radixtree.c revision 1.11 1 /* $NetBSD: radixtree.c,v 1.11 2011/10/14 15:31:35 yamt Exp $ */
2
3 /*-
4 * Copyright (c)2011 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * radix tree
31 *
32 * it's designed to work efficiently with dense index distribution.
33 * the memory consumption (number of necessary intermediate nodes)
34 * heavily depends on index distribution. basically, more dense index
35 * distribution consumes less nodes per item.
36 * approximately,
37 * the best case: about RADIX_TREE_PTR_PER_NODE items per node.
38 * the worst case: RADIX_TREE_MAX_HEIGHT nodes per item.
39 */
40
41 #include <sys/cdefs.h>
42
43 #if defined(_KERNEL) || defined(_STANDALONE)
44 __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.11 2011/10/14 15:31:35 yamt Exp $");
45 #include <sys/param.h>
46 #include <sys/errno.h>
47 #include <sys/pool.h>
48 #include <sys/radixtree.h>
49 #include <lib/libkern/libkern.h>
50 #if defined(_STANDALONE)
51 #include <lib/libsa/stand.h>
52 #endif /* defined(_STANDALONE) */
53 #else /* defined(_KERNEL) || defined(_STANDALONE) */
54 __RCSID("$NetBSD: radixtree.c,v 1.11 2011/10/14 15:31:35 yamt Exp $");
55 #include <assert.h>
56 #include <errno.h>
57 #include <stdbool.h>
58 #include <stdlib.h>
59 #include <string.h>
60 #if 1
61 #define KASSERT assert
62 #else
63 #define KASSERT(a) /* nothing */
64 #endif
65 #endif /* defined(_KERNEL) || defined(_STANDALONE) */
66
67 #include <sys/radixtree.h>
68
69 #define RADIX_TREE_BITS_PER_HEIGHT 4 /* XXX tune */
70 #define RADIX_TREE_PTR_PER_NODE (1 << RADIX_TREE_BITS_PER_HEIGHT)
71 #define RADIX_TREE_MAX_HEIGHT (64 / RADIX_TREE_BITS_PER_HEIGHT)
72 __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
73
74 __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
75 #define RADIX_TREE_TAG_MASK ((1 << RADIX_TREE_TAG_ID_MAX) - 1)
76
77 static inline void *
78 entry_ptr(void *p)
79 {
80
81 return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
82 }
83
84 static inline unsigned int
85 entry_tagmask(void *p)
86 {
87
88 return (uintptr_t)p & RADIX_TREE_TAG_MASK;
89 }
90
91 static inline void *
92 entry_compose(void *p, unsigned int tagmask)
93 {
94
95 return (void *)((uintptr_t)p | tagmask);
96 }
97
98 static inline bool
99 entry_match_p(void *p, unsigned int tagmask)
100 {
101
102 KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
103 if (p == NULL) {
104 return false;
105 }
106 if (tagmask == 0) {
107 return true;
108 }
109 return (entry_tagmask(p) & tagmask) != 0;
110 }
111
112 static inline unsigned int
113 tagid_to_mask(radix_tree_tagid_t id)
114 {
115
116 KASSERT(id >= 0);
117 KASSERT(id < RADIX_TREE_TAG_ID_MAX);
118 return 1U << id;
119 }
120
121 /*
122 * radix_tree_node: an intermediate node
123 *
124 * we don't care the type of leaf nodes. they are just void *.
125 */
126
127 struct radix_tree_node {
128 void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
129 unsigned int n_nptrs; /* # of non-NULL pointers in n_ptrs */
130 };
131
132 /*
133 * any_children_tagmask:
134 *
135 * return OR'ed tagmask of the given node's children.
136 */
137
138 static unsigned int
139 any_children_tagmask(struct radix_tree_node *n)
140 {
141 unsigned int mask;
142 int i;
143
144 mask = 0;
145 for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
146 mask |= (unsigned int)(uintptr_t)n->n_ptrs[i];
147 }
148 return mask & RADIX_TREE_TAG_MASK;
149 }
150
151 /*
152 * p_refs[0].pptr == &t->t_root
153 * :
154 * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
155 * :
156 * :
157 * p_refs[t->t_height].pptr == &leaf_pointer
158 */
159
160 struct radix_tree_path {
161 struct radix_tree_node_ref {
162 void **pptr;
163 } p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
164 unsigned int p_lastidx;
165 };
166
167 static inline void **
168 path_pptr(struct radix_tree *t, struct radix_tree_path *p,
169 unsigned int height)
170 {
171
172 KASSERT(height <= t->t_height);
173 return p->p_refs[height].pptr;
174 }
175
176 static inline struct radix_tree_node *
177 path_node(struct radix_tree * t, struct radix_tree_path *p, unsigned int height)
178 {
179
180 KASSERT(height <= t->t_height);
181 return entry_ptr(*path_pptr(t, p, height));
182 }
183
184 static inline unsigned int
185 path_idx(struct radix_tree * t, struct radix_tree_path *p, unsigned int height)
186 {
187
188 KASSERT(height <= t->t_height);
189 return path_pptr(t, p, height + 1) - path_node(t, p, height)->n_ptrs;
190 }
191
192 /*
193 * radix_tree_init_tree:
194 *
195 * initialize a tree.
196 */
197
198 void
199 radix_tree_init_tree(struct radix_tree *t)
200 {
201
202 t->t_height = 0;
203 t->t_root = NULL;
204 }
205
206 /*
207 * radix_tree_init_tree:
208 *
209 * clean up a tree.
210 */
211
212 void
213 radix_tree_fini_tree(struct radix_tree *t)
214 {
215
216 KASSERT(t->t_root == NULL);
217 KASSERT(t->t_height == 0);
218 }
219
220 bool
221 radix_tree_empty_tree_p(struct radix_tree *t)
222 {
223
224 return t->t_root == NULL;
225 }
226
227 static void
228 radix_tree_node_init(struct radix_tree_node *n)
229 {
230
231 memset(n, 0, sizeof(*n));
232 }
233
234 #if defined(_KERNEL)
235 pool_cache_t radix_tree_node_cache __read_mostly;
236
237 static int
238 radix_tree_node_ctor(void *dummy, void *item, int flags)
239 {
240 struct radix_tree_node *n = item;
241
242 KASSERT(dummy == NULL);
243 radix_tree_node_init(n);
244 return 0;
245 }
246
247 /*
248 * radix_tree_init:
249 *
250 * initialize the subsystem.
251 */
252
253 void
254 radix_tree_init(void)
255 {
256
257 radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
258 0, 0, 0, "radix_tree_node", NULL, IPL_NONE, radix_tree_node_ctor,
259 NULL, NULL);
260 KASSERT(radix_tree_node_cache != NULL);
261 }
262 #endif /* defined(_KERNEL) */
263
264 static bool __unused
265 radix_tree_node_clean_p(const struct radix_tree_node *n)
266 {
267 unsigned int i;
268
269 if (n->n_nptrs != 0) {
270 return false;
271 }
272 for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
273 if (n->n_ptrs[i] != NULL) {
274 return false;
275 }
276 }
277 return true;
278 }
279
280 static struct radix_tree_node *
281 radix_tree_alloc_node(void)
282 {
283 struct radix_tree_node *n;
284
285 #if defined(_KERNEL)
286 n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
287 #else /* defined(_KERNEL) */
288 #if defined(_STANDALONE)
289 n = alloc(sizeof(*n));
290 #else /* defined(_STANDALONE) */
291 n = malloc(sizeof(*n));
292 #endif /* defined(_STANDALONE) */
293 if (n != NULL) {
294 radix_tree_node_init(n);
295 }
296 #endif /* defined(_KERNEL) */
297 KASSERT(n == NULL || radix_tree_node_clean_p(n));
298 return n;
299 }
300
301 static void
302 radix_tree_free_node(struct radix_tree_node *n)
303 {
304
305 KASSERT(radix_tree_node_clean_p(n));
306 #if defined(_KERNEL)
307 pool_cache_put(radix_tree_node_cache, n);
308 #elif defined(_STANDALONE)
309 dealloc(n, sizeof(*n));
310 #else
311 free(n);
312 #endif
313 }
314
315 static int
316 radix_tree_grow(struct radix_tree *t, unsigned int newheight)
317 {
318 const unsigned int tagmask = entry_tagmask(t->t_root);
319
320 KASSERT(newheight <= 64 / RADIX_TREE_BITS_PER_HEIGHT);
321 if (t->t_root == NULL) {
322 t->t_height = newheight;
323 return 0;
324 }
325 while (t->t_height < newheight) {
326 struct radix_tree_node *n;
327
328 n = radix_tree_alloc_node();
329 if (n == NULL) {
330 /*
331 * don't bother to revert our changes.
332 * the caller will likely retry.
333 */
334 return ENOMEM;
335 }
336 n->n_nptrs = 1;
337 n->n_ptrs[0] = t->t_root;
338 t->t_root = entry_compose(n, tagmask);
339 t->t_height++;
340 }
341 return 0;
342 }
343
344 /*
345 * radix_tree_lookup_ptr:
346 *
347 * an internal helper function used for various exported functions.
348 *
349 * return the pointer to store the node for the given index.
350 *
351 * if alloc is true, try to allocate the storage. (note for _KERNEL:
352 * in that case, this function can block.) if the allocation failed or
353 * alloc is false, return NULL.
354 *
355 * if path is not NULL, fill it for the caller's investigation.
356 *
357 * if tagmask is not zero, search only for nodes with the tag set.
358 *
359 * while this function is a bit large, as it's called with some constant
360 * arguments, inlining might have benefits. anyway, a compiler will decide.
361 */
362
363 static inline void **
364 radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
365 struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
366 {
367 struct radix_tree_node *n;
368 int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
369 int shift;
370 void **vpp;
371 const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
372 struct radix_tree_node_ref *refs = NULL;
373
374 /*
375 * check unsupported combinations
376 */
377 KASSERT(tagmask == 0 || !alloc);
378 KASSERT(path == NULL || !alloc);
379 vpp = &t->t_root;
380 if (path != NULL) {
381 refs = path->p_refs;
382 refs->pptr = vpp;
383 }
384 n = NULL;
385 for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
386 struct radix_tree_node *c;
387 void *entry;
388 const uint64_t i = (idx >> shift) & mask;
389
390 if (shift >= hshift) {
391 unsigned int newheight;
392
393 KASSERT(vpp == &t->t_root);
394 if (i == 0) {
395 shift -= RADIX_TREE_BITS_PER_HEIGHT;
396 continue;
397 }
398 if (!alloc) {
399 if (path != NULL) {
400 KASSERT((refs - path->p_refs) == 0);
401 path->p_lastidx = 0;
402 }
403 return NULL;
404 }
405 newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
406 if (radix_tree_grow(t, newheight)) {
407 return NULL;
408 }
409 hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
410 }
411 entry = *vpp;
412 c = entry_ptr(entry);
413 if (c == NULL ||
414 (tagmask != 0 &&
415 (entry_tagmask(entry) & tagmask) == 0)) {
416 if (!alloc) {
417 if (path != NULL) {
418 path->p_lastidx = refs - path->p_refs;
419 }
420 return NULL;
421 }
422 c = radix_tree_alloc_node();
423 if (c == NULL) {
424 return NULL;
425 }
426 *vpp = c;
427 if (n != NULL) {
428 KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
429 n->n_nptrs++;
430 }
431 }
432 n = c;
433 vpp = &n->n_ptrs[i];
434 if (path != NULL) {
435 refs++;
436 refs->pptr = vpp;
437 }
438 shift -= RADIX_TREE_BITS_PER_HEIGHT;
439 }
440 if (alloc) {
441 KASSERT(*vpp == NULL);
442 if (n != NULL) {
443 KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
444 n->n_nptrs++;
445 }
446 }
447 if (path != NULL) {
448 path->p_lastidx = refs - path->p_refs;
449 }
450 return vpp;
451 }
452
453 /*
454 * radix_tree_insert_node:
455 *
456 * insert the node at idx.
457 * it's illegal to insert NULL.
458 * it's illegal to insert a non-aligned pointer.
459 *
460 * this function returns ENOMEM if necessary memory allocation failed.
461 * otherwise, this function returns 0.
462 *
463 * note that inserting a node can involves memory allocation for intermediate
464 * nodes. if _KERNEL, it's done with non-blocking IPL_NONE memory allocation.
465 *
466 * for the newly inserted node, all tags are cleared.
467 */
468
469 int
470 radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
471 {
472 void **vpp;
473
474 KASSERT(p != NULL);
475 KASSERT(entry_compose(p, 0) == p);
476 vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
477 if (vpp == NULL) {
478 return ENOMEM;
479 }
480 KASSERT(*vpp == NULL);
481 *vpp = p;
482 return 0;
483 }
484
485 /*
486 * radix_tree_replace_node:
487 *
488 * replace a node at the given index with the given node.
489 * return the old node.
490 * it's illegal to try to replace a node which has not been inserted.
491 *
492 * this function doesn't change tags.
493 */
494
495 void *
496 radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
497 {
498 void **vpp;
499 void *oldp;
500
501 KASSERT(p != NULL);
502 KASSERT(entry_compose(p, 0) == p);
503 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
504 KASSERT(vpp != NULL);
505 oldp = *vpp;
506 KASSERT(oldp != NULL);
507 *vpp = entry_compose(p, entry_tagmask(*vpp));
508 return entry_ptr(oldp);
509 }
510
511 /*
512 * radix_tree_remove_node:
513 *
514 * remove the node at idx.
515 * it's illegal to try to remove a node which has not been inserted.
516 */
517
518 void *
519 radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
520 {
521 struct radix_tree_path path;
522 void **vpp;
523 void *oldp;
524 int i;
525
526 vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
527 KASSERT(vpp != NULL);
528 oldp = *vpp;
529 KASSERT(oldp != NULL);
530 KASSERT(path.p_lastidx == t->t_height);
531 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
532 *vpp = NULL;
533 for (i = t->t_height - 1; i >= 0; i--) {
534 void *entry;
535 struct radix_tree_node ** const pptr =
536 (struct radix_tree_node **)path_pptr(t, &path, i);
537 struct radix_tree_node *n;
538
539 KASSERT(pptr != NULL);
540 entry = *pptr;
541 n = entry_ptr(entry);
542 KASSERT(n != NULL);
543 KASSERT(n->n_nptrs > 0);
544 n->n_nptrs--;
545 if (n->n_nptrs > 0) {
546 break;
547 }
548 radix_tree_free_node(n);
549 *pptr = NULL;
550 }
551 /*
552 * fix up height
553 */
554 if (i < 0) {
555 KASSERT(t->t_root == NULL);
556 t->t_height = 0;
557 }
558 /*
559 * update tags
560 */
561 for (; i >= 0; i--) {
562 void *entry;
563 struct radix_tree_node ** const pptr =
564 (struct radix_tree_node **)path_pptr(t, &path, i);
565 struct radix_tree_node *n;
566 unsigned int newmask;
567
568 KASSERT(pptr != NULL);
569 entry = *pptr;
570 n = entry_ptr(entry);
571 KASSERT(n != NULL);
572 KASSERT(n->n_nptrs > 0);
573 newmask = any_children_tagmask(n);
574 if (newmask == entry_tagmask(entry)) {
575 break;
576 }
577 *pptr = entry_compose(n, newmask);
578 }
579 /*
580 * XXX is it worth to try to reduce height?
581 * if we do that, make radix_tree_grow rollback its change as well.
582 */
583 return entry_ptr(oldp);
584 }
585
586 /*
587 * radix_tree_lookup_node:
588 *
589 * returns the node at idx.
590 * returns NULL if nothing is found at idx.
591 */
592
593 void *
594 radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
595 {
596 void **vpp;
597
598 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
599 if (vpp == NULL) {
600 return NULL;
601 }
602 return entry_ptr(*vpp);
603 }
604
605 static inline void
606 gang_lookup_init(struct radix_tree *t, uint64_t idx,
607 struct radix_tree_path *path, const unsigned int tagmask)
608 {
609 void **vpp;
610
611 vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
612 KASSERT(vpp == NULL ||
613 vpp == path_pptr(t, path, path->p_lastidx));
614 KASSERT(&t->t_root == path_pptr(t, path, 0));
615 }
616
617 static inline unsigned int
618 gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
619 void **results, unsigned int maxresults, const unsigned int tagmask)
620 {
621 void **vpp;
622 unsigned int nfound;
623 unsigned int lastidx;
624
625 KASSERT(maxresults > 0);
626 lastidx = path->p_lastidx;
627 if (lastidx == 0) {
628 return 0;
629 }
630 nfound = 0;
631 vpp = path_pptr(t, path, lastidx);
632 while (/*CONSTCOND*/true) {
633 struct radix_tree_node *n;
634 unsigned int i;
635
636 if (entry_match_p(*vpp, tagmask)) {
637 KASSERT(lastidx == t->t_height);
638 /*
639 * record the non-NULL leaf.
640 */
641 results[nfound] = entry_ptr(*vpp);
642 nfound++;
643 if (nfound == maxresults) {
644 return nfound;
645 }
646 }
647 scan_siblings:
648 /*
649 * try to find the next non-NULL sibling.
650 */
651 n = path_node(t, path, lastidx - 1);
652 if (*vpp != NULL && n->n_nptrs == 1) {
653 /*
654 * optimization
655 */
656 goto no_siblings;
657 }
658 for (i = path_idx(t, path, lastidx - 1) + 1;
659 i < RADIX_TREE_PTR_PER_NODE;
660 i++) {
661 if (entry_match_p(n->n_ptrs[i], tagmask)) {
662 vpp = &n->n_ptrs[i];
663 path->p_refs[lastidx].pptr = vpp;
664 KASSERT(path_idx(t, path, lastidx - 1)
665 == i);
666 break;
667 }
668 }
669 if (i == RADIX_TREE_PTR_PER_NODE) {
670 no_siblings:
671 /*
672 * not found. go to parent.
673 */
674 lastidx--;
675 if (lastidx == 0) {
676 return nfound;
677 }
678 vpp = path_pptr(t, path, lastidx);
679 goto scan_siblings;
680 }
681 /*
682 * descending the left-most child node, upto the leaf or NULL.
683 */
684 while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
685 n = entry_ptr(*vpp);
686 vpp = &n->n_ptrs[0];
687 lastidx++;
688 path->p_refs[lastidx].pptr = vpp;
689 }
690 }
691 }
692
693 /*
694 * radix_tree_gang_lookup_node:
695 *
696 * search nodes starting from idx in the ascending order.
697 * results should be an array large enough to hold maxresults pointers.
698 * returns the number of nodes found, up to maxresults.
699 * returning less than maxresults means there are no more nodes.
700 *
701 * the result of this function is semantically equivalent to what could be
702 * obtained by repeated calls of radix_tree_lookup_node with increasing index.
703 * but this function is much faster when node indexes are distributed sparsely.
704 *
705 * note that this function doesn't return exact values of node indexes of
706 * found nodes. if they are important for a caller, it's the caller's
707 * responsibility to check them, typically by examinining the returned nodes
708 * using some caller-specific knowledge about them.
709 */
710
711 unsigned int
712 radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
713 void **results, unsigned int maxresults)
714 {
715 struct radix_tree_path path;
716
717 gang_lookup_init(t, idx, &path, 0);
718 return gang_lookup_scan(t, &path, results, maxresults, 0);
719 }
720
721 /*
722 * radix_tree_gang_lookup_tagged_node:
723 *
724 * same as radix_tree_gang_lookup_node except that this one only returns
725 * nodes tagged with tagid.
726 */
727
728 unsigned int
729 radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
730 void **results, unsigned int maxresults, radix_tree_tagid_t tagid)
731 {
732 struct radix_tree_path path;
733 const unsigned int tagmask = tagid_to_mask(tagid);
734
735 gang_lookup_init(t, idx, &path, tagmask);
736 return gang_lookup_scan(t, &path, results, maxresults, tagmask);
737 }
738
739 /*
740 * radix_tree_get_tag:
741 *
742 * return if the tag is set for the node at the given index. (true if set)
743 * it's illegal to call this function for a node which has not been inserted.
744 */
745
746 bool
747 radix_tree_get_tag(struct radix_tree *t, uint64_t idx,
748 radix_tree_tagid_t tagid)
749 {
750 #if 1
751 const unsigned int tagmask = tagid_to_mask(tagid);
752 void **vpp;
753
754 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
755 if (vpp == NULL) {
756 return false;
757 }
758 KASSERT(*vpp != NULL);
759 return (entry_tagmask(*vpp) & tagmask) != 0;
760 #else
761 const unsigned int tagmask = tagid_to_mask(tagid);
762 void **vpp;
763
764 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
765 KASSERT(vpp != NULL);
766 return (entry_tagmask(*vpp) & tagmask) != 0;
767 #endif
768 }
769
770 /*
771 * radix_tree_set_tag:
772 *
773 * set the tag for the node at the given index.
774 * it's illegal to call this function for a node which has not been inserted.
775 */
776
777 void
778 radix_tree_set_tag(struct radix_tree *t, uint64_t idx,
779 radix_tree_tagid_t tagid)
780 {
781 struct radix_tree_path path;
782 const unsigned int tagmask = tagid_to_mask(tagid);
783 void **vpp;
784 int i;
785
786 vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
787 KASSERT(vpp != NULL);
788 KASSERT(*vpp != NULL);
789 KASSERT(path.p_lastidx == t->t_height);
790 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
791 for (i = t->t_height; i >= 0; i--) {
792 void ** const pptr = (void **)path_pptr(t, &path, i);
793 void *entry;
794
795 KASSERT(pptr != NULL);
796 entry = *pptr;
797 if ((entry_tagmask(entry) & tagmask) != 0) {
798 break;
799 }
800 *pptr = (void *)((uintptr_t)entry | tagmask);
801 }
802 }
803
804 /*
805 * radix_tree_clear_tag:
806 *
807 * clear the tag for the node at the given index.
808 * it's illegal to call this function for a node which has not been inserted.
809 */
810
811 void
812 radix_tree_clear_tag(struct radix_tree *t, uint64_t idx,
813 radix_tree_tagid_t tagid)
814 {
815 struct radix_tree_path path;
816 const unsigned int tagmask = tagid_to_mask(tagid);
817 void **vpp;
818 int i;
819
820 vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
821 KASSERT(vpp != NULL);
822 KASSERT(*vpp != NULL);
823 KASSERT(path.p_lastidx == t->t_height);
824 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
825 /*
826 * if already cleared, nothing to do
827 */
828 if ((entry_tagmask(*vpp) & tagmask) == 0) {
829 return;
830 }
831 /*
832 * clear the tag only if no children have the tag.
833 */
834 for (i = t->t_height; i >= 0; i--) {
835 void ** const pptr = (void **)path_pptr(t, &path, i);
836 void *entry;
837
838 KASSERT(pptr != NULL);
839 entry = *pptr;
840 KASSERT((entry_tagmask(entry) & tagmask) != 0);
841 *pptr = entry_compose(entry_ptr(entry),
842 entry_tagmask(entry) & ~tagmask);
843 /*
844 * check if we should proceed to process the next level.
845 */
846 if (0 < i) {
847 struct radix_tree_node *n = path_node(t, &path, i - 1);
848
849 if ((any_children_tagmask(n) & tagmask) != 0) {
850 break;
851 }
852 }
853 }
854 }
855
856 #if defined(UNITTEST)
857
858 #include <inttypes.h>
859 #include <stdio.h>
860
861 static void
862 radix_tree_dump_node(const struct radix_tree *t, void *vp,
863 uint64_t offset, unsigned int height)
864 {
865 struct radix_tree_node *n;
866 unsigned int i;
867
868 for (i = 0; i < t->t_height - height; i++) {
869 printf(" ");
870 }
871 if (entry_tagmask(vp) == 0) {
872 printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
873 } else {
874 printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
875 entry_tagmask(vp));
876 }
877 if (height == 0) {
878 printf(" (leaf)\n");
879 return;
880 }
881 n = entry_ptr(vp);
882 assert(any_children_tagmask(n) == entry_tagmask(vp));
883 printf(" (%u children)\n", n->n_nptrs);
884 for (i = 0; i < __arraycount(n->n_ptrs); i++) {
885 void *c;
886
887 c = n->n_ptrs[i];
888 if (c == NULL) {
889 continue;
890 }
891 radix_tree_dump_node(t, c,
892 offset + i * (UINT64_C(1) <<
893 (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
894 }
895 }
896
897 void radix_tree_dump(const struct radix_tree *);
898
899 void
900 radix_tree_dump(const struct radix_tree *t)
901 {
902
903 printf("tree %p height=%u\n", t, t->t_height);
904 radix_tree_dump_node(t, t->t_root, 0, t->t_height);
905 }
906
907 static void
908 test1(void)
909 {
910 struct radix_tree s;
911 struct radix_tree *t = &s;
912 void *results[3];
913
914 radix_tree_init_tree(t);
915 radix_tree_dump(t);
916 assert(radix_tree_lookup_node(t, 0) == NULL);
917 assert(radix_tree_lookup_node(t, 1000) == NULL);
918 assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
919 radix_tree_dump(t);
920 assert(!radix_tree_get_tag(t, 1000, 0));
921 assert(!radix_tree_get_tag(t, 1000, 1));
922 radix_tree_set_tag(t, 1000, 1);
923 assert(!radix_tree_get_tag(t, 1000, 0));
924 assert(radix_tree_get_tag(t, 1000, 1));
925 radix_tree_dump(t);
926 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
927 assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
928 radix_tree_dump(t);
929 assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
930 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
931 assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
932 == 0);
933 radix_tree_dump(t);
934 assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
935 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
936 assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
937 (void *)0xdea0);
938 radix_tree_dump(t);
939 assert(!radix_tree_get_tag(t, 0, 1));
940 assert(radix_tree_get_tag(t, 1000, 1));
941 assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
942 radix_tree_set_tag(t, 0, 1);;
943 radix_tree_set_tag(t, UINT64_C(10000000000), 1);
944 radix_tree_dump(t);
945 assert(radix_tree_get_tag(t, 0, 1));
946 assert(radix_tree_get_tag(t, 1000, 1));
947 assert(radix_tree_get_tag(t, UINT64_C(10000000000), 1));
948 radix_tree_clear_tag(t, 0, 1);;
949 radix_tree_clear_tag(t, UINT64_C(10000000000), 1);
950 radix_tree_dump(t);
951 assert(!radix_tree_get_tag(t, 0, 1));
952 assert(radix_tree_get_tag(t, 1000, 1));
953 assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
954 radix_tree_dump(t);
955 assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
956 (void *)0xdeadbea0);
957 assert(!radix_tree_get_tag(t, 1000, 0));
958 assert(radix_tree_get_tag(t, 1000, 1));
959 assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 3);
960 assert(results[0] == (void *)0xbea0);
961 assert(results[1] == (void *)0x12345678);
962 assert(results[2] == (void *)0xdea0);
963 assert(radix_tree_gang_lookup_node(t, 1, results, 3) == 2);
964 assert(results[0] == (void *)0x12345678);
965 assert(results[1] == (void *)0xdea0);
966 assert(radix_tree_gang_lookup_node(t, 1001, results, 3) == 1);
967 assert(results[0] == (void *)0xdea0);
968 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3)
969 == 0);
970 assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
971 3) == 0);
972 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, 1) == 1);
973 assert(results[0] == (void *)0x12345678);
974 assert(entry_tagmask(t->t_root) != 0);
975 assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
976 assert(entry_tagmask(t->t_root) == 0);
977 radix_tree_dump(t);
978 assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
979 (void *)0xdea0);
980 radix_tree_dump(t);
981 assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
982 radix_tree_dump(t);
983 radix_tree_fini_tree(t);
984 }
985
986 #include <sys/time.h>
987
988 struct testnode {
989 uint64_t idx;
990 };
991
992 static void
993 printops(const char *title, const char *name, int tag, unsigned int n,
994 const struct timeval *stv, const struct timeval *etv)
995 {
996 uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
997 uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
998
999 printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
1000 (double)n / (e - s) * 1000000);
1001 }
1002
1003 #define TEST2_GANG_LOOKUP_NODES 16
1004
1005 static bool
1006 test2_should_tag(unsigned int i, radix_tree_tagid_t tagid)
1007 {
1008
1009 if (tagid == 0) {
1010 return (i & 0x3) == 0; /* 25% */
1011 } else {
1012 return (i % 7) == 0; /* 14% */
1013 }
1014 }
1015
1016 static void
1017 test2(const char *title, bool dense)
1018 {
1019 struct radix_tree s;
1020 struct radix_tree *t = &s;
1021 struct testnode *n;
1022 unsigned int i;
1023 unsigned int nnodes = 100000;
1024 unsigned int removed;
1025 radix_tree_tagid_t tag;
1026 unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
1027 struct testnode *nodes;
1028 struct timeval stv;
1029 struct timeval etv;
1030
1031 nodes = malloc(nnodes * sizeof(*nodes));
1032 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1033 ntagged[tag] = 0;
1034 }
1035 radix_tree_init_tree(t);
1036 for (i = 0; i < nnodes; i++) {
1037 n = &nodes[i];
1038 n->idx = random();
1039 if (sizeof(long) == 4) {
1040 n->idx <<= 32;
1041 n->idx |= (uint32_t)random();
1042 }
1043 if (dense) {
1044 n->idx %= nnodes * 2;
1045 }
1046 while (radix_tree_lookup_node(t, n->idx) != NULL) {
1047 n->idx++;
1048 }
1049 radix_tree_insert_node(t, n->idx, n);
1050 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1051 if (test2_should_tag(i, tag)) {
1052 radix_tree_set_tag(t, n->idx, tag);
1053 ntagged[tag]++;
1054 }
1055 assert(test2_should_tag(i, tag) ==
1056 radix_tree_get_tag(t, n->idx, tag));
1057 }
1058 }
1059
1060 gettimeofday(&stv, NULL);
1061 for (i = 0; i < nnodes; i++) {
1062 n = &nodes[i];
1063 assert(radix_tree_lookup_node(t, n->idx) == n);
1064 }
1065 gettimeofday(&etv, NULL);
1066 printops(title, "lookup", 0, nnodes, &stv, &etv);
1067
1068 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1069 gettimeofday(&stv, NULL);
1070 for (i = 0; i < nnodes; i++) {
1071 n = &nodes[i];
1072 assert(test2_should_tag(i, tag) ==
1073 radix_tree_get_tag(t, n->idx, tag));
1074 }
1075 gettimeofday(&etv, NULL);
1076 printops(title, "get_tag", tag, ntagged[tag], &stv, &etv);
1077 }
1078
1079 gettimeofday(&stv, NULL);
1080 for (i = 0; i < nnodes; i++) {
1081 n = &nodes[i];
1082 radix_tree_remove_node(t, n->idx);
1083 }
1084 gettimeofday(&etv, NULL);
1085 printops(title, "remove", 0, nnodes, &stv, &etv);
1086
1087 gettimeofday(&stv, NULL);
1088 for (i = 0; i < nnodes; i++) {
1089 n = &nodes[i];
1090 radix_tree_insert_node(t, n->idx, n);
1091 }
1092 gettimeofday(&etv, NULL);
1093 printops(title, "insert", 0, nnodes, &stv, &etv);
1094
1095 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1096 ntagged[tag] = 0;
1097 gettimeofday(&stv, NULL);
1098 for (i = 0; i < nnodes; i++) {
1099 n = &nodes[i];
1100 if (test2_should_tag(i, tag)) {
1101 radix_tree_set_tag(t, n->idx, tag);
1102 ntagged[tag]++;
1103 }
1104 }
1105 gettimeofday(&etv, NULL);
1106 printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
1107 }
1108
1109 gettimeofday(&stv, NULL);
1110 {
1111 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1112 uint64_t nextidx;
1113 unsigned int nfound;
1114 unsigned int total;
1115
1116 nextidx = 0;
1117 total = 0;
1118 while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1119 (void *)results, __arraycount(results))) > 0) {
1120 nextidx = results[nfound - 1]->idx + 1;
1121 total += nfound;
1122 }
1123 assert(total == nnodes);
1124 }
1125 gettimeofday(&etv, NULL);
1126 printops(title, "ganglookup", 0, nnodes, &stv, &etv);
1127
1128 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1129 gettimeofday(&stv, NULL);
1130 {
1131 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1132 uint64_t nextidx;
1133 unsigned int nfound;
1134 unsigned int total;
1135
1136 nextidx = 0;
1137 total = 0;
1138 while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1139 nextidx, (void *)results, __arraycount(results),
1140 tag)) > 0) {
1141 nextidx = results[nfound - 1]->idx + 1;
1142 total += nfound;
1143 }
1144 assert(total == ntagged[tag]);
1145 }
1146 gettimeofday(&etv, NULL);
1147 printops(title, "ganglookup_tag", tag, ntagged[tag], &stv,
1148 &etv);
1149 }
1150
1151 removed = 0;
1152 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1153 unsigned int total;
1154
1155 total = 0;
1156 gettimeofday(&stv, NULL);
1157 {
1158 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1159 uint64_t nextidx;
1160 unsigned int nfound;
1161
1162 nextidx = 0;
1163 while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1164 nextidx, (void *)results, __arraycount(results),
1165 tag)) > 0) {
1166 for (i = 0; i < nfound; i++) {
1167 radix_tree_remove_node(t,
1168 results[i]->idx);
1169 }
1170 nextidx = results[nfound - 1]->idx + 1;
1171 total += nfound;
1172 }
1173 assert(tag != 0 || total == ntagged[tag]);
1174 assert(total <= ntagged[tag]);
1175 }
1176 gettimeofday(&etv, NULL);
1177 printops(title, "ganglookup_tag+remove", tag, total, &stv,
1178 &etv);
1179 removed += total;
1180 }
1181
1182 gettimeofday(&stv, NULL);
1183 {
1184 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1185 uint64_t nextidx;
1186 unsigned int nfound;
1187 unsigned int total;
1188
1189 nextidx = 0;
1190 total = 0;
1191 while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1192 (void *)results, __arraycount(results))) > 0) {
1193 for (i = 0; i < nfound; i++) {
1194 assert(results[i] == radix_tree_remove_node(t,
1195 results[i]->idx));
1196 }
1197 nextidx = results[nfound - 1]->idx + 1;
1198 total += nfound;
1199 }
1200 assert(total == nnodes - removed);
1201 }
1202 gettimeofday(&etv, NULL);
1203 printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
1204
1205 radix_tree_fini_tree(t);
1206 free(nodes);
1207 }
1208
1209 int
1210 main(int argc, char *argv[])
1211 {
1212
1213 test1();
1214 test2("dense", true);
1215 test2("sparse", false);
1216 return 0;
1217 }
1218
1219 #endif /* defined(UNITTEST) */
1220