radixtree.c revision 1.17.2.5 1 /* $NetBSD: radixtree.c,v 1.17.2.5 2014/03/25 16:21:08 yamt Exp $ */
2
3 /*-
4 * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * radixtree.c
31 *
32 * Overview:
33 *
34 * This is an implementation of radix tree, whose keys are uint64_t and leafs
35 * are user provided pointers.
36 *
37 * Leaf nodes are just void * and this implementation doesn't care about
38 * what they actually point to. However, this implementation has an assumption
39 * about their alignment. Specifically, this implementation assumes that their
40 * 2 LSBs are always zero and uses them for internal accounting.
41 *
42 * Intermediate nodes and memory allocation:
43 *
44 * Intermediate nodes are automatically allocated and freed internally and
45 * basically users don't need to care about them. The allocation is done via
46 * pool_cache_get(9) for _KERNEL, malloc(3) for userland, and alloc() for
47 * _STANDALONE environment. Only radix_tree_insert_node function can allocate
48 * memory for intermediate nodes and thus can fail for ENOMEM.
49 *
50 * Memory Efficiency:
51 *
52 * It's designed to work efficiently with dense index distribution.
53 * The memory consumption (number of necessary intermediate nodes) heavily
54 * depends on the index distribution. Basically, more dense index distribution
55 * consumes less nodes per item. Approximately,
56 *
57 * - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
58 * it would look like the following.
59 *
60 * root (t_height=1)
61 * |
62 * v
63 * [ | | | ] (intermediate node. RADIX_TREE_PTR_PER_NODE=4 in this fig)
64 * | | | |
65 * v v v v
66 * p p p p (items)
67 *
68 * - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
69 * it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
70 *
71 * root (t_height=3)
72 * |
73 * v
74 * [ | | | ]
75 * |
76 * v
77 * [ | | | ]
78 * |
79 * v
80 * [ | | | ]
81 * |
82 * v
83 * p
84 *
85 * The height of tree (t_height) is dynamic. It's smaller if only small
86 * index values are used. As an extreme case, if only index 0 is used,
87 * the corresponding value is directly stored in the root of the tree
88 * (struct radix_tree) without allocating any intermediate nodes. In that
89 * case, t_height=0.
90 *
91 * Gang lookup:
92 *
93 * This implementation provides a way to scan many nodes quickly via
94 * radix_tree_gang_lookup_node function and its varients.
95 *
96 * Tags:
97 *
98 * This implementation provides tagging functionality, which allows quick
99 * scanning of a subset of leaf nodes. Leaf nodes are untagged when inserted
100 * into the tree and can be tagged by radix_tree_set_tag function.
101 * radix_tree_gang_lookup_tagged_node function and its variants returns only
102 * leaf nodes with the given tag. To reduce amount of nodes to visit for
103 * these functions, this implementation keeps tagging information in internal
104 * intermediate nodes and quickly skips uninterested parts of a tree.
105 *
106 * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
107 * identified by an zero-origin numbers, tagid. For the current implementation,
108 * RADIX_TREE_TAG_ID_MAX is 2. A set of tags is described as a bitmask tagmask,
109 * which is a bitwise OR of (1 << tagid).
110 */
111
112 #include <sys/cdefs.h>
113
114 #if defined(_KERNEL) || defined(_STANDALONE)
115 __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.17.2.5 2014/03/25 16:21:08 yamt Exp $");
116 #include <sys/param.h>
117 #include <sys/errno.h>
118 #include <sys/pool.h>
119 #include <sys/radixtree.h>
120 #include <lib/libkern/libkern.h>
121 #if defined(_STANDALONE)
122 #include <lib/libsa/stand.h>
123 #endif /* defined(_STANDALONE) */
124 #else /* defined(_KERNEL) || defined(_STANDALONE) */
125 __RCSID("$NetBSD: radixtree.c,v 1.17.2.5 2014/03/25 16:21:08 yamt Exp $");
126 #include <assert.h>
127 #include <errno.h>
128 #include <stdbool.h>
129 #include <stdlib.h>
130 #include <string.h>
131 #if 1
132 #define KASSERT assert
133 #else
134 #define KASSERT(a) /* nothing */
135 #endif
136 #endif /* defined(_KERNEL) || defined(_STANDALONE) */
137
138 #include <sys/radixtree.h>
139
140 #define RADIX_TREE_BITS_PER_HEIGHT 4 /* XXX tune */
141 #define RADIX_TREE_PTR_PER_NODE (1 << RADIX_TREE_BITS_PER_HEIGHT)
142 #define RADIX_TREE_MAX_HEIGHT (64 / RADIX_TREE_BITS_PER_HEIGHT)
143 #define RADIX_TREE_INVALID_HEIGHT (RADIX_TREE_MAX_HEIGHT + 1)
144 __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
145
146 __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
147 #define RADIX_TREE_TAG_MASK ((1 << RADIX_TREE_TAG_ID_MAX) - 1)
148
149 static inline void *
150 entry_ptr(void *p)
151 {
152
153 return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
154 }
155
156 static inline unsigned int
157 entry_tagmask(void *p)
158 {
159
160 return (uintptr_t)p & RADIX_TREE_TAG_MASK;
161 }
162
163 static inline void *
164 entry_compose(void *p, unsigned int tagmask)
165 {
166
167 return (void *)((uintptr_t)p | tagmask);
168 }
169
170 static inline bool
171 entry_match_p(void *p, unsigned int tagmask)
172 {
173
174 KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
175 if (p == NULL) {
176 return false;
177 }
178 if (tagmask == 0) {
179 return true;
180 }
181 return (entry_tagmask(p) & tagmask) != 0;
182 }
183
184 /*
185 * radix_tree_node: an intermediate node
186 *
187 * we don't care the type of leaf nodes. they are just void *.
188 */
189
190 struct radix_tree_node {
191 void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
192 unsigned int n_nptrs; /* # of non-NULL pointers in n_ptrs */
193 };
194
195 /*
196 * any_children_tagmask:
197 *
198 * return OR'ed tagmask of the given node's children.
199 */
200
201 static unsigned int
202 any_children_tagmask(const struct radix_tree_node *n)
203 {
204 unsigned int mask;
205 int i;
206
207 mask = 0;
208 for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
209 mask |= (unsigned int)(uintptr_t)n->n_ptrs[i];
210 }
211 return mask & RADIX_TREE_TAG_MASK;
212 }
213
214 /*
215 * p_refs[0].pptr == &t->t_root
216 * :
217 * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
218 * :
219 * :
220 * p_refs[t->t_height].pptr == &leaf_pointer
221 */
222
223 struct radix_tree_path {
224 struct radix_tree_node_ref {
225 void **pptr;
226 } p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
227 /*
228 * p_lastidx is either the index of the last valid element of p_refs[]
229 * or RADIX_TREE_INVALID_HEIGHT.
230 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
231 * that the height of the tree is not enough to cover the given index.
232 */
233 unsigned int p_lastidx;
234 };
235
236 static inline void **
237 path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
238 unsigned int height)
239 {
240
241 KASSERT(height <= t->t_height);
242 return p->p_refs[height].pptr;
243 }
244
245 static inline struct radix_tree_node *
246 path_node(const struct radix_tree * t, const struct radix_tree_path *p,
247 unsigned int height)
248 {
249
250 KASSERT(height <= t->t_height);
251 return entry_ptr(*path_pptr(t, p, height));
252 }
253
254 /*
255 * radix_tree_init_tree:
256 *
257 * Initialize a tree.
258 */
259
260 void
261 radix_tree_init_tree(struct radix_tree *t)
262 {
263
264 t->t_height = 0;
265 t->t_root = NULL;
266 }
267
268 /*
269 * radix_tree_fini_tree:
270 *
271 * Finish using a tree.
272 */
273
274 void
275 radix_tree_fini_tree(struct radix_tree *t)
276 {
277
278 KASSERT(t->t_root == NULL);
279 KASSERT(t->t_height == 0);
280 }
281
282 /*
283 * radix_tree_empty_tree_p:
284 *
285 * Return if the tree is empty.
286 */
287
288 bool
289 radix_tree_empty_tree_p(struct radix_tree *t)
290 {
291
292 return t->t_root == NULL;
293 }
294
295 /*
296 * radix_tree_empty_tree_p:
297 *
298 * Return true if the tree has any nodes with the given tag. Otherwise
299 * return false.
300 *
301 * It's illegal to call this function with tagmask 0.
302 */
303
304 bool
305 radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
306 {
307
308 KASSERT(tagmask != 0);
309 return (entry_tagmask(t->t_root) & tagmask) == 0;
310 }
311
312 static void
313 radix_tree_node_init(struct radix_tree_node *n)
314 {
315
316 memset(n, 0, sizeof(*n));
317 }
318
319 #if defined(_KERNEL)
320 pool_cache_t radix_tree_node_cache __read_mostly;
321
322 static int
323 radix_tree_node_ctor(void *dummy, void *item, int flags)
324 {
325 struct radix_tree_node *n = item;
326
327 KASSERT(dummy == NULL);
328 radix_tree_node_init(n);
329 return 0;
330 }
331
332 /*
333 * radix_tree_init:
334 *
335 * initialize the subsystem.
336 */
337
338 void
339 radix_tree_init(void)
340 {
341
342 radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
343 0, 0, 0, "radix_tree_node", NULL, IPL_NONE, radix_tree_node_ctor,
344 NULL, NULL);
345 KASSERT(radix_tree_node_cache != NULL);
346 }
347 #endif /* defined(_KERNEL) */
348
349 static bool __unused
350 radix_tree_node_clean_p(const struct radix_tree_node *n)
351 {
352 unsigned int i;
353
354 if (n->n_nptrs != 0) {
355 return false;
356 }
357 for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
358 if (n->n_ptrs[i] != NULL) {
359 return false;
360 }
361 }
362 return true;
363 }
364
365 static struct radix_tree_node *
366 radix_tree_alloc_node(void)
367 {
368 struct radix_tree_node *n;
369
370 #if defined(_KERNEL)
371 /*
372 * note that pool_cache_get can block.
373 */
374 n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
375 #else /* defined(_KERNEL) */
376 #if defined(_STANDALONE)
377 n = alloc(sizeof(*n));
378 #else /* defined(_STANDALONE) */
379 n = malloc(sizeof(*n));
380 #endif /* defined(_STANDALONE) */
381 if (n != NULL) {
382 radix_tree_node_init(n);
383 }
384 #endif /* defined(_KERNEL) */
385 KASSERT(n == NULL || radix_tree_node_clean_p(n));
386 return n;
387 }
388
389 static void
390 radix_tree_free_node(struct radix_tree_node *n)
391 {
392
393 KASSERT(radix_tree_node_clean_p(n));
394 #if defined(_KERNEL)
395 pool_cache_put(radix_tree_node_cache, n);
396 #elif defined(_STANDALONE)
397 dealloc(n, sizeof(*n));
398 #else
399 free(n);
400 #endif
401 }
402
403 static int
404 radix_tree_grow(struct radix_tree *t, unsigned int newheight)
405 {
406 const unsigned int tagmask = entry_tagmask(t->t_root);
407
408 KASSERT(newheight <= 64 / RADIX_TREE_BITS_PER_HEIGHT);
409 if (t->t_root == NULL) {
410 t->t_height = newheight;
411 return 0;
412 }
413 while (t->t_height < newheight) {
414 struct radix_tree_node *n;
415
416 n = radix_tree_alloc_node();
417 if (n == NULL) {
418 /*
419 * don't bother to revert our changes.
420 * the caller will likely retry.
421 */
422 return ENOMEM;
423 }
424 n->n_nptrs = 1;
425 n->n_ptrs[0] = t->t_root;
426 t->t_root = entry_compose(n, tagmask);
427 t->t_height++;
428 }
429 return 0;
430 }
431
432 /*
433 * radix_tree_lookup_ptr:
434 *
435 * an internal helper function used for various exported functions.
436 *
437 * return the pointer to store the node for the given index.
438 *
439 * if alloc is true, try to allocate the storage. (note for _KERNEL:
440 * in that case, this function can block.) if the allocation failed or
441 * alloc is false, return NULL.
442 *
443 * if path is not NULL, fill it for the caller's investigation.
444 *
445 * if tagmask is not zero, search only for nodes with the tag set.
446 * note that, however, this function doesn't check the tagmask for the leaf
447 * pointer. it's a caller's responsibility to investigate the value which
448 * is pointed by the returned pointer if necessary.
449 *
450 * while this function is a bit large, as it's called with some constant
451 * arguments, inlining might have benefits. anyway, a compiler will decide.
452 */
453
454 static inline void **
455 radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
456 struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
457 {
458 struct radix_tree_node *n;
459 int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
460 int shift;
461 void **vpp;
462 const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
463 struct radix_tree_node_ref *refs = NULL;
464
465 /*
466 * check unsupported combinations
467 */
468 KASSERT(tagmask == 0 || !alloc);
469 KASSERT(path == NULL || !alloc);
470 vpp = &t->t_root;
471 if (path != NULL) {
472 refs = path->p_refs;
473 refs->pptr = vpp;
474 }
475 n = NULL;
476 for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
477 struct radix_tree_node *c;
478 void *entry;
479 const uint64_t i = (idx >> shift) & mask;
480
481 if (shift >= hshift) {
482 unsigned int newheight;
483
484 KASSERT(vpp == &t->t_root);
485 if (i == 0) {
486 shift -= RADIX_TREE_BITS_PER_HEIGHT;
487 continue;
488 }
489 if (!alloc) {
490 if (path != NULL) {
491 KASSERT((refs - path->p_refs) == 0);
492 path->p_lastidx =
493 RADIX_TREE_INVALID_HEIGHT;
494 }
495 return NULL;
496 }
497 newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
498 if (radix_tree_grow(t, newheight)) {
499 return NULL;
500 }
501 hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
502 }
503 entry = *vpp;
504 c = entry_ptr(entry);
505 if (c == NULL ||
506 (tagmask != 0 &&
507 (entry_tagmask(entry) & tagmask) == 0)) {
508 if (!alloc) {
509 if (path != NULL) {
510 path->p_lastidx = refs - path->p_refs;
511 }
512 return NULL;
513 }
514 c = radix_tree_alloc_node();
515 if (c == NULL) {
516 return NULL;
517 }
518 *vpp = c;
519 if (n != NULL) {
520 KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
521 n->n_nptrs++;
522 }
523 }
524 n = c;
525 vpp = &n->n_ptrs[i];
526 if (path != NULL) {
527 refs++;
528 refs->pptr = vpp;
529 }
530 shift -= RADIX_TREE_BITS_PER_HEIGHT;
531 }
532 if (alloc) {
533 KASSERT(*vpp == NULL);
534 if (n != NULL) {
535 KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
536 n->n_nptrs++;
537 }
538 }
539 if (path != NULL) {
540 path->p_lastidx = refs - path->p_refs;
541 }
542 return vpp;
543 }
544
545 /*
546 * radix_tree_insert_node:
547 *
548 * Insert the node at the given index.
549 *
550 * It's illegal to insert NULL. It's illegal to insert a non-aligned pointer.
551 *
552 * This function returns ENOMEM if necessary memory allocation failed.
553 * Otherwise, this function returns 0.
554 *
555 * Note that inserting a node can involves memory allocation for intermediate
556 * nodes. If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
557 *
558 * For the newly inserted node, all tags are cleared.
559 */
560
561 int
562 radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
563 {
564 void **vpp;
565
566 KASSERT(p != NULL);
567 KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
568 vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
569 if (vpp == NULL) {
570 return ENOMEM;
571 }
572 KASSERT(*vpp == NULL);
573 *vpp = p;
574 return 0;
575 }
576
577 /*
578 * radix_tree_replace_node:
579 *
580 * Replace a node at the given index with the given node and return the
581 * replaced one.
582 *
583 * It's illegal to try to replace a node which has not been inserted.
584 *
585 * This function keeps tags intact.
586 */
587
588 void *
589 radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
590 {
591 void **vpp;
592 void *oldp;
593
594 KASSERT(p != NULL);
595 KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
596 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
597 KASSERT(vpp != NULL);
598 oldp = *vpp;
599 KASSERT(oldp != NULL);
600 *vpp = entry_compose(p, entry_tagmask(*vpp));
601 return entry_ptr(oldp);
602 }
603
604 /*
605 * radix_tree_remove_node:
606 *
607 * Remove the node at the given index.
608 *
609 * It's illegal to try to remove a node which has not been inserted.
610 */
611
612 void *
613 radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
614 {
615 struct radix_tree_path path;
616 void **vpp;
617 void *oldp;
618 int i;
619
620 vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
621 KASSERT(vpp != NULL);
622 oldp = *vpp;
623 KASSERT(oldp != NULL);
624 KASSERT(path.p_lastidx == t->t_height);
625 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
626 *vpp = NULL;
627 for (i = t->t_height - 1; i >= 0; i--) {
628 void *entry;
629 struct radix_tree_node ** const pptr =
630 (struct radix_tree_node **)path_pptr(t, &path, i);
631 struct radix_tree_node *n;
632
633 KASSERT(pptr != NULL);
634 entry = *pptr;
635 n = entry_ptr(entry);
636 KASSERT(n != NULL);
637 KASSERT(n->n_nptrs > 0);
638 n->n_nptrs--;
639 if (n->n_nptrs > 0) {
640 break;
641 }
642 radix_tree_free_node(n);
643 *pptr = NULL;
644 }
645 /*
646 * fix up height
647 */
648 if (i < 0) {
649 KASSERT(t->t_root == NULL);
650 t->t_height = 0;
651 }
652 /*
653 * update tags
654 */
655 for (; i >= 0; i--) {
656 void *entry;
657 struct radix_tree_node ** const pptr =
658 (struct radix_tree_node **)path_pptr(t, &path, i);
659 struct radix_tree_node *n;
660 unsigned int newmask;
661
662 KASSERT(pptr != NULL);
663 entry = *pptr;
664 n = entry_ptr(entry);
665 KASSERT(n != NULL);
666 KASSERT(n->n_nptrs > 0);
667 newmask = any_children_tagmask(n);
668 if (newmask == entry_tagmask(entry)) {
669 break;
670 }
671 *pptr = entry_compose(n, newmask);
672 }
673 /*
674 * XXX is it worth to try to reduce height?
675 * if we do that, make radix_tree_grow rollback its change as well.
676 */
677 return entry_ptr(oldp);
678 }
679
680 /*
681 * radix_tree_lookup_node:
682 *
683 * Returns the node at the given index.
684 * Returns NULL if nothing is found at the given index.
685 */
686
687 void *
688 radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
689 {
690 void **vpp;
691
692 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
693 if (vpp == NULL) {
694 return NULL;
695 }
696 return entry_ptr(*vpp);
697 }
698
699 static inline void
700 gang_lookup_init(struct radix_tree *t, uint64_t idx,
701 struct radix_tree_path *path, const unsigned int tagmask)
702 {
703 void **vpp;
704
705 vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
706 KASSERT(vpp == NULL ||
707 vpp == path_pptr(t, path, path->p_lastidx));
708 KASSERT(&t->t_root == path_pptr(t, path, 0));
709 KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
710 path->p_lastidx == t->t_height ||
711 !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
712 }
713
714 /*
715 * gang_lookup_scan:
716 *
717 * a helper routine for radix_tree_gang_lookup_node and its variants.
718 */
719
720 static inline unsigned int
721 __attribute__((__always_inline__))
722 gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
723 void **results, const unsigned int maxresults, const unsigned int tagmask,
724 const bool reverse, const bool dense)
725 {
726
727 /*
728 * we keep the path updated only for lastidx-1.
729 * vpp is what path_pptr(t, path, lastidx) would be.
730 */
731 void **vpp;
732 unsigned int nfound;
733 unsigned int lastidx;
734 /*
735 * set up scan direction dependant constants so that we can iterate
736 * n_ptrs as the following.
737 *
738 * for (i = first; i != guard; i += step)
739 * visit n->n_ptrs[i];
740 */
741 const int step = reverse ? -1 : 1;
742 const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
743 const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
744 const unsigned int guard = last + step;
745
746 KASSERT(maxresults > 0);
747 KASSERT(&t->t_root == path_pptr(t, path, 0));
748 lastidx = path->p_lastidx;
749 KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
750 lastidx == t->t_height ||
751 !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
752 nfound = 0;
753 if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
754 /*
755 * requested idx is beyond the right-most node.
756 */
757 if (reverse && !dense) {
758 lastidx = 0;
759 vpp = path_pptr(t, path, lastidx);
760 goto descend;
761 }
762 return 0;
763 }
764 vpp = path_pptr(t, path, lastidx);
765 while (/*CONSTCOND*/true) {
766 struct radix_tree_node *n;
767 unsigned int i;
768
769 if (entry_match_p(*vpp, tagmask)) {
770 KASSERT(lastidx == t->t_height);
771 /*
772 * record the matching non-NULL leaf.
773 */
774 results[nfound] = entry_ptr(*vpp);
775 nfound++;
776 if (nfound == maxresults) {
777 return nfound;
778 }
779 } else if (dense) {
780 return nfound;
781 }
782 scan_siblings:
783 /*
784 * try to find the next matching non-NULL sibling.
785 */
786 if (lastidx == 0) {
787 /*
788 * the root has no siblings.
789 * we've done.
790 */
791 KASSERT(vpp == &t->t_root);
792 break;
793 }
794 n = path_node(t, path, lastidx - 1);
795 if (*vpp != NULL && n->n_nptrs == 1) {
796 /*
797 * optimization; if the node has only a single pointer
798 * and we've already visited it, there's no point to
799 * keep scanning in this node.
800 */
801 goto no_siblings;
802 }
803 for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
804 KASSERT(i < RADIX_TREE_PTR_PER_NODE);
805 if (entry_match_p(n->n_ptrs[i], tagmask)) {
806 vpp = &n->n_ptrs[i];
807 break;
808 }
809 }
810 if (i == guard) {
811 no_siblings:
812 /*
813 * not found. go to parent.
814 */
815 lastidx--;
816 vpp = path_pptr(t, path, lastidx);
817 goto scan_siblings;
818 }
819 descend:
820 /*
821 * following the left-most (or right-most in the case of
822 * reverse scan) child node, decend until reaching the leaf or
823 * an non-matching entry.
824 */
825 while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
826 /*
827 * save vpp in the path so that we can come back to this
828 * node after finishing visiting children.
829 */
830 path->p_refs[lastidx].pptr = vpp;
831 n = entry_ptr(*vpp);
832 vpp = &n->n_ptrs[first];
833 lastidx++;
834 }
835 }
836 return nfound;
837 }
838
839 /*
840 * radix_tree_gang_lookup_node:
841 *
842 * Scan the tree starting from the given index in the ascending order and
843 * return found nodes.
844 *
845 * results should be an array large enough to hold maxresults pointers.
846 * This function returns the number of nodes found, up to maxresults.
847 * Returning less than maxresults means there are no more nodes in the tree.
848 *
849 * If dense == true, this function stops scanning when it founds a hole of
850 * indexes. I.e. an index for which radix_tree_lookup_node would returns NULL.
851 * If dense == false, this function skips holes and continue scanning until
852 * maxresults nodes are found or it reaches the limit of the index range.
853 *
854 * The result of this function is semantically equivalent to what could be
855 * obtained by repeated calls of radix_tree_lookup_node with increasing index.
856 * but this function is expected to be computationally cheaper when looking up
857 * multiple nodes at once. Especially, it's expected to be much cheaper when
858 * node indexes are distributed sparsely.
859 *
860 * Note that this function doesn't return index values of found nodes.
861 * Thus, in the case of dense == false, if index values are important for
862 * a caller, it's the caller's responsibility to check them, typically
863 * by examinining the returned nodes using some caller-specific knowledge
864 * about them.
865 * In the case of dense == true, a node returned via results[N] is always for
866 * the index (idx + N).
867 */
868
869 unsigned int
870 radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
871 void **results, unsigned int maxresults, bool dense)
872 {
873 struct radix_tree_path path;
874
875 gang_lookup_init(t, idx, &path, 0);
876 return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
877 }
878
879 /*
880 * radix_tree_gang_lookup_node_reverse:
881 *
882 * Same as radix_tree_gang_lookup_node except that this one scans the
883 * tree in the reverse order. I.e. descending index values.
884 */
885
886 unsigned int
887 radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
888 void **results, unsigned int maxresults, bool dense)
889 {
890 struct radix_tree_path path;
891
892 gang_lookup_init(t, idx, &path, 0);
893 return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
894 }
895
896 /*
897 * radix_tree_gang_lookup_tagged_node:
898 *
899 * Same as radix_tree_gang_lookup_node except that this one only returns
900 * nodes tagged with tagid.
901 *
902 * It's illegal to call this function with tagmask 0.
903 */
904
905 unsigned int
906 radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
907 void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
908 {
909 struct radix_tree_path path;
910
911 KASSERT(tagmask != 0);
912 gang_lookup_init(t, idx, &path, tagmask);
913 return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
914 dense);
915 }
916
917 /*
918 * radix_tree_gang_lookup_tagged_node_reverse:
919 *
920 * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
921 * tree in the reverse order. I.e. descending index values.
922 */
923
924 unsigned int
925 radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
926 void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
927 {
928 struct radix_tree_path path;
929
930 KASSERT(tagmask != 0);
931 gang_lookup_init(t, idx, &path, tagmask);
932 return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
933 dense);
934 }
935
936 /*
937 * radix_tree_get_tag:
938 *
939 * Return the tagmask for the node at the given index.
940 *
941 * It's illegal to call this function for a node which has not been inserted.
942 */
943
944 unsigned int
945 radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
946 {
947 /*
948 * the following two implementations should behave same.
949 * the former one was chosen because it seems faster.
950 */
951 #if 1
952 void **vpp;
953
954 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
955 if (vpp == NULL) {
956 return false;
957 }
958 KASSERT(*vpp != NULL);
959 return (entry_tagmask(*vpp) & tagmask);
960 #else
961 void **vpp;
962
963 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
964 KASSERT(vpp != NULL);
965 return (entry_tagmask(*vpp) & tagmask);
966 #endif
967 }
968
969 /*
970 * radix_tree_set_tag:
971 *
972 * Set the tag for the node at the given index.
973 *
974 * It's illegal to call this function for a node which has not been inserted.
975 * It's illegal to call this function with tagmask 0.
976 */
977
978 void
979 radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
980 {
981 struct radix_tree_path path;
982 void **vpp;
983 int i;
984
985 KASSERT(tagmask != 0);
986 vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
987 KASSERT(vpp != NULL);
988 KASSERT(*vpp != NULL);
989 KASSERT(path.p_lastidx == t->t_height);
990 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
991 for (i = t->t_height; i >= 0; i--) {
992 void ** const pptr = (void **)path_pptr(t, &path, i);
993 void *entry;
994
995 KASSERT(pptr != NULL);
996 entry = *pptr;
997 if ((entry_tagmask(entry) & tagmask) != 0) {
998 break;
999 }
1000 *pptr = (void *)((uintptr_t)entry | tagmask);
1001 }
1002 }
1003
1004 /*
1005 * radix_tree_clear_tag:
1006 *
1007 * Clear the tag for the node at the given index.
1008 *
1009 * It's illegal to call this function for a node which has not been inserted.
1010 * It's illegal to call this function with tagmask 0.
1011 */
1012
1013 void
1014 radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1015 {
1016 struct radix_tree_path path;
1017 void **vpp;
1018 int i;
1019
1020 KASSERT(tagmask != 0);
1021 vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
1022 KASSERT(vpp != NULL);
1023 KASSERT(*vpp != NULL);
1024 KASSERT(path.p_lastidx == t->t_height);
1025 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
1026 /*
1027 * if already cleared, nothing to do
1028 */
1029 if ((entry_tagmask(*vpp) & tagmask) == 0) {
1030 return;
1031 }
1032 /*
1033 * clear the tag only if no children have the tag.
1034 */
1035 for (i = t->t_height; i >= 0; i--) {
1036 void ** const pptr = (void **)path_pptr(t, &path, i);
1037 void *entry;
1038
1039 KASSERT(pptr != NULL);
1040 entry = *pptr;
1041 KASSERT((entry_tagmask(entry) & tagmask) != 0);
1042 *pptr = entry_compose(entry_ptr(entry),
1043 entry_tagmask(entry) & ~tagmask);
1044 /*
1045 * check if we should proceed to process the next level.
1046 */
1047 if (0 < i) {
1048 struct radix_tree_node *n = path_node(t, &path, i - 1);
1049
1050 if ((any_children_tagmask(n) & tagmask) != 0) {
1051 break;
1052 }
1053 }
1054 }
1055 }
1056
1057 #if defined(UNITTEST)
1058
1059 #include <inttypes.h>
1060 #include <stdio.h>
1061
1062 static void
1063 radix_tree_dump_node(const struct radix_tree *t, void *vp,
1064 uint64_t offset, unsigned int height)
1065 {
1066 struct radix_tree_node *n;
1067 unsigned int i;
1068
1069 for (i = 0; i < t->t_height - height; i++) {
1070 printf(" ");
1071 }
1072 if (entry_tagmask(vp) == 0) {
1073 printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
1074 } else {
1075 printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
1076 entry_tagmask(vp));
1077 }
1078 if (height == 0) {
1079 printf(" (leaf)\n");
1080 return;
1081 }
1082 n = entry_ptr(vp);
1083 assert(any_children_tagmask(n) == entry_tagmask(vp));
1084 printf(" (%u children)\n", n->n_nptrs);
1085 for (i = 0; i < __arraycount(n->n_ptrs); i++) {
1086 void *c;
1087
1088 c = n->n_ptrs[i];
1089 if (c == NULL) {
1090 continue;
1091 }
1092 radix_tree_dump_node(t, c,
1093 offset + i * (UINT64_C(1) <<
1094 (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
1095 }
1096 }
1097
1098 void radix_tree_dump(const struct radix_tree *);
1099
1100 void
1101 radix_tree_dump(const struct radix_tree *t)
1102 {
1103
1104 printf("tree %p height=%u\n", t, t->t_height);
1105 radix_tree_dump_node(t, t->t_root, 0, t->t_height);
1106 }
1107
1108 static void
1109 test1(void)
1110 {
1111 struct radix_tree s;
1112 struct radix_tree *t = &s;
1113 void *results[3];
1114
1115 radix_tree_init_tree(t);
1116 radix_tree_dump(t);
1117 assert(radix_tree_lookup_node(t, 0) == NULL);
1118 assert(radix_tree_lookup_node(t, 1000) == NULL);
1119 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
1120 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1121 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1122 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1123 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1124 0);
1125 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1126 0);
1127 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1128 == 0);
1129 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1130 == 0);
1131 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1132 == 0);
1133 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1134 == 0);
1135 assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
1136 == 0);
1137 assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
1138 == 0);
1139 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1140 false, 1) == 0);
1141 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1142 true, 1) == 0);
1143 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1144 false, 1) == 0);
1145 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1146 true, 1) == 0);
1147 assert(radix_tree_empty_tree_p(t));
1148 assert(radix_tree_empty_tagged_tree_p(t, 1));
1149 assert(radix_tree_empty_tagged_tree_p(t, 2));
1150 assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
1151 assert(!radix_tree_empty_tree_p(t));
1152 assert(radix_tree_empty_tagged_tree_p(t, 1));
1153 assert(radix_tree_empty_tagged_tree_p(t, 2));
1154 assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
1155 assert(radix_tree_lookup_node(t, 1000) == NULL);
1156 memset(results, 0, sizeof(results));
1157 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1158 assert(results[0] == (void *)0xdeadbea0);
1159 memset(results, 0, sizeof(results));
1160 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1161 assert(results[0] == (void *)0xdeadbea0);
1162 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1163 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1164 memset(results, 0, sizeof(results));
1165 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1166 1);
1167 assert(results[0] == (void *)0xdeadbea0);
1168 memset(results, 0, sizeof(results));
1169 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1170 1);
1171 assert(results[0] == (void *)0xdeadbea0);
1172 memset(results, 0, sizeof(results));
1173 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1174 == 1);
1175 assert(results[0] == (void *)0xdeadbea0);
1176 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1177 == 0);
1178 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1179 == 0);
1180 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1181 == 0);
1182 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1183 false, 1) == 0);
1184 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1185 true, 1) == 0);
1186 assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
1187 assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
1188 assert(!radix_tree_empty_tree_p(t));
1189 radix_tree_dump(t);
1190 assert(radix_tree_lookup_node(t, 0) == NULL);
1191 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1192 memset(results, 0, sizeof(results));
1193 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1194 assert(results[0] == (void *)0xdeadbea0);
1195 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1196 memset(results, 0, sizeof(results));
1197 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
1198 assert(results[0] == (void *)0xdeadbea0);
1199 memset(results, 0, sizeof(results));
1200 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
1201 assert(results[0] == (void *)0xdeadbea0);
1202 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
1203 == 0);
1204 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
1205 == 0);
1206 memset(results, 0, sizeof(results));
1207 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1208 == 1);
1209 memset(results, 0, sizeof(results));
1210 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1211 == 1);
1212 assert(results[0] == (void *)0xdeadbea0);
1213 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1214 == 0);
1215 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1216 == 0);
1217 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1218 false, 1) == 0);
1219 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1220 true, 1) == 0);
1221 assert(!radix_tree_get_tag(t, 1000, 1));
1222 assert(!radix_tree_get_tag(t, 1000, 2));
1223 assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
1224 assert(radix_tree_empty_tagged_tree_p(t, 1));
1225 assert(radix_tree_empty_tagged_tree_p(t, 2));
1226 radix_tree_set_tag(t, 1000, 2);
1227 assert(!radix_tree_get_tag(t, 1000, 1));
1228 assert(radix_tree_get_tag(t, 1000, 2));
1229 assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1230 assert(radix_tree_empty_tagged_tree_p(t, 1));
1231 assert(!radix_tree_empty_tagged_tree_p(t, 2));
1232 radix_tree_dump(t);
1233 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1234 assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
1235 radix_tree_dump(t);
1236 assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1237 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1238 assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
1239 == 0);
1240 radix_tree_dump(t);
1241 assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1242 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1243 assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
1244 (void *)0xdea0);
1245 radix_tree_dump(t);
1246 assert(!radix_tree_get_tag(t, 0, 2));
1247 assert(radix_tree_get_tag(t, 1000, 2));
1248 assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
1249 radix_tree_set_tag(t, 0, 2);;
1250 radix_tree_set_tag(t, UINT64_C(10000000000), 2);
1251 radix_tree_dump(t);
1252 assert(radix_tree_get_tag(t, 0, 2));
1253 assert(radix_tree_get_tag(t, 1000, 2));
1254 assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1255 radix_tree_clear_tag(t, 0, 2);;
1256 radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
1257 radix_tree_dump(t);
1258 assert(!radix_tree_get_tag(t, 0, 2));
1259 assert(radix_tree_get_tag(t, 1000, 2));
1260 assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1261 radix_tree_dump(t);
1262 assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
1263 (void *)0xdeadbea0);
1264 assert(!radix_tree_get_tag(t, 1000, 1));
1265 assert(radix_tree_get_tag(t, 1000, 2));
1266 assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1267 memset(results, 0, sizeof(results));
1268 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
1269 assert(results[0] == (void *)0xbea0);
1270 assert(results[1] == (void *)0x12345678);
1271 assert(results[2] == (void *)0xdea0);
1272 memset(results, 0, sizeof(results));
1273 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1274 assert(results[0] == (void *)0xbea0);
1275 memset(results, 0, sizeof(results));
1276 assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
1277 assert(results[0] == (void *)0x12345678);
1278 assert(results[1] == (void *)0xdea0);
1279 assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
1280 memset(results, 0, sizeof(results));
1281 assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
1282 assert(results[0] == (void *)0xdea0);
1283 assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
1284 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1285 false) == 0);
1286 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1287 true) == 0);
1288 assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1289 3, false) == 0);
1290 assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1291 3, true) == 0);
1292 memset(results, 0, sizeof(results));
1293 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
1294 == 1);
1295 assert(results[0] == (void *)0x12345678);
1296 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
1297 == 0);
1298 assert(entry_tagmask(t->t_root) != 0);
1299 assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
1300 assert(entry_tagmask(t->t_root) == 0);
1301 radix_tree_dump(t);
1302 assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
1303 == 0);
1304 memset(results, 0, sizeof(results));
1305 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1306 false) == 2);
1307 assert(results[0] == (void *)0xdea0);
1308 assert(results[1] == (void *)0xfff0);
1309 memset(results, 0, sizeof(results));
1310 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1311 true) == 2);
1312 assert(results[0] == (void *)0xdea0);
1313 assert(results[1] == (void *)0xfff0);
1314 memset(results, 0, sizeof(results));
1315 assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1316 results, 3, false) == 3);
1317 assert(results[0] == (void *)0xfff0);
1318 assert(results[1] == (void *)0xdea0);
1319 assert(results[2] == (void *)0xbea0);
1320 memset(results, 0, sizeof(results));
1321 assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1322 results, 3, true) == 2);
1323 assert(results[0] == (void *)0xfff0);
1324 assert(results[1] == (void *)0xdea0);
1325 assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
1326 (void *)0xdea0);
1327 assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
1328 (void *)0xfff0);
1329 radix_tree_dump(t);
1330 assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
1331 radix_tree_dump(t);
1332 radix_tree_fini_tree(t);
1333 }
1334
1335 #include <sys/time.h>
1336
1337 struct testnode {
1338 uint64_t idx;
1339 bool tagged[RADIX_TREE_TAG_ID_MAX];
1340 };
1341
1342 static void
1343 printops(const char *title, const char *name, int tag, unsigned int n,
1344 const struct timeval *stv, const struct timeval *etv)
1345 {
1346 uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
1347 uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
1348
1349 printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
1350 (double)n / (e - s) * 1000000);
1351 }
1352
1353 #define TEST2_GANG_LOOKUP_NODES 16
1354
1355 static bool
1356 test2_should_tag(unsigned int i, unsigned int tagid)
1357 {
1358
1359 if (tagid == 0) {
1360 return (i % 4) == 0; /* 25% */
1361 } else {
1362 return (i % 7) == 0; /* 14% */
1363 }
1364 return 1;
1365 }
1366
1367 static void
1368 check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
1369 unsigned int count)
1370 {
1371 unsigned int tag;
1372
1373 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1374 if ((tagmask & (1 << tag)) == 0) {
1375 continue;
1376 }
1377 if (((tagmask - 1) & tagmask) == 0) {
1378 assert(count == ntagged[tag]);
1379 } else {
1380 assert(count >= ntagged[tag]);
1381 }
1382 }
1383 }
1384
1385 static void
1386 test2(const char *title, bool dense)
1387 {
1388 struct radix_tree s;
1389 struct radix_tree *t = &s;
1390 struct testnode *n;
1391 unsigned int i;
1392 unsigned int nnodes = 100000;
1393 unsigned int removed;
1394 unsigned int tag;
1395 unsigned int tagmask;
1396 unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
1397 struct testnode *nodes;
1398 struct timeval stv;
1399 struct timeval etv;
1400
1401 nodes = malloc(nnodes * sizeof(*nodes));
1402 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1403 ntagged[tag] = 0;
1404 }
1405 radix_tree_init_tree(t);
1406 for (i = 0; i < nnodes; i++) {
1407 n = &nodes[i];
1408 n->idx = random();
1409 if (sizeof(long) == 4) {
1410 n->idx <<= 32;
1411 n->idx |= (uint32_t)random();
1412 }
1413 if (dense) {
1414 n->idx %= nnodes * 2;
1415 }
1416 while (radix_tree_lookup_node(t, n->idx) != NULL) {
1417 n->idx++;
1418 }
1419 radix_tree_insert_node(t, n->idx, n);
1420 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1421 tagmask = 1 << tag;
1422
1423 n->tagged[tag] = test2_should_tag(i, tag);
1424 if (n->tagged[tag]) {
1425 radix_tree_set_tag(t, n->idx, tagmask);
1426 ntagged[tag]++;
1427 }
1428 assert((n->tagged[tag] ? tagmask : 0) ==
1429 radix_tree_get_tag(t, n->idx, tagmask));
1430 }
1431 }
1432
1433 gettimeofday(&stv, NULL);
1434 for (i = 0; i < nnodes; i++) {
1435 n = &nodes[i];
1436 assert(radix_tree_lookup_node(t, n->idx) == n);
1437 }
1438 gettimeofday(&etv, NULL);
1439 printops(title, "lookup", 0, nnodes, &stv, &etv);
1440
1441 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1442 unsigned int count = 0;
1443
1444 gettimeofday(&stv, NULL);
1445 for (i = 0; i < nnodes; i++) {
1446 unsigned int tagged;
1447
1448 n = &nodes[i];
1449 tagged = radix_tree_get_tag(t, n->idx, tagmask);
1450 assert((tagged & ~tagmask) == 0);
1451 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1452 assert((tagmask & (1 << tag)) == 0 ||
1453 n->tagged[tag] == !!(tagged & (1 << tag)));
1454 }
1455 if (tagged) {
1456 count++;
1457 }
1458 }
1459 gettimeofday(&etv, NULL);
1460 check_tag_count(ntagged, tagmask, count);
1461 printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
1462 }
1463
1464 gettimeofday(&stv, NULL);
1465 for (i = 0; i < nnodes; i++) {
1466 n = &nodes[i];
1467 radix_tree_remove_node(t, n->idx);
1468 }
1469 gettimeofday(&etv, NULL);
1470 printops(title, "remove", 0, nnodes, &stv, &etv);
1471
1472 gettimeofday(&stv, NULL);
1473 for (i = 0; i < nnodes; i++) {
1474 n = &nodes[i];
1475 radix_tree_insert_node(t, n->idx, n);
1476 }
1477 gettimeofday(&etv, NULL);
1478 printops(title, "insert", 0, nnodes, &stv, &etv);
1479
1480 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1481 tagmask = 1 << tag;
1482
1483 ntagged[tag] = 0;
1484 gettimeofday(&stv, NULL);
1485 for (i = 0; i < nnodes; i++) {
1486 n = &nodes[i];
1487 if (n->tagged[tag]) {
1488 radix_tree_set_tag(t, n->idx, tagmask);
1489 ntagged[tag]++;
1490 }
1491 }
1492 gettimeofday(&etv, NULL);
1493 printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
1494 }
1495
1496 gettimeofday(&stv, NULL);
1497 {
1498 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1499 uint64_t nextidx;
1500 unsigned int nfound;
1501 unsigned int total;
1502
1503 nextidx = 0;
1504 total = 0;
1505 while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1506 (void *)results, __arraycount(results), false)) > 0) {
1507 nextidx = results[nfound - 1]->idx + 1;
1508 total += nfound;
1509 if (nextidx == 0) {
1510 break;
1511 }
1512 }
1513 assert(total == nnodes);
1514 }
1515 gettimeofday(&etv, NULL);
1516 printops(title, "ganglookup", 0, nnodes, &stv, &etv);
1517
1518 gettimeofday(&stv, NULL);
1519 {
1520 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1521 uint64_t nextidx;
1522 unsigned int nfound;
1523 unsigned int total;
1524
1525 nextidx = UINT64_MAX;
1526 total = 0;
1527 while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
1528 (void *)results, __arraycount(results), false)) > 0) {
1529 nextidx = results[nfound - 1]->idx - 1;
1530 total += nfound;
1531 if (nextidx == UINT64_MAX) {
1532 break;
1533 }
1534 }
1535 assert(total == nnodes);
1536 }
1537 gettimeofday(&etv, NULL);
1538 printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
1539
1540 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1541 unsigned int total = 0;
1542
1543 gettimeofday(&stv, NULL);
1544 {
1545 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1546 uint64_t nextidx;
1547 unsigned int nfound;
1548
1549 nextidx = 0;
1550 while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1551 nextidx, (void *)results, __arraycount(results),
1552 false, tagmask)) > 0) {
1553 nextidx = results[nfound - 1]->idx + 1;
1554 total += nfound;
1555 }
1556 }
1557 gettimeofday(&etv, NULL);
1558 check_tag_count(ntagged, tagmask, total);
1559 assert(tagmask != 0 || total == 0);
1560 printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
1561 }
1562
1563 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1564 unsigned int total = 0;
1565
1566 gettimeofday(&stv, NULL);
1567 {
1568 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1569 uint64_t nextidx;
1570 unsigned int nfound;
1571
1572 nextidx = UINT64_MAX;
1573 while ((nfound =
1574 radix_tree_gang_lookup_tagged_node_reverse(t,
1575 nextidx, (void *)results, __arraycount(results),
1576 false, tagmask)) > 0) {
1577 nextidx = results[nfound - 1]->idx - 1;
1578 total += nfound;
1579 if (nextidx == UINT64_MAX) {
1580 break;
1581 }
1582 }
1583 }
1584 gettimeofday(&etv, NULL);
1585 check_tag_count(ntagged, tagmask, total);
1586 assert(tagmask != 0 || total == 0);
1587 printops(title, "ganglookup_tag_reverse", tagmask, total,
1588 &stv, &etv);
1589 }
1590
1591 removed = 0;
1592 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1593 unsigned int total;
1594
1595 total = 0;
1596 tagmask = 1 << tag;
1597 gettimeofday(&stv, NULL);
1598 {
1599 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1600 uint64_t nextidx;
1601 unsigned int nfound;
1602
1603 nextidx = 0;
1604 while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1605 nextidx, (void *)results, __arraycount(results),
1606 false, tagmask)) > 0) {
1607 for (i = 0; i < nfound; i++) {
1608 radix_tree_remove_node(t,
1609 results[i]->idx);
1610 }
1611 nextidx = results[nfound - 1]->idx + 1;
1612 total += nfound;
1613 if (nextidx == 0) {
1614 break;
1615 }
1616 }
1617 }
1618 gettimeofday(&etv, NULL);
1619 if (tag == 0) {
1620 check_tag_count(ntagged, tagmask, total);
1621 } else {
1622 assert(total <= ntagged[tag]);
1623 }
1624 printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
1625 &etv);
1626 removed += total;
1627 }
1628
1629 gettimeofday(&stv, NULL);
1630 {
1631 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1632 uint64_t nextidx;
1633 unsigned int nfound;
1634 unsigned int total;
1635
1636 nextidx = 0;
1637 total = 0;
1638 while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1639 (void *)results, __arraycount(results), false)) > 0) {
1640 for (i = 0; i < nfound; i++) {
1641 assert(results[i] == radix_tree_remove_node(t,
1642 results[i]->idx));
1643 }
1644 nextidx = results[nfound - 1]->idx + 1;
1645 total += nfound;
1646 if (nextidx == 0) {
1647 break;
1648 }
1649 }
1650 assert(total == nnodes - removed);
1651 }
1652 gettimeofday(&etv, NULL);
1653 printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
1654
1655 assert(radix_tree_empty_tree_p(t));
1656 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1657 assert(radix_tree_empty_tagged_tree_p(t, tagmask));
1658 }
1659 radix_tree_fini_tree(t);
1660 free(nodes);
1661 }
1662
1663 int
1664 main(int argc, char *argv[])
1665 {
1666
1667 test1();
1668 test2("dense", true);
1669 test2("sparse", false);
1670 return 0;
1671 }
1672
1673 #endif /* defined(UNITTEST) */
1674