Home | History | Annotate | Line # | Download | only in gen
radixtree.c revision 1.26
      1 /*	$NetBSD: radixtree.c,v 1.26 2020/04/11 01:46:47 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * radixtree.c
     31  *
     32  * Overview:
     33  *
     34  * This is an implementation of radix tree, whose keys are uint64_t and leafs
     35  * are user provided pointers.
     36  *
     37  * Leaf nodes are just void * and this implementation doesn't care about
     38  * what they actually point to.  However, this implementation has an assumption
     39  * about their alignment.  Specifically, this implementation assumes that their
     40  * 2 LSBs are always zero and uses them for internal accounting.
     41  *
     42  * Intermediate nodes and memory allocation:
     43  *
     44  * Intermediate nodes are automatically allocated and freed internally and
     45  * basically users don't need to care about them.  The allocation is done via
     46  * pool_cache_get(9) for _KERNEL, malloc(3) for userland, and alloc() for
     47  * _STANDALONE environment.  Only radix_tree_insert_node function can allocate
     48  * memory for intermediate nodes and thus can fail for ENOMEM.
     49  *
     50  * Memory Efficiency:
     51  *
     52  * It's designed to work efficiently with dense index distribution.
     53  * The memory consumption (number of necessary intermediate nodes) heavily
     54  * depends on the index distribution.  Basically, more dense index distribution
     55  * consumes less nodes per item.  Approximately,
     56  *
     57  *  - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
     58  *    it would look like the following.
     59  *
     60  *     root (t_height=1)
     61  *      |
     62  *      v
     63  *      [ | | | ]   (intermediate node.  RADIX_TREE_PTR_PER_NODE=4 in this fig)
     64  *       | | | |
     65  *       v v v v
     66  *       p p p p    (items)
     67  *
     68  *  - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
     69  *    it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
     70  *
     71  *     root (t_height=3)
     72  *      |
     73  *      v
     74  *      [ | | | ]
     75  *           |
     76  *           v
     77  *           [ | | | ]
     78  *                |
     79  *                v
     80  *                [ | | | ]
     81  *                   |
     82  *                   v
     83  *                   p
     84  *
     85  * The height of tree (t_height) is dynamic.  It's smaller if only small
     86  * index values are used.  As an extreme case, if only index 0 is used,
     87  * the corresponding value is directly stored in the root of the tree
     88  * (struct radix_tree) without allocating any intermediate nodes.  In that
     89  * case, t_height=0.
     90  *
     91  * Gang lookup:
     92  *
     93  * This implementation provides a way to scan many nodes quickly via
     94  * radix_tree_gang_lookup_node function and its varients.
     95  *
     96  * Tags:
     97  *
     98  * This implementation provides tagging functionality, which allows quick
     99  * scanning of a subset of leaf nodes.  Leaf nodes are untagged when inserted
    100  * into the tree and can be tagged by radix_tree_set_tag function.
    101  * radix_tree_gang_lookup_tagged_node function and its variants returns only
    102  * leaf nodes with the given tag.  To reduce amount of nodes to visit for
    103  * these functions, this implementation keeps tagging information in internal
    104  * intermediate nodes and quickly skips uninterested parts of a tree.
    105  *
    106  * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
    107  * identified by an zero-origin numbers, tagid.  For the current implementation,
    108  * RADIX_TREE_TAG_ID_MAX is 2.  A set of tags is described as a bitmask tagmask,
    109  * which is a bitwise OR of (1 << tagid).
    110  */
    111 
    112 #include <sys/cdefs.h>
    113 
    114 #if defined(_KERNEL) || defined(_STANDALONE)
    115 __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.26 2020/04/11 01:46:47 ad Exp $");
    116 #include <sys/param.h>
    117 #include <sys/errno.h>
    118 #include <sys/pool.h>
    119 #include <sys/radixtree.h>
    120 #include <lib/libkern/libkern.h>
    121 #if defined(_STANDALONE)
    122 #include <lib/libsa/stand.h>
    123 #endif /* defined(_STANDALONE) */
    124 #else /* defined(_KERNEL) || defined(_STANDALONE) */
    125 __RCSID("$NetBSD: radixtree.c,v 1.26 2020/04/11 01:46:47 ad Exp $");
    126 #include <assert.h>
    127 #include <errno.h>
    128 #include <stdbool.h>
    129 #include <stdlib.h>
    130 #include <string.h>
    131 #if 1
    132 #define KASSERT assert
    133 #else
    134 #define KASSERT(a)	/* nothing */
    135 #endif
    136 #endif /* defined(_KERNEL) || defined(_STANDALONE) */
    137 
    138 #include <sys/radixtree.h>
    139 
    140 #define	RADIX_TREE_BITS_PER_HEIGHT	4	/* XXX tune */
    141 #define	RADIX_TREE_PTR_PER_NODE		(1 << RADIX_TREE_BITS_PER_HEIGHT)
    142 #define	RADIX_TREE_MAX_HEIGHT		(64 / RADIX_TREE_BITS_PER_HEIGHT)
    143 #define	RADIX_TREE_INVALID_HEIGHT	(RADIX_TREE_MAX_HEIGHT + 1)
    144 __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
    145 
    146 __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
    147 #define	RADIX_TREE_TAG_MASK	((1 << RADIX_TREE_TAG_ID_MAX) - 1)
    148 
    149 static inline void *
    150 entry_ptr(void *p)
    151 {
    152 
    153 	return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
    154 }
    155 
    156 static inline unsigned int
    157 entry_tagmask(void *p)
    158 {
    159 
    160 	return (uintptr_t)p & RADIX_TREE_TAG_MASK;
    161 }
    162 
    163 static inline void *
    164 entry_compose(void *p, unsigned int tagmask)
    165 {
    166 
    167 	return (void *)((uintptr_t)p | tagmask);
    168 }
    169 
    170 static inline bool
    171 entry_match_p(void *p, unsigned int tagmask)
    172 {
    173 
    174 	KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
    175 	if (p == NULL) {
    176 		return false;
    177 	}
    178 	if (tagmask == 0) {
    179 		return true;
    180 	}
    181 	return (entry_tagmask(p) & tagmask) != 0;
    182 }
    183 
    184 /*
    185  * radix_tree_node: an intermediate node
    186  *
    187  * we don't care the type of leaf nodes.  they are just void *.
    188  *
    189  * we used to maintain a count of non-NULL nodes in this structure, but it
    190  * prevented it from being aligned to a cache line boundary; the performance
    191  * benefit from being cache friendly is greater than the benefit of having
    192  * a dedicated count value, especially in multi-processor situations where
    193  * we need to avoid intra-pool-page false sharing.
    194  */
    195 
    196 struct radix_tree_node {
    197 	void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
    198 };
    199 
    200 /*
    201  * p_refs[0].pptr == &t->t_root
    202  *	:
    203  * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
    204  *	:
    205  *	:
    206  * p_refs[t->t_height].pptr == &leaf_pointer
    207  */
    208 
    209 struct radix_tree_path {
    210 	struct radix_tree_node_ref {
    211 		void **pptr;
    212 	} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
    213 	/*
    214 	 * p_lastidx is either the index of the last valid element of p_refs[]
    215 	 * or RADIX_TREE_INVALID_HEIGHT.
    216 	 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
    217 	 * that the height of the tree is not enough to cover the given index.
    218 	 */
    219 	unsigned int p_lastidx;
    220 };
    221 
    222 static inline void **
    223 path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
    224     unsigned int height)
    225 {
    226 
    227 	KASSERT(height <= t->t_height);
    228 	return p->p_refs[height].pptr;
    229 }
    230 
    231 static inline struct radix_tree_node *
    232 path_node(const struct radix_tree * t, const struct radix_tree_path *p,
    233     unsigned int height)
    234 {
    235 
    236 	KASSERT(height <= t->t_height);
    237 	return entry_ptr(*path_pptr(t, p, height));
    238 }
    239 
    240 /*
    241  * radix_tree_init_tree:
    242  *
    243  * Initialize a tree.
    244  */
    245 
    246 void
    247 radix_tree_init_tree(struct radix_tree *t)
    248 {
    249 
    250 	t->t_height = 0;
    251 	t->t_root = NULL;
    252 }
    253 
    254 /*
    255  * radix_tree_fini_tree:
    256  *
    257  * Finish using a tree.
    258  */
    259 
    260 void
    261 radix_tree_fini_tree(struct radix_tree *t)
    262 {
    263 
    264 	KASSERT(t->t_root == NULL);
    265 	KASSERT(t->t_height == 0);
    266 }
    267 
    268 /*
    269  * radix_tree_empty_tree_p:
    270  *
    271  * Return if the tree is empty.
    272  */
    273 
    274 bool
    275 radix_tree_empty_tree_p(struct radix_tree *t)
    276 {
    277 
    278 	return t->t_root == NULL;
    279 }
    280 
    281 /*
    282  * radix_tree_empty_tree_p:
    283  *
    284  * Return true if the tree has any nodes with the given tag.  Otherwise
    285  * return false.
    286  *
    287  * It's illegal to call this function with tagmask 0.
    288  */
    289 
    290 bool
    291 radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
    292 {
    293 
    294 	KASSERT(tagmask != 0);
    295 	return (entry_tagmask(t->t_root) & tagmask) == 0;
    296 }
    297 
    298 static void
    299 radix_tree_node_init(struct radix_tree_node *n)
    300 {
    301 
    302 	memset(n, 0, sizeof(*n));
    303 }
    304 
    305 #if defined(_KERNEL)
    306 pool_cache_t radix_tree_node_cache __read_mostly;
    307 
    308 static int
    309 radix_tree_node_ctor(void *dummy, void *item, int flags)
    310 {
    311 	struct radix_tree_node *n = item;
    312 
    313 	KASSERT(dummy == NULL);
    314 	radix_tree_node_init(n);
    315 	return 0;
    316 }
    317 
    318 /*
    319  * radix_tree_init:
    320  *
    321  * initialize the subsystem.
    322  */
    323 
    324 void
    325 radix_tree_init(void)
    326 {
    327 
    328 	radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
    329 	    coherency_unit, 0, PR_LARGECACHE, "radixnode", NULL, IPL_NONE,
    330 	    radix_tree_node_ctor, NULL, NULL);
    331 	KASSERT(radix_tree_node_cache != NULL);
    332 }
    333 
    334 /*
    335  * radix_tree_await_memory:
    336  *
    337  * after an insert has failed with ENOMEM, wait for memory to become
    338  * available, so the caller can retry.  this needs to ensure that the
    339  * maximum possible required number of nodes is available.
    340  */
    341 
    342 void
    343 radix_tree_await_memory(void)
    344 {
    345 	struct radix_tree_node *nodes[RADIX_TREE_MAX_HEIGHT];
    346 	int i;
    347 
    348 	for (i = 0; i < __arraycount(nodes); i++) {
    349 		nodes[i] = pool_cache_get(radix_tree_node_cache, PR_WAITOK);
    350 	}
    351 	while (--i >= 0) {
    352 		pool_cache_put(radix_tree_node_cache, nodes[i]);
    353 	}
    354 }
    355 
    356 #endif /* defined(_KERNEL) */
    357 
    358 /*
    359  * radix_tree_sum_node:
    360  *
    361  * return the logical sum of all entries in the given node.  used to quickly
    362  * check for tag masks or empty nodes.
    363  */
    364 
    365 static uintptr_t
    366 radix_tree_sum_node(const struct radix_tree_node *n)
    367 {
    368 #if RADIX_TREE_PTR_PER_NODE > 16
    369 	unsigned int i;
    370 	uintptr_t sum;
    371 
    372 	for (i = 0, sum = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    373 		sum |= (uintptr_t)n->n_ptrs[i];
    374 	}
    375 	return sum;
    376 #else /* RADIX_TREE_PTR_PER_NODE > 16 */
    377 	uintptr_t sum;
    378 
    379 	/*
    380 	 * Unrolling the above is much better than a tight loop with two
    381 	 * test+branch pairs.  On x86 with gcc 5.5.0 this compiles into 19
    382 	 * deterministic instructions including the "return" and prologue &
    383 	 * epilogue.
    384 	 */
    385 	sum = (uintptr_t)n->n_ptrs[0];
    386 	sum |= (uintptr_t)n->n_ptrs[1];
    387 	sum |= (uintptr_t)n->n_ptrs[2];
    388 	sum |= (uintptr_t)n->n_ptrs[3];
    389 #if RADIX_TREE_PTR_PER_NODE > 4
    390 	sum |= (uintptr_t)n->n_ptrs[4];
    391 	sum |= (uintptr_t)n->n_ptrs[5];
    392 	sum |= (uintptr_t)n->n_ptrs[6];
    393 	sum |= (uintptr_t)n->n_ptrs[7];
    394 #endif
    395 #if RADIX_TREE_PTR_PER_NODE > 8
    396 	sum |= (uintptr_t)n->n_ptrs[8];
    397 	sum |= (uintptr_t)n->n_ptrs[9];
    398 	sum |= (uintptr_t)n->n_ptrs[10];
    399 	sum |= (uintptr_t)n->n_ptrs[11];
    400 	sum |= (uintptr_t)n->n_ptrs[12];
    401 	sum |= (uintptr_t)n->n_ptrs[13];
    402 	sum |= (uintptr_t)n->n_ptrs[14];
    403 	sum |= (uintptr_t)n->n_ptrs[15];
    404 #endif
    405 	return sum;
    406 #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
    407 }
    408 
    409 static int __unused
    410 radix_tree_node_count_ptrs(const struct radix_tree_node *n)
    411 {
    412 	unsigned int i, c;
    413 
    414 	for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    415 		c += (n->n_ptrs[i] != NULL);
    416 	}
    417 	return c;
    418 }
    419 
    420 static struct radix_tree_node *
    421 radix_tree_alloc_node(void)
    422 {
    423 	struct radix_tree_node *n;
    424 
    425 #if defined(_KERNEL)
    426 	/*
    427 	 * note that pool_cache_get can block.
    428 	 */
    429 	n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
    430 #else /* defined(_KERNEL) */
    431 #if defined(_STANDALONE)
    432 	n = alloc(sizeof(*n));
    433 #else /* defined(_STANDALONE) */
    434 	n = malloc(sizeof(*n));
    435 #endif /* defined(_STANDALONE) */
    436 	if (n != NULL) {
    437 		radix_tree_node_init(n);
    438 	}
    439 #endif /* defined(_KERNEL) */
    440 	KASSERT(n == NULL || radix_tree_sum_node(n) == 0);
    441 	return n;
    442 }
    443 
    444 static void
    445 radix_tree_free_node(struct radix_tree_node *n)
    446 {
    447 
    448 	KASSERT(radix_tree_sum_node(n) == 0);
    449 #if defined(_KERNEL)
    450 	pool_cache_put(radix_tree_node_cache, n);
    451 #elif defined(_STANDALONE)
    452 	dealloc(n, sizeof(*n));
    453 #else
    454 	free(n);
    455 #endif
    456 }
    457 
    458 /*
    459  * radix_tree_grow:
    460  *
    461  * increase the height of the tree.
    462  */
    463 
    464 static __noinline int
    465 radix_tree_grow(struct radix_tree *t, unsigned int newheight)
    466 {
    467 	const unsigned int tagmask = entry_tagmask(t->t_root);
    468 	struct radix_tree_node *newnodes[RADIX_TREE_MAX_HEIGHT];
    469 	void *root;
    470 	int h;
    471 
    472 	KASSERT(newheight <= RADIX_TREE_MAX_HEIGHT);
    473 	if ((root = t->t_root) == NULL) {
    474 		t->t_height = newheight;
    475 		return 0;
    476 	}
    477 	for (h = t->t_height; h < newheight; h++) {
    478 		newnodes[h] = radix_tree_alloc_node();
    479 		if (__predict_false(newnodes[h] == NULL)) {
    480 			while (--h >= (int)t->t_height) {
    481 				newnodes[h]->n_ptrs[0] = NULL;
    482 				radix_tree_free_node(newnodes[h]);
    483 			}
    484 			return ENOMEM;
    485 		}
    486 		newnodes[h]->n_ptrs[0] = root;
    487 		root = entry_compose(newnodes[h], tagmask);
    488 	}
    489 	t->t_root = root;
    490 	t->t_height = h;
    491 	return 0;
    492 }
    493 
    494 /*
    495  * radix_tree_lookup_ptr:
    496  *
    497  * an internal helper function used for various exported functions.
    498  *
    499  * return the pointer to store the node for the given index.
    500  *
    501  * if alloc is true, try to allocate the storage.  (note for _KERNEL:
    502  * in that case, this function can block.)  if the allocation failed or
    503  * alloc is false, return NULL.
    504  *
    505  * if path is not NULL, fill it for the caller's investigation.
    506  *
    507  * if tagmask is not zero, search only for nodes with the tag set.
    508  * note that, however, this function doesn't check the tagmask for the leaf
    509  * pointer.  it's a caller's responsibility to investigate the value which
    510  * is pointed by the returned pointer if necessary.
    511  *
    512  * while this function is a bit large, as it's called with some constant
    513  * arguments, inlining might have benefits.  anyway, a compiler will decide.
    514  */
    515 
    516 static inline void **
    517 radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
    518     struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
    519 {
    520 	struct radix_tree_node *n;
    521 	int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    522 	int shift;
    523 	void **vpp;
    524 	const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
    525 	struct radix_tree_node_ref *refs = NULL;
    526 
    527 	/*
    528 	 * check unsupported combinations
    529 	 */
    530 	KASSERT(tagmask == 0 || !alloc);
    531 	KASSERT(path == NULL || !alloc);
    532 	vpp = &t->t_root;
    533 	if (path != NULL) {
    534 		refs = path->p_refs;
    535 		refs->pptr = vpp;
    536 	}
    537 	n = NULL;
    538 	for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
    539 		struct radix_tree_node *c;
    540 		void *entry;
    541 		const uint64_t i = (idx >> shift) & mask;
    542 
    543 		if (shift >= hshift) {
    544 			unsigned int newheight;
    545 
    546 			KASSERT(vpp == &t->t_root);
    547 			if (i == 0) {
    548 				shift -= RADIX_TREE_BITS_PER_HEIGHT;
    549 				continue;
    550 			}
    551 			if (!alloc) {
    552 				if (path != NULL) {
    553 					KASSERT((refs - path->p_refs) == 0);
    554 					path->p_lastidx =
    555 					    RADIX_TREE_INVALID_HEIGHT;
    556 				}
    557 				return NULL;
    558 			}
    559 			newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
    560 			if (radix_tree_grow(t, newheight)) {
    561 				return NULL;
    562 			}
    563 			hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    564 		}
    565 		entry = *vpp;
    566 		c = entry_ptr(entry);
    567 		if (c == NULL ||
    568 		    (tagmask != 0 &&
    569 		    (entry_tagmask(entry) & tagmask) == 0)) {
    570 			if (!alloc) {
    571 				if (path != NULL) {
    572 					path->p_lastidx = refs - path->p_refs;
    573 				}
    574 				return NULL;
    575 			}
    576 			c = radix_tree_alloc_node();
    577 			if (c == NULL) {
    578 				return NULL;
    579 			}
    580 			*vpp = c;
    581 		}
    582 		n = c;
    583 		vpp = &n->n_ptrs[i];
    584 		if (path != NULL) {
    585 			refs++;
    586 			refs->pptr = vpp;
    587 		}
    588 		shift -= RADIX_TREE_BITS_PER_HEIGHT;
    589 	}
    590 	if (alloc) {
    591 		KASSERT(*vpp == NULL);
    592 	}
    593 	if (path != NULL) {
    594 		path->p_lastidx = refs - path->p_refs;
    595 	}
    596 	return vpp;
    597 }
    598 
    599 /*
    600  * radix_tree_undo_insert_node:
    601  *
    602  * Undo the effects of a failed insert.  The conditions that led to the
    603  * insert may change and it may not be retried.  If the insert is not
    604  * retried, there will be no corresponding radix_tree_remove_node() for
    605  * this index in the future.  Therefore any adjustments made to the tree
    606  * before memory was exhausted must be reverted.
    607  */
    608 
    609 static __noinline void
    610 radix_tree_undo_insert_node(struct radix_tree *t, uint64_t idx)
    611 {
    612 	struct radix_tree_path path;
    613 	int i;
    614 
    615 	(void)radix_tree_lookup_ptr(t, idx, &path, false, 0);
    616 	if (path.p_lastidx == RADIX_TREE_INVALID_HEIGHT) {
    617 		/*
    618 		 * no nodes were inserted.
    619 		 */
    620 		return;
    621 	}
    622 	for (i = path.p_lastidx - 1; i >= 0; i--) {
    623 		struct radix_tree_node ** const pptr =
    624 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    625 		struct radix_tree_node *n;
    626 
    627 		KASSERT(pptr != NULL);
    628 		n = entry_ptr(*pptr);
    629 		KASSERT(n != NULL);
    630 		if (radix_tree_sum_node(n) != 0) {
    631 			break;
    632 		}
    633 		radix_tree_free_node(n);
    634 		*pptr = NULL;
    635 	}
    636 	/*
    637 	 * fix up height
    638 	 */
    639 	if (i < 0) {
    640 		KASSERT(t->t_root == NULL);
    641 		t->t_height = 0;
    642 	}
    643 }
    644 
    645 /*
    646  * radix_tree_insert_node:
    647  *
    648  * Insert the node at the given index.
    649  *
    650  * It's illegal to insert NULL.  It's illegal to insert a non-aligned pointer.
    651  *
    652  * This function returns ENOMEM if necessary memory allocation failed.
    653  * Otherwise, this function returns 0.
    654  *
    655  * Note that inserting a node can involves memory allocation for intermediate
    656  * nodes.  If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
    657  *
    658  * For the newly inserted node, all tags are cleared.
    659  */
    660 
    661 int
    662 radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
    663 {
    664 	void **vpp;
    665 
    666 	KASSERT(p != NULL);
    667 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    668 	vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
    669 	if (__predict_false(vpp == NULL)) {
    670 		radix_tree_undo_insert_node(t, idx);
    671 		return ENOMEM;
    672 	}
    673 	KASSERT(*vpp == NULL);
    674 	*vpp = p;
    675 	return 0;
    676 }
    677 
    678 /*
    679  * radix_tree_replace_node:
    680  *
    681  * Replace a node at the given index with the given node and return the
    682  * replaced one.
    683  *
    684  * It's illegal to try to replace a node which has not been inserted.
    685  *
    686  * This function keeps tags intact.
    687  */
    688 
    689 void *
    690 radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
    691 {
    692 	void **vpp;
    693 	void *oldp;
    694 
    695 	KASSERT(p != NULL);
    696 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    697 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    698 	KASSERT(vpp != NULL);
    699 	oldp = *vpp;
    700 	KASSERT(oldp != NULL);
    701 	*vpp = entry_compose(p, entry_tagmask(*vpp));
    702 	return entry_ptr(oldp);
    703 }
    704 
    705 /*
    706  * radix_tree_remove_node:
    707  *
    708  * Remove the node at the given index.
    709  *
    710  * It's illegal to try to remove a node which has not been inserted.
    711  */
    712 
    713 void *
    714 radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
    715 {
    716 	struct radix_tree_path path;
    717 	void **vpp;
    718 	void *oldp;
    719 	int i;
    720 
    721 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
    722 	KASSERT(vpp != NULL);
    723 	oldp = *vpp;
    724 	KASSERT(oldp != NULL);
    725 	KASSERT(path.p_lastidx == t->t_height);
    726 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
    727 	*vpp = NULL;
    728 	for (i = t->t_height - 1; i >= 0; i--) {
    729 		void *entry;
    730 		struct radix_tree_node ** const pptr =
    731 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    732 		struct radix_tree_node *n;
    733 
    734 		KASSERT(pptr != NULL);
    735 		entry = *pptr;
    736 		n = entry_ptr(entry);
    737 		KASSERT(n != NULL);
    738 		if (radix_tree_sum_node(n) != 0) {
    739 			break;
    740 		}
    741 		radix_tree_free_node(n);
    742 		*pptr = NULL;
    743 	}
    744 	/*
    745 	 * fix up height
    746 	 */
    747 	if (i < 0) {
    748 		KASSERT(t->t_root == NULL);
    749 		t->t_height = 0;
    750 	}
    751 	/*
    752 	 * update tags
    753 	 */
    754 	for (; i >= 0; i--) {
    755 		void *entry;
    756 		struct radix_tree_node ** const pptr =
    757 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    758 		struct radix_tree_node *n;
    759 		unsigned int newmask;
    760 
    761 		KASSERT(pptr != NULL);
    762 		entry = *pptr;
    763 		n = entry_ptr(entry);
    764 		KASSERT(n != NULL);
    765 		KASSERT(radix_tree_sum_node(n) != 0);
    766 		newmask = radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK;
    767 		if (newmask == entry_tagmask(entry)) {
    768 			break;
    769 		}
    770 		*pptr = entry_compose(n, newmask);
    771 	}
    772 	/*
    773 	 * XXX is it worth to try to reduce height?
    774 	 * if we do that, make radix_tree_grow rollback its change as well.
    775 	 */
    776 	return entry_ptr(oldp);
    777 }
    778 
    779 /*
    780  * radix_tree_lookup_node:
    781  *
    782  * Returns the node at the given index.
    783  * Returns NULL if nothing is found at the given index.
    784  */
    785 
    786 void *
    787 radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
    788 {
    789 	void **vpp;
    790 
    791 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    792 	if (vpp == NULL) {
    793 		return NULL;
    794 	}
    795 	return entry_ptr(*vpp);
    796 }
    797 
    798 static inline void
    799 gang_lookup_init(struct radix_tree *t, uint64_t idx,
    800     struct radix_tree_path *path, const unsigned int tagmask)
    801 {
    802 	void **vpp __unused;
    803 
    804 	vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
    805 	KASSERT(vpp == NULL ||
    806 	    vpp == path_pptr(t, path, path->p_lastidx));
    807 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    808 	KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
    809 	   path->p_lastidx == t->t_height ||
    810 	   !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
    811 }
    812 
    813 /*
    814  * gang_lookup_scan:
    815  *
    816  * a helper routine for radix_tree_gang_lookup_node and its variants.
    817  */
    818 
    819 static inline unsigned int
    820 __attribute__((__always_inline__))
    821 gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
    822     void **results, const unsigned int maxresults, const unsigned int tagmask,
    823     const bool reverse, const bool dense)
    824 {
    825 
    826 	/*
    827 	 * we keep the path updated only for lastidx-1.
    828 	 * vpp is what path_pptr(t, path, lastidx) would be.
    829 	 */
    830 	void **vpp;
    831 	unsigned int nfound;
    832 	unsigned int lastidx;
    833 	/*
    834 	 * set up scan direction dependant constants so that we can iterate
    835 	 * n_ptrs as the following.
    836 	 *
    837 	 *	for (i = first; i != guard; i += step)
    838 	 *		visit n->n_ptrs[i];
    839 	 */
    840 	const int step = reverse ? -1 : 1;
    841 	const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
    842 	const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
    843 	const unsigned int guard = last + step;
    844 
    845 	KASSERT(maxresults > 0);
    846 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    847 	lastidx = path->p_lastidx;
    848 	KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
    849 	   lastidx == t->t_height ||
    850 	   !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
    851 	nfound = 0;
    852 	if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
    853 		/*
    854 		 * requested idx is beyond the right-most node.
    855 		 */
    856 		if (reverse && !dense) {
    857 			lastidx = 0;
    858 			vpp = path_pptr(t, path, lastidx);
    859 			goto descend;
    860 		}
    861 		return 0;
    862 	}
    863 	vpp = path_pptr(t, path, lastidx);
    864 	while (/*CONSTCOND*/true) {
    865 		struct radix_tree_node *n;
    866 		unsigned int i;
    867 
    868 		if (entry_match_p(*vpp, tagmask)) {
    869 			KASSERT(lastidx == t->t_height);
    870 			/*
    871 			 * record the matching non-NULL leaf.
    872 			 */
    873 			results[nfound] = entry_ptr(*vpp);
    874 			nfound++;
    875 			if (nfound == maxresults) {
    876 				return nfound;
    877 			}
    878 		} else if (dense) {
    879 			return nfound;
    880 		}
    881 scan_siblings:
    882 		/*
    883 		 * try to find the next matching non-NULL sibling.
    884 		 */
    885 		if (lastidx == 0) {
    886 			/*
    887 			 * the root has no siblings.
    888 			 * we've done.
    889 			 */
    890 			KASSERT(vpp == &t->t_root);
    891 			break;
    892 		}
    893 		n = path_node(t, path, lastidx - 1);
    894 		for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
    895 			KASSERT(i < RADIX_TREE_PTR_PER_NODE);
    896 			if (entry_match_p(n->n_ptrs[i], tagmask)) {
    897 				vpp = &n->n_ptrs[i];
    898 				break;
    899 			} else if (dense) {
    900 				return nfound;
    901 			}
    902 		}
    903 		if (i == guard) {
    904 			/*
    905 			 * not found.  go to parent.
    906 			 */
    907 			lastidx--;
    908 			vpp = path_pptr(t, path, lastidx);
    909 			goto scan_siblings;
    910 		}
    911 descend:
    912 		/*
    913 		 * following the left-most (or right-most in the case of
    914 		 * reverse scan) child node, decend until reaching the leaf or
    915 		 * an non-matching entry.
    916 		 */
    917 		while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
    918 			/*
    919 			 * save vpp in the path so that we can come back to this
    920 			 * node after finishing visiting children.
    921 			 */
    922 			path->p_refs[lastidx].pptr = vpp;
    923 			n = entry_ptr(*vpp);
    924 			vpp = &n->n_ptrs[first];
    925 			lastidx++;
    926 		}
    927 	}
    928 	return nfound;
    929 }
    930 
    931 /*
    932  * radix_tree_gang_lookup_node:
    933  *
    934  * Scan the tree starting from the given index in the ascending order and
    935  * return found nodes.
    936  *
    937  * results should be an array large enough to hold maxresults pointers.
    938  * This function returns the number of nodes found, up to maxresults.
    939  * Returning less than maxresults means there are no more nodes in the tree.
    940  *
    941  * If dense == true, this function stops scanning when it founds a hole of
    942  * indexes.  I.e. an index for which radix_tree_lookup_node would returns NULL.
    943  * If dense == false, this function skips holes and continue scanning until
    944  * maxresults nodes are found or it reaches the limit of the index range.
    945  *
    946  * The result of this function is semantically equivalent to what could be
    947  * obtained by repeated calls of radix_tree_lookup_node with increasing index.
    948  * but this function is expected to be computationally cheaper when looking up
    949  * multiple nodes at once.  Especially, it's expected to be much cheaper when
    950  * node indexes are distributed sparsely.
    951  *
    952  * Note that this function doesn't return index values of found nodes.
    953  * Thus, in the case of dense == false, if index values are important for
    954  * a caller, it's the caller's responsibility to check them, typically
    955  * by examinining the returned nodes using some caller-specific knowledge
    956  * about them.
    957  * In the case of dense == true, a node returned via results[N] is always for
    958  * the index (idx + N).
    959  */
    960 
    961 unsigned int
    962 radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
    963     void **results, unsigned int maxresults, bool dense)
    964 {
    965 	struct radix_tree_path path;
    966 
    967 	gang_lookup_init(t, idx, &path, 0);
    968 	return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
    969 }
    970 
    971 /*
    972  * radix_tree_gang_lookup_node_reverse:
    973  *
    974  * Same as radix_tree_gang_lookup_node except that this one scans the
    975  * tree in the reverse order.  I.e. descending index values.
    976  */
    977 
    978 unsigned int
    979 radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
    980     void **results, unsigned int maxresults, bool dense)
    981 {
    982 	struct radix_tree_path path;
    983 
    984 	gang_lookup_init(t, idx, &path, 0);
    985 	return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
    986 }
    987 
    988 /*
    989  * radix_tree_gang_lookup_tagged_node:
    990  *
    991  * Same as radix_tree_gang_lookup_node except that this one only returns
    992  * nodes tagged with tagid.
    993  *
    994  * It's illegal to call this function with tagmask 0.
    995  */
    996 
    997 unsigned int
    998 radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
    999     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
   1000 {
   1001 	struct radix_tree_path path;
   1002 
   1003 	KASSERT(tagmask != 0);
   1004 	gang_lookup_init(t, idx, &path, tagmask);
   1005 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
   1006 	    dense);
   1007 }
   1008 
   1009 /*
   1010  * radix_tree_gang_lookup_tagged_node_reverse:
   1011  *
   1012  * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
   1013  * tree in the reverse order.  I.e. descending index values.
   1014  */
   1015 
   1016 unsigned int
   1017 radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
   1018     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
   1019 {
   1020 	struct radix_tree_path path;
   1021 
   1022 	KASSERT(tagmask != 0);
   1023 	gang_lookup_init(t, idx, &path, tagmask);
   1024 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
   1025 	    dense);
   1026 }
   1027 
   1028 /*
   1029  * radix_tree_get_tag:
   1030  *
   1031  * Return the tagmask for the node at the given index.
   1032  *
   1033  * It's illegal to call this function for a node which has not been inserted.
   1034  */
   1035 
   1036 unsigned int
   1037 radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1038 {
   1039 	/*
   1040 	 * the following two implementations should behave same.
   1041 	 * the former one was chosen because it seems faster.
   1042 	 */
   1043 #if 1
   1044 	void **vpp;
   1045 
   1046 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
   1047 	if (vpp == NULL) {
   1048 		return false;
   1049 	}
   1050 	KASSERT(*vpp != NULL);
   1051 	return (entry_tagmask(*vpp) & tagmask);
   1052 #else
   1053 	void **vpp;
   1054 
   1055 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
   1056 	KASSERT(vpp != NULL);
   1057 	return (entry_tagmask(*vpp) & tagmask);
   1058 #endif
   1059 }
   1060 
   1061 /*
   1062  * radix_tree_set_tag:
   1063  *
   1064  * Set the tag for the node at the given index.
   1065  *
   1066  * It's illegal to call this function for a node which has not been inserted.
   1067  * It's illegal to call this function with tagmask 0.
   1068  */
   1069 
   1070 void
   1071 radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1072 {
   1073 	struct radix_tree_path path;
   1074 	void **vpp __unused;
   1075 	int i;
   1076 
   1077 	KASSERT(tagmask != 0);
   1078 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1079 	KASSERT(vpp != NULL);
   1080 	KASSERT(*vpp != NULL);
   1081 	KASSERT(path.p_lastidx == t->t_height);
   1082 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1083 	for (i = t->t_height; i >= 0; i--) {
   1084 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1085 		void *entry;
   1086 
   1087 		KASSERT(pptr != NULL);
   1088 		entry = *pptr;
   1089 		if ((entry_tagmask(entry) & tagmask) != 0) {
   1090 			break;
   1091 		}
   1092 		*pptr = (void *)((uintptr_t)entry | tagmask);
   1093 	}
   1094 }
   1095 
   1096 /*
   1097  * radix_tree_clear_tag:
   1098  *
   1099  * Clear the tag for the node at the given index.
   1100  *
   1101  * It's illegal to call this function for a node which has not been inserted.
   1102  * It's illegal to call this function with tagmask 0.
   1103  */
   1104 
   1105 void
   1106 radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1107 {
   1108 	struct radix_tree_path path;
   1109 	void **vpp;
   1110 	int i;
   1111 
   1112 	KASSERT(tagmask != 0);
   1113 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1114 	KASSERT(vpp != NULL);
   1115 	KASSERT(*vpp != NULL);
   1116 	KASSERT(path.p_lastidx == t->t_height);
   1117 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1118 	/*
   1119 	 * if already cleared, nothing to do
   1120 	 */
   1121 	if ((entry_tagmask(*vpp) & tagmask) == 0) {
   1122 		return;
   1123 	}
   1124 	/*
   1125 	 * clear the tag only if no children have the tag.
   1126 	 */
   1127 	for (i = t->t_height; i >= 0; i--) {
   1128 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1129 		void *entry;
   1130 
   1131 		KASSERT(pptr != NULL);
   1132 		entry = *pptr;
   1133 		KASSERT((entry_tagmask(entry) & tagmask) != 0);
   1134 		*pptr = entry_compose(entry_ptr(entry),
   1135 		    entry_tagmask(entry) & ~tagmask);
   1136 		/*
   1137 		 * check if we should proceed to process the next level.
   1138 		 */
   1139 		if (0 < i) {
   1140 			struct radix_tree_node *n = path_node(t, &path, i - 1);
   1141 
   1142 			if ((radix_tree_sum_node(n) & tagmask) != 0) {
   1143 				break;
   1144 			}
   1145 		}
   1146 	}
   1147 }
   1148 
   1149 #if defined(UNITTEST)
   1150 
   1151 #include <inttypes.h>
   1152 #include <stdio.h>
   1153 
   1154 static void
   1155 radix_tree_dump_node(const struct radix_tree *t, void *vp,
   1156     uint64_t offset, unsigned int height)
   1157 {
   1158 	struct radix_tree_node *n;
   1159 	unsigned int i;
   1160 
   1161 	for (i = 0; i < t->t_height - height; i++) {
   1162 		printf(" ");
   1163 	}
   1164 	if (entry_tagmask(vp) == 0) {
   1165 		printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
   1166 	} else {
   1167 		printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
   1168 		    entry_tagmask(vp));
   1169 	}
   1170 	if (height == 0) {
   1171 		printf(" (leaf)\n");
   1172 		return;
   1173 	}
   1174 	n = entry_ptr(vp);
   1175 	assert((radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK) ==
   1176 	    entry_tagmask(vp));
   1177 	printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
   1178 	for (i = 0; i < __arraycount(n->n_ptrs); i++) {
   1179 		void *c;
   1180 
   1181 		c = n->n_ptrs[i];
   1182 		if (c == NULL) {
   1183 			continue;
   1184 		}
   1185 		radix_tree_dump_node(t, c,
   1186 		    offset + i * (UINT64_C(1) <<
   1187 		    (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
   1188 	}
   1189 }
   1190 
   1191 void radix_tree_dump(const struct radix_tree *);
   1192 
   1193 void
   1194 radix_tree_dump(const struct radix_tree *t)
   1195 {
   1196 
   1197 	printf("tree %p height=%u\n", t, t->t_height);
   1198 	radix_tree_dump_node(t, t->t_root, 0, t->t_height);
   1199 }
   1200 
   1201 static void
   1202 test1(void)
   1203 {
   1204 	struct radix_tree s;
   1205 	struct radix_tree *t = &s;
   1206 	void *results[3];
   1207 
   1208 	radix_tree_init_tree(t);
   1209 	radix_tree_dump(t);
   1210 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1211 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1212 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
   1213 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1214 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1215 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1216 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1217 	    0);
   1218 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1219 	    0);
   1220 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1221 	    == 0);
   1222 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1223 	    == 0);
   1224 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1225 	    == 0);
   1226 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1227 	    == 0);
   1228 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
   1229 	    == 0);
   1230 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
   1231 	    == 0);
   1232 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1233 	    false, 1) == 0);
   1234 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1235 	    true, 1) == 0);
   1236 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1237 	    false, 1) == 0);
   1238 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1239 	    true, 1) == 0);
   1240 	assert(radix_tree_empty_tree_p(t));
   1241 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1242 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1243 	assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
   1244 	assert(!radix_tree_empty_tree_p(t));
   1245 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1246 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1247 	assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
   1248 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1249 	memset(results, 0, sizeof(results));
   1250 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1251 	assert(results[0] == (void *)0xdeadbea0);
   1252 	memset(results, 0, sizeof(results));
   1253 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1254 	assert(results[0] == (void *)0xdeadbea0);
   1255 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1256 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1257 	memset(results, 0, sizeof(results));
   1258 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1259 	    1);
   1260 	assert(results[0] == (void *)0xdeadbea0);
   1261 	memset(results, 0, sizeof(results));
   1262 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1263 	    1);
   1264 	assert(results[0] == (void *)0xdeadbea0);
   1265 	memset(results, 0, sizeof(results));
   1266 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1267 	    == 1);
   1268 	assert(results[0] == (void *)0xdeadbea0);
   1269 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1270 	    == 0);
   1271 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1272 	    == 0);
   1273 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1274 	    == 0);
   1275 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1276 	    false, 1) == 0);
   1277 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1278 	    true, 1) == 0);
   1279 	assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
   1280 	assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
   1281 	assert(!radix_tree_empty_tree_p(t));
   1282 	radix_tree_dump(t);
   1283 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1284 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1285 	memset(results, 0, sizeof(results));
   1286 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1287 	assert(results[0] == (void *)0xdeadbea0);
   1288 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1289 	memset(results, 0, sizeof(results));
   1290 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
   1291 	assert(results[0] == (void *)0xdeadbea0);
   1292 	memset(results, 0, sizeof(results));
   1293 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
   1294 	assert(results[0] == (void *)0xdeadbea0);
   1295 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
   1296 	    == 0);
   1297 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
   1298 	    == 0);
   1299 	memset(results, 0, sizeof(results));
   1300 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1301 	    == 1);
   1302 	memset(results, 0, sizeof(results));
   1303 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1304 	    == 1);
   1305 	assert(results[0] == (void *)0xdeadbea0);
   1306 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1307 	    == 0);
   1308 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1309 	    == 0);
   1310 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1311 	    false, 1) == 0);
   1312 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1313 	    true, 1) == 0);
   1314 	assert(!radix_tree_get_tag(t, 1000, 1));
   1315 	assert(!radix_tree_get_tag(t, 1000, 2));
   1316 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
   1317 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1318 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1319 	radix_tree_set_tag(t, 1000, 2);
   1320 	assert(!radix_tree_get_tag(t, 1000, 1));
   1321 	assert(radix_tree_get_tag(t, 1000, 2));
   1322 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1323 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1324 	assert(!radix_tree_empty_tagged_tree_p(t, 2));
   1325 	radix_tree_dump(t);
   1326 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1327 	assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
   1328 	radix_tree_dump(t);
   1329 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1330 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1331 	assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
   1332 	    == 0);
   1333 	radix_tree_dump(t);
   1334 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1335 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1336 	assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
   1337 	    (void *)0xdea0);
   1338 	radix_tree_dump(t);
   1339 	assert(!radix_tree_get_tag(t, 0, 2));
   1340 	assert(radix_tree_get_tag(t, 1000, 2));
   1341 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
   1342 	radix_tree_set_tag(t, 0, 2);;
   1343 	radix_tree_set_tag(t, UINT64_C(10000000000), 2);
   1344 	radix_tree_dump(t);
   1345 	assert(radix_tree_get_tag(t, 0, 2));
   1346 	assert(radix_tree_get_tag(t, 1000, 2));
   1347 	assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1348 	radix_tree_clear_tag(t, 0, 2);;
   1349 	radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
   1350 	radix_tree_dump(t);
   1351 	assert(!radix_tree_get_tag(t, 0, 2));
   1352 	assert(radix_tree_get_tag(t, 1000, 2));
   1353 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1354 	radix_tree_dump(t);
   1355 	assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
   1356 	    (void *)0xdeadbea0);
   1357 	assert(!radix_tree_get_tag(t, 1000, 1));
   1358 	assert(radix_tree_get_tag(t, 1000, 2));
   1359 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1360 	memset(results, 0, sizeof(results));
   1361 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
   1362 	assert(results[0] == (void *)0xbea0);
   1363 	assert(results[1] == (void *)0x12345678);
   1364 	assert(results[2] == (void *)0xdea0);
   1365 	memset(results, 0, sizeof(results));
   1366 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1367 	assert(results[0] == (void *)0xbea0);
   1368 	memset(results, 0, sizeof(results));
   1369 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
   1370 	assert(results[0] == (void *)0x12345678);
   1371 	assert(results[1] == (void *)0xdea0);
   1372 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
   1373 	memset(results, 0, sizeof(results));
   1374 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
   1375 	assert(results[0] == (void *)0xdea0);
   1376 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
   1377 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1378 	    false) == 0);
   1379 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1380 	    true) == 0);
   1381 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1382 	    3, false) == 0);
   1383 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1384 	    3, true) == 0);
   1385 	memset(results, 0, sizeof(results));
   1386 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
   1387 	    == 1);
   1388 	assert(results[0] == (void *)0x12345678);
   1389 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
   1390 	    == 0);
   1391 	assert(entry_tagmask(t->t_root) != 0);
   1392 	assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
   1393 	assert(entry_tagmask(t->t_root) == 0);
   1394 	radix_tree_dump(t);
   1395 	assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
   1396 	    == 0);
   1397 	memset(results, 0, sizeof(results));
   1398 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1399 	    false) == 2);
   1400 	assert(results[0] == (void *)0xdea0);
   1401 	assert(results[1] == (void *)0xfff0);
   1402 	memset(results, 0, sizeof(results));
   1403 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1404 	    true) == 2);
   1405 	assert(results[0] == (void *)0xdea0);
   1406 	assert(results[1] == (void *)0xfff0);
   1407 	memset(results, 0, sizeof(results));
   1408 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1409 	    results, 3, false) == 3);
   1410 	assert(results[0] == (void *)0xfff0);
   1411 	assert(results[1] == (void *)0xdea0);
   1412 	assert(results[2] == (void *)0xbea0);
   1413 	memset(results, 0, sizeof(results));
   1414 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1415 	    results, 3, true) == 2);
   1416 	assert(results[0] == (void *)0xfff0);
   1417 	assert(results[1] == (void *)0xdea0);
   1418 	assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
   1419 	    (void *)0xdea0);
   1420 	assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
   1421 	    (void *)0xfff0);
   1422 	radix_tree_dump(t);
   1423 	assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
   1424 	radix_tree_dump(t);
   1425 	radix_tree_fini_tree(t);
   1426 }
   1427 
   1428 #include <sys/time.h>
   1429 
   1430 struct testnode {
   1431 	uint64_t idx;
   1432 	bool tagged[RADIX_TREE_TAG_ID_MAX];
   1433 };
   1434 
   1435 static void
   1436 printops(const char *title, const char *name, int tag, unsigned int n,
   1437     const struct timeval *stv, const struct timeval *etv)
   1438 {
   1439 	uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
   1440 	uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
   1441 
   1442 	printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
   1443 	    (double)n / (e - s) * 1000000);
   1444 }
   1445 
   1446 #define	TEST2_GANG_LOOKUP_NODES	16
   1447 
   1448 static bool
   1449 test2_should_tag(unsigned int i, unsigned int tagid)
   1450 {
   1451 
   1452 	if (tagid == 0) {
   1453 		return (i % 4) == 0;	/* 25% */
   1454 	} else {
   1455 		return (i % 7) == 0;	/* 14% */
   1456 	}
   1457 	return 1;
   1458 }
   1459 
   1460 static void
   1461 check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
   1462     unsigned int count)
   1463 {
   1464 	unsigned int tag;
   1465 
   1466 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1467 		if ((tagmask & (1 << tag)) == 0) {
   1468 			continue;
   1469 		}
   1470 		if (((tagmask - 1) & tagmask) == 0) {
   1471 			assert(count == ntagged[tag]);
   1472 		} else {
   1473 			assert(count >= ntagged[tag]);
   1474 		}
   1475 	}
   1476 }
   1477 
   1478 static void
   1479 test2(const char *title, bool dense)
   1480 {
   1481 	struct radix_tree s;
   1482 	struct radix_tree *t = &s;
   1483 	struct testnode *n;
   1484 	unsigned int i;
   1485 	unsigned int nnodes = 100000;
   1486 	unsigned int removed;
   1487 	unsigned int tag;
   1488 	unsigned int tagmask;
   1489 	unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
   1490 	struct testnode *nodes;
   1491 	struct timeval stv;
   1492 	struct timeval etv;
   1493 
   1494 	nodes = malloc(nnodes * sizeof(*nodes));
   1495 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1496 		ntagged[tag] = 0;
   1497 	}
   1498 	radix_tree_init_tree(t);
   1499 	for (i = 0; i < nnodes; i++) {
   1500 		n = &nodes[i];
   1501 		n->idx = random();
   1502 		if (sizeof(long) == 4) {
   1503 			n->idx <<= 32;
   1504 			n->idx |= (uint32_t)random();
   1505 		}
   1506 		if (dense) {
   1507 			n->idx %= nnodes * 2;
   1508 		}
   1509 		while (radix_tree_lookup_node(t, n->idx) != NULL) {
   1510 			n->idx++;
   1511 		}
   1512 		radix_tree_insert_node(t, n->idx, n);
   1513 		for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1514 			tagmask = 1 << tag;
   1515 
   1516 			n->tagged[tag] = test2_should_tag(i, tag);
   1517 			if (n->tagged[tag]) {
   1518 				radix_tree_set_tag(t, n->idx, tagmask);
   1519 				ntagged[tag]++;
   1520 			}
   1521 			assert((n->tagged[tag] ? tagmask : 0) ==
   1522 			    radix_tree_get_tag(t, n->idx, tagmask));
   1523 		}
   1524 	}
   1525 
   1526 	gettimeofday(&stv, NULL);
   1527 	for (i = 0; i < nnodes; i++) {
   1528 		n = &nodes[i];
   1529 		assert(radix_tree_lookup_node(t, n->idx) == n);
   1530 	}
   1531 	gettimeofday(&etv, NULL);
   1532 	printops(title, "lookup", 0, nnodes, &stv, &etv);
   1533 
   1534 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1535 		unsigned int count = 0;
   1536 
   1537 		gettimeofday(&stv, NULL);
   1538 		for (i = 0; i < nnodes; i++) {
   1539 			unsigned int tagged;
   1540 
   1541 			n = &nodes[i];
   1542 			tagged = radix_tree_get_tag(t, n->idx, tagmask);
   1543 			assert((tagged & ~tagmask) == 0);
   1544 			for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1545 				assert((tagmask & (1 << tag)) == 0 ||
   1546 				    n->tagged[tag] == !!(tagged & (1 << tag)));
   1547 			}
   1548 			if (tagged) {
   1549 				count++;
   1550 			}
   1551 		}
   1552 		gettimeofday(&etv, NULL);
   1553 		check_tag_count(ntagged, tagmask, count);
   1554 		printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
   1555 	}
   1556 
   1557 	gettimeofday(&stv, NULL);
   1558 	for (i = 0; i < nnodes; i++) {
   1559 		n = &nodes[i];
   1560 		radix_tree_remove_node(t, n->idx);
   1561 	}
   1562 	gettimeofday(&etv, NULL);
   1563 	printops(title, "remove", 0, nnodes, &stv, &etv);
   1564 
   1565 	gettimeofday(&stv, NULL);
   1566 	for (i = 0; i < nnodes; i++) {
   1567 		n = &nodes[i];
   1568 		radix_tree_insert_node(t, n->idx, n);
   1569 	}
   1570 	gettimeofday(&etv, NULL);
   1571 	printops(title, "insert", 0, nnodes, &stv, &etv);
   1572 
   1573 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1574 		tagmask = 1 << tag;
   1575 
   1576 		ntagged[tag] = 0;
   1577 		gettimeofday(&stv, NULL);
   1578 		for (i = 0; i < nnodes; i++) {
   1579 			n = &nodes[i];
   1580 			if (n->tagged[tag]) {
   1581 				radix_tree_set_tag(t, n->idx, tagmask);
   1582 				ntagged[tag]++;
   1583 			}
   1584 		}
   1585 		gettimeofday(&etv, NULL);
   1586 		printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
   1587 	}
   1588 
   1589 	gettimeofday(&stv, NULL);
   1590 	{
   1591 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1592 		uint64_t nextidx;
   1593 		unsigned int nfound;
   1594 		unsigned int total;
   1595 
   1596 		nextidx = 0;
   1597 		total = 0;
   1598 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1599 		    (void *)results, __arraycount(results), false)) > 0) {
   1600 			nextidx = results[nfound - 1]->idx + 1;
   1601 			total += nfound;
   1602 			if (nextidx == 0) {
   1603 				break;
   1604 			}
   1605 		}
   1606 		assert(total == nnodes);
   1607 	}
   1608 	gettimeofday(&etv, NULL);
   1609 	printops(title, "ganglookup", 0, nnodes, &stv, &etv);
   1610 
   1611 	gettimeofday(&stv, NULL);
   1612 	{
   1613 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1614 		uint64_t nextidx;
   1615 		unsigned int nfound;
   1616 		unsigned int total;
   1617 
   1618 		nextidx = UINT64_MAX;
   1619 		total = 0;
   1620 		while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
   1621 		    (void *)results, __arraycount(results), false)) > 0) {
   1622 			nextidx = results[nfound - 1]->idx - 1;
   1623 			total += nfound;
   1624 			if (nextidx == UINT64_MAX) {
   1625 				break;
   1626 			}
   1627 		}
   1628 		assert(total == nnodes);
   1629 	}
   1630 	gettimeofday(&etv, NULL);
   1631 	printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
   1632 
   1633 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1634 		unsigned int total = 0;
   1635 
   1636 		gettimeofday(&stv, NULL);
   1637 		{
   1638 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1639 			uint64_t nextidx;
   1640 			unsigned int nfound;
   1641 
   1642 			nextidx = 0;
   1643 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1644 			    nextidx, (void *)results, __arraycount(results),
   1645 			    false, tagmask)) > 0) {
   1646 				nextidx = results[nfound - 1]->idx + 1;
   1647 				total += nfound;
   1648 			}
   1649 		}
   1650 		gettimeofday(&etv, NULL);
   1651 		check_tag_count(ntagged, tagmask, total);
   1652 		assert(tagmask != 0 || total == 0);
   1653 		printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
   1654 	}
   1655 
   1656 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1657 		unsigned int total = 0;
   1658 
   1659 		gettimeofday(&stv, NULL);
   1660 		{
   1661 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1662 			uint64_t nextidx;
   1663 			unsigned int nfound;
   1664 
   1665 			nextidx = UINT64_MAX;
   1666 			while ((nfound =
   1667 			    radix_tree_gang_lookup_tagged_node_reverse(t,
   1668 			    nextidx, (void *)results, __arraycount(results),
   1669 			    false, tagmask)) > 0) {
   1670 				nextidx = results[nfound - 1]->idx - 1;
   1671 				total += nfound;
   1672 				if (nextidx == UINT64_MAX) {
   1673 					break;
   1674 				}
   1675 			}
   1676 		}
   1677 		gettimeofday(&etv, NULL);
   1678 		check_tag_count(ntagged, tagmask, total);
   1679 		assert(tagmask != 0 || total == 0);
   1680 		printops(title, "ganglookup_tag_reverse", tagmask, total,
   1681 		    &stv, &etv);
   1682 	}
   1683 
   1684 	removed = 0;
   1685 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1686 		unsigned int total;
   1687 
   1688 		total = 0;
   1689 		tagmask = 1 << tag;
   1690 		gettimeofday(&stv, NULL);
   1691 		{
   1692 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1693 			uint64_t nextidx;
   1694 			unsigned int nfound;
   1695 
   1696 			nextidx = 0;
   1697 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1698 			    nextidx, (void *)results, __arraycount(results),
   1699 			    false, tagmask)) > 0) {
   1700 				for (i = 0; i < nfound; i++) {
   1701 					radix_tree_remove_node(t,
   1702 					    results[i]->idx);
   1703 				}
   1704 				nextidx = results[nfound - 1]->idx + 1;
   1705 				total += nfound;
   1706 				if (nextidx == 0) {
   1707 					break;
   1708 				}
   1709 			}
   1710 		}
   1711 		gettimeofday(&etv, NULL);
   1712 		if (tag == 0) {
   1713 			check_tag_count(ntagged, tagmask, total);
   1714 		} else {
   1715 			assert(total <= ntagged[tag]);
   1716 		}
   1717 		printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
   1718 		    &etv);
   1719 		removed += total;
   1720 	}
   1721 
   1722 	gettimeofday(&stv, NULL);
   1723 	{
   1724 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1725 		uint64_t nextidx;
   1726 		unsigned int nfound;
   1727 		unsigned int total;
   1728 
   1729 		nextidx = 0;
   1730 		total = 0;
   1731 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1732 		    (void *)results, __arraycount(results), false)) > 0) {
   1733 			for (i = 0; i < nfound; i++) {
   1734 				assert(results[i] == radix_tree_remove_node(t,
   1735 				    results[i]->idx));
   1736 			}
   1737 			nextidx = results[nfound - 1]->idx + 1;
   1738 			total += nfound;
   1739 			if (nextidx == 0) {
   1740 				break;
   1741 			}
   1742 		}
   1743 		assert(total == nnodes - removed);
   1744 	}
   1745 	gettimeofday(&etv, NULL);
   1746 	printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
   1747 
   1748 	assert(radix_tree_empty_tree_p(t));
   1749 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1750 		assert(radix_tree_empty_tagged_tree_p(t, tagmask));
   1751 	}
   1752 	radix_tree_fini_tree(t);
   1753 	free(nodes);
   1754 }
   1755 
   1756 int
   1757 main(int argc, char *argv[])
   1758 {
   1759 
   1760 	test1();
   1761 	test2("dense", true);
   1762 	test2("sparse", false);
   1763 	return 0;
   1764 }
   1765 
   1766 #endif /* defined(UNITTEST) */
   1767