radixtree.c revision 1.17.2.6 1 /* $NetBSD: radixtree.c,v 1.17.2.6 2014/05/22 19:09:50 yamt Exp $ */
2
3 /*-
4 * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * radixtree.c
31 *
32 * Overview:
33 *
34 * This is an implementation of radix tree, whose keys are uint64_t and leafs
35 * are user provided pointers.
36 *
37 * Leaf nodes are just void * and this implementation doesn't care about
38 * what they actually point to. However, this implementation has an assumption
39 * about their alignment. Specifically, this implementation assumes that their
40 * 2 LSBs are always zero and uses them for internal accounting.
41 *
42 * Intermediate nodes and memory allocation:
43 *
44 * Intermediate nodes are automatically allocated and freed internally and
45 * basically users don't need to care about them. The allocation is done via
46 * pool_cache_get(9) for _KERNEL, malloc(3) for userland, and alloc() for
47 * _STANDALONE environment. Only radix_tree_insert_node function can allocate
48 * memory for intermediate nodes and thus can fail for ENOMEM.
49 *
50 * Memory Efficiency:
51 *
52 * It's designed to work efficiently with dense index distribution.
53 * The memory consumption (number of necessary intermediate nodes) heavily
54 * depends on the index distribution. Basically, more dense index distribution
55 * consumes less nodes per item. Approximately,
56 *
57 * - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
58 * it would look like the following.
59 *
60 * root (t_height=1)
61 * |
62 * v
63 * [ | | | ] (intermediate node. RADIX_TREE_PTR_PER_NODE=4 in this fig)
64 * | | | |
65 * v v v v
66 * p p p p (items)
67 *
68 * - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
69 * it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
70 *
71 * root (t_height=3)
72 * |
73 * v
74 * [ | | | ]
75 * |
76 * v
77 * [ | | | ]
78 * |
79 * v
80 * [ | | | ]
81 * |
82 * v
83 * p
84 *
85 * The height of tree (t_height) is dynamic. It's smaller if only small
86 * index values are used. As an extreme case, if only index 0 is used,
87 * the corresponding value is directly stored in the root of the tree
88 * (struct radix_tree) without allocating any intermediate nodes. In that
89 * case, t_height=0.
90 *
91 * Gang lookup:
92 *
93 * This implementation provides a way to scan many nodes quickly via
94 * radix_tree_gang_lookup_node function and its varients.
95 *
96 * Tags:
97 *
98 * This implementation provides tagging functionality, which allows quick
99 * scanning of a subset of leaf nodes. Leaf nodes are untagged when inserted
100 * into the tree and can be tagged by radix_tree_set_tag function.
101 * radix_tree_gang_lookup_tagged_node function and its variants returns only
102 * leaf nodes with the given tag. To reduce amount of nodes to visit for
103 * these functions, this implementation keeps tagging information in internal
104 * intermediate nodes and quickly skips uninterested parts of a tree.
105 *
106 * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
107 * identified by an zero-origin numbers, tagid. For the current implementation,
108 * RADIX_TREE_TAG_ID_MAX is 2. A set of tags is described as a bitmask tagmask,
109 * which is a bitwise OR of (1 << tagid).
110 */
111
112 #include <sys/cdefs.h>
113
114 #if defined(_KERNEL) || defined(_STANDALONE)
115 __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.17.2.6 2014/05/22 19:09:50 yamt Exp $");
116 #include <sys/param.h>
117 #include <sys/errno.h>
118 #include <sys/pool.h>
119 #include <sys/radixtree.h>
120 #include <lib/libkern/libkern.h>
121 #if defined(_STANDALONE)
122 #include <lib/libsa/stand.h>
123 #endif /* defined(_STANDALONE) */
124 #else /* defined(_KERNEL) || defined(_STANDALONE) */
125 __RCSID("$NetBSD: radixtree.c,v 1.17.2.6 2014/05/22 19:09:50 yamt Exp $");
126 #include <assert.h>
127 #include <errno.h>
128 #include <stdbool.h>
129 #include <stdlib.h>
130 #include <string.h>
131 #if 1
132 #define KASSERT assert
133 #else
134 #define KASSERT(a) /* nothing */
135 #endif
136 #endif /* defined(_KERNEL) || defined(_STANDALONE) */
137
138 #include <sys/radixtree.h>
139
140 #define RADIX_TREE_BITS_PER_HEIGHT 4 /* XXX tune */
141 #define RADIX_TREE_PTR_PER_NODE (1 << RADIX_TREE_BITS_PER_HEIGHT)
142 #define RADIX_TREE_MAX_HEIGHT (64 / RADIX_TREE_BITS_PER_HEIGHT)
143 #define RADIX_TREE_INVALID_HEIGHT (RADIX_TREE_MAX_HEIGHT + 1)
144 __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
145
146 __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
147 #define RADIX_TREE_TAG_MASK ((1 << RADIX_TREE_TAG_ID_MAX) - 1)
148
149 static inline void *
150 entry_ptr(void *p)
151 {
152
153 return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
154 }
155
156 static inline unsigned int
157 entry_tagmask(void *p)
158 {
159
160 return (uintptr_t)p & RADIX_TREE_TAG_MASK;
161 }
162
163 static inline void *
164 entry_compose(void *p, unsigned int tagmask)
165 {
166
167 return (void *)((uintptr_t)p | tagmask);
168 }
169
170 static inline bool
171 entry_match_p(void *p, unsigned int tagmask)
172 {
173
174 KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
175 if (p == NULL) {
176 return false;
177 }
178 if (tagmask == 0) {
179 return true;
180 }
181 return (entry_tagmask(p) & tagmask) != 0;
182 }
183
184 /*
185 * radix_tree_node: an intermediate node
186 *
187 * we don't care the type of leaf nodes. they are just void *.
188 */
189
190 struct radix_tree_node {
191 void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
192 unsigned int n_nptrs; /* # of non-NULL pointers in n_ptrs */
193 };
194
195 /*
196 * any_children_tagmask:
197 *
198 * return OR'ed tagmask of the given node's children.
199 */
200
201 static unsigned int
202 any_children_tagmask(const struct radix_tree_node *n)
203 {
204 unsigned int mask;
205 int i;
206
207 mask = 0;
208 for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
209 mask |= (unsigned int)(uintptr_t)n->n_ptrs[i];
210 }
211 return mask & RADIX_TREE_TAG_MASK;
212 }
213
214 /*
215 * p_refs[0].pptr == &t->t_root
216 * :
217 * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
218 * :
219 * :
220 * p_refs[t->t_height].pptr == &leaf_pointer
221 */
222
223 struct radix_tree_path {
224 struct radix_tree_node_ref {
225 void **pptr;
226 } p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
227 /*
228 * p_lastidx is either the index of the last valid element of p_refs[]
229 * or RADIX_TREE_INVALID_HEIGHT.
230 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
231 * that the height of the tree is not enough to cover the given index.
232 */
233 unsigned int p_lastidx;
234 };
235
236 static inline void **
237 path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
238 unsigned int height)
239 {
240
241 KASSERT(height <= t->t_height);
242 return p->p_refs[height].pptr;
243 }
244
245 static inline struct radix_tree_node *
246 path_node(const struct radix_tree * t, const struct radix_tree_path *p,
247 unsigned int height)
248 {
249
250 KASSERT(height <= t->t_height);
251 return entry_ptr(*path_pptr(t, p, height));
252 }
253
254 /*
255 * radix_tree_init_tree:
256 *
257 * Initialize a tree.
258 */
259
260 void
261 radix_tree_init_tree(struct radix_tree *t)
262 {
263
264 t->t_height = 0;
265 t->t_root = NULL;
266 }
267
268 /*
269 * radix_tree_fini_tree:
270 *
271 * Finish using a tree.
272 */
273
274 void
275 radix_tree_fini_tree(struct radix_tree *t)
276 {
277
278 KASSERT(t->t_root == NULL);
279 KASSERT(t->t_height == 0);
280 }
281
282 /*
283 * radix_tree_empty_tree_p:
284 *
285 * Return if the tree is empty.
286 */
287
288 bool
289 radix_tree_empty_tree_p(struct radix_tree *t)
290 {
291
292 return t->t_root == NULL;
293 }
294
295 /*
296 * radix_tree_empty_tree_p:
297 *
298 * Return true if the tree has any nodes with the given tag. Otherwise
299 * return false.
300 *
301 * It's illegal to call this function with tagmask 0.
302 */
303
304 bool
305 radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
306 {
307
308 KASSERT(tagmask != 0);
309 return (entry_tagmask(t->t_root) & tagmask) == 0;
310 }
311
312 static void
313 radix_tree_node_init(struct radix_tree_node *n)
314 {
315
316 memset(n, 0, sizeof(*n));
317 }
318
319 #if defined(_KERNEL)
320 pool_cache_t radix_tree_node_cache __read_mostly;
321
322 static int
323 radix_tree_node_ctor(void *dummy, void *item, int flags)
324 {
325 struct radix_tree_node *n = item;
326
327 KASSERT(dummy == NULL);
328 radix_tree_node_init(n);
329 return 0;
330 }
331
332 /*
333 * radix_tree_init:
334 *
335 * initialize the subsystem.
336 */
337
338 void
339 radix_tree_init(void)
340 {
341
342 radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
343 0, 0, 0, "radix_tree_node", NULL, IPL_NONE, radix_tree_node_ctor,
344 NULL, NULL);
345 KASSERT(radix_tree_node_cache != NULL);
346 }
347 #endif /* defined(_KERNEL) */
348
349 static bool __unused
350 radix_tree_node_clean_p(const struct radix_tree_node *n)
351 {
352 unsigned int i;
353
354 if (n->n_nptrs != 0) {
355 return false;
356 }
357 for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
358 if (n->n_ptrs[i] != NULL) {
359 return false;
360 }
361 }
362 return true;
363 }
364
365 static struct radix_tree_node *
366 radix_tree_alloc_node(void)
367 {
368 struct radix_tree_node *n;
369
370 #if defined(_KERNEL)
371 /*
372 * note that pool_cache_get can block.
373 */
374 n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
375 #else /* defined(_KERNEL) */
376 #if defined(_STANDALONE)
377 n = alloc(sizeof(*n));
378 #else /* defined(_STANDALONE) */
379 n = malloc(sizeof(*n));
380 #endif /* defined(_STANDALONE) */
381 if (n != NULL) {
382 radix_tree_node_init(n);
383 }
384 #endif /* defined(_KERNEL) */
385 KASSERT(n == NULL || radix_tree_node_clean_p(n));
386 return n;
387 }
388
389 static void
390 radix_tree_free_node(struct radix_tree_node *n)
391 {
392
393 KASSERT(radix_tree_node_clean_p(n));
394 #if defined(_KERNEL)
395 pool_cache_put(radix_tree_node_cache, n);
396 #elif defined(_STANDALONE)
397 dealloc(n, sizeof(*n));
398 #else
399 free(n);
400 #endif
401 }
402
403 static int
404 radix_tree_grow(struct radix_tree *t, unsigned int newheight)
405 {
406 const unsigned int tagmask = entry_tagmask(t->t_root);
407
408 KASSERT(newheight <= 64 / RADIX_TREE_BITS_PER_HEIGHT);
409 if (t->t_root == NULL) {
410 t->t_height = newheight;
411 return 0;
412 }
413 while (t->t_height < newheight) {
414 struct radix_tree_node *n;
415
416 n = radix_tree_alloc_node();
417 if (n == NULL) {
418 /*
419 * don't bother to revert our changes.
420 * the caller will likely retry.
421 */
422 return ENOMEM;
423 }
424 n->n_nptrs = 1;
425 n->n_ptrs[0] = t->t_root;
426 t->t_root = entry_compose(n, tagmask);
427 t->t_height++;
428 }
429 return 0;
430 }
431
432 /*
433 * radix_tree_lookup_ptr:
434 *
435 * an internal helper function used for various exported functions.
436 *
437 * return the pointer to store the node for the given index.
438 *
439 * if alloc is true, try to allocate the storage. (note for _KERNEL:
440 * in that case, this function can block.) if the allocation failed or
441 * alloc is false, return NULL.
442 *
443 * if path is not NULL, fill it for the caller's investigation.
444 *
445 * if tagmask is not zero, search only for nodes with the tag set.
446 * note that, however, this function doesn't check the tagmask for the leaf
447 * pointer. it's a caller's responsibility to investigate the value which
448 * is pointed by the returned pointer if necessary.
449 *
450 * while this function is a bit large, as it's called with some constant
451 * arguments, inlining might have benefits. anyway, a compiler will decide.
452 */
453
454 static inline void **
455 radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
456 struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
457 {
458 struct radix_tree_node *n;
459 int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
460 int shift;
461 void **vpp;
462 const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
463 struct radix_tree_node_ref *refs = NULL;
464
465 /*
466 * check unsupported combinations
467 */
468 KASSERT(tagmask == 0 || !alloc);
469 KASSERT(path == NULL || !alloc);
470 vpp = &t->t_root;
471 if (path != NULL) {
472 refs = path->p_refs;
473 refs->pptr = vpp;
474 }
475 n = NULL;
476 for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
477 struct radix_tree_node *c;
478 void *entry;
479 const uint64_t i = (idx >> shift) & mask;
480
481 if (shift >= hshift) {
482 unsigned int newheight;
483
484 KASSERT(vpp == &t->t_root);
485 if (i == 0) {
486 shift -= RADIX_TREE_BITS_PER_HEIGHT;
487 continue;
488 }
489 if (!alloc) {
490 if (path != NULL) {
491 KASSERT((refs - path->p_refs) == 0);
492 path->p_lastidx =
493 RADIX_TREE_INVALID_HEIGHT;
494 }
495 return NULL;
496 }
497 newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
498 if (radix_tree_grow(t, newheight)) {
499 return NULL;
500 }
501 hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
502 }
503 entry = *vpp;
504 c = entry_ptr(entry);
505 if (c == NULL ||
506 (tagmask != 0 &&
507 (entry_tagmask(entry) & tagmask) == 0)) {
508 if (!alloc) {
509 if (path != NULL) {
510 path->p_lastidx = refs - path->p_refs;
511 }
512 return NULL;
513 }
514 c = radix_tree_alloc_node();
515 if (c == NULL) {
516 return NULL;
517 }
518 *vpp = c;
519 if (n != NULL) {
520 KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
521 n->n_nptrs++;
522 }
523 }
524 n = c;
525 vpp = &n->n_ptrs[i];
526 if (path != NULL) {
527 refs++;
528 refs->pptr = vpp;
529 }
530 shift -= RADIX_TREE_BITS_PER_HEIGHT;
531 }
532 if (alloc) {
533 KASSERT(*vpp == NULL);
534 if (n != NULL) {
535 KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
536 n->n_nptrs++;
537 }
538 }
539 if (path != NULL) {
540 path->p_lastidx = refs - path->p_refs;
541 }
542 return vpp;
543 }
544
545 /*
546 * radix_tree_insert_node:
547 *
548 * Insert the node at the given index.
549 *
550 * It's illegal to insert NULL. It's illegal to insert a non-aligned pointer.
551 *
552 * This function returns ENOMEM if necessary memory allocation failed.
553 * Otherwise, this function returns 0.
554 *
555 * Note that inserting a node can involves memory allocation for intermediate
556 * nodes. If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
557 *
558 * For the newly inserted node, all tags are cleared.
559 */
560
561 int
562 radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
563 {
564 void **vpp;
565
566 KASSERT(p != NULL);
567 KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
568 vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
569 if (vpp == NULL) {
570 return ENOMEM;
571 }
572 KASSERT(*vpp == NULL);
573 *vpp = p;
574 return 0;
575 }
576
577 /*
578 * radix_tree_replace_node:
579 *
580 * Replace a node at the given index with the given node and return the
581 * replaced one.
582 *
583 * It's illegal to try to replace a node which has not been inserted.
584 *
585 * This function keeps tags intact.
586 */
587
588 void *
589 radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
590 {
591 void **vpp;
592 void *oldp;
593
594 KASSERT(p != NULL);
595 KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
596 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
597 KASSERT(vpp != NULL);
598 oldp = *vpp;
599 KASSERT(oldp != NULL);
600 *vpp = entry_compose(p, entry_tagmask(*vpp));
601 return entry_ptr(oldp);
602 }
603
604 /*
605 * radix_tree_remove_node:
606 *
607 * Remove the node at the given index.
608 *
609 * It's illegal to try to remove a node which has not been inserted.
610 */
611
612 void *
613 radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
614 {
615 struct radix_tree_path path;
616 void **vpp;
617 void *oldp;
618 int i;
619
620 vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
621 KASSERT(vpp != NULL);
622 oldp = *vpp;
623 KASSERT(oldp != NULL);
624 KASSERT(path.p_lastidx == t->t_height);
625 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
626 *vpp = NULL;
627 for (i = t->t_height - 1; i >= 0; i--) {
628 void *entry;
629 struct radix_tree_node ** const pptr =
630 (struct radix_tree_node **)path_pptr(t, &path, i);
631 struct radix_tree_node *n;
632
633 KASSERT(pptr != NULL);
634 entry = *pptr;
635 n = entry_ptr(entry);
636 KASSERT(n != NULL);
637 KASSERT(n->n_nptrs > 0);
638 n->n_nptrs--;
639 if (n->n_nptrs > 0) {
640 break;
641 }
642 radix_tree_free_node(n);
643 *pptr = NULL;
644 }
645 /*
646 * fix up height
647 */
648 if (i < 0) {
649 KASSERT(t->t_root == NULL);
650 t->t_height = 0;
651 }
652 /*
653 * update tags
654 */
655 for (; i >= 0; i--) {
656 void *entry;
657 struct radix_tree_node ** const pptr =
658 (struct radix_tree_node **)path_pptr(t, &path, i);
659 struct radix_tree_node *n;
660 unsigned int newmask;
661
662 KASSERT(pptr != NULL);
663 entry = *pptr;
664 n = entry_ptr(entry);
665 KASSERT(n != NULL);
666 KASSERT(n->n_nptrs > 0);
667 newmask = any_children_tagmask(n);
668 if (newmask == entry_tagmask(entry)) {
669 break;
670 }
671 *pptr = entry_compose(n, newmask);
672 }
673 /*
674 * XXX is it worth to try to reduce height?
675 * if we do that, make radix_tree_grow rollback its change as well.
676 */
677 return entry_ptr(oldp);
678 }
679
680 /*
681 * radix_tree_lookup_node:
682 *
683 * Returns the node at the given index.
684 * Returns NULL if nothing is found at the given index.
685 */
686
687 void *
688 radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
689 {
690 void **vpp;
691
692 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
693 if (vpp == NULL) {
694 return NULL;
695 }
696 return entry_ptr(*vpp);
697 }
698
699 static inline void
700 gang_lookup_init(struct radix_tree *t, uint64_t idx,
701 struct radix_tree_path *path, const unsigned int tagmask)
702 {
703 void **vpp __unused;
704
705 #if defined(DIAGNOSTIC)
706 vpp =
707 #endif /* defined(DIAGNOSTIC) */
708 radix_tree_lookup_ptr(t, idx, path, false, tagmask);
709 KASSERT(vpp == NULL ||
710 vpp == path_pptr(t, path, path->p_lastidx));
711 KASSERT(&t->t_root == path_pptr(t, path, 0));
712 KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
713 path->p_lastidx == t->t_height ||
714 !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
715 }
716
717 /*
718 * gang_lookup_scan:
719 *
720 * a helper routine for radix_tree_gang_lookup_node and its variants.
721 */
722
723 static inline unsigned int
724 __attribute__((__always_inline__))
725 gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
726 void **results, const unsigned int maxresults, const unsigned int tagmask,
727 const bool reverse, const bool dense)
728 {
729
730 /*
731 * we keep the path updated only for lastidx-1.
732 * vpp is what path_pptr(t, path, lastidx) would be.
733 */
734 void **vpp;
735 unsigned int nfound;
736 unsigned int lastidx;
737 /*
738 * set up scan direction dependant constants so that we can iterate
739 * n_ptrs as the following.
740 *
741 * for (i = first; i != guard; i += step)
742 * visit n->n_ptrs[i];
743 */
744 const int step = reverse ? -1 : 1;
745 const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
746 const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
747 const unsigned int guard = last + step;
748
749 KASSERT(maxresults > 0);
750 KASSERT(&t->t_root == path_pptr(t, path, 0));
751 lastidx = path->p_lastidx;
752 KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
753 lastidx == t->t_height ||
754 !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
755 nfound = 0;
756 if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
757 /*
758 * requested idx is beyond the right-most node.
759 */
760 if (reverse && !dense) {
761 lastidx = 0;
762 vpp = path_pptr(t, path, lastidx);
763 goto descend;
764 }
765 return 0;
766 }
767 vpp = path_pptr(t, path, lastidx);
768 while (/*CONSTCOND*/true) {
769 struct radix_tree_node *n;
770 unsigned int i;
771
772 if (entry_match_p(*vpp, tagmask)) {
773 KASSERT(lastidx == t->t_height);
774 /*
775 * record the matching non-NULL leaf.
776 */
777 results[nfound] = entry_ptr(*vpp);
778 nfound++;
779 if (nfound == maxresults) {
780 return nfound;
781 }
782 } else if (dense) {
783 return nfound;
784 }
785 scan_siblings:
786 /*
787 * try to find the next matching non-NULL sibling.
788 */
789 if (lastidx == 0) {
790 /*
791 * the root has no siblings.
792 * we've done.
793 */
794 KASSERT(vpp == &t->t_root);
795 break;
796 }
797 n = path_node(t, path, lastidx - 1);
798 if (*vpp != NULL && n->n_nptrs == 1) {
799 /*
800 * optimization; if the node has only a single pointer
801 * and we've already visited it, there's no point to
802 * keep scanning in this node.
803 */
804 goto no_siblings;
805 }
806 for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
807 KASSERT(i < RADIX_TREE_PTR_PER_NODE);
808 if (entry_match_p(n->n_ptrs[i], tagmask)) {
809 vpp = &n->n_ptrs[i];
810 break;
811 }
812 }
813 if (i == guard) {
814 no_siblings:
815 /*
816 * not found. go to parent.
817 */
818 lastidx--;
819 vpp = path_pptr(t, path, lastidx);
820 goto scan_siblings;
821 }
822 descend:
823 /*
824 * following the left-most (or right-most in the case of
825 * reverse scan) child node, decend until reaching the leaf or
826 * an non-matching entry.
827 */
828 while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
829 /*
830 * save vpp in the path so that we can come back to this
831 * node after finishing visiting children.
832 */
833 path->p_refs[lastidx].pptr = vpp;
834 n = entry_ptr(*vpp);
835 vpp = &n->n_ptrs[first];
836 lastidx++;
837 }
838 }
839 return nfound;
840 }
841
842 /*
843 * radix_tree_gang_lookup_node:
844 *
845 * Scan the tree starting from the given index in the ascending order and
846 * return found nodes.
847 *
848 * results should be an array large enough to hold maxresults pointers.
849 * This function returns the number of nodes found, up to maxresults.
850 * Returning less than maxresults means there are no more nodes in the tree.
851 *
852 * If dense == true, this function stops scanning when it founds a hole of
853 * indexes. I.e. an index for which radix_tree_lookup_node would returns NULL.
854 * If dense == false, this function skips holes and continue scanning until
855 * maxresults nodes are found or it reaches the limit of the index range.
856 *
857 * The result of this function is semantically equivalent to what could be
858 * obtained by repeated calls of radix_tree_lookup_node with increasing index.
859 * but this function is expected to be computationally cheaper when looking up
860 * multiple nodes at once. Especially, it's expected to be much cheaper when
861 * node indexes are distributed sparsely.
862 *
863 * Note that this function doesn't return index values of found nodes.
864 * Thus, in the case of dense == false, if index values are important for
865 * a caller, it's the caller's responsibility to check them, typically
866 * by examinining the returned nodes using some caller-specific knowledge
867 * about them.
868 * In the case of dense == true, a node returned via results[N] is always for
869 * the index (idx + N).
870 */
871
872 unsigned int
873 radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
874 void **results, unsigned int maxresults, bool dense)
875 {
876 struct radix_tree_path path;
877
878 gang_lookup_init(t, idx, &path, 0);
879 return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
880 }
881
882 /*
883 * radix_tree_gang_lookup_node_reverse:
884 *
885 * Same as radix_tree_gang_lookup_node except that this one scans the
886 * tree in the reverse order. I.e. descending index values.
887 */
888
889 unsigned int
890 radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
891 void **results, unsigned int maxresults, bool dense)
892 {
893 struct radix_tree_path path;
894
895 gang_lookup_init(t, idx, &path, 0);
896 return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
897 }
898
899 /*
900 * radix_tree_gang_lookup_tagged_node:
901 *
902 * Same as radix_tree_gang_lookup_node except that this one only returns
903 * nodes tagged with tagid.
904 *
905 * It's illegal to call this function with tagmask 0.
906 */
907
908 unsigned int
909 radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
910 void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
911 {
912 struct radix_tree_path path;
913
914 KASSERT(tagmask != 0);
915 gang_lookup_init(t, idx, &path, tagmask);
916 return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
917 dense);
918 }
919
920 /*
921 * radix_tree_gang_lookup_tagged_node_reverse:
922 *
923 * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
924 * tree in the reverse order. I.e. descending index values.
925 */
926
927 unsigned int
928 radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
929 void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
930 {
931 struct radix_tree_path path;
932
933 KASSERT(tagmask != 0);
934 gang_lookup_init(t, idx, &path, tagmask);
935 return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
936 dense);
937 }
938
939 /*
940 * radix_tree_get_tag:
941 *
942 * Return the tagmask for the node at the given index.
943 *
944 * It's illegal to call this function for a node which has not been inserted.
945 */
946
947 unsigned int
948 radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
949 {
950 /*
951 * the following two implementations should behave same.
952 * the former one was chosen because it seems faster.
953 */
954 #if 1
955 void **vpp;
956
957 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
958 if (vpp == NULL) {
959 return false;
960 }
961 KASSERT(*vpp != NULL);
962 return (entry_tagmask(*vpp) & tagmask);
963 #else
964 void **vpp;
965
966 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
967 KASSERT(vpp != NULL);
968 return (entry_tagmask(*vpp) & tagmask);
969 #endif
970 }
971
972 /*
973 * radix_tree_set_tag:
974 *
975 * Set the tag for the node at the given index.
976 *
977 * It's illegal to call this function for a node which has not been inserted.
978 * It's illegal to call this function with tagmask 0.
979 */
980
981 void
982 radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
983 {
984 struct radix_tree_path path;
985 void **vpp __unused;
986 int i;
987
988 KASSERT(tagmask != 0);
989 #if defined(DIAGNOSTIC)
990 vpp =
991 #endif /* defined(DIAGNOSTIC) */
992 radix_tree_lookup_ptr(t, idx, &path, false, 0);
993 KASSERT(vpp != NULL);
994 KASSERT(*vpp != NULL);
995 KASSERT(path.p_lastidx == t->t_height);
996 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
997 for (i = t->t_height; i >= 0; i--) {
998 void ** const pptr = (void **)path_pptr(t, &path, i);
999 void *entry;
1000
1001 KASSERT(pptr != NULL);
1002 entry = *pptr;
1003 if ((entry_tagmask(entry) & tagmask) != 0) {
1004 break;
1005 }
1006 *pptr = (void *)((uintptr_t)entry | tagmask);
1007 }
1008 }
1009
1010 /*
1011 * radix_tree_clear_tag:
1012 *
1013 * Clear the tag for the node at the given index.
1014 *
1015 * It's illegal to call this function for a node which has not been inserted.
1016 * It's illegal to call this function with tagmask 0.
1017 */
1018
1019 void
1020 radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1021 {
1022 struct radix_tree_path path;
1023 void **vpp;
1024 int i;
1025
1026 KASSERT(tagmask != 0);
1027 vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
1028 KASSERT(vpp != NULL);
1029 KASSERT(*vpp != NULL);
1030 KASSERT(path.p_lastidx == t->t_height);
1031 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
1032 /*
1033 * if already cleared, nothing to do
1034 */
1035 if ((entry_tagmask(*vpp) & tagmask) == 0) {
1036 return;
1037 }
1038 /*
1039 * clear the tag only if no children have the tag.
1040 */
1041 for (i = t->t_height; i >= 0; i--) {
1042 void ** const pptr = (void **)path_pptr(t, &path, i);
1043 void *entry;
1044
1045 KASSERT(pptr != NULL);
1046 entry = *pptr;
1047 KASSERT((entry_tagmask(entry) & tagmask) != 0);
1048 *pptr = entry_compose(entry_ptr(entry),
1049 entry_tagmask(entry) & ~tagmask);
1050 /*
1051 * check if we should proceed to process the next level.
1052 */
1053 if (0 < i) {
1054 struct radix_tree_node *n = path_node(t, &path, i - 1);
1055
1056 if ((any_children_tagmask(n) & tagmask) != 0) {
1057 break;
1058 }
1059 }
1060 }
1061 }
1062
1063 #if defined(UNITTEST)
1064
1065 #include <inttypes.h>
1066 #include <stdio.h>
1067
1068 static void
1069 radix_tree_dump_node(const struct radix_tree *t, void *vp,
1070 uint64_t offset, unsigned int height)
1071 {
1072 struct radix_tree_node *n;
1073 unsigned int i;
1074
1075 for (i = 0; i < t->t_height - height; i++) {
1076 printf(" ");
1077 }
1078 if (entry_tagmask(vp) == 0) {
1079 printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
1080 } else {
1081 printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
1082 entry_tagmask(vp));
1083 }
1084 if (height == 0) {
1085 printf(" (leaf)\n");
1086 return;
1087 }
1088 n = entry_ptr(vp);
1089 assert(any_children_tagmask(n) == entry_tagmask(vp));
1090 printf(" (%u children)\n", n->n_nptrs);
1091 for (i = 0; i < __arraycount(n->n_ptrs); i++) {
1092 void *c;
1093
1094 c = n->n_ptrs[i];
1095 if (c == NULL) {
1096 continue;
1097 }
1098 radix_tree_dump_node(t, c,
1099 offset + i * (UINT64_C(1) <<
1100 (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
1101 }
1102 }
1103
1104 void radix_tree_dump(const struct radix_tree *);
1105
1106 void
1107 radix_tree_dump(const struct radix_tree *t)
1108 {
1109
1110 printf("tree %p height=%u\n", t, t->t_height);
1111 radix_tree_dump_node(t, t->t_root, 0, t->t_height);
1112 }
1113
1114 static void
1115 test1(void)
1116 {
1117 struct radix_tree s;
1118 struct radix_tree *t = &s;
1119 void *results[3];
1120
1121 radix_tree_init_tree(t);
1122 radix_tree_dump(t);
1123 assert(radix_tree_lookup_node(t, 0) == NULL);
1124 assert(radix_tree_lookup_node(t, 1000) == NULL);
1125 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
1126 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1127 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1128 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1129 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1130 0);
1131 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1132 0);
1133 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1134 == 0);
1135 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1136 == 0);
1137 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1138 == 0);
1139 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1140 == 0);
1141 assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
1142 == 0);
1143 assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
1144 == 0);
1145 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1146 false, 1) == 0);
1147 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1148 true, 1) == 0);
1149 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1150 false, 1) == 0);
1151 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1152 true, 1) == 0);
1153 assert(radix_tree_empty_tree_p(t));
1154 assert(radix_tree_empty_tagged_tree_p(t, 1));
1155 assert(radix_tree_empty_tagged_tree_p(t, 2));
1156 assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
1157 assert(!radix_tree_empty_tree_p(t));
1158 assert(radix_tree_empty_tagged_tree_p(t, 1));
1159 assert(radix_tree_empty_tagged_tree_p(t, 2));
1160 assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
1161 assert(radix_tree_lookup_node(t, 1000) == NULL);
1162 memset(results, 0, sizeof(results));
1163 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1164 assert(results[0] == (void *)0xdeadbea0);
1165 memset(results, 0, sizeof(results));
1166 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1167 assert(results[0] == (void *)0xdeadbea0);
1168 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1169 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1170 memset(results, 0, sizeof(results));
1171 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1172 1);
1173 assert(results[0] == (void *)0xdeadbea0);
1174 memset(results, 0, sizeof(results));
1175 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1176 1);
1177 assert(results[0] == (void *)0xdeadbea0);
1178 memset(results, 0, sizeof(results));
1179 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1180 == 1);
1181 assert(results[0] == (void *)0xdeadbea0);
1182 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1183 == 0);
1184 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1185 == 0);
1186 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1187 == 0);
1188 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1189 false, 1) == 0);
1190 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1191 true, 1) == 0);
1192 assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
1193 assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
1194 assert(!radix_tree_empty_tree_p(t));
1195 radix_tree_dump(t);
1196 assert(radix_tree_lookup_node(t, 0) == NULL);
1197 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1198 memset(results, 0, sizeof(results));
1199 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1200 assert(results[0] == (void *)0xdeadbea0);
1201 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1202 memset(results, 0, sizeof(results));
1203 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
1204 assert(results[0] == (void *)0xdeadbea0);
1205 memset(results, 0, sizeof(results));
1206 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
1207 assert(results[0] == (void *)0xdeadbea0);
1208 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
1209 == 0);
1210 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
1211 == 0);
1212 memset(results, 0, sizeof(results));
1213 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1214 == 1);
1215 memset(results, 0, sizeof(results));
1216 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1217 == 1);
1218 assert(results[0] == (void *)0xdeadbea0);
1219 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1220 == 0);
1221 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1222 == 0);
1223 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1224 false, 1) == 0);
1225 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1226 true, 1) == 0);
1227 assert(!radix_tree_get_tag(t, 1000, 1));
1228 assert(!radix_tree_get_tag(t, 1000, 2));
1229 assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
1230 assert(radix_tree_empty_tagged_tree_p(t, 1));
1231 assert(radix_tree_empty_tagged_tree_p(t, 2));
1232 radix_tree_set_tag(t, 1000, 2);
1233 assert(!radix_tree_get_tag(t, 1000, 1));
1234 assert(radix_tree_get_tag(t, 1000, 2));
1235 assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1236 assert(radix_tree_empty_tagged_tree_p(t, 1));
1237 assert(!radix_tree_empty_tagged_tree_p(t, 2));
1238 radix_tree_dump(t);
1239 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1240 assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
1241 radix_tree_dump(t);
1242 assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1243 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1244 assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
1245 == 0);
1246 radix_tree_dump(t);
1247 assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1248 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1249 assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
1250 (void *)0xdea0);
1251 radix_tree_dump(t);
1252 assert(!radix_tree_get_tag(t, 0, 2));
1253 assert(radix_tree_get_tag(t, 1000, 2));
1254 assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
1255 radix_tree_set_tag(t, 0, 2);;
1256 radix_tree_set_tag(t, UINT64_C(10000000000), 2);
1257 radix_tree_dump(t);
1258 assert(radix_tree_get_tag(t, 0, 2));
1259 assert(radix_tree_get_tag(t, 1000, 2));
1260 assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1261 radix_tree_clear_tag(t, 0, 2);;
1262 radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
1263 radix_tree_dump(t);
1264 assert(!radix_tree_get_tag(t, 0, 2));
1265 assert(radix_tree_get_tag(t, 1000, 2));
1266 assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1267 radix_tree_dump(t);
1268 assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
1269 (void *)0xdeadbea0);
1270 assert(!radix_tree_get_tag(t, 1000, 1));
1271 assert(radix_tree_get_tag(t, 1000, 2));
1272 assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1273 memset(results, 0, sizeof(results));
1274 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
1275 assert(results[0] == (void *)0xbea0);
1276 assert(results[1] == (void *)0x12345678);
1277 assert(results[2] == (void *)0xdea0);
1278 memset(results, 0, sizeof(results));
1279 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1280 assert(results[0] == (void *)0xbea0);
1281 memset(results, 0, sizeof(results));
1282 assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
1283 assert(results[0] == (void *)0x12345678);
1284 assert(results[1] == (void *)0xdea0);
1285 assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
1286 memset(results, 0, sizeof(results));
1287 assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
1288 assert(results[0] == (void *)0xdea0);
1289 assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
1290 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1291 false) == 0);
1292 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1293 true) == 0);
1294 assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1295 3, false) == 0);
1296 assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1297 3, true) == 0);
1298 memset(results, 0, sizeof(results));
1299 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
1300 == 1);
1301 assert(results[0] == (void *)0x12345678);
1302 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
1303 == 0);
1304 assert(entry_tagmask(t->t_root) != 0);
1305 assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
1306 assert(entry_tagmask(t->t_root) == 0);
1307 radix_tree_dump(t);
1308 assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
1309 == 0);
1310 memset(results, 0, sizeof(results));
1311 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1312 false) == 2);
1313 assert(results[0] == (void *)0xdea0);
1314 assert(results[1] == (void *)0xfff0);
1315 memset(results, 0, sizeof(results));
1316 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1317 true) == 2);
1318 assert(results[0] == (void *)0xdea0);
1319 assert(results[1] == (void *)0xfff0);
1320 memset(results, 0, sizeof(results));
1321 assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1322 results, 3, false) == 3);
1323 assert(results[0] == (void *)0xfff0);
1324 assert(results[1] == (void *)0xdea0);
1325 assert(results[2] == (void *)0xbea0);
1326 memset(results, 0, sizeof(results));
1327 assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1328 results, 3, true) == 2);
1329 assert(results[0] == (void *)0xfff0);
1330 assert(results[1] == (void *)0xdea0);
1331 assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
1332 (void *)0xdea0);
1333 assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
1334 (void *)0xfff0);
1335 radix_tree_dump(t);
1336 assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
1337 radix_tree_dump(t);
1338 radix_tree_fini_tree(t);
1339 }
1340
1341 #include <sys/time.h>
1342
1343 struct testnode {
1344 uint64_t idx;
1345 bool tagged[RADIX_TREE_TAG_ID_MAX];
1346 };
1347
1348 static void
1349 printops(const char *title, const char *name, int tag, unsigned int n,
1350 const struct timeval *stv, const struct timeval *etv)
1351 {
1352 uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
1353 uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
1354
1355 printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
1356 (double)n / (e - s) * 1000000);
1357 }
1358
1359 #define TEST2_GANG_LOOKUP_NODES 16
1360
1361 static bool
1362 test2_should_tag(unsigned int i, unsigned int tagid)
1363 {
1364
1365 if (tagid == 0) {
1366 return (i % 4) == 0; /* 25% */
1367 } else {
1368 return (i % 7) == 0; /* 14% */
1369 }
1370 return 1;
1371 }
1372
1373 static void
1374 check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
1375 unsigned int count)
1376 {
1377 unsigned int tag;
1378
1379 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1380 if ((tagmask & (1 << tag)) == 0) {
1381 continue;
1382 }
1383 if (((tagmask - 1) & tagmask) == 0) {
1384 assert(count == ntagged[tag]);
1385 } else {
1386 assert(count >= ntagged[tag]);
1387 }
1388 }
1389 }
1390
1391 static void
1392 test2(const char *title, bool dense)
1393 {
1394 struct radix_tree s;
1395 struct radix_tree *t = &s;
1396 struct testnode *n;
1397 unsigned int i;
1398 unsigned int nnodes = 100000;
1399 unsigned int removed;
1400 unsigned int tag;
1401 unsigned int tagmask;
1402 unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
1403 struct testnode *nodes;
1404 struct timeval stv;
1405 struct timeval etv;
1406
1407 nodes = malloc(nnodes * sizeof(*nodes));
1408 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1409 ntagged[tag] = 0;
1410 }
1411 radix_tree_init_tree(t);
1412 for (i = 0; i < nnodes; i++) {
1413 n = &nodes[i];
1414 n->idx = random();
1415 if (sizeof(long) == 4) {
1416 n->idx <<= 32;
1417 n->idx |= (uint32_t)random();
1418 }
1419 if (dense) {
1420 n->idx %= nnodes * 2;
1421 }
1422 while (radix_tree_lookup_node(t, n->idx) != NULL) {
1423 n->idx++;
1424 }
1425 radix_tree_insert_node(t, n->idx, n);
1426 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1427 tagmask = 1 << tag;
1428
1429 n->tagged[tag] = test2_should_tag(i, tag);
1430 if (n->tagged[tag]) {
1431 radix_tree_set_tag(t, n->idx, tagmask);
1432 ntagged[tag]++;
1433 }
1434 assert((n->tagged[tag] ? tagmask : 0) ==
1435 radix_tree_get_tag(t, n->idx, tagmask));
1436 }
1437 }
1438
1439 gettimeofday(&stv, NULL);
1440 for (i = 0; i < nnodes; i++) {
1441 n = &nodes[i];
1442 assert(radix_tree_lookup_node(t, n->idx) == n);
1443 }
1444 gettimeofday(&etv, NULL);
1445 printops(title, "lookup", 0, nnodes, &stv, &etv);
1446
1447 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1448 unsigned int count = 0;
1449
1450 gettimeofday(&stv, NULL);
1451 for (i = 0; i < nnodes; i++) {
1452 unsigned int tagged;
1453
1454 n = &nodes[i];
1455 tagged = radix_tree_get_tag(t, n->idx, tagmask);
1456 assert((tagged & ~tagmask) == 0);
1457 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1458 assert((tagmask & (1 << tag)) == 0 ||
1459 n->tagged[tag] == !!(tagged & (1 << tag)));
1460 }
1461 if (tagged) {
1462 count++;
1463 }
1464 }
1465 gettimeofday(&etv, NULL);
1466 check_tag_count(ntagged, tagmask, count);
1467 printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
1468 }
1469
1470 gettimeofday(&stv, NULL);
1471 for (i = 0; i < nnodes; i++) {
1472 n = &nodes[i];
1473 radix_tree_remove_node(t, n->idx);
1474 }
1475 gettimeofday(&etv, NULL);
1476 printops(title, "remove", 0, nnodes, &stv, &etv);
1477
1478 gettimeofday(&stv, NULL);
1479 for (i = 0; i < nnodes; i++) {
1480 n = &nodes[i];
1481 radix_tree_insert_node(t, n->idx, n);
1482 }
1483 gettimeofday(&etv, NULL);
1484 printops(title, "insert", 0, nnodes, &stv, &etv);
1485
1486 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1487 tagmask = 1 << tag;
1488
1489 ntagged[tag] = 0;
1490 gettimeofday(&stv, NULL);
1491 for (i = 0; i < nnodes; i++) {
1492 n = &nodes[i];
1493 if (n->tagged[tag]) {
1494 radix_tree_set_tag(t, n->idx, tagmask);
1495 ntagged[tag]++;
1496 }
1497 }
1498 gettimeofday(&etv, NULL);
1499 printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
1500 }
1501
1502 gettimeofday(&stv, NULL);
1503 {
1504 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1505 uint64_t nextidx;
1506 unsigned int nfound;
1507 unsigned int total;
1508
1509 nextidx = 0;
1510 total = 0;
1511 while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1512 (void *)results, __arraycount(results), false)) > 0) {
1513 nextidx = results[nfound - 1]->idx + 1;
1514 total += nfound;
1515 if (nextidx == 0) {
1516 break;
1517 }
1518 }
1519 assert(total == nnodes);
1520 }
1521 gettimeofday(&etv, NULL);
1522 printops(title, "ganglookup", 0, nnodes, &stv, &etv);
1523
1524 gettimeofday(&stv, NULL);
1525 {
1526 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1527 uint64_t nextidx;
1528 unsigned int nfound;
1529 unsigned int total;
1530
1531 nextidx = UINT64_MAX;
1532 total = 0;
1533 while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
1534 (void *)results, __arraycount(results), false)) > 0) {
1535 nextidx = results[nfound - 1]->idx - 1;
1536 total += nfound;
1537 if (nextidx == UINT64_MAX) {
1538 break;
1539 }
1540 }
1541 assert(total == nnodes);
1542 }
1543 gettimeofday(&etv, NULL);
1544 printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
1545
1546 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1547 unsigned int total = 0;
1548
1549 gettimeofday(&stv, NULL);
1550 {
1551 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1552 uint64_t nextidx;
1553 unsigned int nfound;
1554
1555 nextidx = 0;
1556 while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1557 nextidx, (void *)results, __arraycount(results),
1558 false, tagmask)) > 0) {
1559 nextidx = results[nfound - 1]->idx + 1;
1560 total += nfound;
1561 }
1562 }
1563 gettimeofday(&etv, NULL);
1564 check_tag_count(ntagged, tagmask, total);
1565 assert(tagmask != 0 || total == 0);
1566 printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
1567 }
1568
1569 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1570 unsigned int total = 0;
1571
1572 gettimeofday(&stv, NULL);
1573 {
1574 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1575 uint64_t nextidx;
1576 unsigned int nfound;
1577
1578 nextidx = UINT64_MAX;
1579 while ((nfound =
1580 radix_tree_gang_lookup_tagged_node_reverse(t,
1581 nextidx, (void *)results, __arraycount(results),
1582 false, tagmask)) > 0) {
1583 nextidx = results[nfound - 1]->idx - 1;
1584 total += nfound;
1585 if (nextidx == UINT64_MAX) {
1586 break;
1587 }
1588 }
1589 }
1590 gettimeofday(&etv, NULL);
1591 check_tag_count(ntagged, tagmask, total);
1592 assert(tagmask != 0 || total == 0);
1593 printops(title, "ganglookup_tag_reverse", tagmask, total,
1594 &stv, &etv);
1595 }
1596
1597 removed = 0;
1598 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1599 unsigned int total;
1600
1601 total = 0;
1602 tagmask = 1 << tag;
1603 gettimeofday(&stv, NULL);
1604 {
1605 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1606 uint64_t nextidx;
1607 unsigned int nfound;
1608
1609 nextidx = 0;
1610 while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1611 nextidx, (void *)results, __arraycount(results),
1612 false, tagmask)) > 0) {
1613 for (i = 0; i < nfound; i++) {
1614 radix_tree_remove_node(t,
1615 results[i]->idx);
1616 }
1617 nextidx = results[nfound - 1]->idx + 1;
1618 total += nfound;
1619 if (nextidx == 0) {
1620 break;
1621 }
1622 }
1623 }
1624 gettimeofday(&etv, NULL);
1625 if (tag == 0) {
1626 check_tag_count(ntagged, tagmask, total);
1627 } else {
1628 assert(total <= ntagged[tag]);
1629 }
1630 printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
1631 &etv);
1632 removed += total;
1633 }
1634
1635 gettimeofday(&stv, NULL);
1636 {
1637 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1638 uint64_t nextidx;
1639 unsigned int nfound;
1640 unsigned int total;
1641
1642 nextidx = 0;
1643 total = 0;
1644 while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1645 (void *)results, __arraycount(results), false)) > 0) {
1646 for (i = 0; i < nfound; i++) {
1647 assert(results[i] == radix_tree_remove_node(t,
1648 results[i]->idx));
1649 }
1650 nextidx = results[nfound - 1]->idx + 1;
1651 total += nfound;
1652 if (nextidx == 0) {
1653 break;
1654 }
1655 }
1656 assert(total == nnodes - removed);
1657 }
1658 gettimeofday(&etv, NULL);
1659 printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
1660
1661 assert(radix_tree_empty_tree_p(t));
1662 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1663 assert(radix_tree_empty_tagged_tree_p(t, tagmask));
1664 }
1665 radix_tree_fini_tree(t);
1666 free(nodes);
1667 }
1668
1669 int
1670 main(int argc, char *argv[])
1671 {
1672
1673 test1();
1674 test2("dense", true);
1675 test2("sparse", false);
1676 return 0;
1677 }
1678
1679 #endif /* defined(UNITTEST) */
1680