Home | History | Annotate | Line # | Download | only in gen
radixtree.c revision 1.32
      1  1.32       ad /*	$NetBSD: radixtree.c,v 1.32 2023/09/23 18:21:11 ad Exp $	*/
      2   1.1     yamt 
      3   1.1     yamt /*-
      4  1.18       ad  * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
      5   1.1     yamt  * All rights reserved.
      6   1.1     yamt  *
      7   1.1     yamt  * Redistribution and use in source and binary forms, with or without
      8   1.1     yamt  * modification, are permitted provided that the following conditions
      9   1.1     yamt  * are met:
     10   1.1     yamt  * 1. Redistributions of source code must retain the above copyright
     11   1.1     yamt  *    notice, this list of conditions and the following disclaimer.
     12   1.1     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1     yamt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1     yamt  *    documentation and/or other materials provided with the distribution.
     15   1.1     yamt  *
     16   1.1     yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1     yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1     yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1     yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1     yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1     yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1     yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1     yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1     yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1     yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1     yamt  * SUCH DAMAGE.
     27   1.1     yamt  */
     28   1.1     yamt 
     29   1.1     yamt /*
     30  1.17     yamt  * radixtree.c
     31   1.1     yamt  *
     32  1.18       ad  * Overview:
     33  1.18       ad  *
     34  1.18       ad  * This is an implementation of radix tree, whose keys are uint64_t and leafs
     35  1.17     yamt  * are user provided pointers.
     36  1.17     yamt  *
     37  1.18       ad  * Leaf nodes are just void * and this implementation doesn't care about
     38  1.18       ad  * what they actually point to.  However, this implementation has an assumption
     39  1.18       ad  * about their alignment.  Specifically, this implementation assumes that their
     40  1.18       ad  * 2 LSBs are always zero and uses them for internal accounting.
     41  1.18       ad  *
     42  1.18       ad  * Intermediate nodes and memory allocation:
     43  1.18       ad  *
     44  1.18       ad  * Intermediate nodes are automatically allocated and freed internally and
     45  1.18       ad  * basically users don't need to care about them.  The allocation is done via
     46  1.32       ad  * kmem_zalloc(9) for _KERNEL, malloc(3) for userland, and alloc() for
     47  1.18       ad  * _STANDALONE environment.  Only radix_tree_insert_node function can allocate
     48  1.18       ad  * memory for intermediate nodes and thus can fail for ENOMEM.
     49  1.18       ad  *
     50  1.18       ad  * Memory Efficiency:
     51  1.18       ad  *
     52  1.18       ad  * It's designed to work efficiently with dense index distribution.
     53  1.18       ad  * The memory consumption (number of necessary intermediate nodes) heavily
     54  1.18       ad  * depends on the index distribution.  Basically, more dense index distribution
     55  1.18       ad  * consumes less nodes per item.  Approximately,
     56  1.18       ad  *
     57  1.18       ad  *  - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
     58  1.18       ad  *    it would look like the following.
     59  1.18       ad  *
     60  1.18       ad  *     root (t_height=1)
     61  1.18       ad  *      |
     62  1.18       ad  *      v
     63  1.18       ad  *      [ | | | ]   (intermediate node.  RADIX_TREE_PTR_PER_NODE=4 in this fig)
     64  1.18       ad  *       | | | |
     65  1.18       ad  *       v v v v
     66  1.18       ad  *       p p p p    (items)
     67  1.18       ad  *
     68  1.18       ad  *  - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
     69  1.18       ad  *    it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
     70  1.18       ad  *
     71  1.18       ad  *     root (t_height=3)
     72  1.18       ad  *      |
     73  1.18       ad  *      v
     74  1.18       ad  *      [ | | | ]
     75  1.18       ad  *           |
     76  1.18       ad  *           v
     77  1.18       ad  *           [ | | | ]
     78  1.18       ad  *                |
     79  1.18       ad  *                v
     80  1.18       ad  *                [ | | | ]
     81  1.18       ad  *                   |
     82  1.18       ad  *                   v
     83  1.18       ad  *                   p
     84  1.18       ad  *
     85  1.18       ad  * The height of tree (t_height) is dynamic.  It's smaller if only small
     86  1.18       ad  * index values are used.  As an extreme case, if only index 0 is used,
     87  1.18       ad  * the corresponding value is directly stored in the root of the tree
     88  1.18       ad  * (struct radix_tree) without allocating any intermediate nodes.  In that
     89  1.18       ad  * case, t_height=0.
     90  1.18       ad  *
     91  1.18       ad  * Gang lookup:
     92  1.17     yamt  *
     93  1.18       ad  * This implementation provides a way to scan many nodes quickly via
     94  1.17     yamt  * radix_tree_gang_lookup_node function and its varients.
     95  1.17     yamt  *
     96  1.18       ad  * Tags:
     97  1.18       ad  *
     98  1.18       ad  * This implementation provides tagging functionality, which allows quick
     99  1.18       ad  * scanning of a subset of leaf nodes.  Leaf nodes are untagged when inserted
    100  1.18       ad  * into the tree and can be tagged by radix_tree_set_tag function.
    101  1.18       ad  * radix_tree_gang_lookup_tagged_node function and its variants returns only
    102  1.18       ad  * leaf nodes with the given tag.  To reduce amount of nodes to visit for
    103  1.17     yamt  * these functions, this implementation keeps tagging information in internal
    104  1.17     yamt  * intermediate nodes and quickly skips uninterested parts of a tree.
    105  1.18       ad  *
    106  1.18       ad  * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
    107  1.29   andvar  * identified by a zero-origin numbers, tagid.  For the current implementation,
    108  1.18       ad  * RADIX_TREE_TAG_ID_MAX is 2.  A set of tags is described as a bitmask tagmask,
    109  1.18       ad  * which is a bitwise OR of (1 << tagid).
    110   1.1     yamt  */
    111   1.1     yamt 
    112   1.1     yamt #include <sys/cdefs.h>
    113   1.1     yamt 
    114   1.2     yamt #if defined(_KERNEL) || defined(_STANDALONE)
    115  1.32       ad __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.32 2023/09/23 18:21:11 ad Exp $");
    116   1.1     yamt #include <sys/param.h>
    117   1.3     yamt #include <sys/errno.h>
    118  1.32       ad #include <sys/kmem.h>
    119   1.1     yamt #include <sys/radixtree.h>
    120   1.3     yamt #include <lib/libkern/libkern.h>
    121   1.3     yamt #if defined(_STANDALONE)
    122   1.3     yamt #include <lib/libsa/stand.h>
    123   1.3     yamt #endif /* defined(_STANDALONE) */
    124   1.2     yamt #else /* defined(_KERNEL) || defined(_STANDALONE) */
    125  1.32       ad __RCSID("$NetBSD: radixtree.c,v 1.32 2023/09/23 18:21:11 ad Exp $");
    126   1.1     yamt #include <assert.h>
    127   1.1     yamt #include <errno.h>
    128   1.1     yamt #include <stdbool.h>
    129   1.1     yamt #include <stdlib.h>
    130   1.8     yamt #include <string.h>
    131   1.1     yamt #if 1
    132   1.1     yamt #define KASSERT assert
    133   1.1     yamt #else
    134   1.1     yamt #define KASSERT(a)	/* nothing */
    135   1.1     yamt #endif
    136   1.2     yamt #endif /* defined(_KERNEL) || defined(_STANDALONE) */
    137   1.1     yamt 
    138   1.1     yamt #include <sys/radixtree.h>
    139   1.1     yamt 
    140   1.1     yamt #define	RADIX_TREE_BITS_PER_HEIGHT	4	/* XXX tune */
    141   1.1     yamt #define	RADIX_TREE_PTR_PER_NODE		(1 << RADIX_TREE_BITS_PER_HEIGHT)
    142   1.1     yamt #define	RADIX_TREE_MAX_HEIGHT		(64 / RADIX_TREE_BITS_PER_HEIGHT)
    143  1.15     yamt #define	RADIX_TREE_INVALID_HEIGHT	(RADIX_TREE_MAX_HEIGHT + 1)
    144   1.2     yamt __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
    145   1.1     yamt 
    146   1.2     yamt __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
    147   1.1     yamt #define	RADIX_TREE_TAG_MASK	((1 << RADIX_TREE_TAG_ID_MAX) - 1)
    148   1.1     yamt 
    149   1.1     yamt static inline void *
    150   1.1     yamt entry_ptr(void *p)
    151   1.1     yamt {
    152   1.1     yamt 
    153   1.1     yamt 	return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
    154   1.1     yamt }
    155   1.1     yamt 
    156   1.1     yamt static inline unsigned int
    157   1.1     yamt entry_tagmask(void *p)
    158   1.1     yamt {
    159   1.1     yamt 
    160   1.1     yamt 	return (uintptr_t)p & RADIX_TREE_TAG_MASK;
    161   1.1     yamt }
    162   1.1     yamt 
    163   1.1     yamt static inline void *
    164   1.1     yamt entry_compose(void *p, unsigned int tagmask)
    165   1.1     yamt {
    166   1.1     yamt 
    167   1.1     yamt 	return (void *)((uintptr_t)p | tagmask);
    168   1.1     yamt }
    169   1.1     yamt 
    170   1.1     yamt static inline bool
    171   1.1     yamt entry_match_p(void *p, unsigned int tagmask)
    172   1.1     yamt {
    173   1.1     yamt 
    174   1.1     yamt 	KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
    175   1.1     yamt 	if (p == NULL) {
    176   1.1     yamt 		return false;
    177   1.1     yamt 	}
    178   1.1     yamt 	if (tagmask == 0) {
    179   1.1     yamt 		return true;
    180   1.1     yamt 	}
    181   1.1     yamt 	return (entry_tagmask(p) & tagmask) != 0;
    182   1.1     yamt }
    183   1.1     yamt 
    184   1.1     yamt /*
    185   1.1     yamt  * radix_tree_node: an intermediate node
    186   1.1     yamt  *
    187   1.1     yamt  * we don't care the type of leaf nodes.  they are just void *.
    188  1.19       ad  *
    189  1.19       ad  * we used to maintain a count of non-NULL nodes in this structure, but it
    190  1.19       ad  * prevented it from being aligned to a cache line boundary; the performance
    191  1.19       ad  * benefit from being cache friendly is greater than the benefit of having
    192  1.19       ad  * a dedicated count value, especially in multi-processor situations where
    193  1.19       ad  * we need to avoid intra-pool-page false sharing.
    194   1.1     yamt  */
    195   1.1     yamt 
    196   1.1     yamt struct radix_tree_node {
    197   1.1     yamt 	void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
    198   1.1     yamt };
    199   1.1     yamt 
    200   1.7     yamt /*
    201   1.1     yamt  * p_refs[0].pptr == &t->t_root
    202   1.1     yamt  *	:
    203   1.1     yamt  * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
    204   1.1     yamt  *	:
    205   1.1     yamt  *	:
    206   1.1     yamt  * p_refs[t->t_height].pptr == &leaf_pointer
    207   1.1     yamt  */
    208   1.1     yamt 
    209   1.1     yamt struct radix_tree_path {
    210   1.1     yamt 	struct radix_tree_node_ref {
    211   1.1     yamt 		void **pptr;
    212   1.1     yamt 	} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
    213  1.15     yamt 	/*
    214  1.15     yamt 	 * p_lastidx is either the index of the last valid element of p_refs[]
    215  1.15     yamt 	 * or RADIX_TREE_INVALID_HEIGHT.
    216  1.15     yamt 	 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
    217  1.15     yamt 	 * that the height of the tree is not enough to cover the given index.
    218  1.15     yamt 	 */
    219  1.10     yamt 	unsigned int p_lastidx;
    220   1.1     yamt };
    221   1.1     yamt 
    222   1.1     yamt static inline void **
    223  1.13     yamt path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
    224   1.1     yamt     unsigned int height)
    225   1.1     yamt {
    226   1.1     yamt 
    227   1.1     yamt 	KASSERT(height <= t->t_height);
    228   1.1     yamt 	return p->p_refs[height].pptr;
    229   1.1     yamt }
    230   1.1     yamt 
    231   1.1     yamt static inline struct radix_tree_node *
    232  1.13     yamt path_node(const struct radix_tree * t, const struct radix_tree_path *p,
    233  1.13     yamt     unsigned int height)
    234   1.1     yamt {
    235   1.1     yamt 
    236   1.1     yamt 	KASSERT(height <= t->t_height);
    237   1.1     yamt 	return entry_ptr(*path_pptr(t, p, height));
    238   1.1     yamt }
    239   1.1     yamt 
    240   1.1     yamt /*
    241   1.1     yamt  * radix_tree_init_tree:
    242   1.1     yamt  *
    243  1.18       ad  * Initialize a tree.
    244   1.1     yamt  */
    245   1.1     yamt 
    246   1.1     yamt void
    247   1.1     yamt radix_tree_init_tree(struct radix_tree *t)
    248   1.1     yamt {
    249   1.1     yamt 
    250   1.1     yamt 	t->t_height = 0;
    251   1.1     yamt 	t->t_root = NULL;
    252   1.1     yamt }
    253   1.1     yamt 
    254   1.1     yamt /*
    255  1.18       ad  * radix_tree_fini_tree:
    256   1.1     yamt  *
    257  1.18       ad  * Finish using a tree.
    258   1.1     yamt  */
    259   1.1     yamt 
    260   1.1     yamt void
    261   1.1     yamt radix_tree_fini_tree(struct radix_tree *t)
    262   1.1     yamt {
    263   1.1     yamt 
    264   1.1     yamt 	KASSERT(t->t_root == NULL);
    265   1.1     yamt 	KASSERT(t->t_height == 0);
    266   1.1     yamt }
    267   1.1     yamt 
    268  1.18       ad /*
    269  1.18       ad  * radix_tree_empty_tree_p:
    270  1.18       ad  *
    271  1.18       ad  * Return if the tree is empty.
    272  1.18       ad  */
    273  1.18       ad 
    274   1.9     yamt bool
    275   1.9     yamt radix_tree_empty_tree_p(struct radix_tree *t)
    276   1.9     yamt {
    277   1.9     yamt 
    278   1.9     yamt 	return t->t_root == NULL;
    279   1.9     yamt }
    280   1.9     yamt 
    281  1.18       ad /*
    282  1.18       ad  * radix_tree_empty_tree_p:
    283  1.18       ad  *
    284  1.18       ad  * Return true if the tree has any nodes with the given tag.  Otherwise
    285  1.18       ad  * return false.
    286  1.18       ad  *
    287  1.18       ad  * It's illegal to call this function with tagmask 0.
    288  1.18       ad  */
    289  1.18       ad 
    290  1.16     yamt bool
    291  1.18       ad radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
    292  1.16     yamt {
    293  1.16     yamt 
    294  1.18       ad 	KASSERT(tagmask != 0);
    295  1.16     yamt 	return (entry_tagmask(t->t_root) & tagmask) == 0;
    296  1.16     yamt }
    297  1.16     yamt 
    298   1.3     yamt static void
    299   1.3     yamt radix_tree_node_init(struct radix_tree_node *n)
    300   1.3     yamt {
    301   1.3     yamt 
    302   1.3     yamt 	memset(n, 0, sizeof(*n));
    303   1.3     yamt }
    304   1.3     yamt 
    305   1.1     yamt #if defined(_KERNEL)
    306   1.1     yamt /*
    307   1.1     yamt  * radix_tree_init:
    308   1.1     yamt  *
    309   1.1     yamt  * initialize the subsystem.
    310   1.1     yamt  */
    311   1.1     yamt 
    312   1.1     yamt void
    313   1.1     yamt radix_tree_init(void)
    314   1.1     yamt {
    315   1.1     yamt 
    316  1.32       ad 	/* nothing right now */
    317   1.1     yamt }
    318  1.22       ad 
    319  1.22       ad /*
    320  1.22       ad  * radix_tree_await_memory:
    321  1.22       ad  *
    322  1.22       ad  * after an insert has failed with ENOMEM, wait for memory to become
    323  1.25       ad  * available, so the caller can retry.  this needs to ensure that the
    324  1.25       ad  * maximum possible required number of nodes is available.
    325  1.22       ad  */
    326  1.22       ad 
    327  1.22       ad void
    328  1.22       ad radix_tree_await_memory(void)
    329  1.22       ad {
    330  1.25       ad 	struct radix_tree_node *nodes[RADIX_TREE_MAX_HEIGHT];
    331  1.25       ad 	int i;
    332  1.22       ad 
    333  1.25       ad 	for (i = 0; i < __arraycount(nodes); i++) {
    334  1.32       ad 		nodes[i] = kmem_intr_alloc(sizeof(struct radix_tree_node),
    335  1.32       ad 		    KM_SLEEP);
    336  1.25       ad 	}
    337  1.25       ad 	while (--i >= 0) {
    338  1.32       ad 		kmem_free(nodes[i], sizeof(struct radix_tree_node));
    339  1.25       ad 	}
    340  1.22       ad }
    341  1.22       ad 
    342   1.1     yamt #endif /* defined(_KERNEL) */
    343   1.1     yamt 
    344  1.24       ad /*
    345  1.26       ad  * radix_tree_sum_node:
    346  1.24       ad  *
    347  1.24       ad  * return the logical sum of all entries in the given node.  used to quickly
    348  1.24       ad  * check for tag masks or empty nodes.
    349  1.24       ad  */
    350  1.24       ad 
    351  1.24       ad static uintptr_t
    352  1.26       ad radix_tree_sum_node(const struct radix_tree_node *n)
    353   1.1     yamt {
    354  1.19       ad #if RADIX_TREE_PTR_PER_NODE > 16
    355  1.25       ad 	unsigned int i;
    356  1.24       ad 	uintptr_t sum;
    357   1.1     yamt 
    358  1.24       ad 	for (i = 0, sum = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    359  1.24       ad 		sum |= (uintptr_t)n->n_ptrs[i];
    360   1.1     yamt 	}
    361  1.24       ad 	return sum;
    362  1.19       ad #else /* RADIX_TREE_PTR_PER_NODE > 16 */
    363  1.19       ad 	uintptr_t sum;
    364  1.19       ad 
    365  1.19       ad 	/*
    366  1.19       ad 	 * Unrolling the above is much better than a tight loop with two
    367  1.19       ad 	 * test+branch pairs.  On x86 with gcc 5.5.0 this compiles into 19
    368  1.19       ad 	 * deterministic instructions including the "return" and prologue &
    369  1.19       ad 	 * epilogue.
    370  1.19       ad 	 */
    371  1.19       ad 	sum = (uintptr_t)n->n_ptrs[0];
    372  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[1];
    373  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[2];
    374  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[3];
    375  1.19       ad #if RADIX_TREE_PTR_PER_NODE > 4
    376  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[4];
    377  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[5];
    378  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[6];
    379  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[7];
    380  1.19       ad #endif
    381  1.19       ad #if RADIX_TREE_PTR_PER_NODE > 8
    382  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[8];
    383  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[9];
    384  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[10];
    385  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[11];
    386  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[12];
    387  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[13];
    388  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[14];
    389  1.19       ad 	sum |= (uintptr_t)n->n_ptrs[15];
    390  1.19       ad #endif
    391  1.24       ad 	return sum;
    392  1.19       ad #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
    393  1.19       ad }
    394  1.19       ad 
    395  1.19       ad static int __unused
    396  1.19       ad radix_tree_node_count_ptrs(const struct radix_tree_node *n)
    397  1.19       ad {
    398  1.19       ad 	unsigned int i, c;
    399  1.19       ad 
    400  1.19       ad 	for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    401  1.19       ad 		c += (n->n_ptrs[i] != NULL);
    402  1.19       ad 	}
    403  1.19       ad 	return c;
    404   1.1     yamt }
    405   1.1     yamt 
    406   1.1     yamt static struct radix_tree_node *
    407   1.1     yamt radix_tree_alloc_node(void)
    408   1.1     yamt {
    409   1.1     yamt 	struct radix_tree_node *n;
    410   1.1     yamt 
    411   1.1     yamt #if defined(_KERNEL)
    412  1.18       ad 	/*
    413  1.32       ad 	 * note that kmem_alloc can block.
    414  1.18       ad 	 */
    415  1.32       ad 	n = kmem_intr_alloc(sizeof(struct radix_tree_node), KM_SLEEP);
    416  1.32       ad #elif defined(_STANDALONE)
    417   1.3     yamt 	n = alloc(sizeof(*n));
    418   1.3     yamt #else /* defined(_STANDALONE) */
    419   1.3     yamt 	n = malloc(sizeof(*n));
    420   1.3     yamt #endif /* defined(_STANDALONE) */
    421   1.3     yamt 	if (n != NULL) {
    422   1.3     yamt 		radix_tree_node_init(n);
    423   1.3     yamt 	}
    424  1.26       ad 	KASSERT(n == NULL || radix_tree_sum_node(n) == 0);
    425   1.1     yamt 	return n;
    426   1.1     yamt }
    427   1.1     yamt 
    428   1.1     yamt static void
    429   1.1     yamt radix_tree_free_node(struct radix_tree_node *n)
    430   1.1     yamt {
    431   1.1     yamt 
    432  1.26       ad 	KASSERT(radix_tree_sum_node(n) == 0);
    433   1.1     yamt #if defined(_KERNEL)
    434  1.32       ad 	kmem_intr_free(n, sizeof(struct radix_tree_node));
    435   1.3     yamt #elif defined(_STANDALONE)
    436   1.3     yamt 	dealloc(n, sizeof(*n));
    437   1.3     yamt #else
    438   1.1     yamt 	free(n);
    439   1.3     yamt #endif
    440   1.1     yamt }
    441   1.1     yamt 
    442  1.25       ad /*
    443  1.25       ad  * radix_tree_grow:
    444  1.25       ad  *
    445  1.25       ad  * increase the height of the tree.
    446  1.25       ad  */
    447  1.25       ad 
    448  1.25       ad static __noinline int
    449   1.1     yamt radix_tree_grow(struct radix_tree *t, unsigned int newheight)
    450   1.1     yamt {
    451   1.1     yamt 	const unsigned int tagmask = entry_tagmask(t->t_root);
    452  1.25       ad 	struct radix_tree_node *newnodes[RADIX_TREE_MAX_HEIGHT];
    453  1.25       ad 	void *root;
    454  1.25       ad 	int h;
    455   1.1     yamt 
    456  1.25       ad 	KASSERT(newheight <= RADIX_TREE_MAX_HEIGHT);
    457  1.25       ad 	if ((root = t->t_root) == NULL) {
    458   1.1     yamt 		t->t_height = newheight;
    459   1.1     yamt 		return 0;
    460   1.1     yamt 	}
    461  1.25       ad 	for (h = t->t_height; h < newheight; h++) {
    462  1.25       ad 		newnodes[h] = radix_tree_alloc_node();
    463  1.25       ad 		if (__predict_false(newnodes[h] == NULL)) {
    464  1.25       ad 			while (--h >= (int)t->t_height) {
    465  1.25       ad 				newnodes[h]->n_ptrs[0] = NULL;
    466  1.25       ad 				radix_tree_free_node(newnodes[h]);
    467  1.25       ad 			}
    468   1.1     yamt 			return ENOMEM;
    469   1.1     yamt 		}
    470  1.25       ad 		newnodes[h]->n_ptrs[0] = root;
    471  1.25       ad 		root = entry_compose(newnodes[h], tagmask);
    472   1.1     yamt 	}
    473  1.25       ad 	t->t_root = root;
    474  1.25       ad 	t->t_height = h;
    475   1.1     yamt 	return 0;
    476   1.1     yamt }
    477   1.1     yamt 
    478   1.5     yamt /*
    479   1.5     yamt  * radix_tree_lookup_ptr:
    480   1.5     yamt  *
    481   1.5     yamt  * an internal helper function used for various exported functions.
    482   1.5     yamt  *
    483   1.5     yamt  * return the pointer to store the node for the given index.
    484   1.5     yamt  *
    485   1.5     yamt  * if alloc is true, try to allocate the storage.  (note for _KERNEL:
    486   1.5     yamt  * in that case, this function can block.)  if the allocation failed or
    487   1.5     yamt  * alloc is false, return NULL.
    488   1.5     yamt  *
    489   1.5     yamt  * if path is not NULL, fill it for the caller's investigation.
    490   1.5     yamt  *
    491   1.5     yamt  * if tagmask is not zero, search only for nodes with the tag set.
    492  1.15     yamt  * note that, however, this function doesn't check the tagmask for the leaf
    493  1.15     yamt  * pointer.  it's a caller's responsibility to investigate the value which
    494  1.15     yamt  * is pointed by the returned pointer if necessary.
    495   1.5     yamt  *
    496   1.5     yamt  * while this function is a bit large, as it's called with some constant
    497   1.5     yamt  * arguments, inlining might have benefits.  anyway, a compiler will decide.
    498   1.5     yamt  */
    499   1.5     yamt 
    500   1.1     yamt static inline void **
    501   1.1     yamt radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
    502   1.1     yamt     struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
    503   1.1     yamt {
    504   1.1     yamt 	struct radix_tree_node *n;
    505   1.1     yamt 	int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    506   1.1     yamt 	int shift;
    507   1.1     yamt 	void **vpp;
    508   1.1     yamt 	const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
    509   1.1     yamt 	struct radix_tree_node_ref *refs = NULL;
    510   1.1     yamt 
    511   1.5     yamt 	/*
    512   1.5     yamt 	 * check unsupported combinations
    513   1.5     yamt 	 */
    514   1.1     yamt 	KASSERT(tagmask == 0 || !alloc);
    515   1.1     yamt 	KASSERT(path == NULL || !alloc);
    516   1.1     yamt 	vpp = &t->t_root;
    517   1.1     yamt 	if (path != NULL) {
    518   1.1     yamt 		refs = path->p_refs;
    519   1.1     yamt 		refs->pptr = vpp;
    520   1.1     yamt 	}
    521   1.1     yamt 	n = NULL;
    522   1.1     yamt 	for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
    523   1.1     yamt 		struct radix_tree_node *c;
    524   1.1     yamt 		void *entry;
    525   1.1     yamt 		const uint64_t i = (idx >> shift) & mask;
    526   1.1     yamt 
    527   1.1     yamt 		if (shift >= hshift) {
    528   1.1     yamt 			unsigned int newheight;
    529   1.1     yamt 
    530   1.1     yamt 			KASSERT(vpp == &t->t_root);
    531   1.1     yamt 			if (i == 0) {
    532   1.1     yamt 				shift -= RADIX_TREE_BITS_PER_HEIGHT;
    533   1.1     yamt 				continue;
    534   1.1     yamt 			}
    535   1.1     yamt 			if (!alloc) {
    536   1.1     yamt 				if (path != NULL) {
    537   1.1     yamt 					KASSERT((refs - path->p_refs) == 0);
    538  1.15     yamt 					path->p_lastidx =
    539  1.15     yamt 					    RADIX_TREE_INVALID_HEIGHT;
    540   1.1     yamt 				}
    541   1.1     yamt 				return NULL;
    542   1.1     yamt 			}
    543   1.1     yamt 			newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
    544   1.1     yamt 			if (radix_tree_grow(t, newheight)) {
    545   1.1     yamt 				return NULL;
    546   1.1     yamt 			}
    547   1.1     yamt 			hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    548   1.1     yamt 		}
    549   1.1     yamt 		entry = *vpp;
    550   1.1     yamt 		c = entry_ptr(entry);
    551   1.1     yamt 		if (c == NULL ||
    552   1.1     yamt 		    (tagmask != 0 &&
    553   1.1     yamt 		    (entry_tagmask(entry) & tagmask) == 0)) {
    554   1.1     yamt 			if (!alloc) {
    555   1.1     yamt 				if (path != NULL) {
    556   1.1     yamt 					path->p_lastidx = refs - path->p_refs;
    557   1.1     yamt 				}
    558   1.1     yamt 				return NULL;
    559   1.1     yamt 			}
    560   1.1     yamt 			c = radix_tree_alloc_node();
    561   1.1     yamt 			if (c == NULL) {
    562   1.1     yamt 				return NULL;
    563   1.1     yamt 			}
    564   1.1     yamt 			*vpp = c;
    565   1.1     yamt 		}
    566   1.1     yamt 		n = c;
    567   1.1     yamt 		vpp = &n->n_ptrs[i];
    568   1.1     yamt 		if (path != NULL) {
    569   1.1     yamt 			refs++;
    570   1.1     yamt 			refs->pptr = vpp;
    571   1.1     yamt 		}
    572   1.1     yamt 		shift -= RADIX_TREE_BITS_PER_HEIGHT;
    573   1.1     yamt 	}
    574   1.1     yamt 	if (alloc) {
    575   1.1     yamt 		KASSERT(*vpp == NULL);
    576   1.1     yamt 	}
    577   1.1     yamt 	if (path != NULL) {
    578   1.1     yamt 		path->p_lastidx = refs - path->p_refs;
    579   1.1     yamt 	}
    580   1.1     yamt 	return vpp;
    581   1.1     yamt }
    582   1.1     yamt 
    583   1.1     yamt /*
    584  1.25       ad  * radix_tree_undo_insert_node:
    585  1.25       ad  *
    586  1.25       ad  * Undo the effects of a failed insert.  The conditions that led to the
    587  1.25       ad  * insert may change and it may not be retried.  If the insert is not
    588  1.25       ad  * retried, there will be no corresponding radix_tree_remove_node() for
    589  1.25       ad  * this index in the future.  Therefore any adjustments made to the tree
    590  1.25       ad  * before memory was exhausted must be reverted.
    591  1.25       ad  */
    592  1.25       ad 
    593  1.25       ad static __noinline void
    594  1.25       ad radix_tree_undo_insert_node(struct radix_tree *t, uint64_t idx)
    595  1.25       ad {
    596  1.25       ad 	struct radix_tree_path path;
    597  1.25       ad 	int i;
    598  1.25       ad 
    599  1.25       ad 	(void)radix_tree_lookup_ptr(t, idx, &path, false, 0);
    600  1.25       ad 	if (path.p_lastidx == RADIX_TREE_INVALID_HEIGHT) {
    601  1.25       ad 		/*
    602  1.25       ad 		 * no nodes were inserted.
    603  1.25       ad 		 */
    604  1.25       ad 		return;
    605  1.25       ad 	}
    606  1.25       ad 	for (i = path.p_lastidx - 1; i >= 0; i--) {
    607  1.25       ad 		struct radix_tree_node ** const pptr =
    608  1.25       ad 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    609  1.25       ad 		struct radix_tree_node *n;
    610  1.25       ad 
    611  1.25       ad 		KASSERT(pptr != NULL);
    612  1.25       ad 		n = entry_ptr(*pptr);
    613  1.25       ad 		KASSERT(n != NULL);
    614  1.26       ad 		if (radix_tree_sum_node(n) != 0) {
    615  1.25       ad 			break;
    616  1.25       ad 		}
    617  1.25       ad 		radix_tree_free_node(n);
    618  1.25       ad 		*pptr = NULL;
    619  1.25       ad 	}
    620  1.25       ad 	/*
    621  1.25       ad 	 * fix up height
    622  1.25       ad 	 */
    623  1.25       ad 	if (i < 0) {
    624  1.25       ad 		KASSERT(t->t_root == NULL);
    625  1.25       ad 		t->t_height = 0;
    626  1.25       ad 	}
    627  1.25       ad }
    628  1.25       ad 
    629  1.25       ad /*
    630   1.1     yamt  * radix_tree_insert_node:
    631   1.1     yamt  *
    632  1.18       ad  * Insert the node at the given index.
    633  1.18       ad  *
    634  1.18       ad  * It's illegal to insert NULL.  It's illegal to insert a non-aligned pointer.
    635   1.1     yamt  *
    636  1.18       ad  * This function returns ENOMEM if necessary memory allocation failed.
    637  1.18       ad  * Otherwise, this function returns 0.
    638   1.1     yamt  *
    639  1.18       ad  * Note that inserting a node can involves memory allocation for intermediate
    640  1.18       ad  * nodes.  If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
    641   1.4     yamt  *
    642  1.18       ad  * For the newly inserted node, all tags are cleared.
    643   1.1     yamt  */
    644   1.1     yamt 
    645   1.1     yamt int
    646   1.1     yamt radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
    647   1.1     yamt {
    648   1.1     yamt 	void **vpp;
    649   1.1     yamt 
    650   1.1     yamt 	KASSERT(p != NULL);
    651  1.18       ad 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    652   1.1     yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
    653  1.25       ad 	if (__predict_false(vpp == NULL)) {
    654  1.25       ad 		radix_tree_undo_insert_node(t, idx);
    655   1.1     yamt 		return ENOMEM;
    656   1.1     yamt 	}
    657   1.1     yamt 	KASSERT(*vpp == NULL);
    658   1.1     yamt 	*vpp = p;
    659   1.1     yamt 	return 0;
    660   1.1     yamt }
    661   1.1     yamt 
    662   1.4     yamt /*
    663   1.4     yamt  * radix_tree_replace_node:
    664   1.4     yamt  *
    665  1.18       ad  * Replace a node at the given index with the given node and return the
    666  1.18       ad  * replaced one.
    667  1.18       ad  *
    668  1.18       ad  * It's illegal to try to replace a node which has not been inserted.
    669   1.4     yamt  *
    670  1.18       ad  * This function keeps tags intact.
    671   1.4     yamt  */
    672   1.4     yamt 
    673   1.1     yamt void *
    674   1.1     yamt radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
    675   1.1     yamt {
    676   1.1     yamt 	void **vpp;
    677   1.1     yamt 	void *oldp;
    678   1.1     yamt 
    679   1.1     yamt 	KASSERT(p != NULL);
    680  1.18       ad 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    681   1.1     yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    682   1.1     yamt 	KASSERT(vpp != NULL);
    683   1.1     yamt 	oldp = *vpp;
    684   1.1     yamt 	KASSERT(oldp != NULL);
    685   1.1     yamt 	*vpp = entry_compose(p, entry_tagmask(*vpp));
    686   1.1     yamt 	return entry_ptr(oldp);
    687   1.1     yamt }
    688   1.1     yamt 
    689   1.1     yamt /*
    690   1.1     yamt  * radix_tree_remove_node:
    691   1.1     yamt  *
    692  1.18       ad  * Remove the node at the given index.
    693  1.18       ad  *
    694  1.18       ad  * It's illegal to try to remove a node which has not been inserted.
    695   1.1     yamt  */
    696   1.1     yamt 
    697   1.1     yamt void *
    698   1.1     yamt radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
    699   1.1     yamt {
    700   1.1     yamt 	struct radix_tree_path path;
    701   1.1     yamt 	void **vpp;
    702   1.1     yamt 	void *oldp;
    703   1.1     yamt 	int i;
    704   1.1     yamt 
    705   1.1     yamt 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
    706   1.1     yamt 	KASSERT(vpp != NULL);
    707   1.1     yamt 	oldp = *vpp;
    708   1.1     yamt 	KASSERT(oldp != NULL);
    709   1.1     yamt 	KASSERT(path.p_lastidx == t->t_height);
    710   1.1     yamt 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
    711   1.1     yamt 	*vpp = NULL;
    712   1.1     yamt 	for (i = t->t_height - 1; i >= 0; i--) {
    713   1.1     yamt 		void *entry;
    714   1.1     yamt 		struct radix_tree_node ** const pptr =
    715   1.1     yamt 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    716   1.1     yamt 		struct radix_tree_node *n;
    717   1.1     yamt 
    718   1.1     yamt 		KASSERT(pptr != NULL);
    719   1.1     yamt 		entry = *pptr;
    720   1.1     yamt 		n = entry_ptr(entry);
    721   1.1     yamt 		KASSERT(n != NULL);
    722  1.26       ad 		if (radix_tree_sum_node(n) != 0) {
    723   1.1     yamt 			break;
    724   1.1     yamt 		}
    725   1.1     yamt 		radix_tree_free_node(n);
    726   1.1     yamt 		*pptr = NULL;
    727   1.1     yamt 	}
    728   1.1     yamt 	/*
    729   1.1     yamt 	 * fix up height
    730   1.1     yamt 	 */
    731   1.1     yamt 	if (i < 0) {
    732   1.1     yamt 		KASSERT(t->t_root == NULL);
    733   1.1     yamt 		t->t_height = 0;
    734   1.1     yamt 	}
    735   1.1     yamt 	/*
    736   1.1     yamt 	 * update tags
    737   1.1     yamt 	 */
    738   1.1     yamt 	for (; i >= 0; i--) {
    739   1.1     yamt 		void *entry;
    740   1.1     yamt 		struct radix_tree_node ** const pptr =
    741   1.1     yamt 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    742   1.1     yamt 		struct radix_tree_node *n;
    743   1.1     yamt 		unsigned int newmask;
    744   1.1     yamt 
    745   1.1     yamt 		KASSERT(pptr != NULL);
    746   1.1     yamt 		entry = *pptr;
    747   1.1     yamt 		n = entry_ptr(entry);
    748   1.1     yamt 		KASSERT(n != NULL);
    749  1.26       ad 		KASSERT(radix_tree_sum_node(n) != 0);
    750  1.26       ad 		newmask = radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK;
    751   1.1     yamt 		if (newmask == entry_tagmask(entry)) {
    752   1.1     yamt 			break;
    753   1.1     yamt 		}
    754   1.1     yamt 		*pptr = entry_compose(n, newmask);
    755   1.1     yamt 	}
    756   1.1     yamt 	/*
    757   1.1     yamt 	 * XXX is it worth to try to reduce height?
    758   1.1     yamt 	 * if we do that, make radix_tree_grow rollback its change as well.
    759   1.1     yamt 	 */
    760   1.1     yamt 	return entry_ptr(oldp);
    761   1.1     yamt }
    762   1.1     yamt 
    763   1.1     yamt /*
    764   1.1     yamt  * radix_tree_lookup_node:
    765   1.1     yamt  *
    766  1.18       ad  * Returns the node at the given index.
    767  1.18       ad  * Returns NULL if nothing is found at the given index.
    768   1.1     yamt  */
    769   1.1     yamt 
    770   1.1     yamt void *
    771   1.1     yamt radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
    772   1.1     yamt {
    773   1.1     yamt 	void **vpp;
    774   1.1     yamt 
    775   1.1     yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    776   1.1     yamt 	if (vpp == NULL) {
    777   1.1     yamt 		return NULL;
    778   1.1     yamt 	}
    779   1.1     yamt 	return entry_ptr(*vpp);
    780   1.1     yamt }
    781   1.1     yamt 
    782   1.1     yamt static inline void
    783   1.1     yamt gang_lookup_init(struct radix_tree *t, uint64_t idx,
    784   1.1     yamt     struct radix_tree_path *path, const unsigned int tagmask)
    785   1.1     yamt {
    786  1.18       ad 	void **vpp __unused;
    787   1.1     yamt 
    788  1.19       ad 	vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
    789   1.1     yamt 	KASSERT(vpp == NULL ||
    790   1.1     yamt 	    vpp == path_pptr(t, path, path->p_lastidx));
    791   1.1     yamt 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    792  1.15     yamt 	KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
    793  1.15     yamt 	   path->p_lastidx == t->t_height ||
    794  1.15     yamt 	   !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
    795   1.1     yamt }
    796   1.1     yamt 
    797  1.15     yamt /*
    798  1.15     yamt  * gang_lookup_scan:
    799  1.15     yamt  *
    800  1.15     yamt  * a helper routine for radix_tree_gang_lookup_node and its variants.
    801  1.15     yamt  */
    802  1.15     yamt 
    803   1.1     yamt static inline unsigned int
    804  1.15     yamt __attribute__((__always_inline__))
    805   1.1     yamt gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
    806  1.18       ad     void **results, const unsigned int maxresults, const unsigned int tagmask,
    807  1.18       ad     const bool reverse, const bool dense)
    808   1.1     yamt {
    809  1.15     yamt 
    810  1.15     yamt 	/*
    811  1.15     yamt 	 * we keep the path updated only for lastidx-1.
    812  1.15     yamt 	 * vpp is what path_pptr(t, path, lastidx) would be.
    813  1.15     yamt 	 */
    814   1.1     yamt 	void **vpp;
    815  1.10     yamt 	unsigned int nfound;
    816   1.1     yamt 	unsigned int lastidx;
    817  1.15     yamt 	/*
    818  1.15     yamt 	 * set up scan direction dependant constants so that we can iterate
    819  1.15     yamt 	 * n_ptrs as the following.
    820  1.15     yamt 	 *
    821  1.15     yamt 	 *	for (i = first; i != guard; i += step)
    822  1.15     yamt 	 *		visit n->n_ptrs[i];
    823  1.15     yamt 	 */
    824  1.15     yamt 	const int step = reverse ? -1 : 1;
    825  1.15     yamt 	const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
    826  1.15     yamt 	const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
    827  1.15     yamt 	const unsigned int guard = last + step;
    828   1.1     yamt 
    829   1.1     yamt 	KASSERT(maxresults > 0);
    830  1.15     yamt 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    831   1.1     yamt 	lastidx = path->p_lastidx;
    832  1.15     yamt 	KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
    833  1.15     yamt 	   lastidx == t->t_height ||
    834  1.15     yamt 	   !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
    835  1.15     yamt 	nfound = 0;
    836  1.15     yamt 	if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
    837  1.18       ad 		/*
    838  1.18       ad 		 * requested idx is beyond the right-most node.
    839  1.18       ad 		 */
    840  1.18       ad 		if (reverse && !dense) {
    841  1.15     yamt 			lastidx = 0;
    842  1.15     yamt 			vpp = path_pptr(t, path, lastidx);
    843  1.15     yamt 			goto descend;
    844  1.15     yamt 		}
    845   1.1     yamt 		return 0;
    846   1.1     yamt 	}
    847   1.1     yamt 	vpp = path_pptr(t, path, lastidx);
    848   1.1     yamt 	while (/*CONSTCOND*/true) {
    849   1.1     yamt 		struct radix_tree_node *n;
    850  1.10     yamt 		unsigned int i;
    851   1.1     yamt 
    852   1.1     yamt 		if (entry_match_p(*vpp, tagmask)) {
    853   1.1     yamt 			KASSERT(lastidx == t->t_height);
    854   1.1     yamt 			/*
    855  1.15     yamt 			 * record the matching non-NULL leaf.
    856   1.1     yamt 			 */
    857   1.1     yamt 			results[nfound] = entry_ptr(*vpp);
    858   1.1     yamt 			nfound++;
    859   1.1     yamt 			if (nfound == maxresults) {
    860   1.1     yamt 				return nfound;
    861   1.1     yamt 			}
    862  1.18       ad 		} else if (dense) {
    863  1.18       ad 			return nfound;
    864   1.1     yamt 		}
    865   1.1     yamt scan_siblings:
    866   1.1     yamt 		/*
    867  1.15     yamt 		 * try to find the next matching non-NULL sibling.
    868   1.1     yamt 		 */
    869  1.15     yamt 		if (lastidx == 0) {
    870  1.15     yamt 			/*
    871  1.15     yamt 			 * the root has no siblings.
    872  1.15     yamt 			 * we've done.
    873  1.15     yamt 			 */
    874  1.15     yamt 			KASSERT(vpp == &t->t_root);
    875  1.15     yamt 			break;
    876  1.15     yamt 		}
    877   1.1     yamt 		n = path_node(t, path, lastidx - 1);
    878  1.15     yamt 		for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
    879  1.15     yamt 			KASSERT(i < RADIX_TREE_PTR_PER_NODE);
    880   1.1     yamt 			if (entry_match_p(n->n_ptrs[i], tagmask)) {
    881   1.1     yamt 				vpp = &n->n_ptrs[i];
    882   1.1     yamt 				break;
    883  1.23       ad 			} else if (dense) {
    884  1.23       ad 				return nfound;
    885   1.1     yamt 			}
    886   1.1     yamt 		}
    887  1.15     yamt 		if (i == guard) {
    888   1.1     yamt 			/*
    889   1.1     yamt 			 * not found.  go to parent.
    890   1.1     yamt 			 */
    891   1.1     yamt 			lastidx--;
    892   1.1     yamt 			vpp = path_pptr(t, path, lastidx);
    893   1.1     yamt 			goto scan_siblings;
    894   1.1     yamt 		}
    895  1.15     yamt descend:
    896   1.1     yamt 		/*
    897  1.15     yamt 		 * following the left-most (or right-most in the case of
    898  1.28   andvar 		 * reverse scan) child node, descend until reaching the leaf or
    899  1.29   andvar 		 * a non-matching entry.
    900   1.1     yamt 		 */
    901   1.1     yamt 		while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
    902  1.15     yamt 			/*
    903  1.15     yamt 			 * save vpp in the path so that we can come back to this
    904  1.15     yamt 			 * node after finishing visiting children.
    905  1.15     yamt 			 */
    906  1.15     yamt 			path->p_refs[lastidx].pptr = vpp;
    907   1.1     yamt 			n = entry_ptr(*vpp);
    908  1.15     yamt 			vpp = &n->n_ptrs[first];
    909   1.1     yamt 			lastidx++;
    910   1.1     yamt 		}
    911   1.1     yamt 	}
    912  1.15     yamt 	return nfound;
    913   1.1     yamt }
    914   1.1     yamt 
    915   1.1     yamt /*
    916   1.1     yamt  * radix_tree_gang_lookup_node:
    917   1.1     yamt  *
    918  1.18       ad  * Scan the tree starting from the given index in the ascending order and
    919  1.18       ad  * return found nodes.
    920  1.18       ad  *
    921   1.1     yamt  * results should be an array large enough to hold maxresults pointers.
    922  1.18       ad  * This function returns the number of nodes found, up to maxresults.
    923  1.18       ad  * Returning less than maxresults means there are no more nodes in the tree.
    924   1.1     yamt  *
    925  1.18       ad  * If dense == true, this function stops scanning when it founds a hole of
    926  1.18       ad  * indexes.  I.e. an index for which radix_tree_lookup_node would returns NULL.
    927  1.18       ad  * If dense == false, this function skips holes and continue scanning until
    928  1.18       ad  * maxresults nodes are found or it reaches the limit of the index range.
    929  1.18       ad  *
    930  1.18       ad  * The result of this function is semantically equivalent to what could be
    931   1.1     yamt  * obtained by repeated calls of radix_tree_lookup_node with increasing index.
    932  1.18       ad  * but this function is expected to be computationally cheaper when looking up
    933  1.18       ad  * multiple nodes at once.  Especially, it's expected to be much cheaper when
    934  1.18       ad  * node indexes are distributed sparsely.
    935  1.18       ad  *
    936  1.18       ad  * Note that this function doesn't return index values of found nodes.
    937  1.18       ad  * Thus, in the case of dense == false, if index values are important for
    938  1.18       ad  * a caller, it's the caller's responsibility to check them, typically
    939  1.29   andvar  * by examining the returned nodes using some caller-specific knowledge
    940  1.18       ad  * about them.
    941  1.18       ad  * In the case of dense == true, a node returned via results[N] is always for
    942  1.18       ad  * the index (idx + N).
    943   1.1     yamt  */
    944   1.1     yamt 
    945   1.1     yamt unsigned int
    946   1.1     yamt radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
    947  1.18       ad     void **results, unsigned int maxresults, bool dense)
    948   1.1     yamt {
    949   1.1     yamt 	struct radix_tree_path path;
    950   1.1     yamt 
    951   1.1     yamt 	gang_lookup_init(t, idx, &path, 0);
    952  1.18       ad 	return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
    953  1.15     yamt }
    954  1.15     yamt 
    955  1.15     yamt /*
    956  1.15     yamt  * radix_tree_gang_lookup_node_reverse:
    957  1.15     yamt  *
    958  1.18       ad  * Same as radix_tree_gang_lookup_node except that this one scans the
    959  1.18       ad  * tree in the reverse order.  I.e. descending index values.
    960  1.15     yamt  */
    961  1.15     yamt 
    962  1.15     yamt unsigned int
    963  1.15     yamt radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
    964  1.18       ad     void **results, unsigned int maxresults, bool dense)
    965  1.15     yamt {
    966  1.15     yamt 	struct radix_tree_path path;
    967  1.15     yamt 
    968  1.15     yamt 	gang_lookup_init(t, idx, &path, 0);
    969  1.18       ad 	return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
    970   1.1     yamt }
    971   1.1     yamt 
    972   1.1     yamt /*
    973   1.1     yamt  * radix_tree_gang_lookup_tagged_node:
    974   1.1     yamt  *
    975  1.18       ad  * Same as radix_tree_gang_lookup_node except that this one only returns
    976   1.1     yamt  * nodes tagged with tagid.
    977  1.18       ad  *
    978  1.18       ad  * It's illegal to call this function with tagmask 0.
    979   1.1     yamt  */
    980   1.1     yamt 
    981   1.1     yamt unsigned int
    982   1.1     yamt radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
    983  1.18       ad     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
    984   1.1     yamt {
    985   1.1     yamt 	struct radix_tree_path path;
    986   1.1     yamt 
    987  1.18       ad 	KASSERT(tagmask != 0);
    988   1.1     yamt 	gang_lookup_init(t, idx, &path, tagmask);
    989  1.18       ad 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
    990  1.18       ad 	    dense);
    991  1.15     yamt }
    992  1.15     yamt 
    993  1.15     yamt /*
    994  1.15     yamt  * radix_tree_gang_lookup_tagged_node_reverse:
    995  1.15     yamt  *
    996  1.18       ad  * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
    997  1.18       ad  * tree in the reverse order.  I.e. descending index values.
    998  1.15     yamt  */
    999  1.15     yamt 
   1000  1.15     yamt unsigned int
   1001  1.15     yamt radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
   1002  1.18       ad     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
   1003  1.15     yamt {
   1004  1.15     yamt 	struct radix_tree_path path;
   1005  1.15     yamt 
   1006  1.18       ad 	KASSERT(tagmask != 0);
   1007  1.15     yamt 	gang_lookup_init(t, idx, &path, tagmask);
   1008  1.18       ad 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
   1009  1.18       ad 	    dense);
   1010   1.1     yamt }
   1011   1.1     yamt 
   1012   1.4     yamt /*
   1013   1.4     yamt  * radix_tree_get_tag:
   1014   1.4     yamt  *
   1015  1.18       ad  * Return the tagmask for the node at the given index.
   1016  1.18       ad  *
   1017  1.18       ad  * It's illegal to call this function for a node which has not been inserted.
   1018   1.4     yamt  */
   1019   1.4     yamt 
   1020  1.18       ad unsigned int
   1021  1.18       ad radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1022   1.1     yamt {
   1023  1.18       ad 	/*
   1024  1.18       ad 	 * the following two implementations should behave same.
   1025  1.18       ad 	 * the former one was chosen because it seems faster.
   1026  1.18       ad 	 */
   1027   1.1     yamt #if 1
   1028   1.1     yamt 	void **vpp;
   1029   1.1     yamt 
   1030   1.1     yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
   1031   1.1     yamt 	if (vpp == NULL) {
   1032   1.1     yamt 		return false;
   1033   1.1     yamt 	}
   1034   1.1     yamt 	KASSERT(*vpp != NULL);
   1035  1.18       ad 	return (entry_tagmask(*vpp) & tagmask);
   1036   1.1     yamt #else
   1037   1.1     yamt 	void **vpp;
   1038   1.1     yamt 
   1039   1.1     yamt 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
   1040   1.1     yamt 	KASSERT(vpp != NULL);
   1041  1.18       ad 	return (entry_tagmask(*vpp) & tagmask);
   1042   1.1     yamt #endif
   1043   1.1     yamt }
   1044   1.1     yamt 
   1045   1.4     yamt /*
   1046   1.4     yamt  * radix_tree_set_tag:
   1047   1.4     yamt  *
   1048  1.18       ad  * Set the tag for the node at the given index.
   1049  1.18       ad  *
   1050  1.18       ad  * It's illegal to call this function for a node which has not been inserted.
   1051  1.18       ad  * It's illegal to call this function with tagmask 0.
   1052   1.4     yamt  */
   1053   1.4     yamt 
   1054   1.1     yamt void
   1055  1.18       ad radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1056   1.1     yamt {
   1057   1.1     yamt 	struct radix_tree_path path;
   1058  1.18       ad 	void **vpp __unused;
   1059   1.1     yamt 	int i;
   1060   1.1     yamt 
   1061  1.18       ad 	KASSERT(tagmask != 0);
   1062  1.19       ad 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1063   1.1     yamt 	KASSERT(vpp != NULL);
   1064   1.1     yamt 	KASSERT(*vpp != NULL);
   1065   1.1     yamt 	KASSERT(path.p_lastidx == t->t_height);
   1066   1.1     yamt 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1067   1.1     yamt 	for (i = t->t_height; i >= 0; i--) {
   1068   1.1     yamt 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1069   1.1     yamt 		void *entry;
   1070   1.1     yamt 
   1071   1.1     yamt 		KASSERT(pptr != NULL);
   1072   1.1     yamt 		entry = *pptr;
   1073   1.1     yamt 		if ((entry_tagmask(entry) & tagmask) != 0) {
   1074   1.1     yamt 			break;
   1075   1.1     yamt 		}
   1076   1.1     yamt 		*pptr = (void *)((uintptr_t)entry | tagmask);
   1077   1.1     yamt 	}
   1078   1.1     yamt }
   1079   1.1     yamt 
   1080   1.4     yamt /*
   1081   1.4     yamt  * radix_tree_clear_tag:
   1082   1.4     yamt  *
   1083  1.18       ad  * Clear the tag for the node at the given index.
   1084  1.18       ad  *
   1085  1.18       ad  * It's illegal to call this function for a node which has not been inserted.
   1086  1.18       ad  * It's illegal to call this function with tagmask 0.
   1087   1.4     yamt  */
   1088   1.4     yamt 
   1089   1.1     yamt void
   1090  1.18       ad radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1091   1.1     yamt {
   1092   1.1     yamt 	struct radix_tree_path path;
   1093   1.1     yamt 	void **vpp;
   1094   1.1     yamt 	int i;
   1095   1.1     yamt 
   1096  1.18       ad 	KASSERT(tagmask != 0);
   1097   1.1     yamt 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1098   1.1     yamt 	KASSERT(vpp != NULL);
   1099   1.1     yamt 	KASSERT(*vpp != NULL);
   1100   1.1     yamt 	KASSERT(path.p_lastidx == t->t_height);
   1101   1.1     yamt 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1102   1.7     yamt 	/*
   1103   1.7     yamt 	 * if already cleared, nothing to do
   1104   1.7     yamt 	 */
   1105   1.1     yamt 	if ((entry_tagmask(*vpp) & tagmask) == 0) {
   1106   1.1     yamt 		return;
   1107   1.1     yamt 	}
   1108   1.7     yamt 	/*
   1109   1.7     yamt 	 * clear the tag only if no children have the tag.
   1110   1.7     yamt 	 */
   1111   1.1     yamt 	for (i = t->t_height; i >= 0; i--) {
   1112   1.1     yamt 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1113   1.1     yamt 		void *entry;
   1114   1.1     yamt 
   1115   1.1     yamt 		KASSERT(pptr != NULL);
   1116   1.1     yamt 		entry = *pptr;
   1117   1.1     yamt 		KASSERT((entry_tagmask(entry) & tagmask) != 0);
   1118   1.1     yamt 		*pptr = entry_compose(entry_ptr(entry),
   1119   1.1     yamt 		    entry_tagmask(entry) & ~tagmask);
   1120   1.7     yamt 		/*
   1121   1.7     yamt 		 * check if we should proceed to process the next level.
   1122   1.7     yamt 		 */
   1123   1.7     yamt 		if (0 < i) {
   1124   1.1     yamt 			struct radix_tree_node *n = path_node(t, &path, i - 1);
   1125   1.1     yamt 
   1126  1.26       ad 			if ((radix_tree_sum_node(n) & tagmask) != 0) {
   1127   1.1     yamt 				break;
   1128   1.1     yamt 			}
   1129   1.1     yamt 		}
   1130   1.1     yamt 	}
   1131   1.1     yamt }
   1132   1.1     yamt 
   1133   1.1     yamt #if defined(UNITTEST)
   1134   1.1     yamt 
   1135   1.1     yamt #include <inttypes.h>
   1136   1.1     yamt #include <stdio.h>
   1137   1.1     yamt 
   1138   1.1     yamt static void
   1139   1.1     yamt radix_tree_dump_node(const struct radix_tree *t, void *vp,
   1140   1.1     yamt     uint64_t offset, unsigned int height)
   1141   1.1     yamt {
   1142   1.1     yamt 	struct radix_tree_node *n;
   1143   1.1     yamt 	unsigned int i;
   1144   1.1     yamt 
   1145   1.1     yamt 	for (i = 0; i < t->t_height - height; i++) {
   1146   1.1     yamt 		printf(" ");
   1147   1.1     yamt 	}
   1148   1.1     yamt 	if (entry_tagmask(vp) == 0) {
   1149   1.1     yamt 		printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
   1150   1.1     yamt 	} else {
   1151   1.1     yamt 		printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
   1152   1.1     yamt 		    entry_tagmask(vp));
   1153   1.1     yamt 	}
   1154   1.1     yamt 	if (height == 0) {
   1155   1.1     yamt 		printf(" (leaf)\n");
   1156   1.1     yamt 		return;
   1157   1.1     yamt 	}
   1158   1.1     yamt 	n = entry_ptr(vp);
   1159  1.26       ad 	assert((radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK) ==
   1160  1.24       ad 	    entry_tagmask(vp));
   1161  1.19       ad 	printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
   1162   1.1     yamt 	for (i = 0; i < __arraycount(n->n_ptrs); i++) {
   1163   1.1     yamt 		void *c;
   1164   1.1     yamt 
   1165   1.1     yamt 		c = n->n_ptrs[i];
   1166   1.1     yamt 		if (c == NULL) {
   1167   1.1     yamt 			continue;
   1168   1.1     yamt 		}
   1169   1.1     yamt 		radix_tree_dump_node(t, c,
   1170   1.1     yamt 		    offset + i * (UINT64_C(1) <<
   1171   1.1     yamt 		    (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
   1172   1.1     yamt 	}
   1173   1.1     yamt }
   1174   1.1     yamt 
   1175   1.1     yamt void radix_tree_dump(const struct radix_tree *);
   1176   1.1     yamt 
   1177   1.1     yamt void
   1178   1.1     yamt radix_tree_dump(const struct radix_tree *t)
   1179   1.1     yamt {
   1180   1.1     yamt 
   1181   1.1     yamt 	printf("tree %p height=%u\n", t, t->t_height);
   1182   1.1     yamt 	radix_tree_dump_node(t, t->t_root, 0, t->t_height);
   1183   1.1     yamt }
   1184   1.1     yamt 
   1185   1.1     yamt static void
   1186   1.1     yamt test1(void)
   1187   1.1     yamt {
   1188   1.1     yamt 	struct radix_tree s;
   1189   1.1     yamt 	struct radix_tree *t = &s;
   1190   1.1     yamt 	void *results[3];
   1191   1.1     yamt 
   1192   1.1     yamt 	radix_tree_init_tree(t);
   1193   1.1     yamt 	radix_tree_dump(t);
   1194   1.1     yamt 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1195   1.1     yamt 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1196  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
   1197  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1198  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1199  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1200  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1201  1.18       ad 	    0);
   1202  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1203  1.18       ad 	    0);
   1204  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1205  1.18       ad 	    == 0);
   1206  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1207  1.18       ad 	    == 0);
   1208  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1209  1.18       ad 	    == 0);
   1210  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1211  1.18       ad 	    == 0);
   1212  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
   1213  1.18       ad 	    == 0);
   1214  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
   1215  1.15     yamt 	    == 0);
   1216  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1217  1.18       ad 	    false, 1) == 0);
   1218  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1219  1.18       ad 	    true, 1) == 0);
   1220  1.15     yamt 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1221  1.18       ad 	    false, 1) == 0);
   1222  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1223  1.18       ad 	    true, 1) == 0);
   1224  1.15     yamt 	assert(radix_tree_empty_tree_p(t));
   1225  1.16     yamt 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1226  1.18       ad 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1227  1.15     yamt 	assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
   1228  1.15     yamt 	assert(!radix_tree_empty_tree_p(t));
   1229  1.16     yamt 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1230  1.18       ad 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1231  1.15     yamt 	assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
   1232  1.15     yamt 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1233  1.15     yamt 	memset(results, 0, sizeof(results));
   1234  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1235  1.18       ad 	assert(results[0] == (void *)0xdeadbea0);
   1236  1.18       ad 	memset(results, 0, sizeof(results));
   1237  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1238  1.15     yamt 	assert(results[0] == (void *)0xdeadbea0);
   1239  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1240  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1241  1.15     yamt 	memset(results, 0, sizeof(results));
   1242  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1243  1.18       ad 	    1);
   1244  1.15     yamt 	assert(results[0] == (void *)0xdeadbea0);
   1245  1.15     yamt 	memset(results, 0, sizeof(results));
   1246  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1247  1.18       ad 	    1);
   1248  1.15     yamt 	assert(results[0] == (void *)0xdeadbea0);
   1249  1.18       ad 	memset(results, 0, sizeof(results));
   1250  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1251  1.18       ad 	    == 1);
   1252  1.18       ad 	assert(results[0] == (void *)0xdeadbea0);
   1253  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1254  1.18       ad 	    == 0);
   1255  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1256  1.15     yamt 	    == 0);
   1257  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1258  1.15     yamt 	    == 0);
   1259  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1260  1.18       ad 	    false, 1) == 0);
   1261  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1262  1.18       ad 	    true, 1) == 0);
   1263   1.1     yamt 	assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
   1264  1.15     yamt 	assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
   1265  1.15     yamt 	assert(!radix_tree_empty_tree_p(t));
   1266   1.1     yamt 	radix_tree_dump(t);
   1267  1.15     yamt 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1268  1.15     yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1269  1.15     yamt 	memset(results, 0, sizeof(results));
   1270  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1271  1.15     yamt 	assert(results[0] == (void *)0xdeadbea0);
   1272  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1273  1.15     yamt 	memset(results, 0, sizeof(results));
   1274  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
   1275  1.15     yamt 	assert(results[0] == (void *)0xdeadbea0);
   1276  1.15     yamt 	memset(results, 0, sizeof(results));
   1277  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
   1278  1.15     yamt 	assert(results[0] == (void *)0xdeadbea0);
   1279  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
   1280  1.15     yamt 	    == 0);
   1281  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
   1282  1.15     yamt 	    == 0);
   1283  1.18       ad 	memset(results, 0, sizeof(results));
   1284  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1285  1.18       ad 	    == 1);
   1286  1.18       ad 	memset(results, 0, sizeof(results));
   1287  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1288  1.18       ad 	    == 1);
   1289  1.18       ad 	assert(results[0] == (void *)0xdeadbea0);
   1290  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1291  1.18       ad 	    == 0);
   1292  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1293  1.18       ad 	    == 0);
   1294  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1295  1.18       ad 	    false, 1) == 0);
   1296  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1297  1.18       ad 	    true, 1) == 0);
   1298  1.18       ad 	assert(!radix_tree_get_tag(t, 1000, 1));
   1299  1.18       ad 	assert(!radix_tree_get_tag(t, 1000, 2));
   1300  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
   1301  1.18       ad 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1302  1.18       ad 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1303  1.18       ad 	radix_tree_set_tag(t, 1000, 2);
   1304   1.1     yamt 	assert(!radix_tree_get_tag(t, 1000, 1));
   1305  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1306  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1307  1.16     yamt 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1308  1.18       ad 	assert(!radix_tree_empty_tagged_tree_p(t, 2));
   1309   1.1     yamt 	radix_tree_dump(t);
   1310   1.1     yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1311   1.1     yamt 	assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
   1312   1.1     yamt 	radix_tree_dump(t);
   1313   1.1     yamt 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1314   1.1     yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1315   1.1     yamt 	assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
   1316   1.1     yamt 	    == 0);
   1317   1.1     yamt 	radix_tree_dump(t);
   1318   1.1     yamt 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1319   1.1     yamt 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1320   1.1     yamt 	assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
   1321   1.1     yamt 	    (void *)0xdea0);
   1322   1.1     yamt 	radix_tree_dump(t);
   1323  1.18       ad 	assert(!radix_tree_get_tag(t, 0, 2));
   1324  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1325   1.1     yamt 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
   1326  1.27  msaitoh 	radix_tree_set_tag(t, 0, 2);
   1327  1.18       ad 	radix_tree_set_tag(t, UINT64_C(10000000000), 2);
   1328   1.1     yamt 	radix_tree_dump(t);
   1329  1.18       ad 	assert(radix_tree_get_tag(t, 0, 2));
   1330  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1331  1.18       ad 	assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1332  1.27  msaitoh 	radix_tree_clear_tag(t, 0, 2);
   1333  1.18       ad 	radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
   1334   1.1     yamt 	radix_tree_dump(t);
   1335  1.18       ad 	assert(!radix_tree_get_tag(t, 0, 2));
   1336  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1337  1.18       ad 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1338   1.1     yamt 	radix_tree_dump(t);
   1339   1.1     yamt 	assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
   1340   1.1     yamt 	    (void *)0xdeadbea0);
   1341  1.18       ad 	assert(!radix_tree_get_tag(t, 1000, 1));
   1342  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2));
   1343  1.18       ad 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1344  1.18       ad 	memset(results, 0, sizeof(results));
   1345  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
   1346   1.1     yamt 	assert(results[0] == (void *)0xbea0);
   1347   1.1     yamt 	assert(results[1] == (void *)0x12345678);
   1348   1.1     yamt 	assert(results[2] == (void *)0xdea0);
   1349  1.18       ad 	memset(results, 0, sizeof(results));
   1350  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1351  1.18       ad 	assert(results[0] == (void *)0xbea0);
   1352  1.18       ad 	memset(results, 0, sizeof(results));
   1353  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
   1354   1.1     yamt 	assert(results[0] == (void *)0x12345678);
   1355   1.1     yamt 	assert(results[1] == (void *)0xdea0);
   1356  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
   1357  1.18       ad 	memset(results, 0, sizeof(results));
   1358  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
   1359   1.1     yamt 	assert(results[0] == (void *)0xdea0);
   1360  1.18       ad 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
   1361  1.18       ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1362  1.18       ad 	    false) == 0);
   1363  1.18       ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1364  1.18       ad 	    true) == 0);
   1365  1.18       ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1366  1.18       ad 	    3, false) == 0);
   1367   1.1     yamt 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1368  1.18       ad 	    3, true) == 0);
   1369  1.18       ad 	memset(results, 0, sizeof(results));
   1370  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
   1371  1.18       ad 	    == 1);
   1372   1.1     yamt 	assert(results[0] == (void *)0x12345678);
   1373  1.18       ad 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
   1374  1.18       ad 	    == 0);
   1375   1.1     yamt 	assert(entry_tagmask(t->t_root) != 0);
   1376   1.1     yamt 	assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
   1377   1.1     yamt 	assert(entry_tagmask(t->t_root) == 0);
   1378   1.1     yamt 	radix_tree_dump(t);
   1379  1.18       ad 	assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
   1380  1.18       ad 	    == 0);
   1381  1.18       ad 	memset(results, 0, sizeof(results));
   1382  1.18       ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1383  1.18       ad 	    false) == 2);
   1384  1.18       ad 	assert(results[0] == (void *)0xdea0);
   1385  1.18       ad 	assert(results[1] == (void *)0xfff0);
   1386  1.18       ad 	memset(results, 0, sizeof(results));
   1387  1.18       ad 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1388  1.18       ad 	    true) == 2);
   1389  1.18       ad 	assert(results[0] == (void *)0xdea0);
   1390  1.18       ad 	assert(results[1] == (void *)0xfff0);
   1391  1.18       ad 	memset(results, 0, sizeof(results));
   1392  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1393  1.18       ad 	    results, 3, false) == 3);
   1394  1.18       ad 	assert(results[0] == (void *)0xfff0);
   1395  1.18       ad 	assert(results[1] == (void *)0xdea0);
   1396  1.18       ad 	assert(results[2] == (void *)0xbea0);
   1397  1.18       ad 	memset(results, 0, sizeof(results));
   1398  1.18       ad 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1399  1.18       ad 	    results, 3, true) == 2);
   1400  1.18       ad 	assert(results[0] == (void *)0xfff0);
   1401  1.18       ad 	assert(results[1] == (void *)0xdea0);
   1402   1.1     yamt 	assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
   1403   1.1     yamt 	    (void *)0xdea0);
   1404  1.18       ad 	assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
   1405  1.18       ad 	    (void *)0xfff0);
   1406   1.1     yamt 	radix_tree_dump(t);
   1407   1.1     yamt 	assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
   1408   1.1     yamt 	radix_tree_dump(t);
   1409   1.1     yamt 	radix_tree_fini_tree(t);
   1410   1.1     yamt }
   1411   1.1     yamt 
   1412   1.1     yamt #include <sys/time.h>
   1413   1.1     yamt 
   1414   1.1     yamt struct testnode {
   1415   1.1     yamt 	uint64_t idx;
   1416  1.12     yamt 	bool tagged[RADIX_TREE_TAG_ID_MAX];
   1417   1.1     yamt };
   1418   1.1     yamt 
   1419   1.1     yamt static void
   1420  1.11     yamt printops(const char *title, const char *name, int tag, unsigned int n,
   1421  1.11     yamt     const struct timeval *stv, const struct timeval *etv)
   1422   1.1     yamt {
   1423   1.1     yamt 	uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
   1424   1.1     yamt 	uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
   1425   1.1     yamt 
   1426  1.11     yamt 	printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
   1427  1.11     yamt 	    (double)n / (e - s) * 1000000);
   1428   1.1     yamt }
   1429   1.1     yamt 
   1430   1.1     yamt #define	TEST2_GANG_LOOKUP_NODES	16
   1431   1.1     yamt 
   1432   1.1     yamt static bool
   1433  1.18       ad test2_should_tag(unsigned int i, unsigned int tagid)
   1434   1.1     yamt {
   1435   1.1     yamt 
   1436   1.1     yamt 	if (tagid == 0) {
   1437  1.18       ad 		return (i % 4) == 0;	/* 25% */
   1438   1.1     yamt 	} else {
   1439  1.11     yamt 		return (i % 7) == 0;	/* 14% */
   1440   1.1     yamt 	}
   1441  1.18       ad 	return 1;
   1442  1.18       ad }
   1443  1.18       ad 
   1444  1.18       ad static void
   1445  1.18       ad check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
   1446  1.18       ad     unsigned int count)
   1447  1.18       ad {
   1448  1.18       ad 	unsigned int tag;
   1449  1.18       ad 
   1450  1.18       ad 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1451  1.18       ad 		if ((tagmask & (1 << tag)) == 0) {
   1452  1.18       ad 			continue;
   1453  1.18       ad 		}
   1454  1.18       ad 		if (((tagmask - 1) & tagmask) == 0) {
   1455  1.18       ad 			assert(count == ntagged[tag]);
   1456  1.18       ad 		} else {
   1457  1.18       ad 			assert(count >= ntagged[tag]);
   1458  1.18       ad 		}
   1459  1.18       ad 	}
   1460   1.1     yamt }
   1461   1.1     yamt 
   1462   1.1     yamt static void
   1463  1.11     yamt test2(const char *title, bool dense)
   1464   1.1     yamt {
   1465   1.1     yamt 	struct radix_tree s;
   1466   1.1     yamt 	struct radix_tree *t = &s;
   1467   1.1     yamt 	struct testnode *n;
   1468   1.1     yamt 	unsigned int i;
   1469   1.1     yamt 	unsigned int nnodes = 100000;
   1470   1.1     yamt 	unsigned int removed;
   1471  1.18       ad 	unsigned int tag;
   1472  1.18       ad 	unsigned int tagmask;
   1473   1.1     yamt 	unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
   1474   1.1     yamt 	struct testnode *nodes;
   1475   1.1     yamt 	struct timeval stv;
   1476   1.1     yamt 	struct timeval etv;
   1477   1.1     yamt 
   1478   1.1     yamt 	nodes = malloc(nnodes * sizeof(*nodes));
   1479   1.1     yamt 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1480   1.1     yamt 		ntagged[tag] = 0;
   1481   1.1     yamt 	}
   1482   1.1     yamt 	radix_tree_init_tree(t);
   1483   1.1     yamt 	for (i = 0; i < nnodes; i++) {
   1484   1.1     yamt 		n = &nodes[i];
   1485   1.1     yamt 		n->idx = random();
   1486   1.1     yamt 		if (sizeof(long) == 4) {
   1487   1.1     yamt 			n->idx <<= 32;
   1488   1.1     yamt 			n->idx |= (uint32_t)random();
   1489   1.1     yamt 		}
   1490   1.1     yamt 		if (dense) {
   1491   1.1     yamt 			n->idx %= nnodes * 2;
   1492   1.1     yamt 		}
   1493   1.1     yamt 		while (radix_tree_lookup_node(t, n->idx) != NULL) {
   1494   1.1     yamt 			n->idx++;
   1495   1.1     yamt 		}
   1496   1.1     yamt 		radix_tree_insert_node(t, n->idx, n);
   1497   1.1     yamt 		for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1498  1.18       ad 			tagmask = 1 << tag;
   1499  1.18       ad 
   1500  1.12     yamt 			n->tagged[tag] = test2_should_tag(i, tag);
   1501  1.12     yamt 			if (n->tagged[tag]) {
   1502  1.18       ad 				radix_tree_set_tag(t, n->idx, tagmask);
   1503   1.1     yamt 				ntagged[tag]++;
   1504   1.1     yamt 			}
   1505  1.18       ad 			assert((n->tagged[tag] ? tagmask : 0) ==
   1506  1.18       ad 			    radix_tree_get_tag(t, n->idx, tagmask));
   1507   1.1     yamt 		}
   1508   1.1     yamt 	}
   1509   1.1     yamt 
   1510   1.1     yamt 	gettimeofday(&stv, NULL);
   1511   1.1     yamt 	for (i = 0; i < nnodes; i++) {
   1512   1.1     yamt 		n = &nodes[i];
   1513   1.1     yamt 		assert(radix_tree_lookup_node(t, n->idx) == n);
   1514   1.1     yamt 	}
   1515   1.1     yamt 	gettimeofday(&etv, NULL);
   1516  1.11     yamt 	printops(title, "lookup", 0, nnodes, &stv, &etv);
   1517   1.1     yamt 
   1518  1.18       ad 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1519  1.12     yamt 		unsigned int count = 0;
   1520  1.12     yamt 
   1521   1.1     yamt 		gettimeofday(&stv, NULL);
   1522   1.1     yamt 		for (i = 0; i < nnodes; i++) {
   1523  1.18       ad 			unsigned int tagged;
   1524  1.12     yamt 
   1525   1.1     yamt 			n = &nodes[i];
   1526  1.18       ad 			tagged = radix_tree_get_tag(t, n->idx, tagmask);
   1527  1.18       ad 			assert((tagged & ~tagmask) == 0);
   1528  1.18       ad 			for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1529  1.18       ad 				assert((tagmask & (1 << tag)) == 0 ||
   1530  1.18       ad 				    n->tagged[tag] == !!(tagged & (1 << tag)));
   1531  1.18       ad 			}
   1532  1.12     yamt 			if (tagged) {
   1533  1.12     yamt 				count++;
   1534  1.12     yamt 			}
   1535   1.1     yamt 		}
   1536   1.1     yamt 		gettimeofday(&etv, NULL);
   1537  1.18       ad 		check_tag_count(ntagged, tagmask, count);
   1538  1.18       ad 		printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
   1539   1.1     yamt 	}
   1540   1.1     yamt 
   1541   1.1     yamt 	gettimeofday(&stv, NULL);
   1542   1.1     yamt 	for (i = 0; i < nnodes; i++) {
   1543   1.1     yamt 		n = &nodes[i];
   1544   1.1     yamt 		radix_tree_remove_node(t, n->idx);
   1545   1.1     yamt 	}
   1546   1.1     yamt 	gettimeofday(&etv, NULL);
   1547  1.11     yamt 	printops(title, "remove", 0, nnodes, &stv, &etv);
   1548   1.1     yamt 
   1549   1.1     yamt 	gettimeofday(&stv, NULL);
   1550   1.1     yamt 	for (i = 0; i < nnodes; i++) {
   1551   1.1     yamt 		n = &nodes[i];
   1552   1.1     yamt 		radix_tree_insert_node(t, n->idx, n);
   1553   1.1     yamt 	}
   1554   1.1     yamt 	gettimeofday(&etv, NULL);
   1555  1.11     yamt 	printops(title, "insert", 0, nnodes, &stv, &etv);
   1556   1.1     yamt 
   1557   1.1     yamt 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1558  1.18       ad 		tagmask = 1 << tag;
   1559  1.18       ad 
   1560   1.1     yamt 		ntagged[tag] = 0;
   1561   1.1     yamt 		gettimeofday(&stv, NULL);
   1562   1.1     yamt 		for (i = 0; i < nnodes; i++) {
   1563   1.1     yamt 			n = &nodes[i];
   1564  1.12     yamt 			if (n->tagged[tag]) {
   1565  1.18       ad 				radix_tree_set_tag(t, n->idx, tagmask);
   1566   1.1     yamt 				ntagged[tag]++;
   1567   1.1     yamt 			}
   1568   1.1     yamt 		}
   1569   1.1     yamt 		gettimeofday(&etv, NULL);
   1570  1.11     yamt 		printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
   1571   1.1     yamt 	}
   1572   1.1     yamt 
   1573   1.1     yamt 	gettimeofday(&stv, NULL);
   1574   1.1     yamt 	{
   1575   1.1     yamt 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1576   1.1     yamt 		uint64_t nextidx;
   1577   1.1     yamt 		unsigned int nfound;
   1578   1.1     yamt 		unsigned int total;
   1579   1.1     yamt 
   1580   1.1     yamt 		nextidx = 0;
   1581   1.1     yamt 		total = 0;
   1582   1.1     yamt 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1583  1.18       ad 		    (void *)results, __arraycount(results), false)) > 0) {
   1584   1.1     yamt 			nextidx = results[nfound - 1]->idx + 1;
   1585   1.1     yamt 			total += nfound;
   1586  1.15     yamt 			if (nextidx == 0) {
   1587  1.15     yamt 				break;
   1588  1.15     yamt 			}
   1589   1.1     yamt 		}
   1590   1.1     yamt 		assert(total == nnodes);
   1591   1.1     yamt 	}
   1592   1.1     yamt 	gettimeofday(&etv, NULL);
   1593  1.11     yamt 	printops(title, "ganglookup", 0, nnodes, &stv, &etv);
   1594   1.1     yamt 
   1595  1.15     yamt 	gettimeofday(&stv, NULL);
   1596  1.15     yamt 	{
   1597  1.15     yamt 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1598  1.15     yamt 		uint64_t nextidx;
   1599  1.15     yamt 		unsigned int nfound;
   1600  1.15     yamt 		unsigned int total;
   1601  1.15     yamt 
   1602  1.15     yamt 		nextidx = UINT64_MAX;
   1603  1.15     yamt 		total = 0;
   1604  1.15     yamt 		while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
   1605  1.18       ad 		    (void *)results, __arraycount(results), false)) > 0) {
   1606  1.15     yamt 			nextidx = results[nfound - 1]->idx - 1;
   1607  1.15     yamt 			total += nfound;
   1608  1.15     yamt 			if (nextidx == UINT64_MAX) {
   1609  1.15     yamt 				break;
   1610  1.15     yamt 			}
   1611  1.15     yamt 		}
   1612  1.15     yamt 		assert(total == nnodes);
   1613  1.15     yamt 	}
   1614  1.15     yamt 	gettimeofday(&etv, NULL);
   1615  1.15     yamt 	printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
   1616  1.15     yamt 
   1617  1.18       ad 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1618  1.18       ad 		unsigned int total = 0;
   1619  1.18       ad 
   1620   1.1     yamt 		gettimeofday(&stv, NULL);
   1621   1.1     yamt 		{
   1622   1.1     yamt 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1623   1.1     yamt 			uint64_t nextidx;
   1624   1.1     yamt 			unsigned int nfound;
   1625   1.1     yamt 
   1626   1.1     yamt 			nextidx = 0;
   1627   1.1     yamt 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1628   1.1     yamt 			    nextidx, (void *)results, __arraycount(results),
   1629  1.18       ad 			    false, tagmask)) > 0) {
   1630   1.1     yamt 				nextidx = results[nfound - 1]->idx + 1;
   1631   1.1     yamt 				total += nfound;
   1632   1.1     yamt 			}
   1633   1.1     yamt 		}
   1634   1.1     yamt 		gettimeofday(&etv, NULL);
   1635  1.18       ad 		check_tag_count(ntagged, tagmask, total);
   1636  1.18       ad 		assert(tagmask != 0 || total == 0);
   1637  1.18       ad 		printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
   1638   1.1     yamt 	}
   1639   1.1     yamt 
   1640  1.18       ad 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1641  1.18       ad 		unsigned int total = 0;
   1642  1.18       ad 
   1643  1.15     yamt 		gettimeofday(&stv, NULL);
   1644  1.15     yamt 		{
   1645  1.15     yamt 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1646  1.15     yamt 			uint64_t nextidx;
   1647  1.15     yamt 			unsigned int nfound;
   1648  1.15     yamt 
   1649  1.15     yamt 			nextidx = UINT64_MAX;
   1650  1.15     yamt 			while ((nfound =
   1651  1.15     yamt 			    radix_tree_gang_lookup_tagged_node_reverse(t,
   1652  1.15     yamt 			    nextidx, (void *)results, __arraycount(results),
   1653  1.18       ad 			    false, tagmask)) > 0) {
   1654  1.15     yamt 				nextidx = results[nfound - 1]->idx - 1;
   1655  1.15     yamt 				total += nfound;
   1656  1.15     yamt 				if (nextidx == UINT64_MAX) {
   1657  1.15     yamt 					break;
   1658  1.15     yamt 				}
   1659  1.15     yamt 			}
   1660  1.15     yamt 		}
   1661  1.15     yamt 		gettimeofday(&etv, NULL);
   1662  1.18       ad 		check_tag_count(ntagged, tagmask, total);
   1663  1.18       ad 		assert(tagmask != 0 || total == 0);
   1664  1.18       ad 		printops(title, "ganglookup_tag_reverse", tagmask, total,
   1665  1.15     yamt 		    &stv, &etv);
   1666  1.15     yamt 	}
   1667  1.15     yamt 
   1668   1.1     yamt 	removed = 0;
   1669   1.1     yamt 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1670   1.1     yamt 		unsigned int total;
   1671   1.1     yamt 
   1672   1.1     yamt 		total = 0;
   1673  1.18       ad 		tagmask = 1 << tag;
   1674   1.1     yamt 		gettimeofday(&stv, NULL);
   1675   1.1     yamt 		{
   1676   1.1     yamt 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1677   1.1     yamt 			uint64_t nextidx;
   1678   1.1     yamt 			unsigned int nfound;
   1679   1.1     yamt 
   1680   1.1     yamt 			nextidx = 0;
   1681   1.1     yamt 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1682   1.1     yamt 			    nextidx, (void *)results, __arraycount(results),
   1683  1.18       ad 			    false, tagmask)) > 0) {
   1684   1.1     yamt 				for (i = 0; i < nfound; i++) {
   1685   1.1     yamt 					radix_tree_remove_node(t,
   1686   1.1     yamt 					    results[i]->idx);
   1687   1.1     yamt 				}
   1688   1.1     yamt 				nextidx = results[nfound - 1]->idx + 1;
   1689   1.1     yamt 				total += nfound;
   1690  1.15     yamt 				if (nextidx == 0) {
   1691  1.15     yamt 					break;
   1692  1.15     yamt 				}
   1693   1.1     yamt 			}
   1694  1.18       ad 		}
   1695  1.18       ad 		gettimeofday(&etv, NULL);
   1696  1.18       ad 		if (tag == 0) {
   1697  1.18       ad 			check_tag_count(ntagged, tagmask, total);
   1698  1.18       ad 		} else {
   1699   1.1     yamt 			assert(total <= ntagged[tag]);
   1700   1.1     yamt 		}
   1701  1.18       ad 		printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
   1702  1.11     yamt 		    &etv);
   1703   1.1     yamt 		removed += total;
   1704   1.1     yamt 	}
   1705   1.1     yamt 
   1706   1.1     yamt 	gettimeofday(&stv, NULL);
   1707   1.1     yamt 	{
   1708   1.1     yamt 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1709   1.1     yamt 		uint64_t nextidx;
   1710   1.1     yamt 		unsigned int nfound;
   1711   1.1     yamt 		unsigned int total;
   1712   1.1     yamt 
   1713   1.1     yamt 		nextidx = 0;
   1714   1.1     yamt 		total = 0;
   1715   1.1     yamt 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1716  1.18       ad 		    (void *)results, __arraycount(results), false)) > 0) {
   1717   1.1     yamt 			for (i = 0; i < nfound; i++) {
   1718   1.1     yamt 				assert(results[i] == radix_tree_remove_node(t,
   1719   1.1     yamt 				    results[i]->idx));
   1720   1.1     yamt 			}
   1721   1.1     yamt 			nextidx = results[nfound - 1]->idx + 1;
   1722   1.1     yamt 			total += nfound;
   1723  1.15     yamt 			if (nextidx == 0) {
   1724  1.15     yamt 				break;
   1725  1.15     yamt 			}
   1726   1.1     yamt 		}
   1727   1.1     yamt 		assert(total == nnodes - removed);
   1728   1.1     yamt 	}
   1729   1.1     yamt 	gettimeofday(&etv, NULL);
   1730  1.11     yamt 	printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
   1731   1.1     yamt 
   1732  1.16     yamt 	assert(radix_tree_empty_tree_p(t));
   1733  1.18       ad 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1734  1.18       ad 		assert(radix_tree_empty_tagged_tree_p(t, tagmask));
   1735  1.18       ad 	}
   1736   1.1     yamt 	radix_tree_fini_tree(t);
   1737   1.1     yamt 	free(nodes);
   1738   1.1     yamt }
   1739   1.1     yamt 
   1740   1.1     yamt int
   1741   1.1     yamt main(int argc, char *argv[])
   1742   1.1     yamt {
   1743   1.1     yamt 
   1744   1.1     yamt 	test1();
   1745  1.11     yamt 	test2("dense", true);
   1746  1.11     yamt 	test2("sparse", false);
   1747   1.1     yamt 	return 0;
   1748   1.1     yamt }
   1749   1.1     yamt 
   1750   1.1     yamt #endif /* defined(UNITTEST) */
   1751