radixtree.c revision 1.28 1 1.28 andvar /* $NetBSD: radixtree.c,v 1.28 2022/05/24 20:50:17 andvar Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.18 ad * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.17 yamt * radixtree.c
31 1.1 yamt *
32 1.18 ad * Overview:
33 1.18 ad *
34 1.18 ad * This is an implementation of radix tree, whose keys are uint64_t and leafs
35 1.17 yamt * are user provided pointers.
36 1.17 yamt *
37 1.18 ad * Leaf nodes are just void * and this implementation doesn't care about
38 1.18 ad * what they actually point to. However, this implementation has an assumption
39 1.18 ad * about their alignment. Specifically, this implementation assumes that their
40 1.18 ad * 2 LSBs are always zero and uses them for internal accounting.
41 1.18 ad *
42 1.18 ad * Intermediate nodes and memory allocation:
43 1.18 ad *
44 1.18 ad * Intermediate nodes are automatically allocated and freed internally and
45 1.18 ad * basically users don't need to care about them. The allocation is done via
46 1.18 ad * pool_cache_get(9) for _KERNEL, malloc(3) for userland, and alloc() for
47 1.18 ad * _STANDALONE environment. Only radix_tree_insert_node function can allocate
48 1.18 ad * memory for intermediate nodes and thus can fail for ENOMEM.
49 1.18 ad *
50 1.18 ad * Memory Efficiency:
51 1.18 ad *
52 1.18 ad * It's designed to work efficiently with dense index distribution.
53 1.18 ad * The memory consumption (number of necessary intermediate nodes) heavily
54 1.18 ad * depends on the index distribution. Basically, more dense index distribution
55 1.18 ad * consumes less nodes per item. Approximately,
56 1.18 ad *
57 1.18 ad * - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
58 1.18 ad * it would look like the following.
59 1.18 ad *
60 1.18 ad * root (t_height=1)
61 1.18 ad * |
62 1.18 ad * v
63 1.18 ad * [ | | | ] (intermediate node. RADIX_TREE_PTR_PER_NODE=4 in this fig)
64 1.18 ad * | | | |
65 1.18 ad * v v v v
66 1.18 ad * p p p p (items)
67 1.18 ad *
68 1.18 ad * - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
69 1.18 ad * it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
70 1.18 ad *
71 1.18 ad * root (t_height=3)
72 1.18 ad * |
73 1.18 ad * v
74 1.18 ad * [ | | | ]
75 1.18 ad * |
76 1.18 ad * v
77 1.18 ad * [ | | | ]
78 1.18 ad * |
79 1.18 ad * v
80 1.18 ad * [ | | | ]
81 1.18 ad * |
82 1.18 ad * v
83 1.18 ad * p
84 1.18 ad *
85 1.18 ad * The height of tree (t_height) is dynamic. It's smaller if only small
86 1.18 ad * index values are used. As an extreme case, if only index 0 is used,
87 1.18 ad * the corresponding value is directly stored in the root of the tree
88 1.18 ad * (struct radix_tree) without allocating any intermediate nodes. In that
89 1.18 ad * case, t_height=0.
90 1.18 ad *
91 1.18 ad * Gang lookup:
92 1.17 yamt *
93 1.18 ad * This implementation provides a way to scan many nodes quickly via
94 1.17 yamt * radix_tree_gang_lookup_node function and its varients.
95 1.17 yamt *
96 1.18 ad * Tags:
97 1.18 ad *
98 1.18 ad * This implementation provides tagging functionality, which allows quick
99 1.18 ad * scanning of a subset of leaf nodes. Leaf nodes are untagged when inserted
100 1.18 ad * into the tree and can be tagged by radix_tree_set_tag function.
101 1.18 ad * radix_tree_gang_lookup_tagged_node function and its variants returns only
102 1.18 ad * leaf nodes with the given tag. To reduce amount of nodes to visit for
103 1.17 yamt * these functions, this implementation keeps tagging information in internal
104 1.17 yamt * intermediate nodes and quickly skips uninterested parts of a tree.
105 1.18 ad *
106 1.18 ad * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
107 1.18 ad * identified by an zero-origin numbers, tagid. For the current implementation,
108 1.18 ad * RADIX_TREE_TAG_ID_MAX is 2. A set of tags is described as a bitmask tagmask,
109 1.18 ad * which is a bitwise OR of (1 << tagid).
110 1.1 yamt */
111 1.1 yamt
112 1.1 yamt #include <sys/cdefs.h>
113 1.1 yamt
114 1.2 yamt #if defined(_KERNEL) || defined(_STANDALONE)
115 1.28 andvar __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.28 2022/05/24 20:50:17 andvar Exp $");
116 1.1 yamt #include <sys/param.h>
117 1.3 yamt #include <sys/errno.h>
118 1.1 yamt #include <sys/pool.h>
119 1.1 yamt #include <sys/radixtree.h>
120 1.3 yamt #include <lib/libkern/libkern.h>
121 1.3 yamt #if defined(_STANDALONE)
122 1.3 yamt #include <lib/libsa/stand.h>
123 1.3 yamt #endif /* defined(_STANDALONE) */
124 1.2 yamt #else /* defined(_KERNEL) || defined(_STANDALONE) */
125 1.28 andvar __RCSID("$NetBSD: radixtree.c,v 1.28 2022/05/24 20:50:17 andvar Exp $");
126 1.1 yamt #include <assert.h>
127 1.1 yamt #include <errno.h>
128 1.1 yamt #include <stdbool.h>
129 1.1 yamt #include <stdlib.h>
130 1.8 yamt #include <string.h>
131 1.1 yamt #if 1
132 1.1 yamt #define KASSERT assert
133 1.1 yamt #else
134 1.1 yamt #define KASSERT(a) /* nothing */
135 1.1 yamt #endif
136 1.2 yamt #endif /* defined(_KERNEL) || defined(_STANDALONE) */
137 1.1 yamt
138 1.1 yamt #include <sys/radixtree.h>
139 1.1 yamt
140 1.1 yamt #define RADIX_TREE_BITS_PER_HEIGHT 4 /* XXX tune */
141 1.1 yamt #define RADIX_TREE_PTR_PER_NODE (1 << RADIX_TREE_BITS_PER_HEIGHT)
142 1.1 yamt #define RADIX_TREE_MAX_HEIGHT (64 / RADIX_TREE_BITS_PER_HEIGHT)
143 1.15 yamt #define RADIX_TREE_INVALID_HEIGHT (RADIX_TREE_MAX_HEIGHT + 1)
144 1.2 yamt __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
145 1.1 yamt
146 1.2 yamt __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
147 1.1 yamt #define RADIX_TREE_TAG_MASK ((1 << RADIX_TREE_TAG_ID_MAX) - 1)
148 1.1 yamt
149 1.1 yamt static inline void *
150 1.1 yamt entry_ptr(void *p)
151 1.1 yamt {
152 1.1 yamt
153 1.1 yamt return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
154 1.1 yamt }
155 1.1 yamt
156 1.1 yamt static inline unsigned int
157 1.1 yamt entry_tagmask(void *p)
158 1.1 yamt {
159 1.1 yamt
160 1.1 yamt return (uintptr_t)p & RADIX_TREE_TAG_MASK;
161 1.1 yamt }
162 1.1 yamt
163 1.1 yamt static inline void *
164 1.1 yamt entry_compose(void *p, unsigned int tagmask)
165 1.1 yamt {
166 1.1 yamt
167 1.1 yamt return (void *)((uintptr_t)p | tagmask);
168 1.1 yamt }
169 1.1 yamt
170 1.1 yamt static inline bool
171 1.1 yamt entry_match_p(void *p, unsigned int tagmask)
172 1.1 yamt {
173 1.1 yamt
174 1.1 yamt KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
175 1.1 yamt if (p == NULL) {
176 1.1 yamt return false;
177 1.1 yamt }
178 1.1 yamt if (tagmask == 0) {
179 1.1 yamt return true;
180 1.1 yamt }
181 1.1 yamt return (entry_tagmask(p) & tagmask) != 0;
182 1.1 yamt }
183 1.1 yamt
184 1.1 yamt /*
185 1.1 yamt * radix_tree_node: an intermediate node
186 1.1 yamt *
187 1.1 yamt * we don't care the type of leaf nodes. they are just void *.
188 1.19 ad *
189 1.19 ad * we used to maintain a count of non-NULL nodes in this structure, but it
190 1.19 ad * prevented it from being aligned to a cache line boundary; the performance
191 1.19 ad * benefit from being cache friendly is greater than the benefit of having
192 1.19 ad * a dedicated count value, especially in multi-processor situations where
193 1.19 ad * we need to avoid intra-pool-page false sharing.
194 1.1 yamt */
195 1.1 yamt
196 1.1 yamt struct radix_tree_node {
197 1.1 yamt void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
198 1.1 yamt };
199 1.1 yamt
200 1.7 yamt /*
201 1.1 yamt * p_refs[0].pptr == &t->t_root
202 1.1 yamt * :
203 1.1 yamt * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
204 1.1 yamt * :
205 1.1 yamt * :
206 1.1 yamt * p_refs[t->t_height].pptr == &leaf_pointer
207 1.1 yamt */
208 1.1 yamt
209 1.1 yamt struct radix_tree_path {
210 1.1 yamt struct radix_tree_node_ref {
211 1.1 yamt void **pptr;
212 1.1 yamt } p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
213 1.15 yamt /*
214 1.15 yamt * p_lastidx is either the index of the last valid element of p_refs[]
215 1.15 yamt * or RADIX_TREE_INVALID_HEIGHT.
216 1.15 yamt * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
217 1.15 yamt * that the height of the tree is not enough to cover the given index.
218 1.15 yamt */
219 1.10 yamt unsigned int p_lastidx;
220 1.1 yamt };
221 1.1 yamt
222 1.1 yamt static inline void **
223 1.13 yamt path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
224 1.1 yamt unsigned int height)
225 1.1 yamt {
226 1.1 yamt
227 1.1 yamt KASSERT(height <= t->t_height);
228 1.1 yamt return p->p_refs[height].pptr;
229 1.1 yamt }
230 1.1 yamt
231 1.1 yamt static inline struct radix_tree_node *
232 1.13 yamt path_node(const struct radix_tree * t, const struct radix_tree_path *p,
233 1.13 yamt unsigned int height)
234 1.1 yamt {
235 1.1 yamt
236 1.1 yamt KASSERT(height <= t->t_height);
237 1.1 yamt return entry_ptr(*path_pptr(t, p, height));
238 1.1 yamt }
239 1.1 yamt
240 1.1 yamt /*
241 1.1 yamt * radix_tree_init_tree:
242 1.1 yamt *
243 1.18 ad * Initialize a tree.
244 1.1 yamt */
245 1.1 yamt
246 1.1 yamt void
247 1.1 yamt radix_tree_init_tree(struct radix_tree *t)
248 1.1 yamt {
249 1.1 yamt
250 1.1 yamt t->t_height = 0;
251 1.1 yamt t->t_root = NULL;
252 1.1 yamt }
253 1.1 yamt
254 1.1 yamt /*
255 1.18 ad * radix_tree_fini_tree:
256 1.1 yamt *
257 1.18 ad * Finish using a tree.
258 1.1 yamt */
259 1.1 yamt
260 1.1 yamt void
261 1.1 yamt radix_tree_fini_tree(struct radix_tree *t)
262 1.1 yamt {
263 1.1 yamt
264 1.1 yamt KASSERT(t->t_root == NULL);
265 1.1 yamt KASSERT(t->t_height == 0);
266 1.1 yamt }
267 1.1 yamt
268 1.18 ad /*
269 1.18 ad * radix_tree_empty_tree_p:
270 1.18 ad *
271 1.18 ad * Return if the tree is empty.
272 1.18 ad */
273 1.18 ad
274 1.9 yamt bool
275 1.9 yamt radix_tree_empty_tree_p(struct radix_tree *t)
276 1.9 yamt {
277 1.9 yamt
278 1.9 yamt return t->t_root == NULL;
279 1.9 yamt }
280 1.9 yamt
281 1.18 ad /*
282 1.18 ad * radix_tree_empty_tree_p:
283 1.18 ad *
284 1.18 ad * Return true if the tree has any nodes with the given tag. Otherwise
285 1.18 ad * return false.
286 1.18 ad *
287 1.18 ad * It's illegal to call this function with tagmask 0.
288 1.18 ad */
289 1.18 ad
290 1.16 yamt bool
291 1.18 ad radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
292 1.16 yamt {
293 1.16 yamt
294 1.18 ad KASSERT(tagmask != 0);
295 1.16 yamt return (entry_tagmask(t->t_root) & tagmask) == 0;
296 1.16 yamt }
297 1.16 yamt
298 1.3 yamt static void
299 1.3 yamt radix_tree_node_init(struct radix_tree_node *n)
300 1.3 yamt {
301 1.3 yamt
302 1.3 yamt memset(n, 0, sizeof(*n));
303 1.3 yamt }
304 1.3 yamt
305 1.1 yamt #if defined(_KERNEL)
306 1.2 yamt pool_cache_t radix_tree_node_cache __read_mostly;
307 1.1 yamt
308 1.1 yamt static int
309 1.1 yamt radix_tree_node_ctor(void *dummy, void *item, int flags)
310 1.1 yamt {
311 1.1 yamt struct radix_tree_node *n = item;
312 1.1 yamt
313 1.1 yamt KASSERT(dummy == NULL);
314 1.3 yamt radix_tree_node_init(n);
315 1.1 yamt return 0;
316 1.1 yamt }
317 1.1 yamt
318 1.1 yamt /*
319 1.1 yamt * radix_tree_init:
320 1.1 yamt *
321 1.1 yamt * initialize the subsystem.
322 1.1 yamt */
323 1.1 yamt
324 1.1 yamt void
325 1.1 yamt radix_tree_init(void)
326 1.1 yamt {
327 1.1 yamt
328 1.1 yamt radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
329 1.21 para coherency_unit, 0, PR_LARGECACHE, "radixnode", NULL, IPL_NONE,
330 1.19 ad radix_tree_node_ctor, NULL, NULL);
331 1.1 yamt KASSERT(radix_tree_node_cache != NULL);
332 1.1 yamt }
333 1.22 ad
334 1.22 ad /*
335 1.22 ad * radix_tree_await_memory:
336 1.22 ad *
337 1.22 ad * after an insert has failed with ENOMEM, wait for memory to become
338 1.25 ad * available, so the caller can retry. this needs to ensure that the
339 1.25 ad * maximum possible required number of nodes is available.
340 1.22 ad */
341 1.22 ad
342 1.22 ad void
343 1.22 ad radix_tree_await_memory(void)
344 1.22 ad {
345 1.25 ad struct radix_tree_node *nodes[RADIX_TREE_MAX_HEIGHT];
346 1.25 ad int i;
347 1.22 ad
348 1.25 ad for (i = 0; i < __arraycount(nodes); i++) {
349 1.25 ad nodes[i] = pool_cache_get(radix_tree_node_cache, PR_WAITOK);
350 1.25 ad }
351 1.25 ad while (--i >= 0) {
352 1.25 ad pool_cache_put(radix_tree_node_cache, nodes[i]);
353 1.25 ad }
354 1.22 ad }
355 1.22 ad
356 1.1 yamt #endif /* defined(_KERNEL) */
357 1.1 yamt
358 1.24 ad /*
359 1.26 ad * radix_tree_sum_node:
360 1.24 ad *
361 1.24 ad * return the logical sum of all entries in the given node. used to quickly
362 1.24 ad * check for tag masks or empty nodes.
363 1.24 ad */
364 1.24 ad
365 1.24 ad static uintptr_t
366 1.26 ad radix_tree_sum_node(const struct radix_tree_node *n)
367 1.1 yamt {
368 1.19 ad #if RADIX_TREE_PTR_PER_NODE > 16
369 1.25 ad unsigned int i;
370 1.24 ad uintptr_t sum;
371 1.1 yamt
372 1.24 ad for (i = 0, sum = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
373 1.24 ad sum |= (uintptr_t)n->n_ptrs[i];
374 1.1 yamt }
375 1.24 ad return sum;
376 1.19 ad #else /* RADIX_TREE_PTR_PER_NODE > 16 */
377 1.19 ad uintptr_t sum;
378 1.19 ad
379 1.19 ad /*
380 1.19 ad * Unrolling the above is much better than a tight loop with two
381 1.19 ad * test+branch pairs. On x86 with gcc 5.5.0 this compiles into 19
382 1.19 ad * deterministic instructions including the "return" and prologue &
383 1.19 ad * epilogue.
384 1.19 ad */
385 1.19 ad sum = (uintptr_t)n->n_ptrs[0];
386 1.19 ad sum |= (uintptr_t)n->n_ptrs[1];
387 1.19 ad sum |= (uintptr_t)n->n_ptrs[2];
388 1.19 ad sum |= (uintptr_t)n->n_ptrs[3];
389 1.19 ad #if RADIX_TREE_PTR_PER_NODE > 4
390 1.19 ad sum |= (uintptr_t)n->n_ptrs[4];
391 1.19 ad sum |= (uintptr_t)n->n_ptrs[5];
392 1.19 ad sum |= (uintptr_t)n->n_ptrs[6];
393 1.19 ad sum |= (uintptr_t)n->n_ptrs[7];
394 1.19 ad #endif
395 1.19 ad #if RADIX_TREE_PTR_PER_NODE > 8
396 1.19 ad sum |= (uintptr_t)n->n_ptrs[8];
397 1.19 ad sum |= (uintptr_t)n->n_ptrs[9];
398 1.19 ad sum |= (uintptr_t)n->n_ptrs[10];
399 1.19 ad sum |= (uintptr_t)n->n_ptrs[11];
400 1.19 ad sum |= (uintptr_t)n->n_ptrs[12];
401 1.19 ad sum |= (uintptr_t)n->n_ptrs[13];
402 1.19 ad sum |= (uintptr_t)n->n_ptrs[14];
403 1.19 ad sum |= (uintptr_t)n->n_ptrs[15];
404 1.19 ad #endif
405 1.24 ad return sum;
406 1.19 ad #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
407 1.19 ad }
408 1.19 ad
409 1.19 ad static int __unused
410 1.19 ad radix_tree_node_count_ptrs(const struct radix_tree_node *n)
411 1.19 ad {
412 1.19 ad unsigned int i, c;
413 1.19 ad
414 1.19 ad for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
415 1.19 ad c += (n->n_ptrs[i] != NULL);
416 1.19 ad }
417 1.19 ad return c;
418 1.1 yamt }
419 1.1 yamt
420 1.1 yamt static struct radix_tree_node *
421 1.1 yamt radix_tree_alloc_node(void)
422 1.1 yamt {
423 1.1 yamt struct radix_tree_node *n;
424 1.1 yamt
425 1.1 yamt #if defined(_KERNEL)
426 1.18 ad /*
427 1.18 ad * note that pool_cache_get can block.
428 1.18 ad */
429 1.1 yamt n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
430 1.1 yamt #else /* defined(_KERNEL) */
431 1.3 yamt #if defined(_STANDALONE)
432 1.3 yamt n = alloc(sizeof(*n));
433 1.3 yamt #else /* defined(_STANDALONE) */
434 1.3 yamt n = malloc(sizeof(*n));
435 1.3 yamt #endif /* defined(_STANDALONE) */
436 1.3 yamt if (n != NULL) {
437 1.3 yamt radix_tree_node_init(n);
438 1.3 yamt }
439 1.1 yamt #endif /* defined(_KERNEL) */
440 1.26 ad KASSERT(n == NULL || radix_tree_sum_node(n) == 0);
441 1.1 yamt return n;
442 1.1 yamt }
443 1.1 yamt
444 1.1 yamt static void
445 1.1 yamt radix_tree_free_node(struct radix_tree_node *n)
446 1.1 yamt {
447 1.1 yamt
448 1.26 ad KASSERT(radix_tree_sum_node(n) == 0);
449 1.1 yamt #if defined(_KERNEL)
450 1.1 yamt pool_cache_put(radix_tree_node_cache, n);
451 1.3 yamt #elif defined(_STANDALONE)
452 1.3 yamt dealloc(n, sizeof(*n));
453 1.3 yamt #else
454 1.1 yamt free(n);
455 1.3 yamt #endif
456 1.1 yamt }
457 1.1 yamt
458 1.25 ad /*
459 1.25 ad * radix_tree_grow:
460 1.25 ad *
461 1.25 ad * increase the height of the tree.
462 1.25 ad */
463 1.25 ad
464 1.25 ad static __noinline int
465 1.1 yamt radix_tree_grow(struct radix_tree *t, unsigned int newheight)
466 1.1 yamt {
467 1.1 yamt const unsigned int tagmask = entry_tagmask(t->t_root);
468 1.25 ad struct radix_tree_node *newnodes[RADIX_TREE_MAX_HEIGHT];
469 1.25 ad void *root;
470 1.25 ad int h;
471 1.1 yamt
472 1.25 ad KASSERT(newheight <= RADIX_TREE_MAX_HEIGHT);
473 1.25 ad if ((root = t->t_root) == NULL) {
474 1.1 yamt t->t_height = newheight;
475 1.1 yamt return 0;
476 1.1 yamt }
477 1.25 ad for (h = t->t_height; h < newheight; h++) {
478 1.25 ad newnodes[h] = radix_tree_alloc_node();
479 1.25 ad if (__predict_false(newnodes[h] == NULL)) {
480 1.25 ad while (--h >= (int)t->t_height) {
481 1.25 ad newnodes[h]->n_ptrs[0] = NULL;
482 1.25 ad radix_tree_free_node(newnodes[h]);
483 1.25 ad }
484 1.1 yamt return ENOMEM;
485 1.1 yamt }
486 1.25 ad newnodes[h]->n_ptrs[0] = root;
487 1.25 ad root = entry_compose(newnodes[h], tagmask);
488 1.1 yamt }
489 1.25 ad t->t_root = root;
490 1.25 ad t->t_height = h;
491 1.1 yamt return 0;
492 1.1 yamt }
493 1.1 yamt
494 1.5 yamt /*
495 1.5 yamt * radix_tree_lookup_ptr:
496 1.5 yamt *
497 1.5 yamt * an internal helper function used for various exported functions.
498 1.5 yamt *
499 1.5 yamt * return the pointer to store the node for the given index.
500 1.5 yamt *
501 1.5 yamt * if alloc is true, try to allocate the storage. (note for _KERNEL:
502 1.5 yamt * in that case, this function can block.) if the allocation failed or
503 1.5 yamt * alloc is false, return NULL.
504 1.5 yamt *
505 1.5 yamt * if path is not NULL, fill it for the caller's investigation.
506 1.5 yamt *
507 1.5 yamt * if tagmask is not zero, search only for nodes with the tag set.
508 1.15 yamt * note that, however, this function doesn't check the tagmask for the leaf
509 1.15 yamt * pointer. it's a caller's responsibility to investigate the value which
510 1.15 yamt * is pointed by the returned pointer if necessary.
511 1.5 yamt *
512 1.5 yamt * while this function is a bit large, as it's called with some constant
513 1.5 yamt * arguments, inlining might have benefits. anyway, a compiler will decide.
514 1.5 yamt */
515 1.5 yamt
516 1.1 yamt static inline void **
517 1.1 yamt radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
518 1.1 yamt struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
519 1.1 yamt {
520 1.1 yamt struct radix_tree_node *n;
521 1.1 yamt int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
522 1.1 yamt int shift;
523 1.1 yamt void **vpp;
524 1.1 yamt const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
525 1.1 yamt struct radix_tree_node_ref *refs = NULL;
526 1.1 yamt
527 1.5 yamt /*
528 1.5 yamt * check unsupported combinations
529 1.5 yamt */
530 1.1 yamt KASSERT(tagmask == 0 || !alloc);
531 1.1 yamt KASSERT(path == NULL || !alloc);
532 1.1 yamt vpp = &t->t_root;
533 1.1 yamt if (path != NULL) {
534 1.1 yamt refs = path->p_refs;
535 1.1 yamt refs->pptr = vpp;
536 1.1 yamt }
537 1.1 yamt n = NULL;
538 1.1 yamt for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
539 1.1 yamt struct radix_tree_node *c;
540 1.1 yamt void *entry;
541 1.1 yamt const uint64_t i = (idx >> shift) & mask;
542 1.1 yamt
543 1.1 yamt if (shift >= hshift) {
544 1.1 yamt unsigned int newheight;
545 1.1 yamt
546 1.1 yamt KASSERT(vpp == &t->t_root);
547 1.1 yamt if (i == 0) {
548 1.1 yamt shift -= RADIX_TREE_BITS_PER_HEIGHT;
549 1.1 yamt continue;
550 1.1 yamt }
551 1.1 yamt if (!alloc) {
552 1.1 yamt if (path != NULL) {
553 1.1 yamt KASSERT((refs - path->p_refs) == 0);
554 1.15 yamt path->p_lastidx =
555 1.15 yamt RADIX_TREE_INVALID_HEIGHT;
556 1.1 yamt }
557 1.1 yamt return NULL;
558 1.1 yamt }
559 1.1 yamt newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
560 1.1 yamt if (radix_tree_grow(t, newheight)) {
561 1.1 yamt return NULL;
562 1.1 yamt }
563 1.1 yamt hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
564 1.1 yamt }
565 1.1 yamt entry = *vpp;
566 1.1 yamt c = entry_ptr(entry);
567 1.1 yamt if (c == NULL ||
568 1.1 yamt (tagmask != 0 &&
569 1.1 yamt (entry_tagmask(entry) & tagmask) == 0)) {
570 1.1 yamt if (!alloc) {
571 1.1 yamt if (path != NULL) {
572 1.1 yamt path->p_lastidx = refs - path->p_refs;
573 1.1 yamt }
574 1.1 yamt return NULL;
575 1.1 yamt }
576 1.1 yamt c = radix_tree_alloc_node();
577 1.1 yamt if (c == NULL) {
578 1.1 yamt return NULL;
579 1.1 yamt }
580 1.1 yamt *vpp = c;
581 1.1 yamt }
582 1.1 yamt n = c;
583 1.1 yamt vpp = &n->n_ptrs[i];
584 1.1 yamt if (path != NULL) {
585 1.1 yamt refs++;
586 1.1 yamt refs->pptr = vpp;
587 1.1 yamt }
588 1.1 yamt shift -= RADIX_TREE_BITS_PER_HEIGHT;
589 1.1 yamt }
590 1.1 yamt if (alloc) {
591 1.1 yamt KASSERT(*vpp == NULL);
592 1.1 yamt }
593 1.1 yamt if (path != NULL) {
594 1.1 yamt path->p_lastidx = refs - path->p_refs;
595 1.1 yamt }
596 1.1 yamt return vpp;
597 1.1 yamt }
598 1.1 yamt
599 1.1 yamt /*
600 1.25 ad * radix_tree_undo_insert_node:
601 1.25 ad *
602 1.25 ad * Undo the effects of a failed insert. The conditions that led to the
603 1.25 ad * insert may change and it may not be retried. If the insert is not
604 1.25 ad * retried, there will be no corresponding radix_tree_remove_node() for
605 1.25 ad * this index in the future. Therefore any adjustments made to the tree
606 1.25 ad * before memory was exhausted must be reverted.
607 1.25 ad */
608 1.25 ad
609 1.25 ad static __noinline void
610 1.25 ad radix_tree_undo_insert_node(struct radix_tree *t, uint64_t idx)
611 1.25 ad {
612 1.25 ad struct radix_tree_path path;
613 1.25 ad int i;
614 1.25 ad
615 1.25 ad (void)radix_tree_lookup_ptr(t, idx, &path, false, 0);
616 1.25 ad if (path.p_lastidx == RADIX_TREE_INVALID_HEIGHT) {
617 1.25 ad /*
618 1.25 ad * no nodes were inserted.
619 1.25 ad */
620 1.25 ad return;
621 1.25 ad }
622 1.25 ad for (i = path.p_lastidx - 1; i >= 0; i--) {
623 1.25 ad struct radix_tree_node ** const pptr =
624 1.25 ad (struct radix_tree_node **)path_pptr(t, &path, i);
625 1.25 ad struct radix_tree_node *n;
626 1.25 ad
627 1.25 ad KASSERT(pptr != NULL);
628 1.25 ad n = entry_ptr(*pptr);
629 1.25 ad KASSERT(n != NULL);
630 1.26 ad if (radix_tree_sum_node(n) != 0) {
631 1.25 ad break;
632 1.25 ad }
633 1.25 ad radix_tree_free_node(n);
634 1.25 ad *pptr = NULL;
635 1.25 ad }
636 1.25 ad /*
637 1.25 ad * fix up height
638 1.25 ad */
639 1.25 ad if (i < 0) {
640 1.25 ad KASSERT(t->t_root == NULL);
641 1.25 ad t->t_height = 0;
642 1.25 ad }
643 1.25 ad }
644 1.25 ad
645 1.25 ad /*
646 1.1 yamt * radix_tree_insert_node:
647 1.1 yamt *
648 1.18 ad * Insert the node at the given index.
649 1.18 ad *
650 1.18 ad * It's illegal to insert NULL. It's illegal to insert a non-aligned pointer.
651 1.1 yamt *
652 1.18 ad * This function returns ENOMEM if necessary memory allocation failed.
653 1.18 ad * Otherwise, this function returns 0.
654 1.1 yamt *
655 1.18 ad * Note that inserting a node can involves memory allocation for intermediate
656 1.18 ad * nodes. If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
657 1.4 yamt *
658 1.18 ad * For the newly inserted node, all tags are cleared.
659 1.1 yamt */
660 1.1 yamt
661 1.1 yamt int
662 1.1 yamt radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
663 1.1 yamt {
664 1.1 yamt void **vpp;
665 1.1 yamt
666 1.1 yamt KASSERT(p != NULL);
667 1.18 ad KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
668 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
669 1.25 ad if (__predict_false(vpp == NULL)) {
670 1.25 ad radix_tree_undo_insert_node(t, idx);
671 1.1 yamt return ENOMEM;
672 1.1 yamt }
673 1.1 yamt KASSERT(*vpp == NULL);
674 1.1 yamt *vpp = p;
675 1.1 yamt return 0;
676 1.1 yamt }
677 1.1 yamt
678 1.4 yamt /*
679 1.4 yamt * radix_tree_replace_node:
680 1.4 yamt *
681 1.18 ad * Replace a node at the given index with the given node and return the
682 1.18 ad * replaced one.
683 1.18 ad *
684 1.18 ad * It's illegal to try to replace a node which has not been inserted.
685 1.4 yamt *
686 1.18 ad * This function keeps tags intact.
687 1.4 yamt */
688 1.4 yamt
689 1.1 yamt void *
690 1.1 yamt radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
691 1.1 yamt {
692 1.1 yamt void **vpp;
693 1.1 yamt void *oldp;
694 1.1 yamt
695 1.1 yamt KASSERT(p != NULL);
696 1.18 ad KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
697 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
698 1.1 yamt KASSERT(vpp != NULL);
699 1.1 yamt oldp = *vpp;
700 1.1 yamt KASSERT(oldp != NULL);
701 1.1 yamt *vpp = entry_compose(p, entry_tagmask(*vpp));
702 1.1 yamt return entry_ptr(oldp);
703 1.1 yamt }
704 1.1 yamt
705 1.1 yamt /*
706 1.1 yamt * radix_tree_remove_node:
707 1.1 yamt *
708 1.18 ad * Remove the node at the given index.
709 1.18 ad *
710 1.18 ad * It's illegal to try to remove a node which has not been inserted.
711 1.1 yamt */
712 1.1 yamt
713 1.1 yamt void *
714 1.1 yamt radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
715 1.1 yamt {
716 1.1 yamt struct radix_tree_path path;
717 1.1 yamt void **vpp;
718 1.1 yamt void *oldp;
719 1.1 yamt int i;
720 1.1 yamt
721 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
722 1.1 yamt KASSERT(vpp != NULL);
723 1.1 yamt oldp = *vpp;
724 1.1 yamt KASSERT(oldp != NULL);
725 1.1 yamt KASSERT(path.p_lastidx == t->t_height);
726 1.1 yamt KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
727 1.1 yamt *vpp = NULL;
728 1.1 yamt for (i = t->t_height - 1; i >= 0; i--) {
729 1.1 yamt void *entry;
730 1.1 yamt struct radix_tree_node ** const pptr =
731 1.1 yamt (struct radix_tree_node **)path_pptr(t, &path, i);
732 1.1 yamt struct radix_tree_node *n;
733 1.1 yamt
734 1.1 yamt KASSERT(pptr != NULL);
735 1.1 yamt entry = *pptr;
736 1.1 yamt n = entry_ptr(entry);
737 1.1 yamt KASSERT(n != NULL);
738 1.26 ad if (radix_tree_sum_node(n) != 0) {
739 1.1 yamt break;
740 1.1 yamt }
741 1.1 yamt radix_tree_free_node(n);
742 1.1 yamt *pptr = NULL;
743 1.1 yamt }
744 1.1 yamt /*
745 1.1 yamt * fix up height
746 1.1 yamt */
747 1.1 yamt if (i < 0) {
748 1.1 yamt KASSERT(t->t_root == NULL);
749 1.1 yamt t->t_height = 0;
750 1.1 yamt }
751 1.1 yamt /*
752 1.1 yamt * update tags
753 1.1 yamt */
754 1.1 yamt for (; i >= 0; i--) {
755 1.1 yamt void *entry;
756 1.1 yamt struct radix_tree_node ** const pptr =
757 1.1 yamt (struct radix_tree_node **)path_pptr(t, &path, i);
758 1.1 yamt struct radix_tree_node *n;
759 1.1 yamt unsigned int newmask;
760 1.1 yamt
761 1.1 yamt KASSERT(pptr != NULL);
762 1.1 yamt entry = *pptr;
763 1.1 yamt n = entry_ptr(entry);
764 1.1 yamt KASSERT(n != NULL);
765 1.26 ad KASSERT(radix_tree_sum_node(n) != 0);
766 1.26 ad newmask = radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK;
767 1.1 yamt if (newmask == entry_tagmask(entry)) {
768 1.1 yamt break;
769 1.1 yamt }
770 1.1 yamt *pptr = entry_compose(n, newmask);
771 1.1 yamt }
772 1.1 yamt /*
773 1.1 yamt * XXX is it worth to try to reduce height?
774 1.1 yamt * if we do that, make radix_tree_grow rollback its change as well.
775 1.1 yamt */
776 1.1 yamt return entry_ptr(oldp);
777 1.1 yamt }
778 1.1 yamt
779 1.1 yamt /*
780 1.1 yamt * radix_tree_lookup_node:
781 1.1 yamt *
782 1.18 ad * Returns the node at the given index.
783 1.18 ad * Returns NULL if nothing is found at the given index.
784 1.1 yamt */
785 1.1 yamt
786 1.1 yamt void *
787 1.1 yamt radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
788 1.1 yamt {
789 1.1 yamt void **vpp;
790 1.1 yamt
791 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
792 1.1 yamt if (vpp == NULL) {
793 1.1 yamt return NULL;
794 1.1 yamt }
795 1.1 yamt return entry_ptr(*vpp);
796 1.1 yamt }
797 1.1 yamt
798 1.1 yamt static inline void
799 1.1 yamt gang_lookup_init(struct radix_tree *t, uint64_t idx,
800 1.1 yamt struct radix_tree_path *path, const unsigned int tagmask)
801 1.1 yamt {
802 1.18 ad void **vpp __unused;
803 1.1 yamt
804 1.19 ad vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
805 1.1 yamt KASSERT(vpp == NULL ||
806 1.1 yamt vpp == path_pptr(t, path, path->p_lastidx));
807 1.1 yamt KASSERT(&t->t_root == path_pptr(t, path, 0));
808 1.15 yamt KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
809 1.15 yamt path->p_lastidx == t->t_height ||
810 1.15 yamt !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
811 1.1 yamt }
812 1.1 yamt
813 1.15 yamt /*
814 1.15 yamt * gang_lookup_scan:
815 1.15 yamt *
816 1.15 yamt * a helper routine for radix_tree_gang_lookup_node and its variants.
817 1.15 yamt */
818 1.15 yamt
819 1.1 yamt static inline unsigned int
820 1.15 yamt __attribute__((__always_inline__))
821 1.1 yamt gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
822 1.18 ad void **results, const unsigned int maxresults, const unsigned int tagmask,
823 1.18 ad const bool reverse, const bool dense)
824 1.1 yamt {
825 1.15 yamt
826 1.15 yamt /*
827 1.15 yamt * we keep the path updated only for lastidx-1.
828 1.15 yamt * vpp is what path_pptr(t, path, lastidx) would be.
829 1.15 yamt */
830 1.1 yamt void **vpp;
831 1.10 yamt unsigned int nfound;
832 1.1 yamt unsigned int lastidx;
833 1.15 yamt /*
834 1.15 yamt * set up scan direction dependant constants so that we can iterate
835 1.15 yamt * n_ptrs as the following.
836 1.15 yamt *
837 1.15 yamt * for (i = first; i != guard; i += step)
838 1.15 yamt * visit n->n_ptrs[i];
839 1.15 yamt */
840 1.15 yamt const int step = reverse ? -1 : 1;
841 1.15 yamt const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
842 1.15 yamt const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
843 1.15 yamt const unsigned int guard = last + step;
844 1.1 yamt
845 1.1 yamt KASSERT(maxresults > 0);
846 1.15 yamt KASSERT(&t->t_root == path_pptr(t, path, 0));
847 1.1 yamt lastidx = path->p_lastidx;
848 1.15 yamt KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
849 1.15 yamt lastidx == t->t_height ||
850 1.15 yamt !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
851 1.15 yamt nfound = 0;
852 1.15 yamt if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
853 1.18 ad /*
854 1.18 ad * requested idx is beyond the right-most node.
855 1.18 ad */
856 1.18 ad if (reverse && !dense) {
857 1.15 yamt lastidx = 0;
858 1.15 yamt vpp = path_pptr(t, path, lastidx);
859 1.15 yamt goto descend;
860 1.15 yamt }
861 1.1 yamt return 0;
862 1.1 yamt }
863 1.1 yamt vpp = path_pptr(t, path, lastidx);
864 1.1 yamt while (/*CONSTCOND*/true) {
865 1.1 yamt struct radix_tree_node *n;
866 1.10 yamt unsigned int i;
867 1.1 yamt
868 1.1 yamt if (entry_match_p(*vpp, tagmask)) {
869 1.1 yamt KASSERT(lastidx == t->t_height);
870 1.1 yamt /*
871 1.15 yamt * record the matching non-NULL leaf.
872 1.1 yamt */
873 1.1 yamt results[nfound] = entry_ptr(*vpp);
874 1.1 yamt nfound++;
875 1.1 yamt if (nfound == maxresults) {
876 1.1 yamt return nfound;
877 1.1 yamt }
878 1.18 ad } else if (dense) {
879 1.18 ad return nfound;
880 1.1 yamt }
881 1.1 yamt scan_siblings:
882 1.1 yamt /*
883 1.15 yamt * try to find the next matching non-NULL sibling.
884 1.1 yamt */
885 1.15 yamt if (lastidx == 0) {
886 1.15 yamt /*
887 1.15 yamt * the root has no siblings.
888 1.15 yamt * we've done.
889 1.15 yamt */
890 1.15 yamt KASSERT(vpp == &t->t_root);
891 1.15 yamt break;
892 1.15 yamt }
893 1.1 yamt n = path_node(t, path, lastidx - 1);
894 1.15 yamt for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
895 1.15 yamt KASSERT(i < RADIX_TREE_PTR_PER_NODE);
896 1.1 yamt if (entry_match_p(n->n_ptrs[i], tagmask)) {
897 1.1 yamt vpp = &n->n_ptrs[i];
898 1.1 yamt break;
899 1.23 ad } else if (dense) {
900 1.23 ad return nfound;
901 1.1 yamt }
902 1.1 yamt }
903 1.15 yamt if (i == guard) {
904 1.1 yamt /*
905 1.1 yamt * not found. go to parent.
906 1.1 yamt */
907 1.1 yamt lastidx--;
908 1.1 yamt vpp = path_pptr(t, path, lastidx);
909 1.1 yamt goto scan_siblings;
910 1.1 yamt }
911 1.15 yamt descend:
912 1.1 yamt /*
913 1.15 yamt * following the left-most (or right-most in the case of
914 1.28 andvar * reverse scan) child node, descend until reaching the leaf or
915 1.15 yamt * an non-matching entry.
916 1.1 yamt */
917 1.1 yamt while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
918 1.15 yamt /*
919 1.15 yamt * save vpp in the path so that we can come back to this
920 1.15 yamt * node after finishing visiting children.
921 1.15 yamt */
922 1.15 yamt path->p_refs[lastidx].pptr = vpp;
923 1.1 yamt n = entry_ptr(*vpp);
924 1.15 yamt vpp = &n->n_ptrs[first];
925 1.1 yamt lastidx++;
926 1.1 yamt }
927 1.1 yamt }
928 1.15 yamt return nfound;
929 1.1 yamt }
930 1.1 yamt
931 1.1 yamt /*
932 1.1 yamt * radix_tree_gang_lookup_node:
933 1.1 yamt *
934 1.18 ad * Scan the tree starting from the given index in the ascending order and
935 1.18 ad * return found nodes.
936 1.18 ad *
937 1.1 yamt * results should be an array large enough to hold maxresults pointers.
938 1.18 ad * This function returns the number of nodes found, up to maxresults.
939 1.18 ad * Returning less than maxresults means there are no more nodes in the tree.
940 1.1 yamt *
941 1.18 ad * If dense == true, this function stops scanning when it founds a hole of
942 1.18 ad * indexes. I.e. an index for which radix_tree_lookup_node would returns NULL.
943 1.18 ad * If dense == false, this function skips holes and continue scanning until
944 1.18 ad * maxresults nodes are found or it reaches the limit of the index range.
945 1.18 ad *
946 1.18 ad * The result of this function is semantically equivalent to what could be
947 1.1 yamt * obtained by repeated calls of radix_tree_lookup_node with increasing index.
948 1.18 ad * but this function is expected to be computationally cheaper when looking up
949 1.18 ad * multiple nodes at once. Especially, it's expected to be much cheaper when
950 1.18 ad * node indexes are distributed sparsely.
951 1.18 ad *
952 1.18 ad * Note that this function doesn't return index values of found nodes.
953 1.18 ad * Thus, in the case of dense == false, if index values are important for
954 1.18 ad * a caller, it's the caller's responsibility to check them, typically
955 1.18 ad * by examinining the returned nodes using some caller-specific knowledge
956 1.18 ad * about them.
957 1.18 ad * In the case of dense == true, a node returned via results[N] is always for
958 1.18 ad * the index (idx + N).
959 1.1 yamt */
960 1.1 yamt
961 1.1 yamt unsigned int
962 1.1 yamt radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
963 1.18 ad void **results, unsigned int maxresults, bool dense)
964 1.1 yamt {
965 1.1 yamt struct radix_tree_path path;
966 1.1 yamt
967 1.1 yamt gang_lookup_init(t, idx, &path, 0);
968 1.18 ad return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
969 1.15 yamt }
970 1.15 yamt
971 1.15 yamt /*
972 1.15 yamt * radix_tree_gang_lookup_node_reverse:
973 1.15 yamt *
974 1.18 ad * Same as radix_tree_gang_lookup_node except that this one scans the
975 1.18 ad * tree in the reverse order. I.e. descending index values.
976 1.15 yamt */
977 1.15 yamt
978 1.15 yamt unsigned int
979 1.15 yamt radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
980 1.18 ad void **results, unsigned int maxresults, bool dense)
981 1.15 yamt {
982 1.15 yamt struct radix_tree_path path;
983 1.15 yamt
984 1.15 yamt gang_lookup_init(t, idx, &path, 0);
985 1.18 ad return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
986 1.1 yamt }
987 1.1 yamt
988 1.1 yamt /*
989 1.1 yamt * radix_tree_gang_lookup_tagged_node:
990 1.1 yamt *
991 1.18 ad * Same as radix_tree_gang_lookup_node except that this one only returns
992 1.1 yamt * nodes tagged with tagid.
993 1.18 ad *
994 1.18 ad * It's illegal to call this function with tagmask 0.
995 1.1 yamt */
996 1.1 yamt
997 1.1 yamt unsigned int
998 1.1 yamt radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
999 1.18 ad void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
1000 1.1 yamt {
1001 1.1 yamt struct radix_tree_path path;
1002 1.1 yamt
1003 1.18 ad KASSERT(tagmask != 0);
1004 1.1 yamt gang_lookup_init(t, idx, &path, tagmask);
1005 1.18 ad return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
1006 1.18 ad dense);
1007 1.15 yamt }
1008 1.15 yamt
1009 1.15 yamt /*
1010 1.15 yamt * radix_tree_gang_lookup_tagged_node_reverse:
1011 1.15 yamt *
1012 1.18 ad * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
1013 1.18 ad * tree in the reverse order. I.e. descending index values.
1014 1.15 yamt */
1015 1.15 yamt
1016 1.15 yamt unsigned int
1017 1.15 yamt radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
1018 1.18 ad void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
1019 1.15 yamt {
1020 1.15 yamt struct radix_tree_path path;
1021 1.15 yamt
1022 1.18 ad KASSERT(tagmask != 0);
1023 1.15 yamt gang_lookup_init(t, idx, &path, tagmask);
1024 1.18 ad return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
1025 1.18 ad dense);
1026 1.1 yamt }
1027 1.1 yamt
1028 1.4 yamt /*
1029 1.4 yamt * radix_tree_get_tag:
1030 1.4 yamt *
1031 1.18 ad * Return the tagmask for the node at the given index.
1032 1.18 ad *
1033 1.18 ad * It's illegal to call this function for a node which has not been inserted.
1034 1.4 yamt */
1035 1.4 yamt
1036 1.18 ad unsigned int
1037 1.18 ad radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1038 1.1 yamt {
1039 1.18 ad /*
1040 1.18 ad * the following two implementations should behave same.
1041 1.18 ad * the former one was chosen because it seems faster.
1042 1.18 ad */
1043 1.1 yamt #if 1
1044 1.1 yamt void **vpp;
1045 1.1 yamt
1046 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
1047 1.1 yamt if (vpp == NULL) {
1048 1.1 yamt return false;
1049 1.1 yamt }
1050 1.1 yamt KASSERT(*vpp != NULL);
1051 1.18 ad return (entry_tagmask(*vpp) & tagmask);
1052 1.1 yamt #else
1053 1.1 yamt void **vpp;
1054 1.1 yamt
1055 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
1056 1.1 yamt KASSERT(vpp != NULL);
1057 1.18 ad return (entry_tagmask(*vpp) & tagmask);
1058 1.1 yamt #endif
1059 1.1 yamt }
1060 1.1 yamt
1061 1.4 yamt /*
1062 1.4 yamt * radix_tree_set_tag:
1063 1.4 yamt *
1064 1.18 ad * Set the tag for the node at the given index.
1065 1.18 ad *
1066 1.18 ad * It's illegal to call this function for a node which has not been inserted.
1067 1.18 ad * It's illegal to call this function with tagmask 0.
1068 1.4 yamt */
1069 1.4 yamt
1070 1.1 yamt void
1071 1.18 ad radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1072 1.1 yamt {
1073 1.1 yamt struct radix_tree_path path;
1074 1.18 ad void **vpp __unused;
1075 1.1 yamt int i;
1076 1.1 yamt
1077 1.18 ad KASSERT(tagmask != 0);
1078 1.19 ad vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
1079 1.1 yamt KASSERT(vpp != NULL);
1080 1.1 yamt KASSERT(*vpp != NULL);
1081 1.1 yamt KASSERT(path.p_lastidx == t->t_height);
1082 1.1 yamt KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
1083 1.1 yamt for (i = t->t_height; i >= 0; i--) {
1084 1.1 yamt void ** const pptr = (void **)path_pptr(t, &path, i);
1085 1.1 yamt void *entry;
1086 1.1 yamt
1087 1.1 yamt KASSERT(pptr != NULL);
1088 1.1 yamt entry = *pptr;
1089 1.1 yamt if ((entry_tagmask(entry) & tagmask) != 0) {
1090 1.1 yamt break;
1091 1.1 yamt }
1092 1.1 yamt *pptr = (void *)((uintptr_t)entry | tagmask);
1093 1.1 yamt }
1094 1.1 yamt }
1095 1.1 yamt
1096 1.4 yamt /*
1097 1.4 yamt * radix_tree_clear_tag:
1098 1.4 yamt *
1099 1.18 ad * Clear the tag for the node at the given index.
1100 1.18 ad *
1101 1.18 ad * It's illegal to call this function for a node which has not been inserted.
1102 1.18 ad * It's illegal to call this function with tagmask 0.
1103 1.4 yamt */
1104 1.4 yamt
1105 1.1 yamt void
1106 1.18 ad radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1107 1.1 yamt {
1108 1.1 yamt struct radix_tree_path path;
1109 1.1 yamt void **vpp;
1110 1.1 yamt int i;
1111 1.1 yamt
1112 1.18 ad KASSERT(tagmask != 0);
1113 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
1114 1.1 yamt KASSERT(vpp != NULL);
1115 1.1 yamt KASSERT(*vpp != NULL);
1116 1.1 yamt KASSERT(path.p_lastidx == t->t_height);
1117 1.1 yamt KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
1118 1.7 yamt /*
1119 1.7 yamt * if already cleared, nothing to do
1120 1.7 yamt */
1121 1.1 yamt if ((entry_tagmask(*vpp) & tagmask) == 0) {
1122 1.1 yamt return;
1123 1.1 yamt }
1124 1.7 yamt /*
1125 1.7 yamt * clear the tag only if no children have the tag.
1126 1.7 yamt */
1127 1.1 yamt for (i = t->t_height; i >= 0; i--) {
1128 1.1 yamt void ** const pptr = (void **)path_pptr(t, &path, i);
1129 1.1 yamt void *entry;
1130 1.1 yamt
1131 1.1 yamt KASSERT(pptr != NULL);
1132 1.1 yamt entry = *pptr;
1133 1.1 yamt KASSERT((entry_tagmask(entry) & tagmask) != 0);
1134 1.1 yamt *pptr = entry_compose(entry_ptr(entry),
1135 1.1 yamt entry_tagmask(entry) & ~tagmask);
1136 1.7 yamt /*
1137 1.7 yamt * check if we should proceed to process the next level.
1138 1.7 yamt */
1139 1.7 yamt if (0 < i) {
1140 1.1 yamt struct radix_tree_node *n = path_node(t, &path, i - 1);
1141 1.1 yamt
1142 1.26 ad if ((radix_tree_sum_node(n) & tagmask) != 0) {
1143 1.1 yamt break;
1144 1.1 yamt }
1145 1.1 yamt }
1146 1.1 yamt }
1147 1.1 yamt }
1148 1.1 yamt
1149 1.1 yamt #if defined(UNITTEST)
1150 1.1 yamt
1151 1.1 yamt #include <inttypes.h>
1152 1.1 yamt #include <stdio.h>
1153 1.1 yamt
1154 1.1 yamt static void
1155 1.1 yamt radix_tree_dump_node(const struct radix_tree *t, void *vp,
1156 1.1 yamt uint64_t offset, unsigned int height)
1157 1.1 yamt {
1158 1.1 yamt struct radix_tree_node *n;
1159 1.1 yamt unsigned int i;
1160 1.1 yamt
1161 1.1 yamt for (i = 0; i < t->t_height - height; i++) {
1162 1.1 yamt printf(" ");
1163 1.1 yamt }
1164 1.1 yamt if (entry_tagmask(vp) == 0) {
1165 1.1 yamt printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
1166 1.1 yamt } else {
1167 1.1 yamt printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
1168 1.1 yamt entry_tagmask(vp));
1169 1.1 yamt }
1170 1.1 yamt if (height == 0) {
1171 1.1 yamt printf(" (leaf)\n");
1172 1.1 yamt return;
1173 1.1 yamt }
1174 1.1 yamt n = entry_ptr(vp);
1175 1.26 ad assert((radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK) ==
1176 1.24 ad entry_tagmask(vp));
1177 1.19 ad printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
1178 1.1 yamt for (i = 0; i < __arraycount(n->n_ptrs); i++) {
1179 1.1 yamt void *c;
1180 1.1 yamt
1181 1.1 yamt c = n->n_ptrs[i];
1182 1.1 yamt if (c == NULL) {
1183 1.1 yamt continue;
1184 1.1 yamt }
1185 1.1 yamt radix_tree_dump_node(t, c,
1186 1.1 yamt offset + i * (UINT64_C(1) <<
1187 1.1 yamt (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
1188 1.1 yamt }
1189 1.1 yamt }
1190 1.1 yamt
1191 1.1 yamt void radix_tree_dump(const struct radix_tree *);
1192 1.1 yamt
1193 1.1 yamt void
1194 1.1 yamt radix_tree_dump(const struct radix_tree *t)
1195 1.1 yamt {
1196 1.1 yamt
1197 1.1 yamt printf("tree %p height=%u\n", t, t->t_height);
1198 1.1 yamt radix_tree_dump_node(t, t->t_root, 0, t->t_height);
1199 1.1 yamt }
1200 1.1 yamt
1201 1.1 yamt static void
1202 1.1 yamt test1(void)
1203 1.1 yamt {
1204 1.1 yamt struct radix_tree s;
1205 1.1 yamt struct radix_tree *t = &s;
1206 1.1 yamt void *results[3];
1207 1.1 yamt
1208 1.1 yamt radix_tree_init_tree(t);
1209 1.1 yamt radix_tree_dump(t);
1210 1.1 yamt assert(radix_tree_lookup_node(t, 0) == NULL);
1211 1.1 yamt assert(radix_tree_lookup_node(t, 1000) == NULL);
1212 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
1213 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1214 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1215 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1216 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1217 1.18 ad 0);
1218 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1219 1.18 ad 0);
1220 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1221 1.18 ad == 0);
1222 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1223 1.18 ad == 0);
1224 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1225 1.18 ad == 0);
1226 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1227 1.18 ad == 0);
1228 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
1229 1.18 ad == 0);
1230 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
1231 1.15 yamt == 0);
1232 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1233 1.18 ad false, 1) == 0);
1234 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1235 1.18 ad true, 1) == 0);
1236 1.15 yamt assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1237 1.18 ad false, 1) == 0);
1238 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1239 1.18 ad true, 1) == 0);
1240 1.15 yamt assert(radix_tree_empty_tree_p(t));
1241 1.16 yamt assert(radix_tree_empty_tagged_tree_p(t, 1));
1242 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, 2));
1243 1.15 yamt assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
1244 1.15 yamt assert(!radix_tree_empty_tree_p(t));
1245 1.16 yamt assert(radix_tree_empty_tagged_tree_p(t, 1));
1246 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, 2));
1247 1.15 yamt assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
1248 1.15 yamt assert(radix_tree_lookup_node(t, 1000) == NULL);
1249 1.15 yamt memset(results, 0, sizeof(results));
1250 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1251 1.18 ad assert(results[0] == (void *)0xdeadbea0);
1252 1.18 ad memset(results, 0, sizeof(results));
1253 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1254 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1255 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1256 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1257 1.15 yamt memset(results, 0, sizeof(results));
1258 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1259 1.18 ad 1);
1260 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1261 1.15 yamt memset(results, 0, sizeof(results));
1262 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1263 1.18 ad 1);
1264 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1265 1.18 ad memset(results, 0, sizeof(results));
1266 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1267 1.18 ad == 1);
1268 1.18 ad assert(results[0] == (void *)0xdeadbea0);
1269 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1270 1.18 ad == 0);
1271 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1272 1.15 yamt == 0);
1273 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1274 1.15 yamt == 0);
1275 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1276 1.18 ad false, 1) == 0);
1277 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1278 1.18 ad true, 1) == 0);
1279 1.1 yamt assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
1280 1.15 yamt assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
1281 1.15 yamt assert(!radix_tree_empty_tree_p(t));
1282 1.1 yamt radix_tree_dump(t);
1283 1.15 yamt assert(radix_tree_lookup_node(t, 0) == NULL);
1284 1.15 yamt assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1285 1.15 yamt memset(results, 0, sizeof(results));
1286 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1287 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1288 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1289 1.15 yamt memset(results, 0, sizeof(results));
1290 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
1291 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1292 1.15 yamt memset(results, 0, sizeof(results));
1293 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
1294 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1295 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
1296 1.15 yamt == 0);
1297 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
1298 1.15 yamt == 0);
1299 1.18 ad memset(results, 0, sizeof(results));
1300 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1301 1.18 ad == 1);
1302 1.18 ad memset(results, 0, sizeof(results));
1303 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1304 1.18 ad == 1);
1305 1.18 ad assert(results[0] == (void *)0xdeadbea0);
1306 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1307 1.18 ad == 0);
1308 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1309 1.18 ad == 0);
1310 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1311 1.18 ad false, 1) == 0);
1312 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1313 1.18 ad true, 1) == 0);
1314 1.18 ad assert(!radix_tree_get_tag(t, 1000, 1));
1315 1.18 ad assert(!radix_tree_get_tag(t, 1000, 2));
1316 1.18 ad assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
1317 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, 1));
1318 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, 2));
1319 1.18 ad radix_tree_set_tag(t, 1000, 2);
1320 1.1 yamt assert(!radix_tree_get_tag(t, 1000, 1));
1321 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1322 1.18 ad assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1323 1.16 yamt assert(radix_tree_empty_tagged_tree_p(t, 1));
1324 1.18 ad assert(!radix_tree_empty_tagged_tree_p(t, 2));
1325 1.1 yamt radix_tree_dump(t);
1326 1.1 yamt assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1327 1.1 yamt assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
1328 1.1 yamt radix_tree_dump(t);
1329 1.1 yamt assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1330 1.1 yamt assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1331 1.1 yamt assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
1332 1.1 yamt == 0);
1333 1.1 yamt radix_tree_dump(t);
1334 1.1 yamt assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1335 1.1 yamt assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1336 1.1 yamt assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
1337 1.1 yamt (void *)0xdea0);
1338 1.1 yamt radix_tree_dump(t);
1339 1.18 ad assert(!radix_tree_get_tag(t, 0, 2));
1340 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1341 1.1 yamt assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
1342 1.27 msaitoh radix_tree_set_tag(t, 0, 2);
1343 1.18 ad radix_tree_set_tag(t, UINT64_C(10000000000), 2);
1344 1.1 yamt radix_tree_dump(t);
1345 1.18 ad assert(radix_tree_get_tag(t, 0, 2));
1346 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1347 1.18 ad assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1348 1.27 msaitoh radix_tree_clear_tag(t, 0, 2);
1349 1.18 ad radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
1350 1.1 yamt radix_tree_dump(t);
1351 1.18 ad assert(!radix_tree_get_tag(t, 0, 2));
1352 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1353 1.18 ad assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1354 1.1 yamt radix_tree_dump(t);
1355 1.1 yamt assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
1356 1.1 yamt (void *)0xdeadbea0);
1357 1.18 ad assert(!radix_tree_get_tag(t, 1000, 1));
1358 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1359 1.18 ad assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1360 1.18 ad memset(results, 0, sizeof(results));
1361 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
1362 1.1 yamt assert(results[0] == (void *)0xbea0);
1363 1.1 yamt assert(results[1] == (void *)0x12345678);
1364 1.1 yamt assert(results[2] == (void *)0xdea0);
1365 1.18 ad memset(results, 0, sizeof(results));
1366 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1367 1.18 ad assert(results[0] == (void *)0xbea0);
1368 1.18 ad memset(results, 0, sizeof(results));
1369 1.18 ad assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
1370 1.1 yamt assert(results[0] == (void *)0x12345678);
1371 1.1 yamt assert(results[1] == (void *)0xdea0);
1372 1.18 ad assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
1373 1.18 ad memset(results, 0, sizeof(results));
1374 1.18 ad assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
1375 1.1 yamt assert(results[0] == (void *)0xdea0);
1376 1.18 ad assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
1377 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1378 1.18 ad false) == 0);
1379 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1380 1.18 ad true) == 0);
1381 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1382 1.18 ad 3, false) == 0);
1383 1.1 yamt assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1384 1.18 ad 3, true) == 0);
1385 1.18 ad memset(results, 0, sizeof(results));
1386 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
1387 1.18 ad == 1);
1388 1.1 yamt assert(results[0] == (void *)0x12345678);
1389 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
1390 1.18 ad == 0);
1391 1.1 yamt assert(entry_tagmask(t->t_root) != 0);
1392 1.1 yamt assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
1393 1.1 yamt assert(entry_tagmask(t->t_root) == 0);
1394 1.1 yamt radix_tree_dump(t);
1395 1.18 ad assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
1396 1.18 ad == 0);
1397 1.18 ad memset(results, 0, sizeof(results));
1398 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1399 1.18 ad false) == 2);
1400 1.18 ad assert(results[0] == (void *)0xdea0);
1401 1.18 ad assert(results[1] == (void *)0xfff0);
1402 1.18 ad memset(results, 0, sizeof(results));
1403 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1404 1.18 ad true) == 2);
1405 1.18 ad assert(results[0] == (void *)0xdea0);
1406 1.18 ad assert(results[1] == (void *)0xfff0);
1407 1.18 ad memset(results, 0, sizeof(results));
1408 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1409 1.18 ad results, 3, false) == 3);
1410 1.18 ad assert(results[0] == (void *)0xfff0);
1411 1.18 ad assert(results[1] == (void *)0xdea0);
1412 1.18 ad assert(results[2] == (void *)0xbea0);
1413 1.18 ad memset(results, 0, sizeof(results));
1414 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1415 1.18 ad results, 3, true) == 2);
1416 1.18 ad assert(results[0] == (void *)0xfff0);
1417 1.18 ad assert(results[1] == (void *)0xdea0);
1418 1.1 yamt assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
1419 1.1 yamt (void *)0xdea0);
1420 1.18 ad assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
1421 1.18 ad (void *)0xfff0);
1422 1.1 yamt radix_tree_dump(t);
1423 1.1 yamt assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
1424 1.1 yamt radix_tree_dump(t);
1425 1.1 yamt radix_tree_fini_tree(t);
1426 1.1 yamt }
1427 1.1 yamt
1428 1.1 yamt #include <sys/time.h>
1429 1.1 yamt
1430 1.1 yamt struct testnode {
1431 1.1 yamt uint64_t idx;
1432 1.12 yamt bool tagged[RADIX_TREE_TAG_ID_MAX];
1433 1.1 yamt };
1434 1.1 yamt
1435 1.1 yamt static void
1436 1.11 yamt printops(const char *title, const char *name, int tag, unsigned int n,
1437 1.11 yamt const struct timeval *stv, const struct timeval *etv)
1438 1.1 yamt {
1439 1.1 yamt uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
1440 1.1 yamt uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
1441 1.1 yamt
1442 1.11 yamt printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
1443 1.11 yamt (double)n / (e - s) * 1000000);
1444 1.1 yamt }
1445 1.1 yamt
1446 1.1 yamt #define TEST2_GANG_LOOKUP_NODES 16
1447 1.1 yamt
1448 1.1 yamt static bool
1449 1.18 ad test2_should_tag(unsigned int i, unsigned int tagid)
1450 1.1 yamt {
1451 1.1 yamt
1452 1.1 yamt if (tagid == 0) {
1453 1.18 ad return (i % 4) == 0; /* 25% */
1454 1.1 yamt } else {
1455 1.11 yamt return (i % 7) == 0; /* 14% */
1456 1.1 yamt }
1457 1.18 ad return 1;
1458 1.18 ad }
1459 1.18 ad
1460 1.18 ad static void
1461 1.18 ad check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
1462 1.18 ad unsigned int count)
1463 1.18 ad {
1464 1.18 ad unsigned int tag;
1465 1.18 ad
1466 1.18 ad for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1467 1.18 ad if ((tagmask & (1 << tag)) == 0) {
1468 1.18 ad continue;
1469 1.18 ad }
1470 1.18 ad if (((tagmask - 1) & tagmask) == 0) {
1471 1.18 ad assert(count == ntagged[tag]);
1472 1.18 ad } else {
1473 1.18 ad assert(count >= ntagged[tag]);
1474 1.18 ad }
1475 1.18 ad }
1476 1.1 yamt }
1477 1.1 yamt
1478 1.1 yamt static void
1479 1.11 yamt test2(const char *title, bool dense)
1480 1.1 yamt {
1481 1.1 yamt struct radix_tree s;
1482 1.1 yamt struct radix_tree *t = &s;
1483 1.1 yamt struct testnode *n;
1484 1.1 yamt unsigned int i;
1485 1.1 yamt unsigned int nnodes = 100000;
1486 1.1 yamt unsigned int removed;
1487 1.18 ad unsigned int tag;
1488 1.18 ad unsigned int tagmask;
1489 1.1 yamt unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
1490 1.1 yamt struct testnode *nodes;
1491 1.1 yamt struct timeval stv;
1492 1.1 yamt struct timeval etv;
1493 1.1 yamt
1494 1.1 yamt nodes = malloc(nnodes * sizeof(*nodes));
1495 1.1 yamt for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1496 1.1 yamt ntagged[tag] = 0;
1497 1.1 yamt }
1498 1.1 yamt radix_tree_init_tree(t);
1499 1.1 yamt for (i = 0; i < nnodes; i++) {
1500 1.1 yamt n = &nodes[i];
1501 1.1 yamt n->idx = random();
1502 1.1 yamt if (sizeof(long) == 4) {
1503 1.1 yamt n->idx <<= 32;
1504 1.1 yamt n->idx |= (uint32_t)random();
1505 1.1 yamt }
1506 1.1 yamt if (dense) {
1507 1.1 yamt n->idx %= nnodes * 2;
1508 1.1 yamt }
1509 1.1 yamt while (radix_tree_lookup_node(t, n->idx) != NULL) {
1510 1.1 yamt n->idx++;
1511 1.1 yamt }
1512 1.1 yamt radix_tree_insert_node(t, n->idx, n);
1513 1.1 yamt for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1514 1.18 ad tagmask = 1 << tag;
1515 1.18 ad
1516 1.12 yamt n->tagged[tag] = test2_should_tag(i, tag);
1517 1.12 yamt if (n->tagged[tag]) {
1518 1.18 ad radix_tree_set_tag(t, n->idx, tagmask);
1519 1.1 yamt ntagged[tag]++;
1520 1.1 yamt }
1521 1.18 ad assert((n->tagged[tag] ? tagmask : 0) ==
1522 1.18 ad radix_tree_get_tag(t, n->idx, tagmask));
1523 1.1 yamt }
1524 1.1 yamt }
1525 1.1 yamt
1526 1.1 yamt gettimeofday(&stv, NULL);
1527 1.1 yamt for (i = 0; i < nnodes; i++) {
1528 1.1 yamt n = &nodes[i];
1529 1.1 yamt assert(radix_tree_lookup_node(t, n->idx) == n);
1530 1.1 yamt }
1531 1.1 yamt gettimeofday(&etv, NULL);
1532 1.11 yamt printops(title, "lookup", 0, nnodes, &stv, &etv);
1533 1.1 yamt
1534 1.18 ad for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1535 1.12 yamt unsigned int count = 0;
1536 1.12 yamt
1537 1.1 yamt gettimeofday(&stv, NULL);
1538 1.1 yamt for (i = 0; i < nnodes; i++) {
1539 1.18 ad unsigned int tagged;
1540 1.12 yamt
1541 1.1 yamt n = &nodes[i];
1542 1.18 ad tagged = radix_tree_get_tag(t, n->idx, tagmask);
1543 1.18 ad assert((tagged & ~tagmask) == 0);
1544 1.18 ad for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1545 1.18 ad assert((tagmask & (1 << tag)) == 0 ||
1546 1.18 ad n->tagged[tag] == !!(tagged & (1 << tag)));
1547 1.18 ad }
1548 1.12 yamt if (tagged) {
1549 1.12 yamt count++;
1550 1.12 yamt }
1551 1.1 yamt }
1552 1.1 yamt gettimeofday(&etv, NULL);
1553 1.18 ad check_tag_count(ntagged, tagmask, count);
1554 1.18 ad printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
1555 1.1 yamt }
1556 1.1 yamt
1557 1.1 yamt gettimeofday(&stv, NULL);
1558 1.1 yamt for (i = 0; i < nnodes; i++) {
1559 1.1 yamt n = &nodes[i];
1560 1.1 yamt radix_tree_remove_node(t, n->idx);
1561 1.1 yamt }
1562 1.1 yamt gettimeofday(&etv, NULL);
1563 1.11 yamt printops(title, "remove", 0, nnodes, &stv, &etv);
1564 1.1 yamt
1565 1.1 yamt gettimeofday(&stv, NULL);
1566 1.1 yamt for (i = 0; i < nnodes; i++) {
1567 1.1 yamt n = &nodes[i];
1568 1.1 yamt radix_tree_insert_node(t, n->idx, n);
1569 1.1 yamt }
1570 1.1 yamt gettimeofday(&etv, NULL);
1571 1.11 yamt printops(title, "insert", 0, nnodes, &stv, &etv);
1572 1.1 yamt
1573 1.1 yamt for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1574 1.18 ad tagmask = 1 << tag;
1575 1.18 ad
1576 1.1 yamt ntagged[tag] = 0;
1577 1.1 yamt gettimeofday(&stv, NULL);
1578 1.1 yamt for (i = 0; i < nnodes; i++) {
1579 1.1 yamt n = &nodes[i];
1580 1.12 yamt if (n->tagged[tag]) {
1581 1.18 ad radix_tree_set_tag(t, n->idx, tagmask);
1582 1.1 yamt ntagged[tag]++;
1583 1.1 yamt }
1584 1.1 yamt }
1585 1.1 yamt gettimeofday(&etv, NULL);
1586 1.11 yamt printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
1587 1.1 yamt }
1588 1.1 yamt
1589 1.1 yamt gettimeofday(&stv, NULL);
1590 1.1 yamt {
1591 1.1 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1592 1.1 yamt uint64_t nextidx;
1593 1.1 yamt unsigned int nfound;
1594 1.1 yamt unsigned int total;
1595 1.1 yamt
1596 1.1 yamt nextidx = 0;
1597 1.1 yamt total = 0;
1598 1.1 yamt while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1599 1.18 ad (void *)results, __arraycount(results), false)) > 0) {
1600 1.1 yamt nextidx = results[nfound - 1]->idx + 1;
1601 1.1 yamt total += nfound;
1602 1.15 yamt if (nextidx == 0) {
1603 1.15 yamt break;
1604 1.15 yamt }
1605 1.1 yamt }
1606 1.1 yamt assert(total == nnodes);
1607 1.1 yamt }
1608 1.1 yamt gettimeofday(&etv, NULL);
1609 1.11 yamt printops(title, "ganglookup", 0, nnodes, &stv, &etv);
1610 1.1 yamt
1611 1.15 yamt gettimeofday(&stv, NULL);
1612 1.15 yamt {
1613 1.15 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1614 1.15 yamt uint64_t nextidx;
1615 1.15 yamt unsigned int nfound;
1616 1.15 yamt unsigned int total;
1617 1.15 yamt
1618 1.15 yamt nextidx = UINT64_MAX;
1619 1.15 yamt total = 0;
1620 1.15 yamt while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
1621 1.18 ad (void *)results, __arraycount(results), false)) > 0) {
1622 1.15 yamt nextidx = results[nfound - 1]->idx - 1;
1623 1.15 yamt total += nfound;
1624 1.15 yamt if (nextidx == UINT64_MAX) {
1625 1.15 yamt break;
1626 1.15 yamt }
1627 1.15 yamt }
1628 1.15 yamt assert(total == nnodes);
1629 1.15 yamt }
1630 1.15 yamt gettimeofday(&etv, NULL);
1631 1.15 yamt printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
1632 1.15 yamt
1633 1.18 ad for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1634 1.18 ad unsigned int total = 0;
1635 1.18 ad
1636 1.1 yamt gettimeofday(&stv, NULL);
1637 1.1 yamt {
1638 1.1 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1639 1.1 yamt uint64_t nextidx;
1640 1.1 yamt unsigned int nfound;
1641 1.1 yamt
1642 1.1 yamt nextidx = 0;
1643 1.1 yamt while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1644 1.1 yamt nextidx, (void *)results, __arraycount(results),
1645 1.18 ad false, tagmask)) > 0) {
1646 1.1 yamt nextidx = results[nfound - 1]->idx + 1;
1647 1.1 yamt total += nfound;
1648 1.1 yamt }
1649 1.1 yamt }
1650 1.1 yamt gettimeofday(&etv, NULL);
1651 1.18 ad check_tag_count(ntagged, tagmask, total);
1652 1.18 ad assert(tagmask != 0 || total == 0);
1653 1.18 ad printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
1654 1.1 yamt }
1655 1.1 yamt
1656 1.18 ad for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1657 1.18 ad unsigned int total = 0;
1658 1.18 ad
1659 1.15 yamt gettimeofday(&stv, NULL);
1660 1.15 yamt {
1661 1.15 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1662 1.15 yamt uint64_t nextidx;
1663 1.15 yamt unsigned int nfound;
1664 1.15 yamt
1665 1.15 yamt nextidx = UINT64_MAX;
1666 1.15 yamt while ((nfound =
1667 1.15 yamt radix_tree_gang_lookup_tagged_node_reverse(t,
1668 1.15 yamt nextidx, (void *)results, __arraycount(results),
1669 1.18 ad false, tagmask)) > 0) {
1670 1.15 yamt nextidx = results[nfound - 1]->idx - 1;
1671 1.15 yamt total += nfound;
1672 1.15 yamt if (nextidx == UINT64_MAX) {
1673 1.15 yamt break;
1674 1.15 yamt }
1675 1.15 yamt }
1676 1.15 yamt }
1677 1.15 yamt gettimeofday(&etv, NULL);
1678 1.18 ad check_tag_count(ntagged, tagmask, total);
1679 1.18 ad assert(tagmask != 0 || total == 0);
1680 1.18 ad printops(title, "ganglookup_tag_reverse", tagmask, total,
1681 1.15 yamt &stv, &etv);
1682 1.15 yamt }
1683 1.15 yamt
1684 1.1 yamt removed = 0;
1685 1.1 yamt for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1686 1.1 yamt unsigned int total;
1687 1.1 yamt
1688 1.1 yamt total = 0;
1689 1.18 ad tagmask = 1 << tag;
1690 1.1 yamt gettimeofday(&stv, NULL);
1691 1.1 yamt {
1692 1.1 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1693 1.1 yamt uint64_t nextidx;
1694 1.1 yamt unsigned int nfound;
1695 1.1 yamt
1696 1.1 yamt nextidx = 0;
1697 1.1 yamt while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1698 1.1 yamt nextidx, (void *)results, __arraycount(results),
1699 1.18 ad false, tagmask)) > 0) {
1700 1.1 yamt for (i = 0; i < nfound; i++) {
1701 1.1 yamt radix_tree_remove_node(t,
1702 1.1 yamt results[i]->idx);
1703 1.1 yamt }
1704 1.1 yamt nextidx = results[nfound - 1]->idx + 1;
1705 1.1 yamt total += nfound;
1706 1.15 yamt if (nextidx == 0) {
1707 1.15 yamt break;
1708 1.15 yamt }
1709 1.1 yamt }
1710 1.18 ad }
1711 1.18 ad gettimeofday(&etv, NULL);
1712 1.18 ad if (tag == 0) {
1713 1.18 ad check_tag_count(ntagged, tagmask, total);
1714 1.18 ad } else {
1715 1.1 yamt assert(total <= ntagged[tag]);
1716 1.1 yamt }
1717 1.18 ad printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
1718 1.11 yamt &etv);
1719 1.1 yamt removed += total;
1720 1.1 yamt }
1721 1.1 yamt
1722 1.1 yamt gettimeofday(&stv, NULL);
1723 1.1 yamt {
1724 1.1 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1725 1.1 yamt uint64_t nextidx;
1726 1.1 yamt unsigned int nfound;
1727 1.1 yamt unsigned int total;
1728 1.1 yamt
1729 1.1 yamt nextidx = 0;
1730 1.1 yamt total = 0;
1731 1.1 yamt while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1732 1.18 ad (void *)results, __arraycount(results), false)) > 0) {
1733 1.1 yamt for (i = 0; i < nfound; i++) {
1734 1.1 yamt assert(results[i] == radix_tree_remove_node(t,
1735 1.1 yamt results[i]->idx));
1736 1.1 yamt }
1737 1.1 yamt nextidx = results[nfound - 1]->idx + 1;
1738 1.1 yamt total += nfound;
1739 1.15 yamt if (nextidx == 0) {
1740 1.15 yamt break;
1741 1.15 yamt }
1742 1.1 yamt }
1743 1.1 yamt assert(total == nnodes - removed);
1744 1.1 yamt }
1745 1.1 yamt gettimeofday(&etv, NULL);
1746 1.11 yamt printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
1747 1.1 yamt
1748 1.16 yamt assert(radix_tree_empty_tree_p(t));
1749 1.18 ad for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1750 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, tagmask));
1751 1.18 ad }
1752 1.1 yamt radix_tree_fini_tree(t);
1753 1.1 yamt free(nodes);
1754 1.1 yamt }
1755 1.1 yamt
1756 1.1 yamt int
1757 1.1 yamt main(int argc, char *argv[])
1758 1.1 yamt {
1759 1.1 yamt
1760 1.1 yamt test1();
1761 1.11 yamt test2("dense", true);
1762 1.11 yamt test2("sparse", false);
1763 1.1 yamt return 0;
1764 1.1 yamt }
1765 1.1 yamt
1766 1.1 yamt #endif /* defined(UNITTEST) */
1767