Home | History | Annotate | Line # | Download | only in gen
radixtree.c revision 1.20.2.1
      1 /*	$NetBSD: radixtree.c,v 1.20.2.1 2020/02/29 20:17:43 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * radixtree.c
     31  *
     32  * Overview:
     33  *
     34  * This is an implementation of radix tree, whose keys are uint64_t and leafs
     35  * are user provided pointers.
     36  *
     37  * Leaf nodes are just void * and this implementation doesn't care about
     38  * what they actually point to.  However, this implementation has an assumption
     39  * about their alignment.  Specifically, this implementation assumes that their
     40  * 2 LSBs are always zero and uses them for internal accounting.
     41  *
     42  * Intermediate nodes and memory allocation:
     43  *
     44  * Intermediate nodes are automatically allocated and freed internally and
     45  * basically users don't need to care about them.  The allocation is done via
     46  * pool_cache_get(9) for _KERNEL, malloc(3) for userland, and alloc() for
     47  * _STANDALONE environment.  Only radix_tree_insert_node function can allocate
     48  * memory for intermediate nodes and thus can fail for ENOMEM.
     49  *
     50  * Memory Efficiency:
     51  *
     52  * It's designed to work efficiently with dense index distribution.
     53  * The memory consumption (number of necessary intermediate nodes) heavily
     54  * depends on the index distribution.  Basically, more dense index distribution
     55  * consumes less nodes per item.  Approximately,
     56  *
     57  *  - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
     58  *    it would look like the following.
     59  *
     60  *     root (t_height=1)
     61  *      |
     62  *      v
     63  *      [ | | | ]   (intermediate node.  RADIX_TREE_PTR_PER_NODE=4 in this fig)
     64  *       | | | |
     65  *       v v v v
     66  *       p p p p    (items)
     67  *
     68  *  - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
     69  *    it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
     70  *
     71  *     root (t_height=3)
     72  *      |
     73  *      v
     74  *      [ | | | ]
     75  *           |
     76  *           v
     77  *           [ | | | ]
     78  *                |
     79  *                v
     80  *                [ | | | ]
     81  *                   |
     82  *                   v
     83  *                   p
     84  *
     85  * The height of tree (t_height) is dynamic.  It's smaller if only small
     86  * index values are used.  As an extreme case, if only index 0 is used,
     87  * the corresponding value is directly stored in the root of the tree
     88  * (struct radix_tree) without allocating any intermediate nodes.  In that
     89  * case, t_height=0.
     90  *
     91  * Gang lookup:
     92  *
     93  * This implementation provides a way to scan many nodes quickly via
     94  * radix_tree_gang_lookup_node function and its varients.
     95  *
     96  * Tags:
     97  *
     98  * This implementation provides tagging functionality, which allows quick
     99  * scanning of a subset of leaf nodes.  Leaf nodes are untagged when inserted
    100  * into the tree and can be tagged by radix_tree_set_tag function.
    101  * radix_tree_gang_lookup_tagged_node function and its variants returns only
    102  * leaf nodes with the given tag.  To reduce amount of nodes to visit for
    103  * these functions, this implementation keeps tagging information in internal
    104  * intermediate nodes and quickly skips uninterested parts of a tree.
    105  *
    106  * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
    107  * identified by an zero-origin numbers, tagid.  For the current implementation,
    108  * RADIX_TREE_TAG_ID_MAX is 2.  A set of tags is described as a bitmask tagmask,
    109  * which is a bitwise OR of (1 << tagid).
    110  */
    111 
    112 #include <sys/cdefs.h>
    113 
    114 #if defined(_KERNEL) || defined(_STANDALONE)
    115 __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.20.2.1 2020/02/29 20:17:43 ad Exp $");
    116 #include <sys/param.h>
    117 #include <sys/errno.h>
    118 #include <sys/pool.h>
    119 #include <sys/radixtree.h>
    120 #include <lib/libkern/libkern.h>
    121 #if defined(_STANDALONE)
    122 #include <lib/libsa/stand.h>
    123 #endif /* defined(_STANDALONE) */
    124 #else /* defined(_KERNEL) || defined(_STANDALONE) */
    125 __RCSID("$NetBSD: radixtree.c,v 1.20.2.1 2020/02/29 20:17:43 ad Exp $");
    126 #include <assert.h>
    127 #include <errno.h>
    128 #include <stdbool.h>
    129 #include <stdlib.h>
    130 #include <string.h>
    131 #if 1
    132 #define KASSERT assert
    133 #else
    134 #define KASSERT(a)	/* nothing */
    135 #endif
    136 #endif /* defined(_KERNEL) || defined(_STANDALONE) */
    137 
    138 #include <sys/radixtree.h>
    139 
    140 #define	RADIX_TREE_BITS_PER_HEIGHT	4	/* XXX tune */
    141 #define	RADIX_TREE_PTR_PER_NODE		(1 << RADIX_TREE_BITS_PER_HEIGHT)
    142 #define	RADIX_TREE_MAX_HEIGHT		(64 / RADIX_TREE_BITS_PER_HEIGHT)
    143 #define	RADIX_TREE_INVALID_HEIGHT	(RADIX_TREE_MAX_HEIGHT + 1)
    144 __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
    145 
    146 __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
    147 #define	RADIX_TREE_TAG_MASK	((1 << RADIX_TREE_TAG_ID_MAX) - 1)
    148 
    149 static inline void *
    150 entry_ptr(void *p)
    151 {
    152 
    153 	return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
    154 }
    155 
    156 static inline unsigned int
    157 entry_tagmask(void *p)
    158 {
    159 
    160 	return (uintptr_t)p & RADIX_TREE_TAG_MASK;
    161 }
    162 
    163 static inline void *
    164 entry_compose(void *p, unsigned int tagmask)
    165 {
    166 
    167 	return (void *)((uintptr_t)p | tagmask);
    168 }
    169 
    170 static inline bool
    171 entry_match_p(void *p, unsigned int tagmask)
    172 {
    173 
    174 	KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
    175 	if (p == NULL) {
    176 		return false;
    177 	}
    178 	if (tagmask == 0) {
    179 		return true;
    180 	}
    181 	return (entry_tagmask(p) & tagmask) != 0;
    182 }
    183 
    184 /*
    185  * radix_tree_node: an intermediate node
    186  *
    187  * we don't care the type of leaf nodes.  they are just void *.
    188  *
    189  * we used to maintain a count of non-NULL nodes in this structure, but it
    190  * prevented it from being aligned to a cache line boundary; the performance
    191  * benefit from being cache friendly is greater than the benefit of having
    192  * a dedicated count value, especially in multi-processor situations where
    193  * we need to avoid intra-pool-page false sharing.
    194  */
    195 
    196 struct radix_tree_node {
    197 	void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
    198 };
    199 
    200 /*
    201  * any_children_tagmask:
    202  *
    203  * return OR'ed tagmask of the given node's children.
    204  */
    205 
    206 static unsigned int
    207 any_children_tagmask(const struct radix_tree_node *n)
    208 {
    209 	unsigned int mask;
    210 	int i;
    211 
    212 	mask = 0;
    213 	for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    214 		mask |= (unsigned int)(uintptr_t)n->n_ptrs[i];
    215 	}
    216 	return mask & RADIX_TREE_TAG_MASK;
    217 }
    218 
    219 /*
    220  * p_refs[0].pptr == &t->t_root
    221  *	:
    222  * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
    223  *	:
    224  *	:
    225  * p_refs[t->t_height].pptr == &leaf_pointer
    226  */
    227 
    228 struct radix_tree_path {
    229 	struct radix_tree_node_ref {
    230 		void **pptr;
    231 	} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
    232 	/*
    233 	 * p_lastidx is either the index of the last valid element of p_refs[]
    234 	 * or RADIX_TREE_INVALID_HEIGHT.
    235 	 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
    236 	 * that the height of the tree is not enough to cover the given index.
    237 	 */
    238 	unsigned int p_lastidx;
    239 };
    240 
    241 static inline void **
    242 path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
    243     unsigned int height)
    244 {
    245 
    246 	KASSERT(height <= t->t_height);
    247 	return p->p_refs[height].pptr;
    248 }
    249 
    250 static inline struct radix_tree_node *
    251 path_node(const struct radix_tree * t, const struct radix_tree_path *p,
    252     unsigned int height)
    253 {
    254 
    255 	KASSERT(height <= t->t_height);
    256 	return entry_ptr(*path_pptr(t, p, height));
    257 }
    258 
    259 /*
    260  * radix_tree_init_tree:
    261  *
    262  * Initialize a tree.
    263  */
    264 
    265 void
    266 radix_tree_init_tree(struct radix_tree *t)
    267 {
    268 
    269 	t->t_height = 0;
    270 	t->t_root = NULL;
    271 }
    272 
    273 /*
    274  * radix_tree_fini_tree:
    275  *
    276  * Finish using a tree.
    277  */
    278 
    279 void
    280 radix_tree_fini_tree(struct radix_tree *t)
    281 {
    282 
    283 	KASSERT(t->t_root == NULL);
    284 	KASSERT(t->t_height == 0);
    285 }
    286 
    287 /*
    288  * radix_tree_empty_tree_p:
    289  *
    290  * Return if the tree is empty.
    291  */
    292 
    293 bool
    294 radix_tree_empty_tree_p(struct radix_tree *t)
    295 {
    296 
    297 	return t->t_root == NULL;
    298 }
    299 
    300 /*
    301  * radix_tree_empty_tree_p:
    302  *
    303  * Return true if the tree has any nodes with the given tag.  Otherwise
    304  * return false.
    305  *
    306  * It's illegal to call this function with tagmask 0.
    307  */
    308 
    309 bool
    310 radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
    311 {
    312 
    313 	KASSERT(tagmask != 0);
    314 	return (entry_tagmask(t->t_root) & tagmask) == 0;
    315 }
    316 
    317 static void
    318 radix_tree_node_init(struct radix_tree_node *n)
    319 {
    320 
    321 	memset(n, 0, sizeof(*n));
    322 }
    323 
    324 #if defined(_KERNEL)
    325 pool_cache_t radix_tree_node_cache __read_mostly;
    326 
    327 static int
    328 radix_tree_node_ctor(void *dummy, void *item, int flags)
    329 {
    330 	struct radix_tree_node *n = item;
    331 
    332 	KASSERT(dummy == NULL);
    333 	radix_tree_node_init(n);
    334 	return 0;
    335 }
    336 
    337 /*
    338  * radix_tree_init:
    339  *
    340  * initialize the subsystem.
    341  */
    342 
    343 void
    344 radix_tree_init(void)
    345 {
    346 
    347 	radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
    348 	    coherency_unit, 0, PR_LARGECACHE, "radixnode", NULL, IPL_NONE,
    349 	    radix_tree_node_ctor, NULL, NULL);
    350 	KASSERT(radix_tree_node_cache != NULL);
    351 }
    352 
    353 /*
    354  * radix_tree_await_memory:
    355  *
    356  * after an insert has failed with ENOMEM, wait for memory to become
    357  * available, so the caller can retry.
    358  */
    359 
    360 void
    361 radix_tree_await_memory(void)
    362 {
    363 	struct radix_tree_node *n;
    364 
    365 	n = pool_cache_get(radix_tree_node_cache, PR_WAITOK);
    366 	pool_cache_put(radix_tree_node_cache, n);
    367 }
    368 
    369 #endif /* defined(_KERNEL) */
    370 
    371 static bool __unused
    372 radix_tree_node_clean_p(const struct radix_tree_node *n)
    373 {
    374 #if RADIX_TREE_PTR_PER_NODE > 16
    375 	unsigned int i;
    376 
    377 	for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    378 		if (n->n_ptrs[i] != NULL) {
    379 			return false;
    380 		}
    381 	}
    382 	return true;
    383 #else /* RADIX_TREE_PTR_PER_NODE > 16 */
    384 	uintptr_t sum;
    385 
    386 	/*
    387 	 * Unrolling the above is much better than a tight loop with two
    388 	 * test+branch pairs.  On x86 with gcc 5.5.0 this compiles into 19
    389 	 * deterministic instructions including the "return" and prologue &
    390 	 * epilogue.
    391 	 */
    392 	sum = (uintptr_t)n->n_ptrs[0];
    393 	sum |= (uintptr_t)n->n_ptrs[1];
    394 	sum |= (uintptr_t)n->n_ptrs[2];
    395 	sum |= (uintptr_t)n->n_ptrs[3];
    396 #if RADIX_TREE_PTR_PER_NODE > 4
    397 	sum |= (uintptr_t)n->n_ptrs[4];
    398 	sum |= (uintptr_t)n->n_ptrs[5];
    399 	sum |= (uintptr_t)n->n_ptrs[6];
    400 	sum |= (uintptr_t)n->n_ptrs[7];
    401 #endif
    402 #if RADIX_TREE_PTR_PER_NODE > 8
    403 	sum |= (uintptr_t)n->n_ptrs[8];
    404 	sum |= (uintptr_t)n->n_ptrs[9];
    405 	sum |= (uintptr_t)n->n_ptrs[10];
    406 	sum |= (uintptr_t)n->n_ptrs[11];
    407 	sum |= (uintptr_t)n->n_ptrs[12];
    408 	sum |= (uintptr_t)n->n_ptrs[13];
    409 	sum |= (uintptr_t)n->n_ptrs[14];
    410 	sum |= (uintptr_t)n->n_ptrs[15];
    411 #endif
    412 	return sum == 0;
    413 #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
    414 }
    415 
    416 static int __unused
    417 radix_tree_node_count_ptrs(const struct radix_tree_node *n)
    418 {
    419 	unsigned int i, c;
    420 
    421 	for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    422 		c += (n->n_ptrs[i] != NULL);
    423 	}
    424 	return c;
    425 }
    426 
    427 static struct radix_tree_node *
    428 radix_tree_alloc_node(void)
    429 {
    430 	struct radix_tree_node *n;
    431 
    432 #if defined(_KERNEL)
    433 	/*
    434 	 * note that pool_cache_get can block.
    435 	 */
    436 	n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
    437 #else /* defined(_KERNEL) */
    438 #if defined(_STANDALONE)
    439 	n = alloc(sizeof(*n));
    440 #else /* defined(_STANDALONE) */
    441 	n = malloc(sizeof(*n));
    442 #endif /* defined(_STANDALONE) */
    443 	if (n != NULL) {
    444 		radix_tree_node_init(n);
    445 	}
    446 #endif /* defined(_KERNEL) */
    447 	KASSERT(n == NULL || radix_tree_node_clean_p(n));
    448 	return n;
    449 }
    450 
    451 static void
    452 radix_tree_free_node(struct radix_tree_node *n)
    453 {
    454 
    455 	KASSERT(radix_tree_node_clean_p(n));
    456 #if defined(_KERNEL)
    457 	pool_cache_put(radix_tree_node_cache, n);
    458 #elif defined(_STANDALONE)
    459 	dealloc(n, sizeof(*n));
    460 #else
    461 	free(n);
    462 #endif
    463 }
    464 
    465 static int
    466 radix_tree_grow(struct radix_tree *t, unsigned int newheight)
    467 {
    468 	const unsigned int tagmask = entry_tagmask(t->t_root);
    469 
    470 	KASSERT(newheight <= 64 / RADIX_TREE_BITS_PER_HEIGHT);
    471 	if (t->t_root == NULL) {
    472 		t->t_height = newheight;
    473 		return 0;
    474 	}
    475 	while (t->t_height < newheight) {
    476 		struct radix_tree_node *n;
    477 
    478 		n = radix_tree_alloc_node();
    479 		if (n == NULL) {
    480 			/*
    481 			 * don't bother to revert our changes.
    482 			 * the caller will likely retry.
    483 			 */
    484 			return ENOMEM;
    485 		}
    486 		n->n_ptrs[0] = t->t_root;
    487 		t->t_root = entry_compose(n, tagmask);
    488 		t->t_height++;
    489 	}
    490 	return 0;
    491 }
    492 
    493 /*
    494  * radix_tree_lookup_ptr:
    495  *
    496  * an internal helper function used for various exported functions.
    497  *
    498  * return the pointer to store the node for the given index.
    499  *
    500  * if alloc is true, try to allocate the storage.  (note for _KERNEL:
    501  * in that case, this function can block.)  if the allocation failed or
    502  * alloc is false, return NULL.
    503  *
    504  * if path is not NULL, fill it for the caller's investigation.
    505  *
    506  * if tagmask is not zero, search only for nodes with the tag set.
    507  * note that, however, this function doesn't check the tagmask for the leaf
    508  * pointer.  it's a caller's responsibility to investigate the value which
    509  * is pointed by the returned pointer if necessary.
    510  *
    511  * while this function is a bit large, as it's called with some constant
    512  * arguments, inlining might have benefits.  anyway, a compiler will decide.
    513  */
    514 
    515 static inline void **
    516 radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
    517     struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
    518 {
    519 	struct radix_tree_node *n;
    520 	int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    521 	int shift;
    522 	void **vpp;
    523 	const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
    524 	struct radix_tree_node_ref *refs = NULL;
    525 
    526 	/*
    527 	 * check unsupported combinations
    528 	 */
    529 	KASSERT(tagmask == 0 || !alloc);
    530 	KASSERT(path == NULL || !alloc);
    531 	vpp = &t->t_root;
    532 	if (path != NULL) {
    533 		refs = path->p_refs;
    534 		refs->pptr = vpp;
    535 	}
    536 	n = NULL;
    537 	for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
    538 		struct radix_tree_node *c;
    539 		void *entry;
    540 		const uint64_t i = (idx >> shift) & mask;
    541 
    542 		if (shift >= hshift) {
    543 			unsigned int newheight;
    544 
    545 			KASSERT(vpp == &t->t_root);
    546 			if (i == 0) {
    547 				shift -= RADIX_TREE_BITS_PER_HEIGHT;
    548 				continue;
    549 			}
    550 			if (!alloc) {
    551 				if (path != NULL) {
    552 					KASSERT((refs - path->p_refs) == 0);
    553 					path->p_lastidx =
    554 					    RADIX_TREE_INVALID_HEIGHT;
    555 				}
    556 				return NULL;
    557 			}
    558 			newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
    559 			if (radix_tree_grow(t, newheight)) {
    560 				return NULL;
    561 			}
    562 			hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    563 		}
    564 		entry = *vpp;
    565 		c = entry_ptr(entry);
    566 		if (c == NULL ||
    567 		    (tagmask != 0 &&
    568 		    (entry_tagmask(entry) & tagmask) == 0)) {
    569 			if (!alloc) {
    570 				if (path != NULL) {
    571 					path->p_lastidx = refs - path->p_refs;
    572 				}
    573 				return NULL;
    574 			}
    575 			c = radix_tree_alloc_node();
    576 			if (c == NULL) {
    577 				return NULL;
    578 			}
    579 			*vpp = c;
    580 		}
    581 		n = c;
    582 		vpp = &n->n_ptrs[i];
    583 		if (path != NULL) {
    584 			refs++;
    585 			refs->pptr = vpp;
    586 		}
    587 		shift -= RADIX_TREE_BITS_PER_HEIGHT;
    588 	}
    589 	if (alloc) {
    590 		KASSERT(*vpp == NULL);
    591 	}
    592 	if (path != NULL) {
    593 		path->p_lastidx = refs - path->p_refs;
    594 	}
    595 	return vpp;
    596 }
    597 
    598 /*
    599  * radix_tree_insert_node:
    600  *
    601  * Insert the node at the given index.
    602  *
    603  * It's illegal to insert NULL.  It's illegal to insert a non-aligned pointer.
    604  *
    605  * This function returns ENOMEM if necessary memory allocation failed.
    606  * Otherwise, this function returns 0.
    607  *
    608  * Note that inserting a node can involves memory allocation for intermediate
    609  * nodes.  If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
    610  *
    611  * For the newly inserted node, all tags are cleared.
    612  */
    613 
    614 int
    615 radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
    616 {
    617 	void **vpp;
    618 
    619 	KASSERT(p != NULL);
    620 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    621 	vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
    622 	if (vpp == NULL) {
    623 		return ENOMEM;
    624 	}
    625 	KASSERT(*vpp == NULL);
    626 	*vpp = p;
    627 	return 0;
    628 }
    629 
    630 /*
    631  * radix_tree_replace_node:
    632  *
    633  * Replace a node at the given index with the given node and return the
    634  * replaced one.
    635  *
    636  * It's illegal to try to replace a node which has not been inserted.
    637  *
    638  * This function keeps tags intact.
    639  */
    640 
    641 void *
    642 radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
    643 {
    644 	void **vpp;
    645 	void *oldp;
    646 
    647 	KASSERT(p != NULL);
    648 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    649 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    650 	KASSERT(vpp != NULL);
    651 	oldp = *vpp;
    652 	KASSERT(oldp != NULL);
    653 	*vpp = entry_compose(p, entry_tagmask(*vpp));
    654 	return entry_ptr(oldp);
    655 }
    656 
    657 /*
    658  * radix_tree_remove_node:
    659  *
    660  * Remove the node at the given index.
    661  *
    662  * It's illegal to try to remove a node which has not been inserted.
    663  */
    664 
    665 void *
    666 radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
    667 {
    668 	struct radix_tree_path path;
    669 	void **vpp;
    670 	void *oldp;
    671 	int i;
    672 
    673 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
    674 	KASSERT(vpp != NULL);
    675 	oldp = *vpp;
    676 	KASSERT(oldp != NULL);
    677 	KASSERT(path.p_lastidx == t->t_height);
    678 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
    679 	*vpp = NULL;
    680 	for (i = t->t_height - 1; i >= 0; i--) {
    681 		void *entry;
    682 		struct radix_tree_node ** const pptr =
    683 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    684 		struct radix_tree_node *n;
    685 
    686 		KASSERT(pptr != NULL);
    687 		entry = *pptr;
    688 		n = entry_ptr(entry);
    689 		KASSERT(n != NULL);
    690 		if (!radix_tree_node_clean_p(n)) {
    691 			break;
    692 		}
    693 		radix_tree_free_node(n);
    694 		*pptr = NULL;
    695 	}
    696 	/*
    697 	 * fix up height
    698 	 */
    699 	if (i < 0) {
    700 		KASSERT(t->t_root == NULL);
    701 		t->t_height = 0;
    702 	}
    703 	/*
    704 	 * update tags
    705 	 */
    706 	for (; i >= 0; i--) {
    707 		void *entry;
    708 		struct radix_tree_node ** const pptr =
    709 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    710 		struct radix_tree_node *n;
    711 		unsigned int newmask;
    712 
    713 		KASSERT(pptr != NULL);
    714 		entry = *pptr;
    715 		n = entry_ptr(entry);
    716 		KASSERT(n != NULL);
    717 		KASSERT(!radix_tree_node_clean_p(n));
    718 		newmask = any_children_tagmask(n);
    719 		if (newmask == entry_tagmask(entry)) {
    720 			break;
    721 		}
    722 		*pptr = entry_compose(n, newmask);
    723 	}
    724 	/*
    725 	 * XXX is it worth to try to reduce height?
    726 	 * if we do that, make radix_tree_grow rollback its change as well.
    727 	 */
    728 	return entry_ptr(oldp);
    729 }
    730 
    731 /*
    732  * radix_tree_lookup_node:
    733  *
    734  * Returns the node at the given index.
    735  * Returns NULL if nothing is found at the given index.
    736  */
    737 
    738 void *
    739 radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
    740 {
    741 	void **vpp;
    742 
    743 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    744 	if (vpp == NULL) {
    745 		return NULL;
    746 	}
    747 	return entry_ptr(*vpp);
    748 }
    749 
    750 static inline void
    751 gang_lookup_init(struct radix_tree *t, uint64_t idx,
    752     struct radix_tree_path *path, const unsigned int tagmask)
    753 {
    754 	void **vpp __unused;
    755 
    756 	vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
    757 	KASSERT(vpp == NULL ||
    758 	    vpp == path_pptr(t, path, path->p_lastidx));
    759 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    760 	KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
    761 	   path->p_lastidx == t->t_height ||
    762 	   !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
    763 }
    764 
    765 /*
    766  * gang_lookup_scan:
    767  *
    768  * a helper routine for radix_tree_gang_lookup_node and its variants.
    769  */
    770 
    771 static inline unsigned int
    772 __attribute__((__always_inline__))
    773 gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
    774     void **results, const unsigned int maxresults, const unsigned int tagmask,
    775     const bool reverse, const bool dense)
    776 {
    777 
    778 	/*
    779 	 * we keep the path updated only for lastidx-1.
    780 	 * vpp is what path_pptr(t, path, lastidx) would be.
    781 	 */
    782 	void **vpp;
    783 	unsigned int nfound;
    784 	unsigned int lastidx;
    785 	/*
    786 	 * set up scan direction dependant constants so that we can iterate
    787 	 * n_ptrs as the following.
    788 	 *
    789 	 *	for (i = first; i != guard; i += step)
    790 	 *		visit n->n_ptrs[i];
    791 	 */
    792 	const int step = reverse ? -1 : 1;
    793 	const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
    794 	const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
    795 	const unsigned int guard = last + step;
    796 
    797 	KASSERT(maxresults > 0);
    798 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    799 	lastidx = path->p_lastidx;
    800 	KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
    801 	   lastidx == t->t_height ||
    802 	   !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
    803 	nfound = 0;
    804 	if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
    805 		/*
    806 		 * requested idx is beyond the right-most node.
    807 		 */
    808 		if (reverse && !dense) {
    809 			lastidx = 0;
    810 			vpp = path_pptr(t, path, lastidx);
    811 			goto descend;
    812 		}
    813 		return 0;
    814 	}
    815 	vpp = path_pptr(t, path, lastidx);
    816 	while (/*CONSTCOND*/true) {
    817 		struct radix_tree_node *n;
    818 		unsigned int i;
    819 
    820 		if (entry_match_p(*vpp, tagmask)) {
    821 			KASSERT(lastidx == t->t_height);
    822 			/*
    823 			 * record the matching non-NULL leaf.
    824 			 */
    825 			results[nfound] = entry_ptr(*vpp);
    826 			nfound++;
    827 			if (nfound == maxresults) {
    828 				return nfound;
    829 			}
    830 		} else if (dense) {
    831 			return nfound;
    832 		}
    833 scan_siblings:
    834 		/*
    835 		 * try to find the next matching non-NULL sibling.
    836 		 */
    837 		if (lastidx == 0) {
    838 			/*
    839 			 * the root has no siblings.
    840 			 * we've done.
    841 			 */
    842 			KASSERT(vpp == &t->t_root);
    843 			break;
    844 		}
    845 		n = path_node(t, path, lastidx - 1);
    846 		for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
    847 			KASSERT(i < RADIX_TREE_PTR_PER_NODE);
    848 			if (entry_match_p(n->n_ptrs[i], tagmask)) {
    849 				vpp = &n->n_ptrs[i];
    850 				break;
    851 			} else if (dense) {
    852 				return nfound;
    853 			}
    854 		}
    855 		if (i == guard) {
    856 			/*
    857 			 * not found.  go to parent.
    858 			 */
    859 			lastidx--;
    860 			vpp = path_pptr(t, path, lastidx);
    861 			goto scan_siblings;
    862 		}
    863 descend:
    864 		/*
    865 		 * following the left-most (or right-most in the case of
    866 		 * reverse scan) child node, decend until reaching the leaf or
    867 		 * an non-matching entry.
    868 		 */
    869 		while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
    870 			/*
    871 			 * save vpp in the path so that we can come back to this
    872 			 * node after finishing visiting children.
    873 			 */
    874 			path->p_refs[lastidx].pptr = vpp;
    875 			n = entry_ptr(*vpp);
    876 			vpp = &n->n_ptrs[first];
    877 			lastidx++;
    878 		}
    879 	}
    880 	return nfound;
    881 }
    882 
    883 /*
    884  * radix_tree_gang_lookup_node:
    885  *
    886  * Scan the tree starting from the given index in the ascending order and
    887  * return found nodes.
    888  *
    889  * results should be an array large enough to hold maxresults pointers.
    890  * This function returns the number of nodes found, up to maxresults.
    891  * Returning less than maxresults means there are no more nodes in the tree.
    892  *
    893  * If dense == true, this function stops scanning when it founds a hole of
    894  * indexes.  I.e. an index for which radix_tree_lookup_node would returns NULL.
    895  * If dense == false, this function skips holes and continue scanning until
    896  * maxresults nodes are found or it reaches the limit of the index range.
    897  *
    898  * The result of this function is semantically equivalent to what could be
    899  * obtained by repeated calls of radix_tree_lookup_node with increasing index.
    900  * but this function is expected to be computationally cheaper when looking up
    901  * multiple nodes at once.  Especially, it's expected to be much cheaper when
    902  * node indexes are distributed sparsely.
    903  *
    904  * Note that this function doesn't return index values of found nodes.
    905  * Thus, in the case of dense == false, if index values are important for
    906  * a caller, it's the caller's responsibility to check them, typically
    907  * by examinining the returned nodes using some caller-specific knowledge
    908  * about them.
    909  * In the case of dense == true, a node returned via results[N] is always for
    910  * the index (idx + N).
    911  */
    912 
    913 unsigned int
    914 radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
    915     void **results, unsigned int maxresults, bool dense)
    916 {
    917 	struct radix_tree_path path;
    918 
    919 	gang_lookup_init(t, idx, &path, 0);
    920 	return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
    921 }
    922 
    923 /*
    924  * radix_tree_gang_lookup_node_reverse:
    925  *
    926  * Same as radix_tree_gang_lookup_node except that this one scans the
    927  * tree in the reverse order.  I.e. descending index values.
    928  */
    929 
    930 unsigned int
    931 radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
    932     void **results, unsigned int maxresults, bool dense)
    933 {
    934 	struct radix_tree_path path;
    935 
    936 	gang_lookup_init(t, idx, &path, 0);
    937 	return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
    938 }
    939 
    940 /*
    941  * radix_tree_gang_lookup_tagged_node:
    942  *
    943  * Same as radix_tree_gang_lookup_node except that this one only returns
    944  * nodes tagged with tagid.
    945  *
    946  * It's illegal to call this function with tagmask 0.
    947  */
    948 
    949 unsigned int
    950 radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
    951     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
    952 {
    953 	struct radix_tree_path path;
    954 
    955 	KASSERT(tagmask != 0);
    956 	gang_lookup_init(t, idx, &path, tagmask);
    957 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
    958 	    dense);
    959 }
    960 
    961 /*
    962  * radix_tree_gang_lookup_tagged_node_reverse:
    963  *
    964  * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
    965  * tree in the reverse order.  I.e. descending index values.
    966  */
    967 
    968 unsigned int
    969 radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
    970     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
    971 {
    972 	struct radix_tree_path path;
    973 
    974 	KASSERT(tagmask != 0);
    975 	gang_lookup_init(t, idx, &path, tagmask);
    976 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
    977 	    dense);
    978 }
    979 
    980 /*
    981  * radix_tree_get_tag:
    982  *
    983  * Return the tagmask for the node at the given index.
    984  *
    985  * It's illegal to call this function for a node which has not been inserted.
    986  */
    987 
    988 unsigned int
    989 radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
    990 {
    991 	/*
    992 	 * the following two implementations should behave same.
    993 	 * the former one was chosen because it seems faster.
    994 	 */
    995 #if 1
    996 	void **vpp;
    997 
    998 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
    999 	if (vpp == NULL) {
   1000 		return false;
   1001 	}
   1002 	KASSERT(*vpp != NULL);
   1003 	return (entry_tagmask(*vpp) & tagmask);
   1004 #else
   1005 	void **vpp;
   1006 
   1007 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
   1008 	KASSERT(vpp != NULL);
   1009 	return (entry_tagmask(*vpp) & tagmask);
   1010 #endif
   1011 }
   1012 
   1013 /*
   1014  * radix_tree_set_tag:
   1015  *
   1016  * Set the tag for the node at the given index.
   1017  *
   1018  * It's illegal to call this function for a node which has not been inserted.
   1019  * It's illegal to call this function with tagmask 0.
   1020  */
   1021 
   1022 void
   1023 radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1024 {
   1025 	struct radix_tree_path path;
   1026 	void **vpp __unused;
   1027 	int i;
   1028 
   1029 	KASSERT(tagmask != 0);
   1030 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1031 	KASSERT(vpp != NULL);
   1032 	KASSERT(*vpp != NULL);
   1033 	KASSERT(path.p_lastidx == t->t_height);
   1034 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1035 	for (i = t->t_height; i >= 0; i--) {
   1036 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1037 		void *entry;
   1038 
   1039 		KASSERT(pptr != NULL);
   1040 		entry = *pptr;
   1041 		if ((entry_tagmask(entry) & tagmask) != 0) {
   1042 			break;
   1043 		}
   1044 		*pptr = (void *)((uintptr_t)entry | tagmask);
   1045 	}
   1046 }
   1047 
   1048 /*
   1049  * radix_tree_clear_tag:
   1050  *
   1051  * Clear the tag for the node at the given index.
   1052  *
   1053  * It's illegal to call this function for a node which has not been inserted.
   1054  * It's illegal to call this function with tagmask 0.
   1055  */
   1056 
   1057 void
   1058 radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1059 {
   1060 	struct radix_tree_path path;
   1061 	void **vpp;
   1062 	int i;
   1063 
   1064 	KASSERT(tagmask != 0);
   1065 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1066 	KASSERT(vpp != NULL);
   1067 	KASSERT(*vpp != NULL);
   1068 	KASSERT(path.p_lastidx == t->t_height);
   1069 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1070 	/*
   1071 	 * if already cleared, nothing to do
   1072 	 */
   1073 	if ((entry_tagmask(*vpp) & tagmask) == 0) {
   1074 		return;
   1075 	}
   1076 	/*
   1077 	 * clear the tag only if no children have the tag.
   1078 	 */
   1079 	for (i = t->t_height; i >= 0; i--) {
   1080 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1081 		void *entry;
   1082 
   1083 		KASSERT(pptr != NULL);
   1084 		entry = *pptr;
   1085 		KASSERT((entry_tagmask(entry) & tagmask) != 0);
   1086 		*pptr = entry_compose(entry_ptr(entry),
   1087 		    entry_tagmask(entry) & ~tagmask);
   1088 		/*
   1089 		 * check if we should proceed to process the next level.
   1090 		 */
   1091 		if (0 < i) {
   1092 			struct radix_tree_node *n = path_node(t, &path, i - 1);
   1093 
   1094 			if ((any_children_tagmask(n) & tagmask) != 0) {
   1095 				break;
   1096 			}
   1097 		}
   1098 	}
   1099 }
   1100 
   1101 #if defined(UNITTEST)
   1102 
   1103 #include <inttypes.h>
   1104 #include <stdio.h>
   1105 
   1106 static void
   1107 radix_tree_dump_node(const struct radix_tree *t, void *vp,
   1108     uint64_t offset, unsigned int height)
   1109 {
   1110 	struct radix_tree_node *n;
   1111 	unsigned int i;
   1112 
   1113 	for (i = 0; i < t->t_height - height; i++) {
   1114 		printf(" ");
   1115 	}
   1116 	if (entry_tagmask(vp) == 0) {
   1117 		printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
   1118 	} else {
   1119 		printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
   1120 		    entry_tagmask(vp));
   1121 	}
   1122 	if (height == 0) {
   1123 		printf(" (leaf)\n");
   1124 		return;
   1125 	}
   1126 	n = entry_ptr(vp);
   1127 	assert(any_children_tagmask(n) == entry_tagmask(vp));
   1128 	printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
   1129 	for (i = 0; i < __arraycount(n->n_ptrs); i++) {
   1130 		void *c;
   1131 
   1132 		c = n->n_ptrs[i];
   1133 		if (c == NULL) {
   1134 			continue;
   1135 		}
   1136 		radix_tree_dump_node(t, c,
   1137 		    offset + i * (UINT64_C(1) <<
   1138 		    (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
   1139 	}
   1140 }
   1141 
   1142 void radix_tree_dump(const struct radix_tree *);
   1143 
   1144 void
   1145 radix_tree_dump(const struct radix_tree *t)
   1146 {
   1147 
   1148 	printf("tree %p height=%u\n", t, t->t_height);
   1149 	radix_tree_dump_node(t, t->t_root, 0, t->t_height);
   1150 }
   1151 
   1152 static void
   1153 test1(void)
   1154 {
   1155 	struct radix_tree s;
   1156 	struct radix_tree *t = &s;
   1157 	void *results[3];
   1158 
   1159 	radix_tree_init_tree(t);
   1160 	radix_tree_dump(t);
   1161 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1162 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1163 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
   1164 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1165 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1166 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1167 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1168 	    0);
   1169 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1170 	    0);
   1171 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1172 	    == 0);
   1173 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1174 	    == 0);
   1175 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1176 	    == 0);
   1177 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1178 	    == 0);
   1179 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
   1180 	    == 0);
   1181 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
   1182 	    == 0);
   1183 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1184 	    false, 1) == 0);
   1185 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1186 	    true, 1) == 0);
   1187 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1188 	    false, 1) == 0);
   1189 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1190 	    true, 1) == 0);
   1191 	assert(radix_tree_empty_tree_p(t));
   1192 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1193 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1194 	assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
   1195 	assert(!radix_tree_empty_tree_p(t));
   1196 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1197 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1198 	assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
   1199 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1200 	memset(results, 0, sizeof(results));
   1201 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1202 	assert(results[0] == (void *)0xdeadbea0);
   1203 	memset(results, 0, sizeof(results));
   1204 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1205 	assert(results[0] == (void *)0xdeadbea0);
   1206 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1207 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1208 	memset(results, 0, sizeof(results));
   1209 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1210 	    1);
   1211 	assert(results[0] == (void *)0xdeadbea0);
   1212 	memset(results, 0, sizeof(results));
   1213 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1214 	    1);
   1215 	assert(results[0] == (void *)0xdeadbea0);
   1216 	memset(results, 0, sizeof(results));
   1217 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1218 	    == 1);
   1219 	assert(results[0] == (void *)0xdeadbea0);
   1220 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1221 	    == 0);
   1222 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1223 	    == 0);
   1224 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1225 	    == 0);
   1226 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1227 	    false, 1) == 0);
   1228 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1229 	    true, 1) == 0);
   1230 	assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
   1231 	assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
   1232 	assert(!radix_tree_empty_tree_p(t));
   1233 	radix_tree_dump(t);
   1234 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1235 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1236 	memset(results, 0, sizeof(results));
   1237 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1238 	assert(results[0] == (void *)0xdeadbea0);
   1239 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1240 	memset(results, 0, sizeof(results));
   1241 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
   1242 	assert(results[0] == (void *)0xdeadbea0);
   1243 	memset(results, 0, sizeof(results));
   1244 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
   1245 	assert(results[0] == (void *)0xdeadbea0);
   1246 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
   1247 	    == 0);
   1248 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
   1249 	    == 0);
   1250 	memset(results, 0, sizeof(results));
   1251 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1252 	    == 1);
   1253 	memset(results, 0, sizeof(results));
   1254 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1255 	    == 1);
   1256 	assert(results[0] == (void *)0xdeadbea0);
   1257 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1258 	    == 0);
   1259 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1260 	    == 0);
   1261 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1262 	    false, 1) == 0);
   1263 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1264 	    true, 1) == 0);
   1265 	assert(!radix_tree_get_tag(t, 1000, 1));
   1266 	assert(!radix_tree_get_tag(t, 1000, 2));
   1267 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
   1268 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1269 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1270 	radix_tree_set_tag(t, 1000, 2);
   1271 	assert(!radix_tree_get_tag(t, 1000, 1));
   1272 	assert(radix_tree_get_tag(t, 1000, 2));
   1273 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1274 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1275 	assert(!radix_tree_empty_tagged_tree_p(t, 2));
   1276 	radix_tree_dump(t);
   1277 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1278 	assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
   1279 	radix_tree_dump(t);
   1280 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1281 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1282 	assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
   1283 	    == 0);
   1284 	radix_tree_dump(t);
   1285 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1286 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1287 	assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
   1288 	    (void *)0xdea0);
   1289 	radix_tree_dump(t);
   1290 	assert(!radix_tree_get_tag(t, 0, 2));
   1291 	assert(radix_tree_get_tag(t, 1000, 2));
   1292 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
   1293 	radix_tree_set_tag(t, 0, 2);;
   1294 	radix_tree_set_tag(t, UINT64_C(10000000000), 2);
   1295 	radix_tree_dump(t);
   1296 	assert(radix_tree_get_tag(t, 0, 2));
   1297 	assert(radix_tree_get_tag(t, 1000, 2));
   1298 	assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1299 	radix_tree_clear_tag(t, 0, 2);;
   1300 	radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
   1301 	radix_tree_dump(t);
   1302 	assert(!radix_tree_get_tag(t, 0, 2));
   1303 	assert(radix_tree_get_tag(t, 1000, 2));
   1304 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1305 	radix_tree_dump(t);
   1306 	assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
   1307 	    (void *)0xdeadbea0);
   1308 	assert(!radix_tree_get_tag(t, 1000, 1));
   1309 	assert(radix_tree_get_tag(t, 1000, 2));
   1310 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1311 	memset(results, 0, sizeof(results));
   1312 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
   1313 	assert(results[0] == (void *)0xbea0);
   1314 	assert(results[1] == (void *)0x12345678);
   1315 	assert(results[2] == (void *)0xdea0);
   1316 	memset(results, 0, sizeof(results));
   1317 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1318 	assert(results[0] == (void *)0xbea0);
   1319 	memset(results, 0, sizeof(results));
   1320 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
   1321 	assert(results[0] == (void *)0x12345678);
   1322 	assert(results[1] == (void *)0xdea0);
   1323 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
   1324 	memset(results, 0, sizeof(results));
   1325 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
   1326 	assert(results[0] == (void *)0xdea0);
   1327 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
   1328 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1329 	    false) == 0);
   1330 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1331 	    true) == 0);
   1332 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1333 	    3, false) == 0);
   1334 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1335 	    3, true) == 0);
   1336 	memset(results, 0, sizeof(results));
   1337 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
   1338 	    == 1);
   1339 	assert(results[0] == (void *)0x12345678);
   1340 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
   1341 	    == 0);
   1342 	assert(entry_tagmask(t->t_root) != 0);
   1343 	assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
   1344 	assert(entry_tagmask(t->t_root) == 0);
   1345 	radix_tree_dump(t);
   1346 	assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
   1347 	    == 0);
   1348 	memset(results, 0, sizeof(results));
   1349 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1350 	    false) == 2);
   1351 	assert(results[0] == (void *)0xdea0);
   1352 	assert(results[1] == (void *)0xfff0);
   1353 	memset(results, 0, sizeof(results));
   1354 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1355 	    true) == 2);
   1356 	assert(results[0] == (void *)0xdea0);
   1357 	assert(results[1] == (void *)0xfff0);
   1358 	memset(results, 0, sizeof(results));
   1359 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1360 	    results, 3, false) == 3);
   1361 	assert(results[0] == (void *)0xfff0);
   1362 	assert(results[1] == (void *)0xdea0);
   1363 	assert(results[2] == (void *)0xbea0);
   1364 	memset(results, 0, sizeof(results));
   1365 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1366 	    results, 3, true) == 2);
   1367 	assert(results[0] == (void *)0xfff0);
   1368 	assert(results[1] == (void *)0xdea0);
   1369 	assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
   1370 	    (void *)0xdea0);
   1371 	assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
   1372 	    (void *)0xfff0);
   1373 	radix_tree_dump(t);
   1374 	assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
   1375 	radix_tree_dump(t);
   1376 	radix_tree_fini_tree(t);
   1377 }
   1378 
   1379 #include <sys/time.h>
   1380 
   1381 struct testnode {
   1382 	uint64_t idx;
   1383 	bool tagged[RADIX_TREE_TAG_ID_MAX];
   1384 };
   1385 
   1386 static void
   1387 printops(const char *title, const char *name, int tag, unsigned int n,
   1388     const struct timeval *stv, const struct timeval *etv)
   1389 {
   1390 	uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
   1391 	uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
   1392 
   1393 	printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
   1394 	    (double)n / (e - s) * 1000000);
   1395 }
   1396 
   1397 #define	TEST2_GANG_LOOKUP_NODES	16
   1398 
   1399 static bool
   1400 test2_should_tag(unsigned int i, unsigned int tagid)
   1401 {
   1402 
   1403 	if (tagid == 0) {
   1404 		return (i % 4) == 0;	/* 25% */
   1405 	} else {
   1406 		return (i % 7) == 0;	/* 14% */
   1407 	}
   1408 	return 1;
   1409 }
   1410 
   1411 static void
   1412 check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
   1413     unsigned int count)
   1414 {
   1415 	unsigned int tag;
   1416 
   1417 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1418 		if ((tagmask & (1 << tag)) == 0) {
   1419 			continue;
   1420 		}
   1421 		if (((tagmask - 1) & tagmask) == 0) {
   1422 			assert(count == ntagged[tag]);
   1423 		} else {
   1424 			assert(count >= ntagged[tag]);
   1425 		}
   1426 	}
   1427 }
   1428 
   1429 static void
   1430 test2(const char *title, bool dense)
   1431 {
   1432 	struct radix_tree s;
   1433 	struct radix_tree *t = &s;
   1434 	struct testnode *n;
   1435 	unsigned int i;
   1436 	unsigned int nnodes = 100000;
   1437 	unsigned int removed;
   1438 	unsigned int tag;
   1439 	unsigned int tagmask;
   1440 	unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
   1441 	struct testnode *nodes;
   1442 	struct timeval stv;
   1443 	struct timeval etv;
   1444 
   1445 	nodes = malloc(nnodes * sizeof(*nodes));
   1446 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1447 		ntagged[tag] = 0;
   1448 	}
   1449 	radix_tree_init_tree(t);
   1450 	for (i = 0; i < nnodes; i++) {
   1451 		n = &nodes[i];
   1452 		n->idx = random();
   1453 		if (sizeof(long) == 4) {
   1454 			n->idx <<= 32;
   1455 			n->idx |= (uint32_t)random();
   1456 		}
   1457 		if (dense) {
   1458 			n->idx %= nnodes * 2;
   1459 		}
   1460 		while (radix_tree_lookup_node(t, n->idx) != NULL) {
   1461 			n->idx++;
   1462 		}
   1463 		radix_tree_insert_node(t, n->idx, n);
   1464 		for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1465 			tagmask = 1 << tag;
   1466 
   1467 			n->tagged[tag] = test2_should_tag(i, tag);
   1468 			if (n->tagged[tag]) {
   1469 				radix_tree_set_tag(t, n->idx, tagmask);
   1470 				ntagged[tag]++;
   1471 			}
   1472 			assert((n->tagged[tag] ? tagmask : 0) ==
   1473 			    radix_tree_get_tag(t, n->idx, tagmask));
   1474 		}
   1475 	}
   1476 
   1477 	gettimeofday(&stv, NULL);
   1478 	for (i = 0; i < nnodes; i++) {
   1479 		n = &nodes[i];
   1480 		assert(radix_tree_lookup_node(t, n->idx) == n);
   1481 	}
   1482 	gettimeofday(&etv, NULL);
   1483 	printops(title, "lookup", 0, nnodes, &stv, &etv);
   1484 
   1485 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1486 		unsigned int count = 0;
   1487 
   1488 		gettimeofday(&stv, NULL);
   1489 		for (i = 0; i < nnodes; i++) {
   1490 			unsigned int tagged;
   1491 
   1492 			n = &nodes[i];
   1493 			tagged = radix_tree_get_tag(t, n->idx, tagmask);
   1494 			assert((tagged & ~tagmask) == 0);
   1495 			for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1496 				assert((tagmask & (1 << tag)) == 0 ||
   1497 				    n->tagged[tag] == !!(tagged & (1 << tag)));
   1498 			}
   1499 			if (tagged) {
   1500 				count++;
   1501 			}
   1502 		}
   1503 		gettimeofday(&etv, NULL);
   1504 		check_tag_count(ntagged, tagmask, count);
   1505 		printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
   1506 	}
   1507 
   1508 	gettimeofday(&stv, NULL);
   1509 	for (i = 0; i < nnodes; i++) {
   1510 		n = &nodes[i];
   1511 		radix_tree_remove_node(t, n->idx);
   1512 	}
   1513 	gettimeofday(&etv, NULL);
   1514 	printops(title, "remove", 0, nnodes, &stv, &etv);
   1515 
   1516 	gettimeofday(&stv, NULL);
   1517 	for (i = 0; i < nnodes; i++) {
   1518 		n = &nodes[i];
   1519 		radix_tree_insert_node(t, n->idx, n);
   1520 	}
   1521 	gettimeofday(&etv, NULL);
   1522 	printops(title, "insert", 0, nnodes, &stv, &etv);
   1523 
   1524 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1525 		tagmask = 1 << tag;
   1526 
   1527 		ntagged[tag] = 0;
   1528 		gettimeofday(&stv, NULL);
   1529 		for (i = 0; i < nnodes; i++) {
   1530 			n = &nodes[i];
   1531 			if (n->tagged[tag]) {
   1532 				radix_tree_set_tag(t, n->idx, tagmask);
   1533 				ntagged[tag]++;
   1534 			}
   1535 		}
   1536 		gettimeofday(&etv, NULL);
   1537 		printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
   1538 	}
   1539 
   1540 	gettimeofday(&stv, NULL);
   1541 	{
   1542 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1543 		uint64_t nextidx;
   1544 		unsigned int nfound;
   1545 		unsigned int total;
   1546 
   1547 		nextidx = 0;
   1548 		total = 0;
   1549 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1550 		    (void *)results, __arraycount(results), false)) > 0) {
   1551 			nextidx = results[nfound - 1]->idx + 1;
   1552 			total += nfound;
   1553 			if (nextidx == 0) {
   1554 				break;
   1555 			}
   1556 		}
   1557 		assert(total == nnodes);
   1558 	}
   1559 	gettimeofday(&etv, NULL);
   1560 	printops(title, "ganglookup", 0, nnodes, &stv, &etv);
   1561 
   1562 	gettimeofday(&stv, NULL);
   1563 	{
   1564 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1565 		uint64_t nextidx;
   1566 		unsigned int nfound;
   1567 		unsigned int total;
   1568 
   1569 		nextidx = UINT64_MAX;
   1570 		total = 0;
   1571 		while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
   1572 		    (void *)results, __arraycount(results), false)) > 0) {
   1573 			nextidx = results[nfound - 1]->idx - 1;
   1574 			total += nfound;
   1575 			if (nextidx == UINT64_MAX) {
   1576 				break;
   1577 			}
   1578 		}
   1579 		assert(total == nnodes);
   1580 	}
   1581 	gettimeofday(&etv, NULL);
   1582 	printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
   1583 
   1584 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1585 		unsigned int total = 0;
   1586 
   1587 		gettimeofday(&stv, NULL);
   1588 		{
   1589 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1590 			uint64_t nextidx;
   1591 			unsigned int nfound;
   1592 
   1593 			nextidx = 0;
   1594 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1595 			    nextidx, (void *)results, __arraycount(results),
   1596 			    false, tagmask)) > 0) {
   1597 				nextidx = results[nfound - 1]->idx + 1;
   1598 				total += nfound;
   1599 			}
   1600 		}
   1601 		gettimeofday(&etv, NULL);
   1602 		check_tag_count(ntagged, tagmask, total);
   1603 		assert(tagmask != 0 || total == 0);
   1604 		printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
   1605 	}
   1606 
   1607 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1608 		unsigned int total = 0;
   1609 
   1610 		gettimeofday(&stv, NULL);
   1611 		{
   1612 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1613 			uint64_t nextidx;
   1614 			unsigned int nfound;
   1615 
   1616 			nextidx = UINT64_MAX;
   1617 			while ((nfound =
   1618 			    radix_tree_gang_lookup_tagged_node_reverse(t,
   1619 			    nextidx, (void *)results, __arraycount(results),
   1620 			    false, tagmask)) > 0) {
   1621 				nextidx = results[nfound - 1]->idx - 1;
   1622 				total += nfound;
   1623 				if (nextidx == UINT64_MAX) {
   1624 					break;
   1625 				}
   1626 			}
   1627 		}
   1628 		gettimeofday(&etv, NULL);
   1629 		check_tag_count(ntagged, tagmask, total);
   1630 		assert(tagmask != 0 || total == 0);
   1631 		printops(title, "ganglookup_tag_reverse", tagmask, total,
   1632 		    &stv, &etv);
   1633 	}
   1634 
   1635 	removed = 0;
   1636 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1637 		unsigned int total;
   1638 
   1639 		total = 0;
   1640 		tagmask = 1 << tag;
   1641 		gettimeofday(&stv, NULL);
   1642 		{
   1643 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1644 			uint64_t nextidx;
   1645 			unsigned int nfound;
   1646 
   1647 			nextidx = 0;
   1648 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1649 			    nextidx, (void *)results, __arraycount(results),
   1650 			    false, tagmask)) > 0) {
   1651 				for (i = 0; i < nfound; i++) {
   1652 					radix_tree_remove_node(t,
   1653 					    results[i]->idx);
   1654 				}
   1655 				nextidx = results[nfound - 1]->idx + 1;
   1656 				total += nfound;
   1657 				if (nextidx == 0) {
   1658 					break;
   1659 				}
   1660 			}
   1661 		}
   1662 		gettimeofday(&etv, NULL);
   1663 		if (tag == 0) {
   1664 			check_tag_count(ntagged, tagmask, total);
   1665 		} else {
   1666 			assert(total <= ntagged[tag]);
   1667 		}
   1668 		printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
   1669 		    &etv);
   1670 		removed += total;
   1671 	}
   1672 
   1673 	gettimeofday(&stv, NULL);
   1674 	{
   1675 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1676 		uint64_t nextidx;
   1677 		unsigned int nfound;
   1678 		unsigned int total;
   1679 
   1680 		nextidx = 0;
   1681 		total = 0;
   1682 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1683 		    (void *)results, __arraycount(results), false)) > 0) {
   1684 			for (i = 0; i < nfound; i++) {
   1685 				assert(results[i] == radix_tree_remove_node(t,
   1686 				    results[i]->idx));
   1687 			}
   1688 			nextidx = results[nfound - 1]->idx + 1;
   1689 			total += nfound;
   1690 			if (nextidx == 0) {
   1691 				break;
   1692 			}
   1693 		}
   1694 		assert(total == nnodes - removed);
   1695 	}
   1696 	gettimeofday(&etv, NULL);
   1697 	printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
   1698 
   1699 	assert(radix_tree_empty_tree_p(t));
   1700 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1701 		assert(radix_tree_empty_tagged_tree_p(t, tagmask));
   1702 	}
   1703 	radix_tree_fini_tree(t);
   1704 	free(nodes);
   1705 }
   1706 
   1707 int
   1708 main(int argc, char *argv[])
   1709 {
   1710 
   1711 	test1();
   1712 	test2("dense", true);
   1713 	test2("sparse", false);
   1714 	return 0;
   1715 }
   1716 
   1717 #endif /* defined(UNITTEST) */
   1718