1753   1.1     yamt 	free(nodes);
   1754   1.1     yamt }
   1755   1.1     yamt 
   1756   1.1     yamt int
   1757   1.1     yamt main(int argc, char *argv[])
   1758   1.1     yamt {
   1759   1.1     yamt 
   1760   1.1     yamt 	test1();
   1761  1.11     yamt 	test2("dense", true);
   1762  1.11     yamt 	test2("sparse", false);
   1763   1.1     yamt 	return 0;
   1764   1.1     yamt }
   1765   1.1     yamt 
   1766   1.1     yamt #endif /* defined(UNITTEST) */
   1767