radixtree.c revision 1.17.44.1 1 /* $NetBSD: radixtree.c,v 1.17.44.1 2020/04/08 14:03:05 martin Exp $ */
2
3 /*-
4 * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * radixtree.c
31 *
32 * Overview:
33 *
34 * This is an implementation of radix tree, whose keys are uint64_t and leafs
35 * are user provided pointers.
36 *
37 * Leaf nodes are just void * and this implementation doesn't care about
38 * what they actually point to. However, this implementation has an assumption
39 * about their alignment. Specifically, this implementation assumes that their
40 * 2 LSBs are always zero and uses them for internal accounting.
41 *
42 * Intermediate nodes and memory allocation:
43 *
44 * Intermediate nodes are automatically allocated and freed internally and
45 * basically users don't need to care about them. The allocation is done via
46 * pool_cache_get(9) for _KERNEL, malloc(3) for userland, and alloc() for
47 * _STANDALONE environment. Only radix_tree_insert_node function can allocate
48 * memory for intermediate nodes and thus can fail for ENOMEM.
49 *
50 * Memory Efficiency:
51 *
52 * It's designed to work efficiently with dense index distribution.
53 * The memory consumption (number of necessary intermediate nodes) heavily
54 * depends on the index distribution. Basically, more dense index distribution
55 * consumes less nodes per item. Approximately,
56 *
57 * - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
58 * it would look like the following.
59 *
60 * root (t_height=1)
61 * |
62 * v
63 * [ | | | ] (intermediate node. RADIX_TREE_PTR_PER_NODE=4 in this fig)
64 * | | | |
65 * v v v v
66 * p p p p (items)
67 *
68 * - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
69 * it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
70 *
71 * root (t_height=3)
72 * |
73 * v
74 * [ | | | ]
75 * |
76 * v
77 * [ | | | ]
78 * |
79 * v
80 * [ | | | ]
81 * |
82 * v
83 * p
84 *
85 * The height of tree (t_height) is dynamic. It's smaller if only small
86 * index values are used. As an extreme case, if only index 0 is used,
87 * the corresponding value is directly stored in the root of the tree
88 * (struct radix_tree) without allocating any intermediate nodes. In that
89 * case, t_height=0.
90 *
91 * Gang lookup:
92 *
93 * This implementation provides a way to scan many nodes quickly via
94 * radix_tree_gang_lookup_node function and its varients.
95 *
96 * Tags:
97 *
98 * This implementation provides tagging functionality, which allows quick
99 * scanning of a subset of leaf nodes. Leaf nodes are untagged when inserted
100 * into the tree and can be tagged by radix_tree_set_tag function.
101 * radix_tree_gang_lookup_tagged_node function and its variants returns only
102 * leaf nodes with the given tag. To reduce amount of nodes to visit for
103 * these functions, this implementation keeps tagging information in internal
104 * intermediate nodes and quickly skips uninterested parts of a tree.
105 *
106 * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
107 * identified by an zero-origin numbers, tagid. For the current implementation,
108 * RADIX_TREE_TAG_ID_MAX is 2. A set of tags is described as a bitmask tagmask,
109 * which is a bitwise OR of (1 << tagid).
110 */
111
112 #include <sys/cdefs.h>
113
114 #if defined(_KERNEL) || defined(_STANDALONE)
115 __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.17.44.1 2020/04/08 14:03:05 martin Exp $");
116 #include <sys/param.h>
117 #include <sys/errno.h>
118 #include <sys/pool.h>
119 #include <sys/radixtree.h>
120 #include <lib/libkern/libkern.h>
121 #if defined(_STANDALONE)
122 #include <lib/libsa/stand.h>
123 #endif /* defined(_STANDALONE) */
124 #else /* defined(_KERNEL) || defined(_STANDALONE) */
125 __RCSID("$NetBSD: radixtree.c,v 1.17.44.1 2020/04/08 14:03:05 martin Exp $");
126 #include <assert.h>
127 #include <errno.h>
128 #include <stdbool.h>
129 #include <stdlib.h>
130 #include <string.h>
131 #if 1
132 #define KASSERT assert
133 #else
134 #define KASSERT(a) /* nothing */
135 #endif
136 #endif /* defined(_KERNEL) || defined(_STANDALONE) */
137
138 #include <sys/radixtree.h>
139
140 #define RADIX_TREE_BITS_PER_HEIGHT 4 /* XXX tune */
141 #define RADIX_TREE_PTR_PER_NODE (1 << RADIX_TREE_BITS_PER_HEIGHT)
142 #define RADIX_TREE_MAX_HEIGHT (64 / RADIX_TREE_BITS_PER_HEIGHT)
143 #define RADIX_TREE_INVALID_HEIGHT (RADIX_TREE_MAX_HEIGHT + 1)
144 __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
145
146 __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
147 #define RADIX_TREE_TAG_MASK ((1 << RADIX_TREE_TAG_ID_MAX) - 1)
148
149 static inline void *
150 entry_ptr(void *p)
151 {
152
153 return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
154 }
155
156 static inline unsigned int
157 entry_tagmask(void *p)
158 {
159
160 return (uintptr_t)p & RADIX_TREE_TAG_MASK;
161 }
162
163 static inline void *
164 entry_compose(void *p, unsigned int tagmask)
165 {
166
167 return (void *)((uintptr_t)p | tagmask);
168 }
169
170 static inline bool
171 entry_match_p(void *p, unsigned int tagmask)
172 {
173
174 KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
175 if (p == NULL) {
176 return false;
177 }
178 if (tagmask == 0) {
179 return true;
180 }
181 return (entry_tagmask(p) & tagmask) != 0;
182 }
183
184 /*
185 * radix_tree_node: an intermediate node
186 *
187 * we don't care the type of leaf nodes. they are just void *.
188 *
189 * we used to maintain a count of non-NULL nodes in this structure, but it
190 * prevented it from being aligned to a cache line boundary; the performance
191 * benefit from being cache friendly is greater than the benefit of having
192 * a dedicated count value, especially in multi-processor situations where
193 * we need to avoid intra-pool-page false sharing.
194 */
195
196 struct radix_tree_node {
197 void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
198 };
199
200 /*
201 * any_children_tagmask:
202 *
203 * return OR'ed tagmask of the given node's children.
204 */
205
206 static unsigned int
207 any_children_tagmask(const struct radix_tree_node *n)
208 {
209 unsigned int mask;
210 int i;
211
212 mask = 0;
213 for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
214 mask |= (unsigned int)(uintptr_t)n->n_ptrs[i];
215 }
216 return mask & RADIX_TREE_TAG_MASK;
217 }
218
219 /*
220 * p_refs[0].pptr == &t->t_root
221 * :
222 * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
223 * :
224 * :
225 * p_refs[t->t_height].pptr == &leaf_pointer
226 */
227
228 struct radix_tree_path {
229 struct radix_tree_node_ref {
230 void **pptr;
231 } p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
232 /*
233 * p_lastidx is either the index of the last valid element of p_refs[]
234 * or RADIX_TREE_INVALID_HEIGHT.
235 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
236 * that the height of the tree is not enough to cover the given index.
237 */
238 unsigned int p_lastidx;
239 };
240
241 static inline void **
242 path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
243 unsigned int height)
244 {
245
246 KASSERT(height <= t->t_height);
247 return p->p_refs[height].pptr;
248 }
249
250 static inline struct radix_tree_node *
251 path_node(const struct radix_tree * t, const struct radix_tree_path *p,
252 unsigned int height)
253 {
254
255 KASSERT(height <= t->t_height);
256 return entry_ptr(*path_pptr(t, p, height));
257 }
258
259 /*
260 * radix_tree_init_tree:
261 *
262 * Initialize a tree.
263 */
264
265 void
266 radix_tree_init_tree(struct radix_tree *t)
267 {
268
269 t->t_height = 0;
270 t->t_root = NULL;
271 }
272
273 /*
274 * radix_tree_fini_tree:
275 *
276 * Finish using a tree.
277 */
278
279 void
280 radix_tree_fini_tree(struct radix_tree *t)
281 {
282
283 KASSERT(t->t_root == NULL);
284 KASSERT(t->t_height == 0);
285 }
286
287 /*
288 * radix_tree_empty_tree_p:
289 *
290 * Return if the tree is empty.
291 */
292
293 bool
294 radix_tree_empty_tree_p(struct radix_tree *t)
295 {
296
297 return t->t_root == NULL;
298 }
299
300 /*
301 * radix_tree_empty_tree_p:
302 *
303 * Return true if the tree has any nodes with the given tag. Otherwise
304 * return false.
305 *
306 * It's illegal to call this function with tagmask 0.
307 */
308
309 bool
310 radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
311 {
312
313 KASSERT(tagmask != 0);
314 return (entry_tagmask(t->t_root) & tagmask) == 0;
315 }
316
317 static void
318 radix_tree_node_init(struct radix_tree_node *n)
319 {
320
321 memset(n, 0, sizeof(*n));
322 }
323
324 #if defined(_KERNEL)
325 pool_cache_t radix_tree_node_cache __read_mostly;
326
327 static int
328 radix_tree_node_ctor(void *dummy, void *item, int flags)
329 {
330 struct radix_tree_node *n = item;
331
332 KASSERT(dummy == NULL);
333 radix_tree_node_init(n);
334 return 0;
335 }
336
337 /*
338 * radix_tree_init:
339 *
340 * initialize the subsystem.
341 */
342
343 void
344 radix_tree_init(void)
345 {
346
347 radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
348 coherency_unit, 0, PR_LARGECACHE, "radixnode", NULL, IPL_NONE,
349 radix_tree_node_ctor, NULL, NULL);
350 KASSERT(radix_tree_node_cache != NULL);
351 }
352
353 /*
354 * radix_tree_await_memory:
355 *
356 * after an insert has failed with ENOMEM, wait for memory to become
357 * available, so the caller can retry.
358 */
359
360 void
361 radix_tree_await_memory(void)
362 {
363 struct radix_tree_node *n;
364
365 n = pool_cache_get(radix_tree_node_cache, PR_WAITOK);
366 pool_cache_put(radix_tree_node_cache, n);
367 }
368
369 #endif /* defined(_KERNEL) */
370
371 static bool __unused
372 radix_tree_node_clean_p(const struct radix_tree_node *n)
373 {
374 #if RADIX_TREE_PTR_PER_NODE > 16
375 unsigned int i;
376
377 for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
378 if (n->n_ptrs[i] != NULL) {
379 return false;
380 }
381 }
382 return true;
383 #else /* RADIX_TREE_PTR_PER_NODE > 16 */
384 uintptr_t sum;
385
386 /*
387 * Unrolling the above is much better than a tight loop with two
388 * test+branch pairs. On x86 with gcc 5.5.0 this compiles into 19
389 * deterministic instructions including the "return" and prologue &
390 * epilogue.
391 */
392 sum = (uintptr_t)n->n_ptrs[0];
393 sum |= (uintptr_t)n->n_ptrs[1];
394 sum |= (uintptr_t)n->n_ptrs[2];
395 sum |= (uintptr_t)n->n_ptrs[3];
396 #if RADIX_TREE_PTR_PER_NODE > 4
397 sum |= (uintptr_t)n->n_ptrs[4];
398 sum |= (uintptr_t)n->n_ptrs[5];
399 sum |= (uintptr_t)n->n_ptrs[6];
400 sum |= (uintptr_t)n->n_ptrs[7];
401 #endif
402 #if RADIX_TREE_PTR_PER_NODE > 8
403 sum |= (uintptr_t)n->n_ptrs[8];
404 sum |= (uintptr_t)n->n_ptrs[9];
405 sum |= (uintptr_t)n->n_ptrs[10];
406 sum |= (uintptr_t)n->n_ptrs[11];
407 sum |= (uintptr_t)n->n_ptrs[12];
408 sum |= (uintptr_t)n->n_ptrs[13];
409 sum |= (uintptr_t)n->n_ptrs[14];
410 sum |= (uintptr_t)n->n_ptrs[15];
411 #endif
412 return sum == 0;
413 #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
414 }
415
416 static int __unused
417 radix_tree_node_count_ptrs(const struct radix_tree_node *n)
418 {
419 unsigned int i, c;
420
421 for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
422 c += (n->n_ptrs[i] != NULL);
423 }
424 return c;
425 }
426
427 static struct radix_tree_node *
428 radix_tree_alloc_node(void)
429 {
430 struct radix_tree_node *n;
431
432 #if defined(_KERNEL)
433 /*
434 * note that pool_cache_get can block.
435 */
436 n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
437 #else /* defined(_KERNEL) */
438 #if defined(_STANDALONE)
439 n = alloc(sizeof(*n));
440 #else /* defined(_STANDALONE) */
441 n = malloc(sizeof(*n));
442 #endif /* defined(_STANDALONE) */
443 if (n != NULL) {
444 radix_tree_node_init(n);
445 }
446 #endif /* defined(_KERNEL) */
447 KASSERT(n == NULL || radix_tree_node_clean_p(n));
448 return n;
449 }
450
451 static void
452 radix_tree_free_node(struct radix_tree_node *n)
453 {
454
455 KASSERT(radix_tree_node_clean_p(n));
456 #if defined(_KERNEL)
457 pool_cache_put(radix_tree_node_cache, n);
458 #elif defined(_STANDALONE)
459 dealloc(n, sizeof(*n));
460 #else
461 free(n);
462 #endif
463 }
464
465 static int
466 radix_tree_grow(struct radix_tree *t, unsigned int newheight)
467 {
468 const unsigned int tagmask = entry_tagmask(t->t_root);
469
470 KASSERT(newheight <= 64 / RADIX_TREE_BITS_PER_HEIGHT);
471 if (t->t_root == NULL) {
472 t->t_height = newheight;
473 return 0;
474 }
475 while (t->t_height < newheight) {
476 struct radix_tree_node *n;
477
478 n = radix_tree_alloc_node();
479 if (n == NULL) {
480 /*
481 * don't bother to revert our changes.
482 * the caller will likely retry.
483 */
484 return ENOMEM;
485 }
486 n->n_ptrs[0] = t->t_root;
487 t->t_root = entry_compose(n, tagmask);
488 t->t_height++;
489 }
490 return 0;
491 }
492
493 /*
494 * radix_tree_lookup_ptr:
495 *
496 * an internal helper function used for various exported functions.
497 *
498 * return the pointer to store the node for the given index.
499 *
500 * if alloc is true, try to allocate the storage. (note for _KERNEL:
501 * in that case, this function can block.) if the allocation failed or
502 * alloc is false, return NULL.
503 *
504 * if path is not NULL, fill it for the caller's investigation.
505 *
506 * if tagmask is not zero, search only for nodes with the tag set.
507 * note that, however, this function doesn't check the tagmask for the leaf
508 * pointer. it's a caller's responsibility to investigate the value which
509 * is pointed by the returned pointer if necessary.
510 *
511 * while this function is a bit large, as it's called with some constant
512 * arguments, inlining might have benefits. anyway, a compiler will decide.
513 */
514
515 static inline void **
516 radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
517 struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
518 {
519 struct radix_tree_node *n;
520 int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
521 int shift;
522 void **vpp;
523 const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
524 struct radix_tree_node_ref *refs = NULL;
525
526 /*
527 * check unsupported combinations
528 */
529 KASSERT(tagmask == 0 || !alloc);
530 KASSERT(path == NULL || !alloc);
531 vpp = &t->t_root;
532 if (path != NULL) {
533 refs = path->p_refs;
534 refs->pptr = vpp;
535 }
536 n = NULL;
537 for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
538 struct radix_tree_node *c;
539 void *entry;
540 const uint64_t i = (idx >> shift) & mask;
541
542 if (shift >= hshift) {
543 unsigned int newheight;
544
545 KASSERT(vpp == &t->t_root);
546 if (i == 0) {
547 shift -= RADIX_TREE_BITS_PER_HEIGHT;
548 continue;
549 }
550 if (!alloc) {
551 if (path != NULL) {
552 KASSERT((refs - path->p_refs) == 0);
553 path->p_lastidx =
554 RADIX_TREE_INVALID_HEIGHT;
555 }
556 return NULL;
557 }
558 newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
559 if (radix_tree_grow(t, newheight)) {
560 return NULL;
561 }
562 hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
563 }
564 entry = *vpp;
565 c = entry_ptr(entry);
566 if (c == NULL ||
567 (tagmask != 0 &&
568 (entry_tagmask(entry) & tagmask) == 0)) {
569 if (!alloc) {
570 if (path != NULL) {
571 path->p_lastidx = refs - path->p_refs;
572 }
573 return NULL;
574 }
575 c = radix_tree_alloc_node();
576 if (c == NULL) {
577 return NULL;
578 }
579 *vpp = c;
580 }
581 n = c;
582 vpp = &n->n_ptrs[i];
583 if (path != NULL) {
584 refs++;
585 refs->pptr = vpp;
586 }
587 shift -= RADIX_TREE_BITS_PER_HEIGHT;
588 }
589 if (alloc) {
590 KASSERT(*vpp == NULL);
591 }
592 if (path != NULL) {
593 path->p_lastidx = refs - path->p_refs;
594 }
595 return vpp;
596 }
597
598 /*
599 * radix_tree_insert_node:
600 *
601 * Insert the node at the given index.
602 *
603 * It's illegal to insert NULL. It's illegal to insert a non-aligned pointer.
604 *
605 * This function returns ENOMEM if necessary memory allocation failed.
606 * Otherwise, this function returns 0.
607 *
608 * Note that inserting a node can involves memory allocation for intermediate
609 * nodes. If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
610 *
611 * For the newly inserted node, all tags are cleared.
612 */
613
614 int
615 radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
616 {
617 void **vpp;
618
619 KASSERT(p != NULL);
620 KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
621 vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
622 if (vpp == NULL) {
623 return ENOMEM;
624 }
625 KASSERT(*vpp == NULL);
626 *vpp = p;
627 return 0;
628 }
629
630 /*
631 * radix_tree_replace_node:
632 *
633 * Replace a node at the given index with the given node and return the
634 * replaced one.
635 *
636 * It's illegal to try to replace a node which has not been inserted.
637 *
638 * This function keeps tags intact.
639 */
640
641 void *
642 radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
643 {
644 void **vpp;
645 void *oldp;
646
647 KASSERT(p != NULL);
648 KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
649 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
650 KASSERT(vpp != NULL);
651 oldp = *vpp;
652 KASSERT(oldp != NULL);
653 *vpp = entry_compose(p, entry_tagmask(*vpp));
654 return entry_ptr(oldp);
655 }
656
657 /*
658 * radix_tree_remove_node:
659 *
660 * Remove the node at the given index.
661 *
662 * It's illegal to try to remove a node which has not been inserted.
663 */
664
665 void *
666 radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
667 {
668 struct radix_tree_path path;
669 void **vpp;
670 void *oldp;
671 int i;
672
673 vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
674 KASSERT(vpp != NULL);
675 oldp = *vpp;
676 KASSERT(oldp != NULL);
677 KASSERT(path.p_lastidx == t->t_height);
678 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
679 *vpp = NULL;
680 for (i = t->t_height - 1; i >= 0; i--) {
681 void *entry;
682 struct radix_tree_node ** const pptr =
683 (struct radix_tree_node **)path_pptr(t, &path, i);
684 struct radix_tree_node *n;
685
686 KASSERT(pptr != NULL);
687 entry = *pptr;
688 n = entry_ptr(entry);
689 KASSERT(n != NULL);
690 if (!radix_tree_node_clean_p(n)) {
691 break;
692 }
693 radix_tree_free_node(n);
694 *pptr = NULL;
695 }
696 /*
697 * fix up height
698 */
699 if (i < 0) {
700 KASSERT(t->t_root == NULL);
701 t->t_height = 0;
702 }
703 /*
704 * update tags
705 */
706 for (; i >= 0; i--) {
707 void *entry;
708 struct radix_tree_node ** const pptr =
709 (struct radix_tree_node **)path_pptr(t, &path, i);
710 struct radix_tree_node *n;
711 unsigned int newmask;
712
713 KASSERT(pptr != NULL);
714 entry = *pptr;
715 n = entry_ptr(entry);
716 KASSERT(n != NULL);
717 KASSERT(!radix_tree_node_clean_p(n));
718 newmask = any_children_tagmask(n);
719 if (newmask == entry_tagmask(entry)) {
720 break;
721 }
722 *pptr = entry_compose(n, newmask);
723 }
724 /*
725 * XXX is it worth to try to reduce height?
726 * if we do that, make radix_tree_grow rollback its change as well.
727 */
728 return entry_ptr(oldp);
729 }
730
731 /*
732 * radix_tree_lookup_node:
733 *
734 * Returns the node at the given index.
735 * Returns NULL if nothing is found at the given index.
736 */
737
738 void *
739 radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
740 {
741 void **vpp;
742
743 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
744 if (vpp == NULL) {
745 return NULL;
746 }
747 return entry_ptr(*vpp);
748 }
749
750 static inline void
751 gang_lookup_init(struct radix_tree *t, uint64_t idx,
752 struct radix_tree_path *path, const unsigned int tagmask)
753 {
754 void **vpp __unused;
755
756 vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
757 KASSERT(vpp == NULL ||
758 vpp == path_pptr(t, path, path->p_lastidx));
759 KASSERT(&t->t_root == path_pptr(t, path, 0));
760 KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
761 path->p_lastidx == t->t_height ||
762 !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
763 }
764
765 /*
766 * gang_lookup_scan:
767 *
768 * a helper routine for radix_tree_gang_lookup_node and its variants.
769 */
770
771 static inline unsigned int
772 __attribute__((__always_inline__))
773 gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
774 void **results, const unsigned int maxresults, const unsigned int tagmask,
775 const bool reverse, const bool dense)
776 {
777
778 /*
779 * we keep the path updated only for lastidx-1.
780 * vpp is what path_pptr(t, path, lastidx) would be.
781 */
782 void **vpp;
783 unsigned int nfound;
784 unsigned int lastidx;
785 /*
786 * set up scan direction dependant constants so that we can iterate
787 * n_ptrs as the following.
788 *
789 * for (i = first; i != guard; i += step)
790 * visit n->n_ptrs[i];
791 */
792 const int step = reverse ? -1 : 1;
793 const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
794 const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
795 const unsigned int guard = last + step;
796
797 KASSERT(maxresults > 0);
798 KASSERT(&t->t_root == path_pptr(t, path, 0));
799 lastidx = path->p_lastidx;
800 KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
801 lastidx == t->t_height ||
802 !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
803 nfound = 0;
804 if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
805 /*
806 * requested idx is beyond the right-most node.
807 */
808 if (reverse && !dense) {
809 lastidx = 0;
810 vpp = path_pptr(t, path, lastidx);
811 goto descend;
812 }
813 return 0;
814 }
815 vpp = path_pptr(t, path, lastidx);
816 while (/*CONSTCOND*/true) {
817 struct radix_tree_node *n;
818 unsigned int i;
819
820 if (entry_match_p(*vpp, tagmask)) {
821 KASSERT(lastidx == t->t_height);
822 /*
823 * record the matching non-NULL leaf.
824 */
825 results[nfound] = entry_ptr(*vpp);
826 nfound++;
827 if (nfound == maxresults) {
828 return nfound;
829 }
830 } else if (dense) {
831 return nfound;
832 }
833 scan_siblings:
834 /*
835 * try to find the next matching non-NULL sibling.
836 */
837 if (lastidx == 0) {
838 /*
839 * the root has no siblings.
840 * we've done.
841 */
842 KASSERT(vpp == &t->t_root);
843 break;
844 }
845 n = path_node(t, path, lastidx - 1);
846 for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
847 KASSERT(i < RADIX_TREE_PTR_PER_NODE);
848 if (entry_match_p(n->n_ptrs[i], tagmask)) {
849 vpp = &n->n_ptrs[i];
850 break;
851 } else if (dense) {
852 return nfound;
853 }
854 }
855 if (i == guard) {
856 /*
857 * not found. go to parent.
858 */
859 lastidx--;
860 vpp = path_pptr(t, path, lastidx);
861 goto scan_siblings;
862 }
863 descend:
864 /*
865 * following the left-most (or right-most in the case of
866 * reverse scan) child node, decend until reaching the leaf or
867 * an non-matching entry.
868 */
869 while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
870 /*
871 * save vpp in the path so that we can come back to this
872 * node after finishing visiting children.
873 */
874 path->p_refs[lastidx].pptr = vpp;
875 n = entry_ptr(*vpp);
876 vpp = &n->n_ptrs[first];
877 lastidx++;
878 }
879 }
880 return nfound;
881 }
882
883 /*
884 * radix_tree_gang_lookup_node:
885 *
886 * Scan the tree starting from the given index in the ascending order and
887 * return found nodes.
888 *
889 * results should be an array large enough to hold maxresults pointers.
890 * This function returns the number of nodes found, up to maxresults.
891 * Returning less than maxresults means there are no more nodes in the tree.
892 *
893 * If dense == true, this function stops scanning when it founds a hole of
894 * indexes. I.e. an index for which radix_tree_lookup_node would returns NULL.
895 * If dense == false, this function skips holes and continue scanning until
896 * maxresults nodes are found or it reaches the limit of the index range.
897 *
898 * The result of this function is semantically equivalent to what could be
899 * obtained by repeated calls of radix_tree_lookup_node with increasing index.
900 * but this function is expected to be computationally cheaper when looking up
901 * multiple nodes at once. Especially, it's expected to be much cheaper when
902 * node indexes are distributed sparsely.
903 *
904 * Note that this function doesn't return index values of found nodes.
905 * Thus, in the case of dense == false, if index values are important for
906 * a caller, it's the caller's responsibility to check them, typically
907 * by examinining the returned nodes using some caller-specific knowledge
908 * about them.
909 * In the case of dense == true, a node returned via results[N] is always for
910 * the index (idx + N).
911 */
912
913 unsigned int
914 radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
915 void **results, unsigned int maxresults, bool dense)
916 {
917 struct radix_tree_path path;
918
919 gang_lookup_init(t, idx, &path, 0);
920 return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
921 }
922
923 /*
924 * radix_tree_gang_lookup_node_reverse:
925 *
926 * Same as radix_tree_gang_lookup_node except that this one scans the
927 * tree in the reverse order. I.e. descending index values.
928 */
929
930 unsigned int
931 radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
932 void **results, unsigned int maxresults, bool dense)
933 {
934 struct radix_tree_path path;
935
936 gang_lookup_init(t, idx, &path, 0);
937 return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
938 }
939
940 /*
941 * radix_tree_gang_lookup_tagged_node:
942 *
943 * Same as radix_tree_gang_lookup_node except that this one only returns
944 * nodes tagged with tagid.
945 *
946 * It's illegal to call this function with tagmask 0.
947 */
948
949 unsigned int
950 radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
951 void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
952 {
953 struct radix_tree_path path;
954
955 KASSERT(tagmask != 0);
956 gang_lookup_init(t, idx, &path, tagmask);
957 return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
958 dense);
959 }
960
961 /*
962 * radix_tree_gang_lookup_tagged_node_reverse:
963 *
964 * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
965 * tree in the reverse order. I.e. descending index values.
966 */
967
968 unsigned int
969 radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
970 void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
971 {
972 struct radix_tree_path path;
973
974 KASSERT(tagmask != 0);
975 gang_lookup_init(t, idx, &path, tagmask);
976 return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
977 dense);
978 }
979
980 /*
981 * radix_tree_get_tag:
982 *
983 * Return the tagmask for the node at the given index.
984 *
985 * It's illegal to call this function for a node which has not been inserted.
986 */
987
988 unsigned int
989 radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
990 {
991 /*
992 * the following two implementations should behave same.
993 * the former one was chosen because it seems faster.
994 */
995 #if 1
996 void **vpp;
997
998 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
999 if (vpp == NULL) {
1000 return false;
1001 }
1002 KASSERT(*vpp != NULL);
1003 return (entry_tagmask(*vpp) & tagmask);
1004 #else
1005 void **vpp;
1006
1007 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
1008 KASSERT(vpp != NULL);
1009 return (entry_tagmask(*vpp) & tagmask);
1010 #endif
1011 }
1012
1013 /*
1014 * radix_tree_set_tag:
1015 *
1016 * Set the tag for the node at the given index.
1017 *
1018 * It's illegal to call this function for a node which has not been inserted.
1019 * It's illegal to call this function with tagmask 0.
1020 */
1021
1022 void
1023 radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1024 {
1025 struct radix_tree_path path;
1026 void **vpp __unused;
1027 int i;
1028
1029 KASSERT(tagmask != 0);
1030 vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
1031 KASSERT(vpp != NULL);
1032 KASSERT(*vpp != NULL);
1033 KASSERT(path.p_lastidx == t->t_height);
1034 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
1035 for (i = t->t_height; i >= 0; i--) {
1036 void ** const pptr = (void **)path_pptr(t, &path, i);
1037 void *entry;
1038
1039 KASSERT(pptr != NULL);
1040 entry = *pptr;
1041 if ((entry_tagmask(entry) & tagmask) != 0) {
1042 break;
1043 }
1044 *pptr = (void *)((uintptr_t)entry | tagmask);
1045 }
1046 }
1047
1048 /*
1049 * radix_tree_clear_tag:
1050 *
1051 * Clear the tag for the node at the given index.
1052 *
1053 * It's illegal to call this function for a node which has not been inserted.
1054 * It's illegal to call this function with tagmask 0.
1055 */
1056
1057 void
1058 radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1059 {
1060 struct radix_tree_path path;
1061 void **vpp;
1062 int i;
1063
1064 KASSERT(tagmask != 0);
1065 vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
1066 KASSERT(vpp != NULL);
1067 KASSERT(*vpp != NULL);
1068 KASSERT(path.p_lastidx == t->t_height);
1069 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
1070 /*
1071 * if already cleared, nothing to do
1072 */
1073 if ((entry_tagmask(*vpp) & tagmask) == 0) {
1074 return;
1075 }
1076 /*
1077 * clear the tag only if no children have the tag.
1078 */
1079 for (i = t->t_height; i >= 0; i--) {
1080 void ** const pptr = (void **)path_pptr(t, &path, i);
1081 void *entry;
1082
1083 KASSERT(pptr != NULL);
1084 entry = *pptr;
1085 KASSERT((entry_tagmask(entry) & tagmask) != 0);
1086 *pptr = entry_compose(entry_ptr(entry),
1087 entry_tagmask(entry) & ~tagmask);
1088 /*
1089 * check if we should proceed to process the next level.
1090 */
1091 if (0 < i) {
1092 struct radix_tree_node *n = path_node(t, &path, i - 1);
1093
1094 if ((any_children_tagmask(n) & tagmask) != 0) {
1095 break;
1096 }
1097 }
1098 }
1099 }
1100
1101 #if defined(UNITTEST)
1102
1103 #include <inttypes.h>
1104 #include <stdio.h>
1105
1106 static void
1107 radix_tree_dump_node(const struct radix_tree *t, void *vp,
1108 uint64_t offset, unsigned int height)
1109 {
1110 struct radix_tree_node *n;
1111 unsigned int i;
1112
1113 for (i = 0; i < t->t_height - height; i++) {
1114 printf(" ");
1115 }
1116 if (entry_tagmask(vp) == 0) {
1117 printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
1118 } else {
1119 printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
1120 entry_tagmask(vp));
1121 }
1122 if (height == 0) {
1123 printf(" (leaf)\n");
1124 return;
1125 }
1126 n = entry_ptr(vp);
1127 assert(any_children_tagmask(n) == entry_tagmask(vp));
1128 printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
1129 for (i = 0; i < __arraycount(n->n_ptrs); i++) {
1130 void *c;
1131
1132 c = n->n_ptrs[i];
1133 if (c == NULL) {
1134 continue;
1135 }
1136 radix_tree_dump_node(t, c,
1137 offset + i * (UINT64_C(1) <<
1138 (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
1139 }
1140 }
1141
1142 void radix_tree_dump(const struct radix_tree *);
1143
1144 void
1145 radix_tree_dump(const struct radix_tree *t)
1146 {
1147
1148 printf("tree %p height=%u\n", t, t->t_height);
1149 radix_tree_dump_node(t, t->t_root, 0, t->t_height);
1150 }
1151
1152 static void
1153 test1(void)
1154 {
1155 struct radix_tree s;
1156 struct radix_tree *t = &s;
1157 void *results[3];
1158
1159 radix_tree_init_tree(t);
1160 radix_tree_dump(t);
1161 assert(radix_tree_lookup_node(t, 0) == NULL);
1162 assert(radix_tree_lookup_node(t, 1000) == NULL);
1163 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
1164 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1165 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1166 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1167 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1168 0);
1169 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1170 0);
1171 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1172 == 0);
1173 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1174 == 0);
1175 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1176 == 0);
1177 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1178 == 0);
1179 assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
1180 == 0);
1181 assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
1182 == 0);
1183 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1184 false, 1) == 0);
1185 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1186 true, 1) == 0);
1187 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1188 false, 1) == 0);
1189 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1190 true, 1) == 0);
1191 assert(radix_tree_empty_tree_p(t));
1192 assert(radix_tree_empty_tagged_tree_p(t, 1));
1193 assert(radix_tree_empty_tagged_tree_p(t, 2));
1194 assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
1195 assert(!radix_tree_empty_tree_p(t));
1196 assert(radix_tree_empty_tagged_tree_p(t, 1));
1197 assert(radix_tree_empty_tagged_tree_p(t, 2));
1198 assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
1199 assert(radix_tree_lookup_node(t, 1000) == NULL);
1200 memset(results, 0, sizeof(results));
1201 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1202 assert(results[0] == (void *)0xdeadbea0);
1203 memset(results, 0, sizeof(results));
1204 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1205 assert(results[0] == (void *)0xdeadbea0);
1206 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1207 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1208 memset(results, 0, sizeof(results));
1209 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1210 1);
1211 assert(results[0] == (void *)0xdeadbea0);
1212 memset(results, 0, sizeof(results));
1213 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1214 1);
1215 assert(results[0] == (void *)0xdeadbea0);
1216 memset(results, 0, sizeof(results));
1217 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1218 == 1);
1219 assert(results[0] == (void *)0xdeadbea0);
1220 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1221 == 0);
1222 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1223 == 0);
1224 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1225 == 0);
1226 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1227 false, 1) == 0);
1228 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1229 true, 1) == 0);
1230 assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
1231 assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
1232 assert(!radix_tree_empty_tree_p(t));
1233 radix_tree_dump(t);
1234 assert(radix_tree_lookup_node(t, 0) == NULL);
1235 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1236 memset(results, 0, sizeof(results));
1237 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1238 assert(results[0] == (void *)0xdeadbea0);
1239 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1240 memset(results, 0, sizeof(results));
1241 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
1242 assert(results[0] == (void *)0xdeadbea0);
1243 memset(results, 0, sizeof(results));
1244 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
1245 assert(results[0] == (void *)0xdeadbea0);
1246 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
1247 == 0);
1248 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
1249 == 0);
1250 memset(results, 0, sizeof(results));
1251 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1252 == 1);
1253 memset(results, 0, sizeof(results));
1254 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1255 == 1);
1256 assert(results[0] == (void *)0xdeadbea0);
1257 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1258 == 0);
1259 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1260 == 0);
1261 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1262 false, 1) == 0);
1263 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1264 true, 1) == 0);
1265 assert(!radix_tree_get_tag(t, 1000, 1));
1266 assert(!radix_tree_get_tag(t, 1000, 2));
1267 assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
1268 assert(radix_tree_empty_tagged_tree_p(t, 1));
1269 assert(radix_tree_empty_tagged_tree_p(t, 2));
1270 radix_tree_set_tag(t, 1000, 2);
1271 assert(!radix_tree_get_tag(t, 1000, 1));
1272 assert(radix_tree_get_tag(t, 1000, 2));
1273 assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1274 assert(radix_tree_empty_tagged_tree_p(t, 1));
1275 assert(!radix_tree_empty_tagged_tree_p(t, 2));
1276 radix_tree_dump(t);
1277 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1278 assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
1279 radix_tree_dump(t);
1280 assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1281 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1282 assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
1283 == 0);
1284 radix_tree_dump(t);
1285 assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1286 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1287 assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
1288 (void *)0xdea0);
1289 radix_tree_dump(t);
1290 assert(!radix_tree_get_tag(t, 0, 2));
1291 assert(radix_tree_get_tag(t, 1000, 2));
1292 assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
1293 radix_tree_set_tag(t, 0, 2);;
1294 radix_tree_set_tag(t, UINT64_C(10000000000), 2);
1295 radix_tree_dump(t);
1296 assert(radix_tree_get_tag(t, 0, 2));
1297 assert(radix_tree_get_tag(t, 1000, 2));
1298 assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1299 radix_tree_clear_tag(t, 0, 2);;
1300 radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
1301 radix_tree_dump(t);
1302 assert(!radix_tree_get_tag(t, 0, 2));
1303 assert(radix_tree_get_tag(t, 1000, 2));
1304 assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1305 radix_tree_dump(t);
1306 assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
1307 (void *)0xdeadbea0);
1308 assert(!radix_tree_get_tag(t, 1000, 1));
1309 assert(radix_tree_get_tag(t, 1000, 2));
1310 assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1311 memset(results, 0, sizeof(results));
1312 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
1313 assert(results[0] == (void *)0xbea0);
1314 assert(results[1] == (void *)0x12345678);
1315 assert(results[2] == (void *)0xdea0);
1316 memset(results, 0, sizeof(results));
1317 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1318 assert(results[0] == (void *)0xbea0);
1319 memset(results, 0, sizeof(results));
1320 assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
1321 assert(results[0] == (void *)0x12345678);
1322 assert(results[1] == (void *)0xdea0);
1323 assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
1324 memset(results, 0, sizeof(results));
1325 assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
1326 assert(results[0] == (void *)0xdea0);
1327 assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
1328 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1329 false) == 0);
1330 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1331 true) == 0);
1332 assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1333 3, false) == 0);
1334 assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1335 3, true) == 0);
1336 memset(results, 0, sizeof(results));
1337 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
1338 == 1);
1339 assert(results[0] == (void *)0x12345678);
1340 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
1341 == 0);
1342 assert(entry_tagmask(t->t_root) != 0);
1343 assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
1344 assert(entry_tagmask(t->t_root) == 0);
1345 radix_tree_dump(t);
1346 assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
1347 == 0);
1348 memset(results, 0, sizeof(results));
1349 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1350 false) == 2);
1351 assert(results[0] == (void *)0xdea0);
1352 assert(results[1] == (void *)0xfff0);
1353 memset(results, 0, sizeof(results));
1354 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1355 true) == 2);
1356 assert(results[0] == (void *)0xdea0);
1357 assert(results[1] == (void *)0xfff0);
1358 memset(results, 0, sizeof(results));
1359 assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1360 results, 3, false) == 3);
1361 assert(results[0] == (void *)0xfff0);
1362 assert(results[1] == (void *)0xdea0);
1363 assert(results[2] == (void *)0xbea0);
1364 memset(results, 0, sizeof(results));
1365 assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1366 results, 3, true) == 2);
1367 assert(results[0] == (void *)0xfff0);
1368 assert(results[1] == (void *)0xdea0);
1369 assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
1370 (void *)0xdea0);
1371 assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
1372 (void *)0xfff0);
1373 radix_tree_dump(t);
1374 assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
1375 radix_tree_dump(t);
1376 radix_tree_fini_tree(t);
1377 }
1378
1379 #include <sys/time.h>
1380
1381 struct testnode {
1382 uint64_t idx;
1383 bool tagged[RADIX_TREE_TAG_ID_MAX];
1384 };
1385
1386 static void
1387 printops(const char *title, const char *name, int tag, unsigned int n,
1388 const struct timeval *stv, const struct timeval *etv)
1389 {
1390 uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
1391 uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
1392
1393 printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
1394 (double)n / (e - s) * 1000000);
1395 }
1396
1397 #define TEST2_GANG_LOOKUP_NODES 16
1398
1399 static bool
1400 test2_should_tag(unsigned int i, unsigned int tagid)
1401 {
1402
1403 if (tagid == 0) {
1404 return (i % 4) == 0; /* 25% */
1405 } else {
1406 return (i % 7) == 0; /* 14% */
1407 }
1408 return 1;
1409 }
1410
1411 static void
1412 check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
1413 unsigned int count)
1414 {
1415 unsigned int tag;
1416
1417 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1418 if ((tagmask & (1 << tag)) == 0) {
1419 continue;
1420 }
1421 if (((tagmask - 1) & tagmask) == 0) {
1422 assert(count == ntagged[tag]);
1423 } else {
1424 assert(count >= ntagged[tag]);
1425 }
1426 }
1427 }
1428
1429 static void
1430 test2(const char *title, bool dense)
1431 {
1432 struct radix_tree s;
1433 struct radix_tree *t = &s;
1434 struct testnode *n;
1435 unsigned int i;
1436 unsigned int nnodes = 100000;
1437 unsigned int removed;
1438 unsigned int tag;
1439 unsigned int tagmask;
1440 unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
1441 struct testnode *nodes;
1442 struct timeval stv;
1443 struct timeval etv;
1444
1445 nodes = malloc(nnodes * sizeof(*nodes));
1446 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1447 ntagged[tag] = 0;
1448 }
1449 radix_tree_init_tree(t);
1450 for (i = 0; i < nnodes; i++) {
1451 n = &nodes[i];
1452 n->idx = random();
1453 if (sizeof(long) == 4) {
1454 n->idx <<= 32;
1455 n->idx |= (uint32_t)random();
1456 }
1457 if (dense) {
1458 n->idx %= nnodes * 2;
1459 }
1460 while (radix_tree_lookup_node(t, n->idx) != NULL) {
1461 n->idx++;
1462 }
1463 radix_tree_insert_node(t, n->idx, n);
1464 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1465 tagmask = 1 << tag;
1466
1467 n->tagged[tag] = test2_should_tag(i, tag);
1468 if (n->tagged[tag]) {
1469 radix_tree_set_tag(t, n->idx, tagmask);
1470 ntagged[tag]++;
1471 }
1472 assert((n->tagged[tag] ? tagmask : 0) ==
1473 radix_tree_get_tag(t, n->idx, tagmask));
1474 }
1475 }
1476
1477 gettimeofday(&stv, NULL);
1478 for (i = 0; i < nnodes; i++) {
1479 n = &nodes[i];
1480 assert(radix_tree_lookup_node(t, n->idx) == n);
1481 }
1482 gettimeofday(&etv, NULL);
1483 printops(title, "lookup", 0, nnodes, &stv, &etv);
1484
1485 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1486 unsigned int count = 0;
1487
1488 gettimeofday(&stv, NULL);
1489 for (i = 0; i < nnodes; i++) {
1490 unsigned int tagged;
1491
1492 n = &nodes[i];
1493 tagged = radix_tree_get_tag(t, n->idx, tagmask);
1494 assert((tagged & ~tagmask) == 0);
1495 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1496 assert((tagmask & (1 << tag)) == 0 ||
1497 n->tagged[tag] == !!(tagged & (1 << tag)));
1498 }
1499 if (tagged) {
1500 count++;
1501 }
1502 }
1503 gettimeofday(&etv, NULL);
1504 check_tag_count(ntagged, tagmask, count);
1505 printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
1506 }
1507
1508 gettimeofday(&stv, NULL);
1509 for (i = 0; i < nnodes; i++) {
1510 n = &nodes[i];
1511 radix_tree_remove_node(t, n->idx);
1512 }
1513 gettimeofday(&etv, NULL);
1514 printops(title, "remove", 0, nnodes, &stv, &etv);
1515
1516 gettimeofday(&stv, NULL);
1517 for (i = 0; i < nnodes; i++) {
1518 n = &nodes[i];
1519 radix_tree_insert_node(t, n->idx, n);
1520 }
1521 gettimeofday(&etv, NULL);
1522 printops(title, "insert", 0, nnodes, &stv, &etv);
1523
1524 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1525 tagmask = 1 << tag;
1526
1527 ntagged[tag] = 0;
1528 gettimeofday(&stv, NULL);
1529 for (i = 0; i < nnodes; i++) {
1530 n = &nodes[i];
1531 if (n->tagged[tag]) {
1532 radix_tree_set_tag(t, n->idx, tagmask);
1533 ntagged[tag]++;
1534 }
1535 }
1536 gettimeofday(&etv, NULL);
1537 printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
1538 }
1539
1540 gettimeofday(&stv, NULL);
1541 {
1542 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1543 uint64_t nextidx;
1544 unsigned int nfound;
1545 unsigned int total;
1546
1547 nextidx = 0;
1548 total = 0;
1549 while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1550 (void *)results, __arraycount(results), false)) > 0) {
1551 nextidx = results[nfound - 1]->idx + 1;
1552 total += nfound;
1553 if (nextidx == 0) {
1554 break;
1555 }
1556 }
1557 assert(total == nnodes);
1558 }
1559 gettimeofday(&etv, NULL);
1560 printops(title, "ganglookup", 0, nnodes, &stv, &etv);
1561
1562 gettimeofday(&stv, NULL);
1563 {
1564 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1565 uint64_t nextidx;
1566 unsigned int nfound;
1567 unsigned int total;
1568
1569 nextidx = UINT64_MAX;
1570 total = 0;
1571 while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
1572 (void *)results, __arraycount(results), false)) > 0) {
1573 nextidx = results[nfound - 1]->idx - 1;
1574 total += nfound;
1575 if (nextidx == UINT64_MAX) {
1576 break;
1577 }
1578 }
1579 assert(total == nnodes);
1580 }
1581 gettimeofday(&etv, NULL);
1582 printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
1583
1584 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1585 unsigned int total = 0;
1586
1587 gettimeofday(&stv, NULL);
1588 {
1589 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1590 uint64_t nextidx;
1591 unsigned int nfound;
1592
1593 nextidx = 0;
1594 while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1595 nextidx, (void *)results, __arraycount(results),
1596 false, tagmask)) > 0) {
1597 nextidx = results[nfound - 1]->idx + 1;
1598 total += nfound;
1599 }
1600 }
1601 gettimeofday(&etv, NULL);
1602 check_tag_count(ntagged, tagmask, total);
1603 assert(tagmask != 0 || total == 0);
1604 printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
1605 }
1606
1607 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1608 unsigned int total = 0;
1609
1610 gettimeofday(&stv, NULL);
1611 {
1612 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1613 uint64_t nextidx;
1614 unsigned int nfound;
1615
1616 nextidx = UINT64_MAX;
1617 while ((nfound =
1618 radix_tree_gang_lookup_tagged_node_reverse(t,
1619 nextidx, (void *)results, __arraycount(results),
1620 false, tagmask)) > 0) {
1621 nextidx = results[nfound - 1]->idx - 1;
1622 total += nfound;
1623 if (nextidx == UINT64_MAX) {
1624 break;
1625 }
1626 }
1627 }
1628 gettimeofday(&etv, NULL);
1629 check_tag_count(ntagged, tagmask, total);
1630 assert(tagmask != 0 || total == 0);
1631 printops(title, "ganglookup_tag_reverse", tagmask, total,
1632 &stv, &etv);
1633 }
1634
1635 removed = 0;
1636 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1637 unsigned int total;
1638
1639 total = 0;
1640 tagmask = 1 << tag;
1641 gettimeofday(&stv, NULL);
1642 {
1643 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1644 uint64_t nextidx;
1645 unsigned int nfound;
1646
1647 nextidx = 0;
1648 while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1649 nextidx, (void *)results, __arraycount(results),
1650 false, tagmask)) > 0) {
1651 for (i = 0; i < nfound; i++) {
1652 radix_tree_remove_node(t,
1653 results[i]->idx);
1654 }
1655 nextidx = results[nfound - 1]->idx + 1;
1656 total += nfound;
1657 if (nextidx == 0) {
1658 break;
1659 }
1660 }
1661 }
1662 gettimeofday(&etv, NULL);
1663 if (tag == 0) {
1664 check_tag_count(ntagged, tagmask, total);
1665 } else {
1666 assert(total <= ntagged[tag]);
1667 }
1668 printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
1669 &etv);
1670 removed += total;
1671 }
1672
1673 gettimeofday(&stv, NULL);
1674 {
1675 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1676 uint64_t nextidx;
1677 unsigned int nfound;
1678 unsigned int total;
1679
1680 nextidx = 0;
1681 total = 0;
1682 while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1683 (void *)results, __arraycount(results), false)) > 0) {
1684 for (i = 0; i < nfound; i++) {
1685 assert(results[i] == radix_tree_remove_node(t,
1686 results[i]->idx));
1687 }
1688 nextidx = results[nfound - 1]->idx + 1;
1689 total += nfound;
1690 if (nextidx == 0) {
1691 break;
1692 }
1693 }
1694 assert(total == nnodes - removed);
1695 }
1696 gettimeofday(&etv, NULL);
1697 printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
1698
1699 assert(radix_tree_empty_tree_p(t));
1700 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1701 assert(radix_tree_empty_tagged_tree_p(t, tagmask));
1702 }
1703 radix_tree_fini_tree(t);
1704 free(nodes);
1705 }
1706
1707 int
1708 main(int argc, char *argv[])
1709 {
1710
1711 test1();
1712 test2("dense", true);
1713 test2("sparse", false);
1714 return 0;
1715 }
1716
1717 #endif /* defined(UNITTEST) */
1718