radixtree.c revision 1.30 1 1.30 ad /* $NetBSD: radixtree.c,v 1.30 2023/09/10 14:45:52 ad Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.18 ad * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.17 yamt * radixtree.c
31 1.1 yamt *
32 1.18 ad * Overview:
33 1.18 ad *
34 1.18 ad * This is an implementation of radix tree, whose keys are uint64_t and leafs
35 1.17 yamt * are user provided pointers.
36 1.17 yamt *
37 1.18 ad * Leaf nodes are just void * and this implementation doesn't care about
38 1.18 ad * what they actually point to. However, this implementation has an assumption
39 1.18 ad * about their alignment. Specifically, this implementation assumes that their
40 1.18 ad * 2 LSBs are always zero and uses them for internal accounting.
41 1.18 ad *
42 1.18 ad * Intermediate nodes and memory allocation:
43 1.18 ad *
44 1.18 ad * Intermediate nodes are automatically allocated and freed internally and
45 1.18 ad * basically users don't need to care about them. The allocation is done via
46 1.30 ad * kmem_zalloc(9) for _KERNEL, malloc(3) for userland, and alloc() for
47 1.18 ad * _STANDALONE environment. Only radix_tree_insert_node function can allocate
48 1.18 ad * memory for intermediate nodes and thus can fail for ENOMEM.
49 1.18 ad *
50 1.18 ad * Memory Efficiency:
51 1.18 ad *
52 1.18 ad * It's designed to work efficiently with dense index distribution.
53 1.18 ad * The memory consumption (number of necessary intermediate nodes) heavily
54 1.18 ad * depends on the index distribution. Basically, more dense index distribution
55 1.18 ad * consumes less nodes per item. Approximately,
56 1.18 ad *
57 1.18 ad * - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
58 1.18 ad * it would look like the following.
59 1.18 ad *
60 1.18 ad * root (t_height=1)
61 1.18 ad * |
62 1.18 ad * v
63 1.18 ad * [ | | | ] (intermediate node. RADIX_TREE_PTR_PER_NODE=4 in this fig)
64 1.18 ad * | | | |
65 1.18 ad * v v v v
66 1.18 ad * p p p p (items)
67 1.18 ad *
68 1.18 ad * - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
69 1.18 ad * it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
70 1.18 ad *
71 1.18 ad * root (t_height=3)
72 1.18 ad * |
73 1.18 ad * v
74 1.18 ad * [ | | | ]
75 1.18 ad * |
76 1.18 ad * v
77 1.18 ad * [ | | | ]
78 1.18 ad * |
79 1.18 ad * v
80 1.18 ad * [ | | | ]
81 1.18 ad * |
82 1.18 ad * v
83 1.18 ad * p
84 1.18 ad *
85 1.18 ad * The height of tree (t_height) is dynamic. It's smaller if only small
86 1.18 ad * index values are used. As an extreme case, if only index 0 is used,
87 1.18 ad * the corresponding value is directly stored in the root of the tree
88 1.18 ad * (struct radix_tree) without allocating any intermediate nodes. In that
89 1.18 ad * case, t_height=0.
90 1.18 ad *
91 1.18 ad * Gang lookup:
92 1.17 yamt *
93 1.18 ad * This implementation provides a way to scan many nodes quickly via
94 1.17 yamt * radix_tree_gang_lookup_node function and its varients.
95 1.17 yamt *
96 1.18 ad * Tags:
97 1.18 ad *
98 1.18 ad * This implementation provides tagging functionality, which allows quick
99 1.18 ad * scanning of a subset of leaf nodes. Leaf nodes are untagged when inserted
100 1.18 ad * into the tree and can be tagged by radix_tree_set_tag function.
101 1.18 ad * radix_tree_gang_lookup_tagged_node function and its variants returns only
102 1.18 ad * leaf nodes with the given tag. To reduce amount of nodes to visit for
103 1.17 yamt * these functions, this implementation keeps tagging information in internal
104 1.17 yamt * intermediate nodes and quickly skips uninterested parts of a tree.
105 1.18 ad *
106 1.18 ad * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
107 1.29 andvar * identified by a zero-origin numbers, tagid. For the current implementation,
108 1.18 ad * RADIX_TREE_TAG_ID_MAX is 2. A set of tags is described as a bitmask tagmask,
109 1.18 ad * which is a bitwise OR of (1 << tagid).
110 1.1 yamt */
111 1.1 yamt
112 1.1 yamt #include <sys/cdefs.h>
113 1.1 yamt
114 1.2 yamt #if defined(_KERNEL) || defined(_STANDALONE)
115 1.30 ad __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.30 2023/09/10 14:45:52 ad Exp $");
116 1.1 yamt #include <sys/param.h>
117 1.3 yamt #include <sys/errno.h>
118 1.30 ad #include <sys/kmem.h>
119 1.1 yamt #include <sys/radixtree.h>
120 1.3 yamt #include <lib/libkern/libkern.h>
121 1.3 yamt #if defined(_STANDALONE)
122 1.3 yamt #include <lib/libsa/stand.h>
123 1.3 yamt #endif /* defined(_STANDALONE) */
124 1.2 yamt #else /* defined(_KERNEL) || defined(_STANDALONE) */
125 1.30 ad __RCSID("$NetBSD: radixtree.c,v 1.30 2023/09/10 14:45:52 ad Exp $");
126 1.1 yamt #include <assert.h>
127 1.1 yamt #include <errno.h>
128 1.1 yamt #include <stdbool.h>
129 1.1 yamt #include <stdlib.h>
130 1.8 yamt #include <string.h>
131 1.1 yamt #if 1
132 1.1 yamt #define KASSERT assert
133 1.1 yamt #else
134 1.1 yamt #define KASSERT(a) /* nothing */
135 1.1 yamt #endif
136 1.2 yamt #endif /* defined(_KERNEL) || defined(_STANDALONE) */
137 1.1 yamt
138 1.1 yamt #include <sys/radixtree.h>
139 1.1 yamt
140 1.1 yamt #define RADIX_TREE_BITS_PER_HEIGHT 4 /* XXX tune */
141 1.1 yamt #define RADIX_TREE_PTR_PER_NODE (1 << RADIX_TREE_BITS_PER_HEIGHT)
142 1.1 yamt #define RADIX_TREE_MAX_HEIGHT (64 / RADIX_TREE_BITS_PER_HEIGHT)
143 1.15 yamt #define RADIX_TREE_INVALID_HEIGHT (RADIX_TREE_MAX_HEIGHT + 1)
144 1.2 yamt __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
145 1.1 yamt
146 1.2 yamt __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
147 1.1 yamt #define RADIX_TREE_TAG_MASK ((1 << RADIX_TREE_TAG_ID_MAX) - 1)
148 1.1 yamt
149 1.1 yamt static inline void *
150 1.1 yamt entry_ptr(void *p)
151 1.1 yamt {
152 1.1 yamt
153 1.1 yamt return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
154 1.1 yamt }
155 1.1 yamt
156 1.1 yamt static inline unsigned int
157 1.1 yamt entry_tagmask(void *p)
158 1.1 yamt {
159 1.1 yamt
160 1.1 yamt return (uintptr_t)p & RADIX_TREE_TAG_MASK;
161 1.1 yamt }
162 1.1 yamt
163 1.1 yamt static inline void *
164 1.1 yamt entry_compose(void *p, unsigned int tagmask)
165 1.1 yamt {
166 1.1 yamt
167 1.1 yamt return (void *)((uintptr_t)p | tagmask);
168 1.1 yamt }
169 1.1 yamt
170 1.1 yamt static inline bool
171 1.1 yamt entry_match_p(void *p, unsigned int tagmask)
172 1.1 yamt {
173 1.1 yamt
174 1.1 yamt KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
175 1.1 yamt if (p == NULL) {
176 1.1 yamt return false;
177 1.1 yamt }
178 1.1 yamt if (tagmask == 0) {
179 1.1 yamt return true;
180 1.1 yamt }
181 1.1 yamt return (entry_tagmask(p) & tagmask) != 0;
182 1.1 yamt }
183 1.1 yamt
184 1.1 yamt /*
185 1.1 yamt * radix_tree_node: an intermediate node
186 1.1 yamt *
187 1.1 yamt * we don't care the type of leaf nodes. they are just void *.
188 1.19 ad *
189 1.19 ad * we used to maintain a count of non-NULL nodes in this structure, but it
190 1.19 ad * prevented it from being aligned to a cache line boundary; the performance
191 1.19 ad * benefit from being cache friendly is greater than the benefit of having
192 1.19 ad * a dedicated count value, especially in multi-processor situations where
193 1.19 ad * we need to avoid intra-pool-page false sharing.
194 1.1 yamt */
195 1.1 yamt
196 1.1 yamt struct radix_tree_node {
197 1.1 yamt void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
198 1.1 yamt };
199 1.1 yamt
200 1.7 yamt /*
201 1.1 yamt * p_refs[0].pptr == &t->t_root
202 1.1 yamt * :
203 1.1 yamt * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
204 1.1 yamt * :
205 1.1 yamt * :
206 1.1 yamt * p_refs[t->t_height].pptr == &leaf_pointer
207 1.1 yamt */
208 1.1 yamt
209 1.1 yamt struct radix_tree_path {
210 1.1 yamt struct radix_tree_node_ref {
211 1.1 yamt void **pptr;
212 1.1 yamt } p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
213 1.15 yamt /*
214 1.15 yamt * p_lastidx is either the index of the last valid element of p_refs[]
215 1.15 yamt * or RADIX_TREE_INVALID_HEIGHT.
216 1.15 yamt * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
217 1.15 yamt * that the height of the tree is not enough to cover the given index.
218 1.15 yamt */
219 1.10 yamt unsigned int p_lastidx;
220 1.1 yamt };
221 1.1 yamt
222 1.1 yamt static inline void **
223 1.13 yamt path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
224 1.1 yamt unsigned int height)
225 1.1 yamt {
226 1.1 yamt
227 1.1 yamt KASSERT(height <= t->t_height);
228 1.1 yamt return p->p_refs[height].pptr;
229 1.1 yamt }
230 1.1 yamt
231 1.1 yamt static inline struct radix_tree_node *
232 1.13 yamt path_node(const struct radix_tree * t, const struct radix_tree_path *p,
233 1.13 yamt unsigned int height)
234 1.1 yamt {
235 1.1 yamt
236 1.1 yamt KASSERT(height <= t->t_height);
237 1.1 yamt return entry_ptr(*path_pptr(t, p, height));
238 1.1 yamt }
239 1.1 yamt
240 1.1 yamt /*
241 1.1 yamt * radix_tree_init_tree:
242 1.1 yamt *
243 1.18 ad * Initialize a tree.
244 1.1 yamt */
245 1.1 yamt
246 1.1 yamt void
247 1.1 yamt radix_tree_init_tree(struct radix_tree *t)
248 1.1 yamt {
249 1.1 yamt
250 1.1 yamt t->t_height = 0;
251 1.1 yamt t->t_root = NULL;
252 1.1 yamt }
253 1.1 yamt
254 1.1 yamt /*
255 1.18 ad * radix_tree_fini_tree:
256 1.1 yamt *
257 1.18 ad * Finish using a tree.
258 1.1 yamt */
259 1.1 yamt
260 1.1 yamt void
261 1.1 yamt radix_tree_fini_tree(struct radix_tree *t)
262 1.1 yamt {
263 1.1 yamt
264 1.1 yamt KASSERT(t->t_root == NULL);
265 1.1 yamt KASSERT(t->t_height == 0);
266 1.1 yamt }
267 1.1 yamt
268 1.18 ad /*
269 1.18 ad * radix_tree_empty_tree_p:
270 1.18 ad *
271 1.18 ad * Return if the tree is empty.
272 1.18 ad */
273 1.18 ad
274 1.9 yamt bool
275 1.9 yamt radix_tree_empty_tree_p(struct radix_tree *t)
276 1.9 yamt {
277 1.9 yamt
278 1.9 yamt return t->t_root == NULL;
279 1.9 yamt }
280 1.9 yamt
281 1.18 ad /*
282 1.18 ad * radix_tree_empty_tree_p:
283 1.18 ad *
284 1.18 ad * Return true if the tree has any nodes with the given tag. Otherwise
285 1.18 ad * return false.
286 1.18 ad *
287 1.18 ad * It's illegal to call this function with tagmask 0.
288 1.18 ad */
289 1.18 ad
290 1.16 yamt bool
291 1.18 ad radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
292 1.16 yamt {
293 1.16 yamt
294 1.18 ad KASSERT(tagmask != 0);
295 1.16 yamt return (entry_tagmask(t->t_root) & tagmask) == 0;
296 1.16 yamt }
297 1.16 yamt
298 1.3 yamt static void
299 1.3 yamt radix_tree_node_init(struct radix_tree_node *n)
300 1.3 yamt {
301 1.3 yamt
302 1.3 yamt memset(n, 0, sizeof(*n));
303 1.3 yamt }
304 1.3 yamt
305 1.1 yamt #if defined(_KERNEL)
306 1.1 yamt /*
307 1.1 yamt * radix_tree_init:
308 1.1 yamt *
309 1.1 yamt * initialize the subsystem.
310 1.1 yamt */
311 1.1 yamt
312 1.1 yamt void
313 1.1 yamt radix_tree_init(void)
314 1.1 yamt {
315 1.1 yamt
316 1.30 ad /* nothing right now */
317 1.1 yamt }
318 1.22 ad
319 1.22 ad /*
320 1.22 ad * radix_tree_await_memory:
321 1.22 ad *
322 1.22 ad * after an insert has failed with ENOMEM, wait for memory to become
323 1.25 ad * available, so the caller can retry. this needs to ensure that the
324 1.25 ad * maximum possible required number of nodes is available.
325 1.22 ad */
326 1.22 ad
327 1.22 ad void
328 1.22 ad radix_tree_await_memory(void)
329 1.22 ad {
330 1.25 ad struct radix_tree_node *nodes[RADIX_TREE_MAX_HEIGHT];
331 1.25 ad int i;
332 1.22 ad
333 1.25 ad for (i = 0; i < __arraycount(nodes); i++) {
334 1.30 ad nodes[i] = kmem_alloc(sizeof(struct radix_tree_node), KM_SLEEP);
335 1.25 ad }
336 1.25 ad while (--i >= 0) {
337 1.30 ad kmem_free(nodes[i], sizeof(struct radix_tree_node));
338 1.25 ad }
339 1.22 ad }
340 1.22 ad
341 1.1 yamt #endif /* defined(_KERNEL) */
342 1.1 yamt
343 1.24 ad /*
344 1.26 ad * radix_tree_sum_node:
345 1.24 ad *
346 1.24 ad * return the logical sum of all entries in the given node. used to quickly
347 1.24 ad * check for tag masks or empty nodes.
348 1.24 ad */
349 1.24 ad
350 1.24 ad static uintptr_t
351 1.26 ad radix_tree_sum_node(const struct radix_tree_node *n)
352 1.1 yamt {
353 1.19 ad #if RADIX_TREE_PTR_PER_NODE > 16
354 1.25 ad unsigned int i;
355 1.24 ad uintptr_t sum;
356 1.1 yamt
357 1.24 ad for (i = 0, sum = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
358 1.24 ad sum |= (uintptr_t)n->n_ptrs[i];
359 1.1 yamt }
360 1.24 ad return sum;
361 1.19 ad #else /* RADIX_TREE_PTR_PER_NODE > 16 */
362 1.19 ad uintptr_t sum;
363 1.19 ad
364 1.19 ad /*
365 1.19 ad * Unrolling the above is much better than a tight loop with two
366 1.19 ad * test+branch pairs. On x86 with gcc 5.5.0 this compiles into 19
367 1.19 ad * deterministic instructions including the "return" and prologue &
368 1.19 ad * epilogue.
369 1.19 ad */
370 1.19 ad sum = (uintptr_t)n->n_ptrs[0];
371 1.19 ad sum |= (uintptr_t)n->n_ptrs[1];
372 1.19 ad sum |= (uintptr_t)n->n_ptrs[2];
373 1.19 ad sum |= (uintptr_t)n->n_ptrs[3];
374 1.19 ad #if RADIX_TREE_PTR_PER_NODE > 4
375 1.19 ad sum |= (uintptr_t)n->n_ptrs[4];
376 1.19 ad sum |= (uintptr_t)n->n_ptrs[5];
377 1.19 ad sum |= (uintptr_t)n->n_ptrs[6];
378 1.19 ad sum |= (uintptr_t)n->n_ptrs[7];
379 1.19 ad #endif
380 1.19 ad #if RADIX_TREE_PTR_PER_NODE > 8
381 1.19 ad sum |= (uintptr_t)n->n_ptrs[8];
382 1.19 ad sum |= (uintptr_t)n->n_ptrs[9];
383 1.19 ad sum |= (uintptr_t)n->n_ptrs[10];
384 1.19 ad sum |= (uintptr_t)n->n_ptrs[11];
385 1.19 ad sum |= (uintptr_t)n->n_ptrs[12];
386 1.19 ad sum |= (uintptr_t)n->n_ptrs[13];
387 1.19 ad sum |= (uintptr_t)n->n_ptrs[14];
388 1.19 ad sum |= (uintptr_t)n->n_ptrs[15];
389 1.19 ad #endif
390 1.24 ad return sum;
391 1.19 ad #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
392 1.19 ad }
393 1.19 ad
394 1.19 ad static int __unused
395 1.19 ad radix_tree_node_count_ptrs(const struct radix_tree_node *n)
396 1.19 ad {
397 1.19 ad unsigned int i, c;
398 1.19 ad
399 1.19 ad for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
400 1.19 ad c += (n->n_ptrs[i] != NULL);
401 1.19 ad }
402 1.19 ad return c;
403 1.1 yamt }
404 1.1 yamt
405 1.1 yamt static struct radix_tree_node *
406 1.1 yamt radix_tree_alloc_node(void)
407 1.1 yamt {
408 1.1 yamt struct radix_tree_node *n;
409 1.1 yamt
410 1.1 yamt #if defined(_KERNEL)
411 1.18 ad /*
412 1.30 ad * note that kmem_alloc can block.
413 1.18 ad */
414 1.30 ad n = kmem_alloc(sizeof(struct radix_tree_node), KM_SLEEP);
415 1.30 ad #elif defined(_STANDALONE)
416 1.3 yamt n = alloc(sizeof(*n));
417 1.3 yamt #else /* defined(_STANDALONE) */
418 1.3 yamt n = malloc(sizeof(*n));
419 1.3 yamt #endif /* defined(_STANDALONE) */
420 1.3 yamt if (n != NULL) {
421 1.3 yamt radix_tree_node_init(n);
422 1.3 yamt }
423 1.26 ad KASSERT(n == NULL || radix_tree_sum_node(n) == 0);
424 1.1 yamt return n;
425 1.1 yamt }
426 1.1 yamt
427 1.1 yamt static void
428 1.1 yamt radix_tree_free_node(struct radix_tree_node *n)
429 1.1 yamt {
430 1.1 yamt
431 1.26 ad KASSERT(radix_tree_sum_node(n) == 0);
432 1.1 yamt #if defined(_KERNEL)
433 1.30 ad kmem_free(n, sizeof(struct radix_tree_node));
434 1.3 yamt #elif defined(_STANDALONE)
435 1.3 yamt dealloc(n, sizeof(*n));
436 1.3 yamt #else
437 1.1 yamt free(n);
438 1.3 yamt #endif
439 1.1 yamt }
440 1.1 yamt
441 1.25 ad /*
442 1.25 ad * radix_tree_grow:
443 1.25 ad *
444 1.25 ad * increase the height of the tree.
445 1.25 ad */
446 1.25 ad
447 1.25 ad static __noinline int
448 1.1 yamt radix_tree_grow(struct radix_tree *t, unsigned int newheight)
449 1.1 yamt {
450 1.1 yamt const unsigned int tagmask = entry_tagmask(t->t_root);
451 1.25 ad struct radix_tree_node *newnodes[RADIX_TREE_MAX_HEIGHT];
452 1.25 ad void *root;
453 1.25 ad int h;
454 1.1 yamt
455 1.25 ad KASSERT(newheight <= RADIX_TREE_MAX_HEIGHT);
456 1.25 ad if ((root = t->t_root) == NULL) {
457 1.1 yamt t->t_height = newheight;
458 1.1 yamt return 0;
459 1.1 yamt }
460 1.25 ad for (h = t->t_height; h < newheight; h++) {
461 1.25 ad newnodes[h] = radix_tree_alloc_node();
462 1.25 ad if (__predict_false(newnodes[h] == NULL)) {
463 1.25 ad while (--h >= (int)t->t_height) {
464 1.25 ad newnodes[h]->n_ptrs[0] = NULL;
465 1.25 ad radix_tree_free_node(newnodes[h]);
466 1.25 ad }
467 1.1 yamt return ENOMEM;
468 1.1 yamt }
469 1.25 ad newnodes[h]->n_ptrs[0] = root;
470 1.25 ad root = entry_compose(newnodes[h], tagmask);
471 1.1 yamt }
472 1.25 ad t->t_root = root;
473 1.25 ad t->t_height = h;
474 1.1 yamt return 0;
475 1.1 yamt }
476 1.1 yamt
477 1.5 yamt /*
478 1.5 yamt * radix_tree_lookup_ptr:
479 1.5 yamt *
480 1.5 yamt * an internal helper function used for various exported functions.
481 1.5 yamt *
482 1.5 yamt * return the pointer to store the node for the given index.
483 1.5 yamt *
484 1.5 yamt * if alloc is true, try to allocate the storage. (note for _KERNEL:
485 1.5 yamt * in that case, this function can block.) if the allocation failed or
486 1.5 yamt * alloc is false, return NULL.
487 1.5 yamt *
488 1.5 yamt * if path is not NULL, fill it for the caller's investigation.
489 1.5 yamt *
490 1.5 yamt * if tagmask is not zero, search only for nodes with the tag set.
491 1.15 yamt * note that, however, this function doesn't check the tagmask for the leaf
492 1.15 yamt * pointer. it's a caller's responsibility to investigate the value which
493 1.15 yamt * is pointed by the returned pointer if necessary.
494 1.5 yamt *
495 1.5 yamt * while this function is a bit large, as it's called with some constant
496 1.5 yamt * arguments, inlining might have benefits. anyway, a compiler will decide.
497 1.5 yamt */
498 1.5 yamt
499 1.1 yamt static inline void **
500 1.1 yamt radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
501 1.1 yamt struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
502 1.1 yamt {
503 1.1 yamt struct radix_tree_node *n;
504 1.1 yamt int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
505 1.1 yamt int shift;
506 1.1 yamt void **vpp;
507 1.1 yamt const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
508 1.1 yamt struct radix_tree_node_ref *refs = NULL;
509 1.1 yamt
510 1.5 yamt /*
511 1.5 yamt * check unsupported combinations
512 1.5 yamt */
513 1.1 yamt KASSERT(tagmask == 0 || !alloc);
514 1.1 yamt KASSERT(path == NULL || !alloc);
515 1.1 yamt vpp = &t->t_root;
516 1.1 yamt if (path != NULL) {
517 1.1 yamt refs = path->p_refs;
518 1.1 yamt refs->pptr = vpp;
519 1.1 yamt }
520 1.1 yamt n = NULL;
521 1.1 yamt for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
522 1.1 yamt struct radix_tree_node *c;
523 1.1 yamt void *entry;
524 1.1 yamt const uint64_t i = (idx >> shift) & mask;
525 1.1 yamt
526 1.1 yamt if (shift >= hshift) {
527 1.1 yamt unsigned int newheight;
528 1.1 yamt
529 1.1 yamt KASSERT(vpp == &t->t_root);
530 1.1 yamt if (i == 0) {
531 1.1 yamt shift -= RADIX_TREE_BITS_PER_HEIGHT;
532 1.1 yamt continue;
533 1.1 yamt }
534 1.1 yamt if (!alloc) {
535 1.1 yamt if (path != NULL) {
536 1.1 yamt KASSERT((refs - path->p_refs) == 0);
537 1.15 yamt path->p_lastidx =
538 1.15 yamt RADIX_TREE_INVALID_HEIGHT;
539 1.1 yamt }
540 1.1 yamt return NULL;
541 1.1 yamt }
542 1.1 yamt newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
543 1.1 yamt if (radix_tree_grow(t, newheight)) {
544 1.1 yamt return NULL;
545 1.1 yamt }
546 1.1 yamt hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
547 1.1 yamt }
548 1.1 yamt entry = *vpp;
549 1.1 yamt c = entry_ptr(entry);
550 1.1 yamt if (c == NULL ||
551 1.1 yamt (tagmask != 0 &&
552 1.1 yamt (entry_tagmask(entry) & tagmask) == 0)) {
553 1.1 yamt if (!alloc) {
554 1.1 yamt if (path != NULL) {
555 1.1 yamt path->p_lastidx = refs - path->p_refs;
556 1.1 yamt }
557 1.1 yamt return NULL;
558 1.1 yamt }
559 1.1 yamt c = radix_tree_alloc_node();
560 1.1 yamt if (c == NULL) {
561 1.1 yamt return NULL;
562 1.1 yamt }
563 1.1 yamt *vpp = c;
564 1.1 yamt }
565 1.1 yamt n = c;
566 1.1 yamt vpp = &n->n_ptrs[i];
567 1.1 yamt if (path != NULL) {
568 1.1 yamt refs++;
569 1.1 yamt refs->pptr = vpp;
570 1.1 yamt }
571 1.1 yamt shift -= RADIX_TREE_BITS_PER_HEIGHT;
572 1.1 yamt }
573 1.1 yamt if (alloc) {
574 1.1 yamt KASSERT(*vpp == NULL);
575 1.1 yamt }
576 1.1 yamt if (path != NULL) {
577 1.1 yamt path->p_lastidx = refs - path->p_refs;
578 1.1 yamt }
579 1.1 yamt return vpp;
580 1.1 yamt }
581 1.1 yamt
582 1.1 yamt /*
583 1.25 ad * radix_tree_undo_insert_node:
584 1.25 ad *
585 1.25 ad * Undo the effects of a failed insert. The conditions that led to the
586 1.25 ad * insert may change and it may not be retried. If the insert is not
587 1.25 ad * retried, there will be no corresponding radix_tree_remove_node() for
588 1.25 ad * this index in the future. Therefore any adjustments made to the tree
589 1.25 ad * before memory was exhausted must be reverted.
590 1.25 ad */
591 1.25 ad
592 1.25 ad static __noinline void
593 1.25 ad radix_tree_undo_insert_node(struct radix_tree *t, uint64_t idx)
594 1.25 ad {
595 1.25 ad struct radix_tree_path path;
596 1.25 ad int i;
597 1.25 ad
598 1.25 ad (void)radix_tree_lookup_ptr(t, idx, &path, false, 0);
599 1.25 ad if (path.p_lastidx == RADIX_TREE_INVALID_HEIGHT) {
600 1.25 ad /*
601 1.25 ad * no nodes were inserted.
602 1.25 ad */
603 1.25 ad return;
604 1.25 ad }
605 1.25 ad for (i = path.p_lastidx - 1; i >= 0; i--) {
606 1.25 ad struct radix_tree_node ** const pptr =
607 1.25 ad (struct radix_tree_node **)path_pptr(t, &path, i);
608 1.25 ad struct radix_tree_node *n;
609 1.25 ad
610 1.25 ad KASSERT(pptr != NULL);
611 1.25 ad n = entry_ptr(*pptr);
612 1.25 ad KASSERT(n != NULL);
613 1.26 ad if (radix_tree_sum_node(n) != 0) {
614 1.25 ad break;
615 1.25 ad }
616 1.25 ad radix_tree_free_node(n);
617 1.25 ad *pptr = NULL;
618 1.25 ad }
619 1.25 ad /*
620 1.25 ad * fix up height
621 1.25 ad */
622 1.25 ad if (i < 0) {
623 1.25 ad KASSERT(t->t_root == NULL);
624 1.25 ad t->t_height = 0;
625 1.25 ad }
626 1.25 ad }
627 1.25 ad
628 1.25 ad /*
629 1.1 yamt * radix_tree_insert_node:
630 1.1 yamt *
631 1.18 ad * Insert the node at the given index.
632 1.18 ad *
633 1.18 ad * It's illegal to insert NULL. It's illegal to insert a non-aligned pointer.
634 1.1 yamt *
635 1.18 ad * This function returns ENOMEM if necessary memory allocation failed.
636 1.18 ad * Otherwise, this function returns 0.
637 1.1 yamt *
638 1.18 ad * Note that inserting a node can involves memory allocation for intermediate
639 1.18 ad * nodes. If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
640 1.4 yamt *
641 1.18 ad * For the newly inserted node, all tags are cleared.
642 1.1 yamt */
643 1.1 yamt
644 1.1 yamt int
645 1.1 yamt radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
646 1.1 yamt {
647 1.1 yamt void **vpp;
648 1.1 yamt
649 1.1 yamt KASSERT(p != NULL);
650 1.18 ad KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
651 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
652 1.25 ad if (__predict_false(vpp == NULL)) {
653 1.25 ad radix_tree_undo_insert_node(t, idx);
654 1.1 yamt return ENOMEM;
655 1.1 yamt }
656 1.1 yamt KASSERT(*vpp == NULL);
657 1.1 yamt *vpp = p;
658 1.1 yamt return 0;
659 1.1 yamt }
660 1.1 yamt
661 1.4 yamt /*
662 1.4 yamt * radix_tree_replace_node:
663 1.4 yamt *
664 1.18 ad * Replace a node at the given index with the given node and return the
665 1.18 ad * replaced one.
666 1.18 ad *
667 1.18 ad * It's illegal to try to replace a node which has not been inserted.
668 1.4 yamt *
669 1.18 ad * This function keeps tags intact.
670 1.4 yamt */
671 1.4 yamt
672 1.1 yamt void *
673 1.1 yamt radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
674 1.1 yamt {
675 1.1 yamt void **vpp;
676 1.1 yamt void *oldp;
677 1.1 yamt
678 1.1 yamt KASSERT(p != NULL);
679 1.18 ad KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
680 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
681 1.1 yamt KASSERT(vpp != NULL);
682 1.1 yamt oldp = *vpp;
683 1.1 yamt KASSERT(oldp != NULL);
684 1.1 yamt *vpp = entry_compose(p, entry_tagmask(*vpp));
685 1.1 yamt return entry_ptr(oldp);
686 1.1 yamt }
687 1.1 yamt
688 1.1 yamt /*
689 1.1 yamt * radix_tree_remove_node:
690 1.1 yamt *
691 1.18 ad * Remove the node at the given index.
692 1.18 ad *
693 1.18 ad * It's illegal to try to remove a node which has not been inserted.
694 1.1 yamt */
695 1.1 yamt
696 1.1 yamt void *
697 1.1 yamt radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
698 1.1 yamt {
699 1.1 yamt struct radix_tree_path path;
700 1.1 yamt void **vpp;
701 1.1 yamt void *oldp;
702 1.1 yamt int i;
703 1.1 yamt
704 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
705 1.1 yamt KASSERT(vpp != NULL);
706 1.1 yamt oldp = *vpp;
707 1.1 yamt KASSERT(oldp != NULL);
708 1.1 yamt KASSERT(path.p_lastidx == t->t_height);
709 1.1 yamt KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
710 1.1 yamt *vpp = NULL;
711 1.1 yamt for (i = t->t_height - 1; i >= 0; i--) {
712 1.1 yamt void *entry;
713 1.1 yamt struct radix_tree_node ** const pptr =
714 1.1 yamt (struct radix_tree_node **)path_pptr(t, &path, i);
715 1.1 yamt struct radix_tree_node *n;
716 1.1 yamt
717 1.1 yamt KASSERT(pptr != NULL);
718 1.1 yamt entry = *pptr;
719 1.1 yamt n = entry_ptr(entry);
720 1.1 yamt KASSERT(n != NULL);
721 1.26 ad if (radix_tree_sum_node(n) != 0) {
722 1.1 yamt break;
723 1.1 yamt }
724 1.1 yamt radix_tree_free_node(n);
725 1.1 yamt *pptr = NULL;
726 1.1 yamt }
727 1.1 yamt /*
728 1.1 yamt * fix up height
729 1.1 yamt */
730 1.1 yamt if (i < 0) {
731 1.1 yamt KASSERT(t->t_root == NULL);
732 1.1 yamt t->t_height = 0;
733 1.1 yamt }
734 1.1 yamt /*
735 1.1 yamt * update tags
736 1.1 yamt */
737 1.1 yamt for (; i >= 0; i--) {
738 1.1 yamt void *entry;
739 1.1 yamt struct radix_tree_node ** const pptr =
740 1.1 yamt (struct radix_tree_node **)path_pptr(t, &path, i);
741 1.1 yamt struct radix_tree_node *n;
742 1.1 yamt unsigned int newmask;
743 1.1 yamt
744 1.1 yamt KASSERT(pptr != NULL);
745 1.1 yamt entry = *pptr;
746 1.1 yamt n = entry_ptr(entry);
747 1.1 yamt KASSERT(n != NULL);
748 1.26 ad KASSERT(radix_tree_sum_node(n) != 0);
749 1.26 ad newmask = radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK;
750 1.1 yamt if (newmask == entry_tagmask(entry)) {
751 1.1 yamt break;
752 1.1 yamt }
753 1.1 yamt *pptr = entry_compose(n, newmask);
754 1.1 yamt }
755 1.1 yamt /*
756 1.1 yamt * XXX is it worth to try to reduce height?
757 1.1 yamt * if we do that, make radix_tree_grow rollback its change as well.
758 1.1 yamt */
759 1.1 yamt return entry_ptr(oldp);
760 1.1 yamt }
761 1.1 yamt
762 1.1 yamt /*
763 1.1 yamt * radix_tree_lookup_node:
764 1.1 yamt *
765 1.18 ad * Returns the node at the given index.
766 1.18 ad * Returns NULL if nothing is found at the given index.
767 1.1 yamt */
768 1.1 yamt
769 1.1 yamt void *
770 1.1 yamt radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
771 1.1 yamt {
772 1.1 yamt void **vpp;
773 1.1 yamt
774 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
775 1.1 yamt if (vpp == NULL) {
776 1.1 yamt return NULL;
777 1.1 yamt }
778 1.1 yamt return entry_ptr(*vpp);
779 1.1 yamt }
780 1.1 yamt
781 1.1 yamt static inline void
782 1.1 yamt gang_lookup_init(struct radix_tree *t, uint64_t idx,
783 1.1 yamt struct radix_tree_path *path, const unsigned int tagmask)
784 1.1 yamt {
785 1.18 ad void **vpp __unused;
786 1.1 yamt
787 1.19 ad vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
788 1.1 yamt KASSERT(vpp == NULL ||
789 1.1 yamt vpp == path_pptr(t, path, path->p_lastidx));
790 1.1 yamt KASSERT(&t->t_root == path_pptr(t, path, 0));
791 1.15 yamt KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
792 1.15 yamt path->p_lastidx == t->t_height ||
793 1.15 yamt !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
794 1.1 yamt }
795 1.1 yamt
796 1.15 yamt /*
797 1.15 yamt * gang_lookup_scan:
798 1.15 yamt *
799 1.15 yamt * a helper routine for radix_tree_gang_lookup_node and its variants.
800 1.15 yamt */
801 1.15 yamt
802 1.1 yamt static inline unsigned int
803 1.15 yamt __attribute__((__always_inline__))
804 1.1 yamt gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
805 1.18 ad void **results, const unsigned int maxresults, const unsigned int tagmask,
806 1.18 ad const bool reverse, const bool dense)
807 1.1 yamt {
808 1.15 yamt
809 1.15 yamt /*
810 1.15 yamt * we keep the path updated only for lastidx-1.
811 1.15 yamt * vpp is what path_pptr(t, path, lastidx) would be.
812 1.15 yamt */
813 1.1 yamt void **vpp;
814 1.10 yamt unsigned int nfound;
815 1.1 yamt unsigned int lastidx;
816 1.15 yamt /*
817 1.15 yamt * set up scan direction dependant constants so that we can iterate
818 1.15 yamt * n_ptrs as the following.
819 1.15 yamt *
820 1.15 yamt * for (i = first; i != guard; i += step)
821 1.15 yamt * visit n->n_ptrs[i];
822 1.15 yamt */
823 1.15 yamt const int step = reverse ? -1 : 1;
824 1.15 yamt const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
825 1.15 yamt const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
826 1.15 yamt const unsigned int guard = last + step;
827 1.1 yamt
828 1.1 yamt KASSERT(maxresults > 0);
829 1.15 yamt KASSERT(&t->t_root == path_pptr(t, path, 0));
830 1.1 yamt lastidx = path->p_lastidx;
831 1.15 yamt KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
832 1.15 yamt lastidx == t->t_height ||
833 1.15 yamt !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
834 1.15 yamt nfound = 0;
835 1.15 yamt if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
836 1.18 ad /*
837 1.18 ad * requested idx is beyond the right-most node.
838 1.18 ad */
839 1.18 ad if (reverse && !dense) {
840 1.15 yamt lastidx = 0;
841 1.15 yamt vpp = path_pptr(t, path, lastidx);
842 1.15 yamt goto descend;
843 1.15 yamt }
844 1.1 yamt return 0;
845 1.1 yamt }
846 1.1 yamt vpp = path_pptr(t, path, lastidx);
847 1.1 yamt while (/*CONSTCOND*/true) {
848 1.1 yamt struct radix_tree_node *n;
849 1.10 yamt unsigned int i;
850 1.1 yamt
851 1.1 yamt if (entry_match_p(*vpp, tagmask)) {
852 1.1 yamt KASSERT(lastidx == t->t_height);
853 1.1 yamt /*
854 1.15 yamt * record the matching non-NULL leaf.
855 1.1 yamt */
856 1.1 yamt results[nfound] = entry_ptr(*vpp);
857 1.1 yamt nfound++;
858 1.1 yamt if (nfound == maxresults) {
859 1.1 yamt return nfound;
860 1.1 yamt }
861 1.18 ad } else if (dense) {
862 1.18 ad return nfound;
863 1.1 yamt }
864 1.1 yamt scan_siblings:
865 1.1 yamt /*
866 1.15 yamt * try to find the next matching non-NULL sibling.
867 1.1 yamt */
868 1.15 yamt if (lastidx == 0) {
869 1.15 yamt /*
870 1.15 yamt * the root has no siblings.
871 1.15 yamt * we've done.
872 1.15 yamt */
873 1.15 yamt KASSERT(vpp == &t->t_root);
874 1.15 yamt break;
875 1.15 yamt }
876 1.1 yamt n = path_node(t, path, lastidx - 1);
877 1.15 yamt for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
878 1.15 yamt KASSERT(i < RADIX_TREE_PTR_PER_NODE);
879 1.1 yamt if (entry_match_p(n->n_ptrs[i], tagmask)) {
880 1.1 yamt vpp = &n->n_ptrs[i];
881 1.1 yamt break;
882 1.23 ad } else if (dense) {
883 1.23 ad return nfound;
884 1.1 yamt }
885 1.1 yamt }
886 1.15 yamt if (i == guard) {
887 1.1 yamt /*
888 1.1 yamt * not found. go to parent.
889 1.1 yamt */
890 1.1 yamt lastidx--;
891 1.1 yamt vpp = path_pptr(t, path, lastidx);
892 1.1 yamt goto scan_siblings;
893 1.1 yamt }
894 1.15 yamt descend:
895 1.1 yamt /*
896 1.15 yamt * following the left-most (or right-most in the case of
897 1.28 andvar * reverse scan) child node, descend until reaching the leaf or
898 1.29 andvar * a non-matching entry.
899 1.1 yamt */
900 1.1 yamt while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
901 1.15 yamt /*
902 1.15 yamt * save vpp in the path so that we can come back to this
903 1.15 yamt * node after finishing visiting children.
904 1.15 yamt */
905 1.15 yamt path->p_refs[lastidx].pptr = vpp;
906 1.1 yamt n = entry_ptr(*vpp);
907 1.15 yamt vpp = &n->n_ptrs[first];
908 1.1 yamt lastidx++;
909 1.1 yamt }
910 1.1 yamt }
911 1.15 yamt return nfound;
912 1.1 yamt }
913 1.1 yamt
914 1.1 yamt /*
915 1.1 yamt * radix_tree_gang_lookup_node:
916 1.1 yamt *
917 1.18 ad * Scan the tree starting from the given index in the ascending order and
918 1.18 ad * return found nodes.
919 1.18 ad *
920 1.1 yamt * results should be an array large enough to hold maxresults pointers.
921 1.18 ad * This function returns the number of nodes found, up to maxresults.
922 1.18 ad * Returning less than maxresults means there are no more nodes in the tree.
923 1.1 yamt *
924 1.18 ad * If dense == true, this function stops scanning when it founds a hole of
925 1.18 ad * indexes. I.e. an index for which radix_tree_lookup_node would returns NULL.
926 1.18 ad * If dense == false, this function skips holes and continue scanning until
927 1.18 ad * maxresults nodes are found or it reaches the limit of the index range.
928 1.18 ad *
929 1.18 ad * The result of this function is semantically equivalent to what could be
930 1.1 yamt * obtained by repeated calls of radix_tree_lookup_node with increasing index.
931 1.18 ad * but this function is expected to be computationally cheaper when looking up
932 1.18 ad * multiple nodes at once. Especially, it's expected to be much cheaper when
933 1.18 ad * node indexes are distributed sparsely.
934 1.18 ad *
935 1.18 ad * Note that this function doesn't return index values of found nodes.
936 1.18 ad * Thus, in the case of dense == false, if index values are important for
937 1.18 ad * a caller, it's the caller's responsibility to check them, typically
938 1.29 andvar * by examining the returned nodes using some caller-specific knowledge
939 1.18 ad * about them.
940 1.18 ad * In the case of dense == true, a node returned via results[N] is always for
941 1.18 ad * the index (idx + N).
942 1.1 yamt */
943 1.1 yamt
944 1.1 yamt unsigned int
945 1.1 yamt radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
946 1.18 ad void **results, unsigned int maxresults, bool dense)
947 1.1 yamt {
948 1.1 yamt struct radix_tree_path path;
949 1.1 yamt
950 1.1 yamt gang_lookup_init(t, idx, &path, 0);
951 1.18 ad return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
952 1.15 yamt }
953 1.15 yamt
954 1.15 yamt /*
955 1.15 yamt * radix_tree_gang_lookup_node_reverse:
956 1.15 yamt *
957 1.18 ad * Same as radix_tree_gang_lookup_node except that this one scans the
958 1.18 ad * tree in the reverse order. I.e. descending index values.
959 1.15 yamt */
960 1.15 yamt
961 1.15 yamt unsigned int
962 1.15 yamt radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
963 1.18 ad void **results, unsigned int maxresults, bool dense)
964 1.15 yamt {
965 1.15 yamt struct radix_tree_path path;
966 1.15 yamt
967 1.15 yamt gang_lookup_init(t, idx, &path, 0);
968 1.18 ad return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
969 1.1 yamt }
970 1.1 yamt
971 1.1 yamt /*
972 1.1 yamt * radix_tree_gang_lookup_tagged_node:
973 1.1 yamt *
974 1.18 ad * Same as radix_tree_gang_lookup_node except that this one only returns
975 1.1 yamt * nodes tagged with tagid.
976 1.18 ad *
977 1.18 ad * It's illegal to call this function with tagmask 0.
978 1.1 yamt */
979 1.1 yamt
980 1.1 yamt unsigned int
981 1.1 yamt radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
982 1.18 ad void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
983 1.1 yamt {
984 1.1 yamt struct radix_tree_path path;
985 1.1 yamt
986 1.18 ad KASSERT(tagmask != 0);
987 1.1 yamt gang_lookup_init(t, idx, &path, tagmask);
988 1.18 ad return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
989 1.18 ad dense);
990 1.15 yamt }
991 1.15 yamt
992 1.15 yamt /*
993 1.15 yamt * radix_tree_gang_lookup_tagged_node_reverse:
994 1.15 yamt *
995 1.18 ad * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
996 1.18 ad * tree in the reverse order. I.e. descending index values.
997 1.15 yamt */
998 1.15 yamt
999 1.15 yamt unsigned int
1000 1.15 yamt radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
1001 1.18 ad void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
1002 1.15 yamt {
1003 1.15 yamt struct radix_tree_path path;
1004 1.15 yamt
1005 1.18 ad KASSERT(tagmask != 0);
1006 1.15 yamt gang_lookup_init(t, idx, &path, tagmask);
1007 1.18 ad return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
1008 1.18 ad dense);
1009 1.1 yamt }
1010 1.1 yamt
1011 1.4 yamt /*
1012 1.4 yamt * radix_tree_get_tag:
1013 1.4 yamt *
1014 1.18 ad * Return the tagmask for the node at the given index.
1015 1.18 ad *
1016 1.18 ad * It's illegal to call this function for a node which has not been inserted.
1017 1.4 yamt */
1018 1.4 yamt
1019 1.18 ad unsigned int
1020 1.18 ad radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1021 1.1 yamt {
1022 1.18 ad /*
1023 1.18 ad * the following two implementations should behave same.
1024 1.18 ad * the former one was chosen because it seems faster.
1025 1.18 ad */
1026 1.1 yamt #if 1
1027 1.1 yamt void **vpp;
1028 1.1 yamt
1029 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
1030 1.1 yamt if (vpp == NULL) {
1031 1.1 yamt return false;
1032 1.1 yamt }
1033 1.1 yamt KASSERT(*vpp != NULL);
1034 1.18 ad return (entry_tagmask(*vpp) & tagmask);
1035 1.1 yamt #else
1036 1.1 yamt void **vpp;
1037 1.1 yamt
1038 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
1039 1.1 yamt KASSERT(vpp != NULL);
1040 1.18 ad return (entry_tagmask(*vpp) & tagmask);
1041 1.1 yamt #endif
1042 1.1 yamt }
1043 1.1 yamt
1044 1.4 yamt /*
1045 1.4 yamt * radix_tree_set_tag:
1046 1.4 yamt *
1047 1.18 ad * Set the tag for the node at the given index.
1048 1.18 ad *
1049 1.18 ad * It's illegal to call this function for a node which has not been inserted.
1050 1.18 ad * It's illegal to call this function with tagmask 0.
1051 1.4 yamt */
1052 1.4 yamt
1053 1.1 yamt void
1054 1.18 ad radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1055 1.1 yamt {
1056 1.1 yamt struct radix_tree_path path;
1057 1.18 ad void **vpp __unused;
1058 1.1 yamt int i;
1059 1.1 yamt
1060 1.18 ad KASSERT(tagmask != 0);
1061 1.19 ad vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
1062 1.1 yamt KASSERT(vpp != NULL);
1063 1.1 yamt KASSERT(*vpp != NULL);
1064 1.1 yamt KASSERT(path.p_lastidx == t->t_height);
1065 1.1 yamt KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
1066 1.1 yamt for (i = t->t_height; i >= 0; i--) {
1067 1.1 yamt void ** const pptr = (void **)path_pptr(t, &path, i);
1068 1.1 yamt void *entry;
1069 1.1 yamt
1070 1.1 yamt KASSERT(pptr != NULL);
1071 1.1 yamt entry = *pptr;
1072 1.1 yamt if ((entry_tagmask(entry) & tagmask) != 0) {
1073 1.1 yamt break;
1074 1.1 yamt }
1075 1.1 yamt *pptr = (void *)((uintptr_t)entry | tagmask);
1076 1.1 yamt }
1077 1.1 yamt }
1078 1.1 yamt
1079 1.4 yamt /*
1080 1.4 yamt * radix_tree_clear_tag:
1081 1.4 yamt *
1082 1.18 ad * Clear the tag for the node at the given index.
1083 1.18 ad *
1084 1.18 ad * It's illegal to call this function for a node which has not been inserted.
1085 1.18 ad * It's illegal to call this function with tagmask 0.
1086 1.4 yamt */
1087 1.4 yamt
1088 1.1 yamt void
1089 1.18 ad radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1090 1.1 yamt {
1091 1.1 yamt struct radix_tree_path path;
1092 1.1 yamt void **vpp;
1093 1.1 yamt int i;
1094 1.1 yamt
1095 1.18 ad KASSERT(tagmask != 0);
1096 1.1 yamt vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
1097 1.1 yamt KASSERT(vpp != NULL);
1098 1.1 yamt KASSERT(*vpp != NULL);
1099 1.1 yamt KASSERT(path.p_lastidx == t->t_height);
1100 1.1 yamt KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
1101 1.7 yamt /*
1102 1.7 yamt * if already cleared, nothing to do
1103 1.7 yamt */
1104 1.1 yamt if ((entry_tagmask(*vpp) & tagmask) == 0) {
1105 1.1 yamt return;
1106 1.1 yamt }
1107 1.7 yamt /*
1108 1.7 yamt * clear the tag only if no children have the tag.
1109 1.7 yamt */
1110 1.1 yamt for (i = t->t_height; i >= 0; i--) {
1111 1.1 yamt void ** const pptr = (void **)path_pptr(t, &path, i);
1112 1.1 yamt void *entry;
1113 1.1 yamt
1114 1.1 yamt KASSERT(pptr != NULL);
1115 1.1 yamt entry = *pptr;
1116 1.1 yamt KASSERT((entry_tagmask(entry) & tagmask) != 0);
1117 1.1 yamt *pptr = entry_compose(entry_ptr(entry),
1118 1.1 yamt entry_tagmask(entry) & ~tagmask);
1119 1.7 yamt /*
1120 1.7 yamt * check if we should proceed to process the next level.
1121 1.7 yamt */
1122 1.7 yamt if (0 < i) {
1123 1.1 yamt struct radix_tree_node *n = path_node(t, &path, i - 1);
1124 1.1 yamt
1125 1.26 ad if ((radix_tree_sum_node(n) & tagmask) != 0) {
1126 1.1 yamt break;
1127 1.1 yamt }
1128 1.1 yamt }
1129 1.1 yamt }
1130 1.1 yamt }
1131 1.1 yamt
1132 1.1 yamt #if defined(UNITTEST)
1133 1.1 yamt
1134 1.1 yamt #include <inttypes.h>
1135 1.1 yamt #include <stdio.h>
1136 1.1 yamt
1137 1.1 yamt static void
1138 1.1 yamt radix_tree_dump_node(const struct radix_tree *t, void *vp,
1139 1.1 yamt uint64_t offset, unsigned int height)
1140 1.1 yamt {
1141 1.1 yamt struct radix_tree_node *n;
1142 1.1 yamt unsigned int i;
1143 1.1 yamt
1144 1.1 yamt for (i = 0; i < t->t_height - height; i++) {
1145 1.1 yamt printf(" ");
1146 1.1 yamt }
1147 1.1 yamt if (entry_tagmask(vp) == 0) {
1148 1.1 yamt printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
1149 1.1 yamt } else {
1150 1.1 yamt printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
1151 1.1 yamt entry_tagmask(vp));
1152 1.1 yamt }
1153 1.1 yamt if (height == 0) {
1154 1.1 yamt printf(" (leaf)\n");
1155 1.1 yamt return;
1156 1.1 yamt }
1157 1.1 yamt n = entry_ptr(vp);
1158 1.26 ad assert((radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK) ==
1159 1.24 ad entry_tagmask(vp));
1160 1.19 ad printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
1161 1.1 yamt for (i = 0; i < __arraycount(n->n_ptrs); i++) {
1162 1.1 yamt void *c;
1163 1.1 yamt
1164 1.1 yamt c = n->n_ptrs[i];
1165 1.1 yamt if (c == NULL) {
1166 1.1 yamt continue;
1167 1.1 yamt }
1168 1.1 yamt radix_tree_dump_node(t, c,
1169 1.1 yamt offset + i * (UINT64_C(1) <<
1170 1.1 yamt (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
1171 1.1 yamt }
1172 1.1 yamt }
1173 1.1 yamt
1174 1.1 yamt void radix_tree_dump(const struct radix_tree *);
1175 1.1 yamt
1176 1.1 yamt void
1177 1.1 yamt radix_tree_dump(const struct radix_tree *t)
1178 1.1 yamt {
1179 1.1 yamt
1180 1.1 yamt printf("tree %p height=%u\n", t, t->t_height);
1181 1.1 yamt radix_tree_dump_node(t, t->t_root, 0, t->t_height);
1182 1.1 yamt }
1183 1.1 yamt
1184 1.1 yamt static void
1185 1.1 yamt test1(void)
1186 1.1 yamt {
1187 1.1 yamt struct radix_tree s;
1188 1.1 yamt struct radix_tree *t = &s;
1189 1.1 yamt void *results[3];
1190 1.1 yamt
1191 1.1 yamt radix_tree_init_tree(t);
1192 1.1 yamt radix_tree_dump(t);
1193 1.1 yamt assert(radix_tree_lookup_node(t, 0) == NULL);
1194 1.1 yamt assert(radix_tree_lookup_node(t, 1000) == NULL);
1195 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
1196 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1197 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1198 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1199 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1200 1.18 ad 0);
1201 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1202 1.18 ad 0);
1203 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1204 1.18 ad == 0);
1205 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1206 1.18 ad == 0);
1207 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1208 1.18 ad == 0);
1209 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1210 1.18 ad == 0);
1211 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
1212 1.18 ad == 0);
1213 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
1214 1.15 yamt == 0);
1215 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1216 1.18 ad false, 1) == 0);
1217 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1218 1.18 ad true, 1) == 0);
1219 1.15 yamt assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1220 1.18 ad false, 1) == 0);
1221 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1222 1.18 ad true, 1) == 0);
1223 1.15 yamt assert(radix_tree_empty_tree_p(t));
1224 1.16 yamt assert(radix_tree_empty_tagged_tree_p(t, 1));
1225 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, 2));
1226 1.15 yamt assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
1227 1.15 yamt assert(!radix_tree_empty_tree_p(t));
1228 1.16 yamt assert(radix_tree_empty_tagged_tree_p(t, 1));
1229 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, 2));
1230 1.15 yamt assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
1231 1.15 yamt assert(radix_tree_lookup_node(t, 1000) == NULL);
1232 1.15 yamt memset(results, 0, sizeof(results));
1233 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1234 1.18 ad assert(results[0] == (void *)0xdeadbea0);
1235 1.18 ad memset(results, 0, sizeof(results));
1236 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1237 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1238 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1239 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1240 1.15 yamt memset(results, 0, sizeof(results));
1241 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1242 1.18 ad 1);
1243 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1244 1.15 yamt memset(results, 0, sizeof(results));
1245 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1246 1.18 ad 1);
1247 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1248 1.18 ad memset(results, 0, sizeof(results));
1249 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1250 1.18 ad == 1);
1251 1.18 ad assert(results[0] == (void *)0xdeadbea0);
1252 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1253 1.18 ad == 0);
1254 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1255 1.15 yamt == 0);
1256 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1257 1.15 yamt == 0);
1258 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1259 1.18 ad false, 1) == 0);
1260 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1261 1.18 ad true, 1) == 0);
1262 1.1 yamt assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
1263 1.15 yamt assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
1264 1.15 yamt assert(!radix_tree_empty_tree_p(t));
1265 1.1 yamt radix_tree_dump(t);
1266 1.15 yamt assert(radix_tree_lookup_node(t, 0) == NULL);
1267 1.15 yamt assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1268 1.15 yamt memset(results, 0, sizeof(results));
1269 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1270 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1271 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1272 1.15 yamt memset(results, 0, sizeof(results));
1273 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
1274 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1275 1.15 yamt memset(results, 0, sizeof(results));
1276 1.18 ad assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
1277 1.15 yamt assert(results[0] == (void *)0xdeadbea0);
1278 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
1279 1.15 yamt == 0);
1280 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
1281 1.15 yamt == 0);
1282 1.18 ad memset(results, 0, sizeof(results));
1283 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1284 1.18 ad == 1);
1285 1.18 ad memset(results, 0, sizeof(results));
1286 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1287 1.18 ad == 1);
1288 1.18 ad assert(results[0] == (void *)0xdeadbea0);
1289 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1290 1.18 ad == 0);
1291 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1292 1.18 ad == 0);
1293 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1294 1.18 ad false, 1) == 0);
1295 1.18 ad assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1296 1.18 ad true, 1) == 0);
1297 1.18 ad assert(!radix_tree_get_tag(t, 1000, 1));
1298 1.18 ad assert(!radix_tree_get_tag(t, 1000, 2));
1299 1.18 ad assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
1300 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, 1));
1301 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, 2));
1302 1.18 ad radix_tree_set_tag(t, 1000, 2);
1303 1.1 yamt assert(!radix_tree_get_tag(t, 1000, 1));
1304 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1305 1.18 ad assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1306 1.16 yamt assert(radix_tree_empty_tagged_tree_p(t, 1));
1307 1.18 ad assert(!radix_tree_empty_tagged_tree_p(t, 2));
1308 1.1 yamt radix_tree_dump(t);
1309 1.1 yamt assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1310 1.1 yamt assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
1311 1.1 yamt radix_tree_dump(t);
1312 1.1 yamt assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1313 1.1 yamt assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1314 1.1 yamt assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
1315 1.1 yamt == 0);
1316 1.1 yamt radix_tree_dump(t);
1317 1.1 yamt assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1318 1.1 yamt assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1319 1.1 yamt assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
1320 1.1 yamt (void *)0xdea0);
1321 1.1 yamt radix_tree_dump(t);
1322 1.18 ad assert(!radix_tree_get_tag(t, 0, 2));
1323 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1324 1.1 yamt assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
1325 1.27 msaitoh radix_tree_set_tag(t, 0, 2);
1326 1.18 ad radix_tree_set_tag(t, UINT64_C(10000000000), 2);
1327 1.1 yamt radix_tree_dump(t);
1328 1.18 ad assert(radix_tree_get_tag(t, 0, 2));
1329 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1330 1.18 ad assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1331 1.27 msaitoh radix_tree_clear_tag(t, 0, 2);
1332 1.18 ad radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
1333 1.1 yamt radix_tree_dump(t);
1334 1.18 ad assert(!radix_tree_get_tag(t, 0, 2));
1335 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1336 1.18 ad assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1337 1.1 yamt radix_tree_dump(t);
1338 1.1 yamt assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
1339 1.1 yamt (void *)0xdeadbea0);
1340 1.18 ad assert(!radix_tree_get_tag(t, 1000, 1));
1341 1.18 ad assert(radix_tree_get_tag(t, 1000, 2));
1342 1.18 ad assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1343 1.18 ad memset(results, 0, sizeof(results));
1344 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
1345 1.1 yamt assert(results[0] == (void *)0xbea0);
1346 1.1 yamt assert(results[1] == (void *)0x12345678);
1347 1.1 yamt assert(results[2] == (void *)0xdea0);
1348 1.18 ad memset(results, 0, sizeof(results));
1349 1.18 ad assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1350 1.18 ad assert(results[0] == (void *)0xbea0);
1351 1.18 ad memset(results, 0, sizeof(results));
1352 1.18 ad assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
1353 1.1 yamt assert(results[0] == (void *)0x12345678);
1354 1.1 yamt assert(results[1] == (void *)0xdea0);
1355 1.18 ad assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
1356 1.18 ad memset(results, 0, sizeof(results));
1357 1.18 ad assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
1358 1.1 yamt assert(results[0] == (void *)0xdea0);
1359 1.18 ad assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
1360 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1361 1.18 ad false) == 0);
1362 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1363 1.18 ad true) == 0);
1364 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1365 1.18 ad 3, false) == 0);
1366 1.1 yamt assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1367 1.18 ad 3, true) == 0);
1368 1.18 ad memset(results, 0, sizeof(results));
1369 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
1370 1.18 ad == 1);
1371 1.1 yamt assert(results[0] == (void *)0x12345678);
1372 1.18 ad assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
1373 1.18 ad == 0);
1374 1.1 yamt assert(entry_tagmask(t->t_root) != 0);
1375 1.1 yamt assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
1376 1.1 yamt assert(entry_tagmask(t->t_root) == 0);
1377 1.1 yamt radix_tree_dump(t);
1378 1.18 ad assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
1379 1.18 ad == 0);
1380 1.18 ad memset(results, 0, sizeof(results));
1381 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1382 1.18 ad false) == 2);
1383 1.18 ad assert(results[0] == (void *)0xdea0);
1384 1.18 ad assert(results[1] == (void *)0xfff0);
1385 1.18 ad memset(results, 0, sizeof(results));
1386 1.18 ad assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1387 1.18 ad true) == 2);
1388 1.18 ad assert(results[0] == (void *)0xdea0);
1389 1.18 ad assert(results[1] == (void *)0xfff0);
1390 1.18 ad memset(results, 0, sizeof(results));
1391 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1392 1.18 ad results, 3, false) == 3);
1393 1.18 ad assert(results[0] == (void *)0xfff0);
1394 1.18 ad assert(results[1] == (void *)0xdea0);
1395 1.18 ad assert(results[2] == (void *)0xbea0);
1396 1.18 ad memset(results, 0, sizeof(results));
1397 1.18 ad assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1398 1.18 ad results, 3, true) == 2);
1399 1.18 ad assert(results[0] == (void *)0xfff0);
1400 1.18 ad assert(results[1] == (void *)0xdea0);
1401 1.1 yamt assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
1402 1.1 yamt (void *)0xdea0);
1403 1.18 ad assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
1404 1.18 ad (void *)0xfff0);
1405 1.1 yamt radix_tree_dump(t);
1406 1.1 yamt assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
1407 1.1 yamt radix_tree_dump(t);
1408 1.1 yamt radix_tree_fini_tree(t);
1409 1.1 yamt }
1410 1.1 yamt
1411 1.1 yamt #include <sys/time.h>
1412 1.1 yamt
1413 1.1 yamt struct testnode {
1414 1.1 yamt uint64_t idx;
1415 1.12 yamt bool tagged[RADIX_TREE_TAG_ID_MAX];
1416 1.1 yamt };
1417 1.1 yamt
1418 1.1 yamt static void
1419 1.11 yamt printops(const char *title, const char *name, int tag, unsigned int n,
1420 1.11 yamt const struct timeval *stv, const struct timeval *etv)
1421 1.1 yamt {
1422 1.1 yamt uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
1423 1.1 yamt uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
1424 1.1 yamt
1425 1.11 yamt printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
1426 1.11 yamt (double)n / (e - s) * 1000000);
1427 1.1 yamt }
1428 1.1 yamt
1429 1.1 yamt #define TEST2_GANG_LOOKUP_NODES 16
1430 1.1 yamt
1431 1.1 yamt static bool
1432 1.18 ad test2_should_tag(unsigned int i, unsigned int tagid)
1433 1.1 yamt {
1434 1.1 yamt
1435 1.1 yamt if (tagid == 0) {
1436 1.18 ad return (i % 4) == 0; /* 25% */
1437 1.1 yamt } else {
1438 1.11 yamt return (i % 7) == 0; /* 14% */
1439 1.1 yamt }
1440 1.18 ad return 1;
1441 1.18 ad }
1442 1.18 ad
1443 1.18 ad static void
1444 1.18 ad check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
1445 1.18 ad unsigned int count)
1446 1.18 ad {
1447 1.18 ad unsigned int tag;
1448 1.18 ad
1449 1.18 ad for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1450 1.18 ad if ((tagmask & (1 << tag)) == 0) {
1451 1.18 ad continue;
1452 1.18 ad }
1453 1.18 ad if (((tagmask - 1) & tagmask) == 0) {
1454 1.18 ad assert(count == ntagged[tag]);
1455 1.18 ad } else {
1456 1.18 ad assert(count >= ntagged[tag]);
1457 1.18 ad }
1458 1.18 ad }
1459 1.1 yamt }
1460 1.1 yamt
1461 1.1 yamt static void
1462 1.11 yamt test2(const char *title, bool dense)
1463 1.1 yamt {
1464 1.1 yamt struct radix_tree s;
1465 1.1 yamt struct radix_tree *t = &s;
1466 1.1 yamt struct testnode *n;
1467 1.1 yamt unsigned int i;
1468 1.1 yamt unsigned int nnodes = 100000;
1469 1.1 yamt unsigned int removed;
1470 1.18 ad unsigned int tag;
1471 1.18 ad unsigned int tagmask;
1472 1.1 yamt unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
1473 1.1 yamt struct testnode *nodes;
1474 1.1 yamt struct timeval stv;
1475 1.1 yamt struct timeval etv;
1476 1.1 yamt
1477 1.1 yamt nodes = malloc(nnodes * sizeof(*nodes));
1478 1.1 yamt for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1479 1.1 yamt ntagged[tag] = 0;
1480 1.1 yamt }
1481 1.1 yamt radix_tree_init_tree(t);
1482 1.1 yamt for (i = 0; i < nnodes; i++) {
1483 1.1 yamt n = &nodes[i];
1484 1.1 yamt n->idx = random();
1485 1.1 yamt if (sizeof(long) == 4) {
1486 1.1 yamt n->idx <<= 32;
1487 1.1 yamt n->idx |= (uint32_t)random();
1488 1.1 yamt }
1489 1.1 yamt if (dense) {
1490 1.1 yamt n->idx %= nnodes * 2;
1491 1.1 yamt }
1492 1.1 yamt while (radix_tree_lookup_node(t, n->idx) != NULL) {
1493 1.1 yamt n->idx++;
1494 1.1 yamt }
1495 1.1 yamt radix_tree_insert_node(t, n->idx, n);
1496 1.1 yamt for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1497 1.18 ad tagmask = 1 << tag;
1498 1.18 ad
1499 1.12 yamt n->tagged[tag] = test2_should_tag(i, tag);
1500 1.12 yamt if (n->tagged[tag]) {
1501 1.18 ad radix_tree_set_tag(t, n->idx, tagmask);
1502 1.1 yamt ntagged[tag]++;
1503 1.1 yamt }
1504 1.18 ad assert((n->tagged[tag] ? tagmask : 0) ==
1505 1.18 ad radix_tree_get_tag(t, n->idx, tagmask));
1506 1.1 yamt }
1507 1.1 yamt }
1508 1.1 yamt
1509 1.1 yamt gettimeofday(&stv, NULL);
1510 1.1 yamt for (i = 0; i < nnodes; i++) {
1511 1.1 yamt n = &nodes[i];
1512 1.1 yamt assert(radix_tree_lookup_node(t, n->idx) == n);
1513 1.1 yamt }
1514 1.1 yamt gettimeofday(&etv, NULL);
1515 1.11 yamt printops(title, "lookup", 0, nnodes, &stv, &etv);
1516 1.1 yamt
1517 1.18 ad for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1518 1.12 yamt unsigned int count = 0;
1519 1.12 yamt
1520 1.1 yamt gettimeofday(&stv, NULL);
1521 1.1 yamt for (i = 0; i < nnodes; i++) {
1522 1.18 ad unsigned int tagged;
1523 1.12 yamt
1524 1.1 yamt n = &nodes[i];
1525 1.18 ad tagged = radix_tree_get_tag(t, n->idx, tagmask);
1526 1.18 ad assert((tagged & ~tagmask) == 0);
1527 1.18 ad for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1528 1.18 ad assert((tagmask & (1 << tag)) == 0 ||
1529 1.18 ad n->tagged[tag] == !!(tagged & (1 << tag)));
1530 1.18 ad }
1531 1.12 yamt if (tagged) {
1532 1.12 yamt count++;
1533 1.12 yamt }
1534 1.1 yamt }
1535 1.1 yamt gettimeofday(&etv, NULL);
1536 1.18 ad check_tag_count(ntagged, tagmask, count);
1537 1.18 ad printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
1538 1.1 yamt }
1539 1.1 yamt
1540 1.1 yamt gettimeofday(&stv, NULL);
1541 1.1 yamt for (i = 0; i < nnodes; i++) {
1542 1.1 yamt n = &nodes[i];
1543 1.1 yamt radix_tree_remove_node(t, n->idx);
1544 1.1 yamt }
1545 1.1 yamt gettimeofday(&etv, NULL);
1546 1.11 yamt printops(title, "remove", 0, nnodes, &stv, &etv);
1547 1.1 yamt
1548 1.1 yamt gettimeofday(&stv, NULL);
1549 1.1 yamt for (i = 0; i < nnodes; i++) {
1550 1.1 yamt n = &nodes[i];
1551 1.1 yamt radix_tree_insert_node(t, n->idx, n);
1552 1.1 yamt }
1553 1.1 yamt gettimeofday(&etv, NULL);
1554 1.11 yamt printops(title, "insert", 0, nnodes, &stv, &etv);
1555 1.1 yamt
1556 1.1 yamt for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1557 1.18 ad tagmask = 1 << tag;
1558 1.18 ad
1559 1.1 yamt ntagged[tag] = 0;
1560 1.1 yamt gettimeofday(&stv, NULL);
1561 1.1 yamt for (i = 0; i < nnodes; i++) {
1562 1.1 yamt n = &nodes[i];
1563 1.12 yamt if (n->tagged[tag]) {
1564 1.18 ad radix_tree_set_tag(t, n->idx, tagmask);
1565 1.1 yamt ntagged[tag]++;
1566 1.1 yamt }
1567 1.1 yamt }
1568 1.1 yamt gettimeofday(&etv, NULL);
1569 1.11 yamt printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
1570 1.1 yamt }
1571 1.1 yamt
1572 1.1 yamt gettimeofday(&stv, NULL);
1573 1.1 yamt {
1574 1.1 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1575 1.1 yamt uint64_t nextidx;
1576 1.1 yamt unsigned int nfound;
1577 1.1 yamt unsigned int total;
1578 1.1 yamt
1579 1.1 yamt nextidx = 0;
1580 1.1 yamt total = 0;
1581 1.1 yamt while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1582 1.18 ad (void *)results, __arraycount(results), false)) > 0) {
1583 1.1 yamt nextidx = results[nfound - 1]->idx + 1;
1584 1.1 yamt total += nfound;
1585 1.15 yamt if (nextidx == 0) {
1586 1.15 yamt break;
1587 1.15 yamt }
1588 1.1 yamt }
1589 1.1 yamt assert(total == nnodes);
1590 1.1 yamt }
1591 1.1 yamt gettimeofday(&etv, NULL);
1592 1.11 yamt printops(title, "ganglookup", 0, nnodes, &stv, &etv);
1593 1.1 yamt
1594 1.15 yamt gettimeofday(&stv, NULL);
1595 1.15 yamt {
1596 1.15 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1597 1.15 yamt uint64_t nextidx;
1598 1.15 yamt unsigned int nfound;
1599 1.15 yamt unsigned int total;
1600 1.15 yamt
1601 1.15 yamt nextidx = UINT64_MAX;
1602 1.15 yamt total = 0;
1603 1.15 yamt while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
1604 1.18 ad (void *)results, __arraycount(results), false)) > 0) {
1605 1.15 yamt nextidx = results[nfound - 1]->idx - 1;
1606 1.15 yamt total += nfound;
1607 1.15 yamt if (nextidx == UINT64_MAX) {
1608 1.15 yamt break;
1609 1.15 yamt }
1610 1.15 yamt }
1611 1.15 yamt assert(total == nnodes);
1612 1.15 yamt }
1613 1.15 yamt gettimeofday(&etv, NULL);
1614 1.15 yamt printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
1615 1.15 yamt
1616 1.18 ad for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1617 1.18 ad unsigned int total = 0;
1618 1.18 ad
1619 1.1 yamt gettimeofday(&stv, NULL);
1620 1.1 yamt {
1621 1.1 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1622 1.1 yamt uint64_t nextidx;
1623 1.1 yamt unsigned int nfound;
1624 1.1 yamt
1625 1.1 yamt nextidx = 0;
1626 1.1 yamt while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1627 1.1 yamt nextidx, (void *)results, __arraycount(results),
1628 1.18 ad false, tagmask)) > 0) {
1629 1.1 yamt nextidx = results[nfound - 1]->idx + 1;
1630 1.1 yamt total += nfound;
1631 1.1 yamt }
1632 1.1 yamt }
1633 1.1 yamt gettimeofday(&etv, NULL);
1634 1.18 ad check_tag_count(ntagged, tagmask, total);
1635 1.18 ad assert(tagmask != 0 || total == 0);
1636 1.18 ad printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
1637 1.1 yamt }
1638 1.1 yamt
1639 1.18 ad for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1640 1.18 ad unsigned int total = 0;
1641 1.18 ad
1642 1.15 yamt gettimeofday(&stv, NULL);
1643 1.15 yamt {
1644 1.15 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1645 1.15 yamt uint64_t nextidx;
1646 1.15 yamt unsigned int nfound;
1647 1.15 yamt
1648 1.15 yamt nextidx = UINT64_MAX;
1649 1.15 yamt while ((nfound =
1650 1.15 yamt radix_tree_gang_lookup_tagged_node_reverse(t,
1651 1.15 yamt nextidx, (void *)results, __arraycount(results),
1652 1.18 ad false, tagmask)) > 0) {
1653 1.15 yamt nextidx = results[nfound - 1]->idx - 1;
1654 1.15 yamt total += nfound;
1655 1.15 yamt if (nextidx == UINT64_MAX) {
1656 1.15 yamt break;
1657 1.15 yamt }
1658 1.15 yamt }
1659 1.15 yamt }
1660 1.15 yamt gettimeofday(&etv, NULL);
1661 1.18 ad check_tag_count(ntagged, tagmask, total);
1662 1.18 ad assert(tagmask != 0 || total == 0);
1663 1.18 ad printops(title, "ganglookup_tag_reverse", tagmask, total,
1664 1.15 yamt &stv, &etv);
1665 1.15 yamt }
1666 1.15 yamt
1667 1.1 yamt removed = 0;
1668 1.1 yamt for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1669 1.1 yamt unsigned int total;
1670 1.1 yamt
1671 1.1 yamt total = 0;
1672 1.18 ad tagmask = 1 << tag;
1673 1.1 yamt gettimeofday(&stv, NULL);
1674 1.1 yamt {
1675 1.1 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1676 1.1 yamt uint64_t nextidx;
1677 1.1 yamt unsigned int nfound;
1678 1.1 yamt
1679 1.1 yamt nextidx = 0;
1680 1.1 yamt while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1681 1.1 yamt nextidx, (void *)results, __arraycount(results),
1682 1.18 ad false, tagmask)) > 0) {
1683 1.1 yamt for (i = 0; i < nfound; i++) {
1684 1.1 yamt radix_tree_remove_node(t,
1685 1.1 yamt results[i]->idx);
1686 1.1 yamt }
1687 1.1 yamt nextidx = results[nfound - 1]->idx + 1;
1688 1.1 yamt total += nfound;
1689 1.15 yamt if (nextidx == 0) {
1690 1.15 yamt break;
1691 1.15 yamt }
1692 1.1 yamt }
1693 1.18 ad }
1694 1.18 ad gettimeofday(&etv, NULL);
1695 1.18 ad if (tag == 0) {
1696 1.18 ad check_tag_count(ntagged, tagmask, total);
1697 1.18 ad } else {
1698 1.1 yamt assert(total <= ntagged[tag]);
1699 1.1 yamt }
1700 1.18 ad printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
1701 1.11 yamt &etv);
1702 1.1 yamt removed += total;
1703 1.1 yamt }
1704 1.1 yamt
1705 1.1 yamt gettimeofday(&stv, NULL);
1706 1.1 yamt {
1707 1.1 yamt struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1708 1.1 yamt uint64_t nextidx;
1709 1.1 yamt unsigned int nfound;
1710 1.1 yamt unsigned int total;
1711 1.1 yamt
1712 1.1 yamt nextidx = 0;
1713 1.1 yamt total = 0;
1714 1.1 yamt while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1715 1.18 ad (void *)results, __arraycount(results), false)) > 0) {
1716 1.1 yamt for (i = 0; i < nfound; i++) {
1717 1.1 yamt assert(results[i] == radix_tree_remove_node(t,
1718 1.1 yamt results[i]->idx));
1719 1.1 yamt }
1720 1.1 yamt nextidx = results[nfound - 1]->idx + 1;
1721 1.1 yamt total += nfound;
1722 1.15 yamt if (nextidx == 0) {
1723 1.15 yamt break;
1724 1.15 yamt }
1725 1.1 yamt }
1726 1.1 yamt assert(total == nnodes - removed);
1727 1.1 yamt }
1728 1.1 yamt gettimeofday(&etv, NULL);
1729 1.11 yamt printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
1730 1.1 yamt
1731 1.16 yamt assert(radix_tree_empty_tree_p(t));
1732 1.18 ad for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1733 1.18 ad assert(radix_tree_empty_tagged_tree_p(t, tagmask));
1734 1.18 ad }
1735 1.1 yamt radix_tree_fini_tree(t);
1736 1.1 yamt free(nodes);
1737 1.1 yamt }
1738 1.1 yamt
1739 1.1 yamt int
1740 1.1 yamt main(int argc, char *argv[])
1741 1.1 yamt {
1742 1.1 yamt
1743 1.1 yamt test1();
1744 1.11 yamt test2("dense", true);
1745 1.11 yamt test2("sparse", false);
1746 1.1 yamt return 0;
1747 1.1 yamt }
1748 1.1 yamt
1749 1.1 yamt #endif /* defined(UNITTEST) */
1750