Home | History | Annotate | Line # | Download | only in gen
radixtree.c revision 1.30
      1 /*	$NetBSD: radixtree.c,v 1.30 2023/09/10 14:45:52 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * radixtree.c
     31  *
     32  * Overview:
     33  *
     34  * This is an implementation of radix tree, whose keys are uint64_t and leafs
     35  * are user provided pointers.
     36  *
     37  * Leaf nodes are just void * and this implementation doesn't care about
     38  * what they actually point to.  However, this implementation has an assumption
     39  * about their alignment.  Specifically, this implementation assumes that their
     40  * 2 LSBs are always zero and uses them for internal accounting.
     41  *
     42  * Intermediate nodes and memory allocation:
     43  *
     44  * Intermediate nodes are automatically allocated and freed internally and
     45  * basically users don't need to care about them.  The allocation is done via
     46  * kmem_zalloc(9) for _KERNEL, malloc(3) for userland, and alloc() for
     47  * _STANDALONE environment.  Only radix_tree_insert_node function can allocate
     48  * memory for intermediate nodes and thus can fail for ENOMEM.
     49  *
     50  * Memory Efficiency:
     51  *
     52  * It's designed to work efficiently with dense index distribution.
     53  * The memory consumption (number of necessary intermediate nodes) heavily
     54  * depends on the index distribution.  Basically, more dense index distribution
     55  * consumes less nodes per item.  Approximately,
     56  *
     57  *  - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
     58  *    it would look like the following.
     59  *
     60  *     root (t_height=1)
     61  *      |
     62  *      v
     63  *      [ | | | ]   (intermediate node.  RADIX_TREE_PTR_PER_NODE=4 in this fig)
     64  *       | | | |
     65  *       v v v v
     66  *       p p p p    (items)
     67  *
     68  *  - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
     69  *    it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
     70  *
     71  *     root (t_height=3)
     72  *      |
     73  *      v
     74  *      [ | | | ]
     75  *           |
     76  *           v
     77  *           [ | | | ]
     78  *                |
     79  *                v
     80  *                [ | | | ]
     81  *                   |
     82  *                   v
     83  *                   p
     84  *
     85  * The height of tree (t_height) is dynamic.  It's smaller if only small
     86  * index values are used.  As an extreme case, if only index 0 is used,
     87  * the corresponding value is directly stored in the root of the tree
     88  * (struct radix_tree) without allocating any intermediate nodes.  In that
     89  * case, t_height=0.
     90  *
     91  * Gang lookup:
     92  *
     93  * This implementation provides a way to scan many nodes quickly via
     94  * radix_tree_gang_lookup_node function and its varients.
     95  *
     96  * Tags:
     97  *
     98  * This implementation provides tagging functionality, which allows quick
     99  * scanning of a subset of leaf nodes.  Leaf nodes are untagged when inserted
    100  * into the tree and can be tagged by radix_tree_set_tag function.
    101  * radix_tree_gang_lookup_tagged_node function and its variants returns only
    102  * leaf nodes with the given tag.  To reduce amount of nodes to visit for
    103  * these functions, this implementation keeps tagging information in internal
    104  * intermediate nodes and quickly skips uninterested parts of a tree.
    105  *
    106  * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
    107  * identified by a zero-origin numbers, tagid.  For the current implementation,
    108  * RADIX_TREE_TAG_ID_MAX is 2.  A set of tags is described as a bitmask tagmask,
    109  * which is a bitwise OR of (1 << tagid).
    110  */
    111 
    112 #include <sys/cdefs.h>
    113 
    114 #if defined(_KERNEL) || defined(_STANDALONE)
    115 __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.30 2023/09/10 14:45:52 ad Exp $");
    116 #include <sys/param.h>
    117 #include <sys/errno.h>
    118 #include <sys/kmem.h>
    119 #include <sys/radixtree.h>
    120 #include <lib/libkern/libkern.h>
    121 #if defined(_STANDALONE)
    122 #include <lib/libsa/stand.h>
    123 #endif /* defined(_STANDALONE) */
    124 #else /* defined(_KERNEL) || defined(_STANDALONE) */
    125 __RCSID("$NetBSD: radixtree.c,v 1.30 2023/09/10 14:45:52 ad Exp $");
    126 #include <assert.h>
    127 #include <errno.h>
    128 #include <stdbool.h>
    129 #include <stdlib.h>
    130 #include <string.h>
    131 #if 1
    132 #define KASSERT assert
    133 #else
    134 #define KASSERT(a)	/* nothing */
    135 #endif
    136 #endif /* defined(_KERNEL) || defined(_STANDALONE) */
    137 
    138 #include <sys/radixtree.h>
    139 
    140 #define	RADIX_TREE_BITS_PER_HEIGHT	4	/* XXX tune */
    141 #define	RADIX_TREE_PTR_PER_NODE		(1 << RADIX_TREE_BITS_PER_HEIGHT)
    142 #define	RADIX_TREE_MAX_HEIGHT		(64 / RADIX_TREE_BITS_PER_HEIGHT)
    143 #define	RADIX_TREE_INVALID_HEIGHT	(RADIX_TREE_MAX_HEIGHT + 1)
    144 __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
    145 
    146 __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
    147 #define	RADIX_TREE_TAG_MASK	((1 << RADIX_TREE_TAG_ID_MAX) - 1)
    148 
    149 static inline void *
    150 entry_ptr(void *p)
    151 {
    152 
    153 	return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
    154 }
    155 
    156 static inline unsigned int
    157 entry_tagmask(void *p)
    158 {
    159 
    160 	return (uintptr_t)p & RADIX_TREE_TAG_MASK;
    161 }
    162 
    163 static inline void *
    164 entry_compose(void *p, unsigned int tagmask)
    165 {
    166 
    167 	return (void *)((uintptr_t)p | tagmask);
    168 }
    169 
    170 static inline bool
    171 entry_match_p(void *p, unsigned int tagmask)
    172 {
    173 
    174 	KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
    175 	if (p == NULL) {
    176 		return false;
    177 	}
    178 	if (tagmask == 0) {
    179 		return true;
    180 	}
    181 	return (entry_tagmask(p) & tagmask) != 0;
    182 }
    183 
    184 /*
    185  * radix_tree_node: an intermediate node
    186  *
    187  * we don't care the type of leaf nodes.  they are just void *.
    188  *
    189  * we used to maintain a count of non-NULL nodes in this structure, but it
    190  * prevented it from being aligned to a cache line boundary; the performance
    191  * benefit from being cache friendly is greater than the benefit of having
    192  * a dedicated count value, especially in multi-processor situations where
    193  * we need to avoid intra-pool-page false sharing.
    194  */
    195 
    196 struct radix_tree_node {
    197 	void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
    198 };
    199 
    200 /*
    201  * p_refs[0].pptr == &t->t_root
    202  *	:
    203  * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
    204  *	:
    205  *	:
    206  * p_refs[t->t_height].pptr == &leaf_pointer
    207  */
    208 
    209 struct radix_tree_path {
    210 	struct radix_tree_node_ref {
    211 		void **pptr;
    212 	} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
    213 	/*
    214 	 * p_lastidx is either the index of the last valid element of p_refs[]
    215 	 * or RADIX_TREE_INVALID_HEIGHT.
    216 	 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
    217 	 * that the height of the tree is not enough to cover the given index.
    218 	 */
    219 	unsigned int p_lastidx;
    220 };
    221 
    222 static inline void **
    223 path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
    224     unsigned int height)
    225 {
    226 
    227 	KASSERT(height <= t->t_height);
    228 	return p->p_refs[height].pptr;
    229 }
    230 
    231 static inline struct radix_tree_node *
    232 path_node(const struct radix_tree * t, const struct radix_tree_path *p,
    233     unsigned int height)
    234 {
    235 
    236 	KASSERT(height <= t->t_height);
    237 	return entry_ptr(*path_pptr(t, p, height));
    238 }
    239 
    240 /*
    241  * radix_tree_init_tree:
    242  *
    243  * Initialize a tree.
    244  */
    245 
    246 void
    247 radix_tree_init_tree(struct radix_tree *t)
    248 {
    249 
    250 	t->t_height = 0;
    251 	t->t_root = NULL;
    252 }
    253 
    254 /*
    255  * radix_tree_fini_tree:
    256  *
    257  * Finish using a tree.
    258  */
    259 
    260 void
    261 radix_tree_fini_tree(struct radix_tree *t)
    262 {
    263 
    264 	KASSERT(t->t_root == NULL);
    265 	KASSERT(t->t_height == 0);
    266 }
    267 
    268 /*
    269  * radix_tree_empty_tree_p:
    270  *
    271  * Return if the tree is empty.
    272  */
    273 
    274 bool
    275 radix_tree_empty_tree_p(struct radix_tree *t)
    276 {
    277 
    278 	return t->t_root == NULL;
    279 }
    280 
    281 /*
    282  * radix_tree_empty_tree_p:
    283  *
    284  * Return true if the tree has any nodes with the given tag.  Otherwise
    285  * return false.
    286  *
    287  * It's illegal to call this function with tagmask 0.
    288  */
    289 
    290 bool
    291 radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
    292 {
    293 
    294 	KASSERT(tagmask != 0);
    295 	return (entry_tagmask(t->t_root) & tagmask) == 0;
    296 }
    297 
    298 static void
    299 radix_tree_node_init(struct radix_tree_node *n)
    300 {
    301 
    302 	memset(n, 0, sizeof(*n));
    303 }
    304 
    305 #if defined(_KERNEL)
    306 /*
    307  * radix_tree_init:
    308  *
    309  * initialize the subsystem.
    310  */
    311 
    312 void
    313 radix_tree_init(void)
    314 {
    315 
    316 	/* nothing right now */
    317 }
    318 
    319 /*
    320  * radix_tree_await_memory:
    321  *
    322  * after an insert has failed with ENOMEM, wait for memory to become
    323  * available, so the caller can retry.  this needs to ensure that the
    324  * maximum possible required number of nodes is available.
    325  */
    326 
    327 void
    328 radix_tree_await_memory(void)
    329 {
    330 	struct radix_tree_node *nodes[RADIX_TREE_MAX_HEIGHT];
    331 	int i;
    332 
    333 	for (i = 0; i < __arraycount(nodes); i++) {
    334 		nodes[i] = kmem_alloc(sizeof(struct radix_tree_node), KM_SLEEP);
    335 	}
    336 	while (--i >= 0) {
    337 		kmem_free(nodes[i], sizeof(struct radix_tree_node));
    338 	}
    339 }
    340 
    341 #endif /* defined(_KERNEL) */
    342 
    343 /*
    344  * radix_tree_sum_node:
    345  *
    346  * return the logical sum of all entries in the given node.  used to quickly
    347  * check for tag masks or empty nodes.
    348  */
    349 
    350 static uintptr_t
    351 radix_tree_sum_node(const struct radix_tree_node *n)
    352 {
    353 #if RADIX_TREE_PTR_PER_NODE > 16
    354 	unsigned int i;
    355 	uintptr_t sum;
    356 
    357 	for (i = 0, sum = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    358 		sum |= (uintptr_t)n->n_ptrs[i];
    359 	}
    360 	return sum;
    361 #else /* RADIX_TREE_PTR_PER_NODE > 16 */
    362 	uintptr_t sum;
    363 
    364 	/*
    365 	 * Unrolling the above is much better than a tight loop with two
    366 	 * test+branch pairs.  On x86 with gcc 5.5.0 this compiles into 19
    367 	 * deterministic instructions including the "return" and prologue &
    368 	 * epilogue.
    369 	 */
    370 	sum = (uintptr_t)n->n_ptrs[0];
    371 	sum |= (uintptr_t)n->n_ptrs[1];
    372 	sum |= (uintptr_t)n->n_ptrs[2];
    373 	sum |= (uintptr_t)n->n_ptrs[3];
    374 #if RADIX_TREE_PTR_PER_NODE > 4
    375 	sum |= (uintptr_t)n->n_ptrs[4];
    376 	sum |= (uintptr_t)n->n_ptrs[5];
    377 	sum |= (uintptr_t)n->n_ptrs[6];
    378 	sum |= (uintptr_t)n->n_ptrs[7];
    379 #endif
    380 #if RADIX_TREE_PTR_PER_NODE > 8
    381 	sum |= (uintptr_t)n->n_ptrs[8];
    382 	sum |= (uintptr_t)n->n_ptrs[9];
    383 	sum |= (uintptr_t)n->n_ptrs[10];
    384 	sum |= (uintptr_t)n->n_ptrs[11];
    385 	sum |= (uintptr_t)n->n_ptrs[12];
    386 	sum |= (uintptr_t)n->n_ptrs[13];
    387 	sum |= (uintptr_t)n->n_ptrs[14];
    388 	sum |= (uintptr_t)n->n_ptrs[15];
    389 #endif
    390 	return sum;
    391 #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
    392 }
    393 
    394 static int __unused
    395 radix_tree_node_count_ptrs(const struct radix_tree_node *n)
    396 {
    397 	unsigned int i, c;
    398 
    399 	for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    400 		c += (n->n_ptrs[i] != NULL);
    401 	}
    402 	return c;
    403 }
    404 
    405 static struct radix_tree_node *
    406 radix_tree_alloc_node(void)
    407 {
    408 	struct radix_tree_node *n;
    409 
    410 #if defined(_KERNEL)
    411 	/*
    412 	 * note that kmem_alloc can block.
    413 	 */
    414 	n = kmem_alloc(sizeof(struct radix_tree_node), KM_SLEEP);
    415 #elif defined(_STANDALONE)
    416 	n = alloc(sizeof(*n));
    417 #else /* defined(_STANDALONE) */
    418 	n = malloc(sizeof(*n));
    419 #endif /* defined(_STANDALONE) */
    420 	if (n != NULL) {
    421 		radix_tree_node_init(n);
    422 	}
    423 	KASSERT(n == NULL || radix_tree_sum_node(n) == 0);
    424 	return n;
    425 }
    426 
    427 static void
    428 radix_tree_free_node(struct radix_tree_node *n)
    429 {
    430 
    431 	KASSERT(radix_tree_sum_node(n) == 0);
    432 #if defined(_KERNEL)
    433 	kmem_free(n, sizeof(struct radix_tree_node));
    434 #elif defined(_STANDALONE)
    435 	dealloc(n, sizeof(*n));
    436 #else
    437 	free(n);
    438 #endif
    439 }
    440 
    441 /*
    442  * radix_tree_grow:
    443  *
    444  * increase the height of the tree.
    445  */
    446 
    447 static __noinline int
    448 radix_tree_grow(struct radix_tree *t, unsigned int newheight)
    449 {
    450 	const unsigned int tagmask = entry_tagmask(t->t_root);
    451 	struct radix_tree_node *newnodes[RADIX_TREE_MAX_HEIGHT];
    452 	void *root;
    453 	int h;
    454 
    455 	KASSERT(newheight <= RADIX_TREE_MAX_HEIGHT);
    456 	if ((root = t->t_root) == NULL) {
    457 		t->t_height = newheight;
    458 		return 0;
    459 	}
    460 	for (h = t->t_height; h < newheight; h++) {
    461 		newnodes[h] = radix_tree_alloc_node();
    462 		if (__predict_false(newnodes[h] == NULL)) {
    463 			while (--h >= (int)t->t_height) {
    464 				newnodes[h]->n_ptrs[0] = NULL;
    465 				radix_tree_free_node(newnodes[h]);
    466 			}
    467 			return ENOMEM;
    468 		}
    469 		newnodes[h]->n_ptrs[0] = root;
    470 		root = entry_compose(newnodes[h], tagmask);
    471 	}
    472 	t->t_root = root;
    473 	t->t_height = h;
    474 	return 0;
    475 }
    476 
    477 /*
    478  * radix_tree_lookup_ptr:
    479  *
    480  * an internal helper function used for various exported functions.
    481  *
    482  * return the pointer to store the node for the given index.
    483  *
    484  * if alloc is true, try to allocate the storage.  (note for _KERNEL:
    485  * in that case, this function can block.)  if the allocation failed or
    486  * alloc is false, return NULL.
    487  *
    488  * if path is not NULL, fill it for the caller's investigation.
    489  *
    490  * if tagmask is not zero, search only for nodes with the tag set.
    491  * note that, however, this function doesn't check the tagmask for the leaf
    492  * pointer.  it's a caller's responsibility to investigate the value which
    493  * is pointed by the returned pointer if necessary.
    494  *
    495  * while this function is a bit large, as it's called with some constant
    496  * arguments, inlining might have benefits.  anyway, a compiler will decide.
    497  */
    498 
    499 static inline void **
    500 radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
    501     struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
    502 {
    503 	struct radix_tree_node *n;
    504 	int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    505 	int shift;
    506 	void **vpp;
    507 	const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
    508 	struct radix_tree_node_ref *refs = NULL;
    509 
    510 	/*
    511 	 * check unsupported combinations
    512 	 */
    513 	KASSERT(tagmask == 0 || !alloc);
    514 	KASSERT(path == NULL || !alloc);
    515 	vpp = &t->t_root;
    516 	if (path != NULL) {
    517 		refs = path->p_refs;
    518 		refs->pptr = vpp;
    519 	}
    520 	n = NULL;
    521 	for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
    522 		struct radix_tree_node *c;
    523 		void *entry;
    524 		const uint64_t i = (idx >> shift) & mask;
    525 
    526 		if (shift >= hshift) {
    527 			unsigned int newheight;
    528 
    529 			KASSERT(vpp == &t->t_root);
    530 			if (i == 0) {
    531 				shift -= RADIX_TREE_BITS_PER_HEIGHT;
    532 				continue;
    533 			}
    534 			if (!alloc) {
    535 				if (path != NULL) {
    536 					KASSERT((refs - path->p_refs) == 0);
    537 					path->p_lastidx =
    538 					    RADIX_TREE_INVALID_HEIGHT;
    539 				}
    540 				return NULL;
    541 			}
    542 			newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
    543 			if (radix_tree_grow(t, newheight)) {
    544 				return NULL;
    545 			}
    546 			hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    547 		}
    548 		entry = *vpp;
    549 		c = entry_ptr(entry);
    550 		if (c == NULL ||
    551 		    (tagmask != 0 &&
    552 		    (entry_tagmask(entry) & tagmask) == 0)) {
    553 			if (!alloc) {
    554 				if (path != NULL) {
    555 					path->p_lastidx = refs - path->p_refs;
    556 				}
    557 				return NULL;
    558 			}
    559 			c = radix_tree_alloc_node();
    560 			if (c == NULL) {
    561 				return NULL;
    562 			}
    563 			*vpp = c;
    564 		}
    565 		n = c;
    566 		vpp = &n->n_ptrs[i];
    567 		if (path != NULL) {
    568 			refs++;
    569 			refs->pptr = vpp;
    570 		}
    571 		shift -= RADIX_TREE_BITS_PER_HEIGHT;
    572 	}
    573 	if (alloc) {
    574 		KASSERT(*vpp == NULL);
    575 	}
    576 	if (path != NULL) {
    577 		path->p_lastidx = refs - path->p_refs;
    578 	}
    579 	return vpp;
    580 }
    581 
    582 /*
    583  * radix_tree_undo_insert_node:
    584  *
    585  * Undo the effects of a failed insert.  The conditions that led to the
    586  * insert may change and it may not be retried.  If the insert is not
    587  * retried, there will be no corresponding radix_tree_remove_node() for
    588  * this index in the future.  Therefore any adjustments made to the tree
    589  * before memory was exhausted must be reverted.
    590  */
    591 
    592 static __noinline void
    593 radix_tree_undo_insert_node(struct radix_tree *t, uint64_t idx)
    594 {
    595 	struct radix_tree_path path;
    596 	int i;
    597 
    598 	(void)radix_tree_lookup_ptr(t, idx, &path, false, 0);
    599 	if (path.p_lastidx == RADIX_TREE_INVALID_HEIGHT) {
    600 		/*
    601 		 * no nodes were inserted.
    602 		 */
    603 		return;
    604 	}
    605 	for (i = path.p_lastidx - 1; i >= 0; i--) {
    606 		struct radix_tree_node ** const pptr =
    607 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    608 		struct radix_tree_node *n;
    609 
    610 		KASSERT(pptr != NULL);
    611 		n = entry_ptr(*pptr);
    612 		KASSERT(n != NULL);
    613 		if (radix_tree_sum_node(n) != 0) {
    614 			break;
    615 		}
    616 		radix_tree_free_node(n);
    617 		*pptr = NULL;
    618 	}
    619 	/*
    620 	 * fix up height
    621 	 */
    622 	if (i < 0) {
    623 		KASSERT(t->t_root == NULL);
    624 		t->t_height = 0;
    625 	}
    626 }
    627 
    628 /*
    629  * radix_tree_insert_node:
    630  *
    631  * Insert the node at the given index.
    632  *
    633  * It's illegal to insert NULL.  It's illegal to insert a non-aligned pointer.
    634  *
    635  * This function returns ENOMEM if necessary memory allocation failed.
    636  * Otherwise, this function returns 0.
    637  *
    638  * Note that inserting a node can involves memory allocation for intermediate
    639  * nodes.  If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
    640  *
    641  * For the newly inserted node, all tags are cleared.
    642  */
    643 
    644 int
    645 radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
    646 {
    647 	void **vpp;
    648 
    649 	KASSERT(p != NULL);
    650 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    651 	vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
    652 	if (__predict_false(vpp == NULL)) {
    653 		radix_tree_undo_insert_node(t, idx);
    654 		return ENOMEM;
    655 	}
    656 	KASSERT(*vpp == NULL);
    657 	*vpp = p;
    658 	return 0;
    659 }
    660 
    661 /*
    662  * radix_tree_replace_node:
    663  *
    664  * Replace a node at the given index with the given node and return the
    665  * replaced one.
    666  *
    667  * It's illegal to try to replace a node which has not been inserted.
    668  *
    669  * This function keeps tags intact.
    670  */
    671 
    672 void *
    673 radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
    674 {
    675 	void **vpp;
    676 	void *oldp;
    677 
    678 	KASSERT(p != NULL);
    679 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    680 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    681 	KASSERT(vpp != NULL);
    682 	oldp = *vpp;
    683 	KASSERT(oldp != NULL);
    684 	*vpp = entry_compose(p, entry_tagmask(*vpp));
    685 	return entry_ptr(oldp);
    686 }
    687 
    688 /*
    689  * radix_tree_remove_node:
    690  *
    691  * Remove the node at the given index.
    692  *
    693  * It's illegal to try to remove a node which has not been inserted.
    694  */
    695 
    696 void *
    697 radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
    698 {
    699 	struct radix_tree_path path;
    700 	void **vpp;
    701 	void *oldp;
    702 	int i;
    703 
    704 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
    705 	KASSERT(vpp != NULL);
    706 	oldp = *vpp;
    707 	KASSERT(oldp != NULL);
    708 	KASSERT(path.p_lastidx == t->t_height);
    709 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
    710 	*vpp = NULL;
    711 	for (i = t->t_height - 1; i >= 0; i--) {
    712 		void *entry;
    713 		struct radix_tree_node ** const pptr =
    714 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    715 		struct radix_tree_node *n;
    716 
    717 		KASSERT(pptr != NULL);
    718 		entry = *pptr;
    719 		n = entry_ptr(entry);
    720 		KASSERT(n != NULL);
    721 		if (radix_tree_sum_node(n) != 0) {
    722 			break;
    723 		}
    724 		radix_tree_free_node(n);
    725 		*pptr = NULL;
    726 	}
    727 	/*
    728 	 * fix up height
    729 	 */
    730 	if (i < 0) {
    731 		KASSERT(t->t_root == NULL);
    732 		t->t_height = 0;
    733 	}
    734 	/*
    735 	 * update tags
    736 	 */
    737 	for (; i >= 0; i--) {
    738 		void *entry;
    739 		struct radix_tree_node ** const pptr =
    740 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    741 		struct radix_tree_node *n;
    742 		unsigned int newmask;
    743 
    744 		KASSERT(pptr != NULL);
    745 		entry = *pptr;
    746 		n = entry_ptr(entry);
    747 		KASSERT(n != NULL);
    748 		KASSERT(radix_tree_sum_node(n) != 0);
    749 		newmask = radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK;
    750 		if (newmask == entry_tagmask(entry)) {
    751 			break;
    752 		}
    753 		*pptr = entry_compose(n, newmask);
    754 	}
    755 	/*
    756 	 * XXX is it worth to try to reduce height?
    757 	 * if we do that, make radix_tree_grow rollback its change as well.
    758 	 */
    759 	return entry_ptr(oldp);
    760 }
    761 
    762 /*
    763  * radix_tree_lookup_node:
    764  *
    765  * Returns the node at the given index.
    766  * Returns NULL if nothing is found at the given index.
    767  */
    768 
    769 void *
    770 radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
    771 {
    772 	void **vpp;
    773 
    774 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    775 	if (vpp == NULL) {
    776 		return NULL;
    777 	}
    778 	return entry_ptr(*vpp);
    779 }
    780 
    781 static inline void
    782 gang_lookup_init(struct radix_tree *t, uint64_t idx,
    783     struct radix_tree_path *path, const unsigned int tagmask)
    784 {
    785 	void **vpp __unused;
    786 
    787 	vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
    788 	KASSERT(vpp == NULL ||
    789 	    vpp == path_pptr(t, path, path->p_lastidx));
    790 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    791 	KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
    792 	   path->p_lastidx == t->t_height ||
    793 	   !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
    794 }
    795 
    796 /*
    797  * gang_lookup_scan:
    798  *
    799  * a helper routine for radix_tree_gang_lookup_node and its variants.
    800  */
    801 
    802 static inline unsigned int
    803 __attribute__((__always_inline__))
    804 gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
    805     void **results, const unsigned int maxresults, const unsigned int tagmask,
    806     const bool reverse, const bool dense)
    807 {
    808 
    809 	/*
    810 	 * we keep the path updated only for lastidx-1.
    811 	 * vpp is what path_pptr(t, path, lastidx) would be.
    812 	 */
    813 	void **vpp;
    814 	unsigned int nfound;
    815 	unsigned int lastidx;
    816 	/*
    817 	 * set up scan direction dependant constants so that we can iterate
    818 	 * n_ptrs as the following.
    819 	 *
    820 	 *	for (i = first; i != guard; i += step)
    821 	 *		visit n->n_ptrs[i];
    822 	 */
    823 	const int step = reverse ? -1 : 1;
    824 	const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
    825 	const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
    826 	const unsigned int guard = last + step;
    827 
    828 	KASSERT(maxresults > 0);
    829 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    830 	lastidx = path->p_lastidx;
    831 	KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
    832 	   lastidx == t->t_height ||
    833 	   !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
    834 	nfound = 0;
    835 	if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
    836 		/*
    837 		 * requested idx is beyond the right-most node.
    838 		 */
    839 		if (reverse && !dense) {
    840 			lastidx = 0;
    841 			vpp = path_pptr(t, path, lastidx);
    842 			goto descend;
    843 		}
    844 		return 0;
    845 	}
    846 	vpp = path_pptr(t, path, lastidx);
    847 	while (/*CONSTCOND*/true) {
    848 		struct radix_tree_node *n;
    849 		unsigned int i;
    850 
    851 		if (entry_match_p(*vpp, tagmask)) {
    852 			KASSERT(lastidx == t->t_height);
    853 			/*
    854 			 * record the matching non-NULL leaf.
    855 			 */
    856 			results[nfound] = entry_ptr(*vpp);
    857 			nfound++;
    858 			if (nfound == maxresults) {
    859 				return nfound;
    860 			}
    861 		} else if (dense) {
    862 			return nfound;
    863 		}
    864 scan_siblings:
    865 		/*
    866 		 * try to find the next matching non-NULL sibling.
    867 		 */
    868 		if (lastidx == 0) {
    869 			/*
    870 			 * the root has no siblings.
    871 			 * we've done.
    872 			 */
    873 			KASSERT(vpp == &t->t_root);
    874 			break;
    875 		}
    876 		n = path_node(t, path, lastidx - 1);
    877 		for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
    878 			KASSERT(i < RADIX_TREE_PTR_PER_NODE);
    879 			if (entry_match_p(n->n_ptrs[i], tagmask)) {
    880 				vpp = &n->n_ptrs[i];
    881 				break;
    882 			} else if (dense) {
    883 				return nfound;
    884 			}
    885 		}
    886 		if (i == guard) {
    887 			/*
    888 			 * not found.  go to parent.
    889 			 */
    890 			lastidx--;
    891 			vpp = path_pptr(t, path, lastidx);
    892 			goto scan_siblings;
    893 		}
    894 descend:
    895 		/*
    896 		 * following the left-most (or right-most in the case of
    897 		 * reverse scan) child node, descend until reaching the leaf or
    898 		 * a non-matching entry.
    899 		 */
    900 		while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
    901 			/*
    902 			 * save vpp in the path so that we can come back to this
    903 			 * node after finishing visiting children.
    904 			 */
    905 			path->p_refs[lastidx].pptr = vpp;
    906 			n = entry_ptr(*vpp);
    907 			vpp = &n->n_ptrs[first];
    908 			lastidx++;
    909 		}
    910 	}
    911 	return nfound;
    912 }
    913 
    914 /*
    915  * radix_tree_gang_lookup_node:
    916  *
    917  * Scan the tree starting from the given index in the ascending order and
    918  * return found nodes.
    919  *
    920  * results should be an array large enough to hold maxresults pointers.
    921  * This function returns the number of nodes found, up to maxresults.
    922  * Returning less than maxresults means there are no more nodes in the tree.
    923  *
    924  * If dense == true, this function stops scanning when it founds a hole of
    925  * indexes.  I.e. an index for which radix_tree_lookup_node would returns NULL.
    926  * If dense == false, this function skips holes and continue scanning until
    927  * maxresults nodes are found or it reaches the limit of the index range.
    928  *
    929  * The result of this function is semantically equivalent to what could be
    930  * obtained by repeated calls of radix_tree_lookup_node with increasing index.
    931  * but this function is expected to be computationally cheaper when looking up
    932  * multiple nodes at once.  Especially, it's expected to be much cheaper when
    933  * node indexes are distributed sparsely.
    934  *
    935  * Note that this function doesn't return index values of found nodes.
    936  * Thus, in the case of dense == false, if index values are important for
    937  * a caller, it's the caller's responsibility to check them, typically
    938  * by examining the returned nodes using some caller-specific knowledge
    939  * about them.
    940  * In the case of dense == true, a node returned via results[N] is always for
    941  * the index (idx + N).
    942  */
    943 
    944 unsigned int
    945 radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
    946     void **results, unsigned int maxresults, bool dense)
    947 {
    948 	struct radix_tree_path path;
    949 
    950 	gang_lookup_init(t, idx, &path, 0);
    951 	return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
    952 }
    953 
    954 /*
    955  * radix_tree_gang_lookup_node_reverse:
    956  *
    957  * Same as radix_tree_gang_lookup_node except that this one scans the
    958  * tree in the reverse order.  I.e. descending index values.
    959  */
    960 
    961 unsigned int
    962 radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
    963     void **results, unsigned int maxresults, bool dense)
    964 {
    965 	struct radix_tree_path path;
    966 
    967 	gang_lookup_init(t, idx, &path, 0);
    968 	return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
    969 }
    970 
    971 /*
    972  * radix_tree_gang_lookup_tagged_node:
    973  *
    974  * Same as radix_tree_gang_lookup_node except that this one only returns
    975  * nodes tagged with tagid.
    976  *
    977  * It's illegal to call this function with tagmask 0.
    978  */
    979 
    980 unsigned int
    981 radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
    982     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
    983 {
    984 	struct radix_tree_path path;
    985 
    986 	KASSERT(tagmask != 0);
    987 	gang_lookup_init(t, idx, &path, tagmask);
    988 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
    989 	    dense);
    990 }
    991 
    992 /*
    993  * radix_tree_gang_lookup_tagged_node_reverse:
    994  *
    995  * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
    996  * tree in the reverse order.  I.e. descending index values.
    997  */
    998 
    999 unsigned int
   1000 radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
   1001     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
   1002 {
   1003 	struct radix_tree_path path;
   1004 
   1005 	KASSERT(tagmask != 0);
   1006 	gang_lookup_init(t, idx, &path, tagmask);
   1007 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
   1008 	    dense);
   1009 }
   1010 
   1011 /*
   1012  * radix_tree_get_tag:
   1013  *
   1014  * Return the tagmask for the node at the given index.
   1015  *
   1016  * It's illegal to call this function for a node which has not been inserted.
   1017  */
   1018 
   1019 unsigned int
   1020 radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1021 {
   1022 	/*
   1023 	 * the following two implementations should behave same.
   1024 	 * the former one was chosen because it seems faster.
   1025 	 */
   1026 #if 1
   1027 	void **vpp;
   1028 
   1029 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
   1030 	if (vpp == NULL) {
   1031 		return false;
   1032 	}
   1033 	KASSERT(*vpp != NULL);
   1034 	return (entry_tagmask(*vpp) & tagmask);
   1035 #else
   1036 	void **vpp;
   1037 
   1038 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
   1039 	KASSERT(vpp != NULL);
   1040 	return (entry_tagmask(*vpp) & tagmask);
   1041 #endif
   1042 }
   1043 
   1044 /*
   1045  * radix_tree_set_tag:
   1046  *
   1047  * Set the tag for the node at the given index.
   1048  *
   1049  * It's illegal to call this function for a node which has not been inserted.
   1050  * It's illegal to call this function with tagmask 0.
   1051  */
   1052 
   1053 void
   1054 radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1055 {
   1056 	struct radix_tree_path path;
   1057 	void **vpp __unused;
   1058 	int i;
   1059 
   1060 	KASSERT(tagmask != 0);
   1061 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1062 	KASSERT(vpp != NULL);
   1063 	KASSERT(*vpp != NULL);
   1064 	KASSERT(path.p_lastidx == t->t_height);
   1065 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1066 	for (i = t->t_height; i >= 0; i--) {
   1067 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1068 		void *entry;
   1069 
   1070 		KASSERT(pptr != NULL);
   1071 		entry = *pptr;
   1072 		if ((entry_tagmask(entry) & tagmask) != 0) {
   1073 			break;
   1074 		}
   1075 		*pptr = (void *)((uintptr_t)entry | tagmask);
   1076 	}
   1077 }
   1078 
   1079 /*
   1080  * radix_tree_clear_tag:
   1081  *
   1082  * Clear the tag for the node at the given index.
   1083  *
   1084  * It's illegal to call this function for a node which has not been inserted.
   1085  * It's illegal to call this function with tagmask 0.
   1086  */
   1087 
   1088 void
   1089 radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1090 {
   1091 	struct radix_tree_path path;
   1092 	void **vpp;
   1093 	int i;
   1094 
   1095 	KASSERT(tagmask != 0);
   1096 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1097 	KASSERT(vpp != NULL);
   1098 	KASSERT(*vpp != NULL);
   1099 	KASSERT(path.p_lastidx == t->t_height);
   1100 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1101 	/*
   1102 	 * if already cleared, nothing to do
   1103 	 */
   1104 	if ((entry_tagmask(*vpp) & tagmask) == 0) {
   1105 		return;
   1106 	}
   1107 	/*
   1108 	 * clear the tag only if no children have the tag.
   1109 	 */
   1110 	for (i = t->t_height; i >= 0; i--) {
   1111 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1112 		void *entry;
   1113 
   1114 		KASSERT(pptr != NULL);
   1115 		entry = *pptr;
   1116 		KASSERT((entry_tagmask(entry) & tagmask) != 0);
   1117 		*pptr = entry_compose(entry_ptr(entry),
   1118 		    entry_tagmask(entry) & ~tagmask);
   1119 		/*
   1120 		 * check if we should proceed to process the next level.
   1121 		 */
   1122 		if (0 < i) {
   1123 			struct radix_tree_node *n = path_node(t, &path, i - 1);
   1124 
   1125 			if ((radix_tree_sum_node(n) & tagmask) != 0) {
   1126 				break;
   1127 			}
   1128 		}
   1129 	}
   1130 }
   1131 
   1132 #if defined(UNITTEST)
   1133 
   1134 #include <inttypes.h>
   1135 #include <stdio.h>
   1136 
   1137 static void
   1138 radix_tree_dump_node(const struct radix_tree *t, void *vp,
   1139     uint64_t offset, unsigned int height)
   1140 {
   1141 	struct radix_tree_node *n;
   1142 	unsigned int i;
   1143 
   1144 	for (i = 0; i < t->t_height - height; i++) {
   1145 		printf(" ");
   1146 	}
   1147 	if (entry_tagmask(vp) == 0) {
   1148 		printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
   1149 	} else {
   1150 		printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
   1151 		    entry_tagmask(vp));
   1152 	}
   1153 	if (height == 0) {
   1154 		printf(" (leaf)\n");
   1155 		return;
   1156 	}
   1157 	n = entry_ptr(vp);
   1158 	assert((radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK) ==
   1159 	    entry_tagmask(vp));
   1160 	printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
   1161 	for (i = 0; i < __arraycount(n->n_ptrs); i++) {
   1162 		void *c;
   1163 
   1164 		c = n->n_ptrs[i];
   1165 		if (c == NULL) {
   1166 			continue;
   1167 		}
   1168 		radix_tree_dump_node(t, c,
   1169 		    offset + i * (UINT64_C(1) <<
   1170 		    (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
   1171 	}
   1172 }
   1173 
   1174 void radix_tree_dump(const struct radix_tree *);
   1175 
   1176 void
   1177 radix_tree_dump(const struct radix_tree *t)
   1178 {
   1179 
   1180 	printf("tree %p height=%u\n", t, t->t_height);
   1181 	radix_tree_dump_node(t, t->t_root, 0, t->t_height);
   1182 }
   1183 
   1184 static void
   1185 test1(void)
   1186 {
   1187 	struct radix_tree s;
   1188 	struct radix_tree *t = &s;
   1189 	void *results[3];
   1190 
   1191 	radix_tree_init_tree(t);
   1192 	radix_tree_dump(t);
   1193 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1194 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1195 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
   1196 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1197 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1198 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1199 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1200 	    0);
   1201 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1202 	    0);
   1203 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1204 	    == 0);
   1205 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1206 	    == 0);
   1207 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1208 	    == 0);
   1209 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1210 	    == 0);
   1211 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
   1212 	    == 0);
   1213 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
   1214 	    == 0);
   1215 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1216 	    false, 1) == 0);
   1217 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1218 	    true, 1) == 0);
   1219 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1220 	    false, 1) == 0);
   1221 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1222 	    true, 1) == 0);
   1223 	assert(radix_tree_empty_tree_p(t));
   1224 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1225 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1226 	assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
   1227 	assert(!radix_tree_empty_tree_p(t));
   1228 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1229 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1230 	assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
   1231 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1232 	memset(results, 0, sizeof(results));
   1233 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1234 	assert(results[0] == (void *)0xdeadbea0);
   1235 	memset(results, 0, sizeof(results));
   1236 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1237 	assert(results[0] == (void *)0xdeadbea0);
   1238 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1239 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1240 	memset(results, 0, sizeof(results));
   1241 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1242 	    1);
   1243 	assert(results[0] == (void *)0xdeadbea0);
   1244 	memset(results, 0, sizeof(results));
   1245 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1246 	    1);
   1247 	assert(results[0] == (void *)0xdeadbea0);
   1248 	memset(results, 0, sizeof(results));
   1249 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1250 	    == 1);
   1251 	assert(results[0] == (void *)0xdeadbea0);
   1252 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1253 	    == 0);
   1254 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1255 	    == 0);
   1256 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1257 	    == 0);
   1258 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1259 	    false, 1) == 0);
   1260 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1261 	    true, 1) == 0);
   1262 	assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
   1263 	assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
   1264 	assert(!radix_tree_empty_tree_p(t));
   1265 	radix_tree_dump(t);
   1266 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1267 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1268 	memset(results, 0, sizeof(results));
   1269 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1270 	assert(results[0] == (void *)0xdeadbea0);
   1271 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1272 	memset(results, 0, sizeof(results));
   1273 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
   1274 	assert(results[0] == (void *)0xdeadbea0);
   1275 	memset(results, 0, sizeof(results));
   1276 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
   1277 	assert(results[0] == (void *)0xdeadbea0);
   1278 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
   1279 	    == 0);
   1280 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
   1281 	    == 0);
   1282 	memset(results, 0, sizeof(results));
   1283 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1284 	    == 1);
   1285 	memset(results, 0, sizeof(results));
   1286 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1287 	    == 1);
   1288 	assert(results[0] == (void *)0xdeadbea0);
   1289 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1290 	    == 0);
   1291 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1292 	    == 0);
   1293 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1294 	    false, 1) == 0);
   1295 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1296 	    true, 1) == 0);
   1297 	assert(!radix_tree_get_tag(t, 1000, 1));
   1298 	assert(!radix_tree_get_tag(t, 1000, 2));
   1299 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
   1300 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1301 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1302 	radix_tree_set_tag(t, 1000, 2);
   1303 	assert(!radix_tree_get_tag(t, 1000, 1));
   1304 	assert(radix_tree_get_tag(t, 1000, 2));
   1305 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1306 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1307 	assert(!radix_tree_empty_tagged_tree_p(t, 2));
   1308 	radix_tree_dump(t);
   1309 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1310 	assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
   1311 	radix_tree_dump(t);
   1312 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1313 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1314 	assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
   1315 	    == 0);
   1316 	radix_tree_dump(t);
   1317 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1318 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1319 	assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
   1320 	    (void *)0xdea0);
   1321 	radix_tree_dump(t);
   1322 	assert(!radix_tree_get_tag(t, 0, 2));
   1323 	assert(radix_tree_get_tag(t, 1000, 2));
   1324 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
   1325 	radix_tree_set_tag(t, 0, 2);
   1326 	radix_tree_set_tag(t, UINT64_C(10000000000), 2);
   1327 	radix_tree_dump(t);
   1328 	assert(radix_tree_get_tag(t, 0, 2));
   1329 	assert(radix_tree_get_tag(t, 1000, 2));
   1330 	assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1331 	radix_tree_clear_tag(t, 0, 2);
   1332 	radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
   1333 	radix_tree_dump(t);
   1334 	assert(!radix_tree_get_tag(t, 0, 2));
   1335 	assert(radix_tree_get_tag(t, 1000, 2));
   1336 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1337 	radix_tree_dump(t);
   1338 	assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
   1339 	    (void *)0xdeadbea0);
   1340 	assert(!radix_tree_get_tag(t, 1000, 1));
   1341 	assert(radix_tree_get_tag(t, 1000, 2));
   1342 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1343 	memset(results, 0, sizeof(results));
   1344 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
   1345 	assert(results[0] == (void *)0xbea0);
   1346 	assert(results[1] == (void *)0x12345678);
   1347 	assert(results[2] == (void *)0xdea0);
   1348 	memset(results, 0, sizeof(results));
   1349 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1350 	assert(results[0] == (void *)0xbea0);
   1351 	memset(results, 0, sizeof(results));
   1352 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
   1353 	assert(results[0] == (void *)0x12345678);
   1354 	assert(results[1] == (void *)0xdea0);
   1355 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
   1356 	memset(results, 0, sizeof(results));
   1357 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
   1358 	assert(results[0] == (void *)0xdea0);
   1359 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
   1360 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1361 	    false) == 0);
   1362 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1363 	    true) == 0);
   1364 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1365 	    3, false) == 0);
   1366 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1367 	    3, true) == 0);
   1368 	memset(results, 0, sizeof(results));
   1369 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
   1370 	    == 1);
   1371 	assert(results[0] == (void *)0x12345678);
   1372 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
   1373 	    == 0);
   1374 	assert(entry_tagmask(t->t_root) != 0);
   1375 	assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
   1376 	assert(entry_tagmask(t->t_root) == 0);
   1377 	radix_tree_dump(t);
   1378 	assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
   1379 	    == 0);
   1380 	memset(results, 0, sizeof(results));
   1381 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1382 	    false) == 2);
   1383 	assert(results[0] == (void *)0xdea0);
   1384 	assert(results[1] == (void *)0xfff0);
   1385 	memset(results, 0, sizeof(results));
   1386 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1387 	    true) == 2);
   1388 	assert(results[0] == (void *)0xdea0);
   1389 	assert(results[1] == (void *)0xfff0);
   1390 	memset(results, 0, sizeof(results));
   1391 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1392 	    results, 3, false) == 3);
   1393 	assert(results[0] == (void *)0xfff0);
   1394 	assert(results[1] == (void *)0xdea0);
   1395 	assert(results[2] == (void *)0xbea0);
   1396 	memset(results, 0, sizeof(results));
   1397 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1398 	    results, 3, true) == 2);
   1399 	assert(results[0] == (void *)0xfff0);
   1400 	assert(results[1] == (void *)0xdea0);
   1401 	assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
   1402 	    (void *)0xdea0);
   1403 	assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
   1404 	    (void *)0xfff0);
   1405 	radix_tree_dump(t);
   1406 	assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
   1407 	radix_tree_dump(t);
   1408 	radix_tree_fini_tree(t);
   1409 }
   1410 
   1411 #include <sys/time.h>
   1412 
   1413 struct testnode {
   1414 	uint64_t idx;
   1415 	bool tagged[RADIX_TREE_TAG_ID_MAX];
   1416 };
   1417 
   1418 static void
   1419 printops(const char *title, const char *name, int tag, unsigned int n,
   1420     const struct timeval *stv, const struct timeval *etv)
   1421 {
   1422 	uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
   1423 	uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
   1424 
   1425 	printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
   1426 	    (double)n / (e - s) * 1000000);
   1427 }
   1428 
   1429 #define	TEST2_GANG_LOOKUP_NODES	16
   1430 
   1431 static bool
   1432 test2_should_tag(unsigned int i, unsigned int tagid)
   1433 {
   1434 
   1435 	if (tagid == 0) {
   1436 		return (i % 4) == 0;	/* 25% */
   1437 	} else {
   1438 		return (i % 7) == 0;	/* 14% */
   1439 	}
   1440 	return 1;
   1441 }
   1442 
   1443 static void
   1444 check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
   1445     unsigned int count)
   1446 {
   1447 	unsigned int tag;
   1448 
   1449 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1450 		if ((tagmask & (1 << tag)) == 0) {
   1451 			continue;
   1452 		}
   1453 		if (((tagmask - 1) & tagmask) == 0) {
   1454 			assert(count == ntagged[tag]);
   1455 		} else {
   1456 			assert(count >= ntagged[tag]);
   1457 		}
   1458 	}
   1459 }
   1460 
   1461 static void
   1462 test2(const char *title, bool dense)
   1463 {
   1464 	struct radix_tree s;
   1465 	struct radix_tree *t = &s;
   1466 	struct testnode *n;
   1467 	unsigned int i;
   1468 	unsigned int nnodes = 100000;
   1469 	unsigned int removed;
   1470 	unsigned int tag;
   1471 	unsigned int tagmask;
   1472 	unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
   1473 	struct testnode *nodes;
   1474 	struct timeval stv;
   1475 	struct timeval etv;
   1476 
   1477 	nodes = malloc(nnodes * sizeof(*nodes));
   1478 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1479 		ntagged[tag] = 0;
   1480 	}
   1481 	radix_tree_init_tree(t);
   1482 	for (i = 0; i < nnodes; i++) {
   1483 		n = &nodes[i];
   1484 		n->idx = random();
   1485 		if (sizeof(long) == 4) {
   1486 			n->idx <<= 32;
   1487 			n->idx |= (uint32_t)random();
   1488 		}
   1489 		if (dense) {
   1490 			n->idx %= nnodes * 2;
   1491 		}
   1492 		while (radix_tree_lookup_node(t, n->idx) != NULL) {
   1493 			n->idx++;
   1494 		}
   1495 		radix_tree_insert_node(t, n->idx, n);
   1496 		for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1497 			tagmask = 1 << tag;
   1498 
   1499 			n->tagged[tag] = test2_should_tag(i, tag);
   1500 			if (n->tagged[tag]) {
   1501 				radix_tree_set_tag(t, n->idx, tagmask);
   1502 				ntagged[tag]++;
   1503 			}
   1504 			assert((n->tagged[tag] ? tagmask : 0) ==
   1505 			    radix_tree_get_tag(t, n->idx, tagmask));
   1506 		}
   1507 	}
   1508 
   1509 	gettimeofday(&stv, NULL);
   1510 	for (i = 0; i < nnodes; i++) {
   1511 		n = &nodes[i];
   1512 		assert(radix_tree_lookup_node(t, n->idx) == n);
   1513 	}
   1514 	gettimeofday(&etv, NULL);
   1515 	printops(title, "lookup", 0, nnodes, &stv, &etv);
   1516 
   1517 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1518 		unsigned int count = 0;
   1519 
   1520 		gettimeofday(&stv, NULL);
   1521 		for (i = 0; i < nnodes; i++) {
   1522 			unsigned int tagged;
   1523 
   1524 			n = &nodes[i];
   1525 			tagged = radix_tree_get_tag(t, n->idx, tagmask);
   1526 			assert((tagged & ~tagmask) == 0);
   1527 			for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1528 				assert((tagmask & (1 << tag)) == 0 ||
   1529 				    n->tagged[tag] == !!(tagged & (1 << tag)));
   1530 			}
   1531 			if (tagged) {
   1532 				count++;
   1533 			}
   1534 		}
   1535 		gettimeofday(&etv, NULL);
   1536 		check_tag_count(ntagged, tagmask, count);
   1537 		printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
   1538 	}
   1539 
   1540 	gettimeofday(&stv, NULL);
   1541 	for (i = 0; i < nnodes; i++) {
   1542 		n = &nodes[i];
   1543 		radix_tree_remove_node(t, n->idx);
   1544 	}
   1545 	gettimeofday(&etv, NULL);
   1546 	printops(title, "remove", 0, nnodes, &stv, &etv);
   1547 
   1548 	gettimeofday(&stv, NULL);
   1549 	for (i = 0; i < nnodes; i++) {
   1550 		n = &nodes[i];
   1551 		radix_tree_insert_node(t, n->idx, n);
   1552 	}
   1553 	gettimeofday(&etv, NULL);
   1554 	printops(title, "insert", 0, nnodes, &stv, &etv);
   1555 
   1556 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1557 		tagmask = 1 << tag;
   1558 
   1559 		ntagged[tag] = 0;
   1560 		gettimeofday(&stv, NULL);
   1561 		for (i = 0; i < nnodes; i++) {
   1562 			n = &nodes[i];
   1563 			if (n->tagged[tag]) {
   1564 				radix_tree_set_tag(t, n->idx, tagmask);
   1565 				ntagged[tag]++;
   1566 			}
   1567 		}
   1568 		gettimeofday(&etv, NULL);
   1569 		printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
   1570 	}
   1571 
   1572 	gettimeofday(&stv, NULL);
   1573 	{
   1574 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1575 		uint64_t nextidx;
   1576 		unsigned int nfound;
   1577 		unsigned int total;
   1578 
   1579 		nextidx = 0;
   1580 		total = 0;
   1581 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1582 		    (void *)results, __arraycount(results), false)) > 0) {
   1583 			nextidx = results[nfound - 1]->idx + 1;
   1584 			total += nfound;
   1585 			if (nextidx == 0) {
   1586 				break;
   1587 			}
   1588 		}
   1589 		assert(total == nnodes);
   1590 	}
   1591 	gettimeofday(&etv, NULL);
   1592 	printops(title, "ganglookup", 0, nnodes, &stv, &etv);
   1593 
   1594 	gettimeofday(&stv, NULL);
   1595 	{
   1596 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1597 		uint64_t nextidx;
   1598 		unsigned int nfound;
   1599 		unsigned int total;
   1600 
   1601 		nextidx = UINT64_MAX;
   1602 		total = 0;
   1603 		while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
   1604 		    (void *)results, __arraycount(results), false)) > 0) {
   1605 			nextidx = results[nfound - 1]->idx - 1;
   1606 			total += nfound;
   1607 			if (nextidx == UINT64_MAX) {
   1608 				break;
   1609 			}
   1610 		}
   1611 		assert(total == nnodes);
   1612 	}
   1613 	gettimeofday(&etv, NULL);
   1614 	printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
   1615 
   1616 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1617 		unsigned int total = 0;
   1618 
   1619 		gettimeofday(&stv, NULL);
   1620 		{
   1621 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1622 			uint64_t nextidx;
   1623 			unsigned int nfound;
   1624 
   1625 			nextidx = 0;
   1626 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1627 			    nextidx, (void *)results, __arraycount(results),
   1628 			    false, tagmask)) > 0) {
   1629 				nextidx = results[nfound - 1]->idx + 1;
   1630 				total += nfound;
   1631 			}
   1632 		}
   1633 		gettimeofday(&etv, NULL);
   1634 		check_tag_count(ntagged, tagmask, total);
   1635 		assert(tagmask != 0 || total == 0);
   1636 		printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
   1637 	}
   1638 
   1639 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1640 		unsigned int total = 0;
   1641 
   1642 		gettimeofday(&stv, NULL);
   1643 		{
   1644 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1645 			uint64_t nextidx;
   1646 			unsigned int nfound;
   1647 
   1648 			nextidx = UINT64_MAX;
   1649 			while ((nfound =
   1650 			    radix_tree_gang_lookup_tagged_node_reverse(t,
   1651 			    nextidx, (void *)results, __arraycount(results),
   1652 			    false, tagmask)) > 0) {
   1653 				nextidx = results[nfound - 1]->idx - 1;
   1654 				total += nfound;
   1655 				if (nextidx == UINT64_MAX) {
   1656 					break;
   1657 				}
   1658 			}
   1659 		}
   1660 		gettimeofday(&etv, NULL);
   1661 		check_tag_count(ntagged, tagmask, total);
   1662 		assert(tagmask != 0 || total == 0);
   1663 		printops(title, "ganglookup_tag_reverse", tagmask, total,
   1664 		    &stv, &etv);
   1665 	}
   1666 
   1667 	removed = 0;
   1668 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1669 		unsigned int total;
   1670 
   1671 		total = 0;
   1672 		tagmask = 1 << tag;
   1673 		gettimeofday(&stv, NULL);
   1674 		{
   1675 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1676 			uint64_t nextidx;
   1677 			unsigned int nfound;
   1678 
   1679 			nextidx = 0;
   1680 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1681 			    nextidx, (void *)results, __arraycount(results),
   1682 			    false, tagmask)) > 0) {
   1683 				for (i = 0; i < nfound; i++) {
   1684 					radix_tree_remove_node(t,
   1685 					    results[i]->idx);
   1686 				}
   1687 				nextidx = results[nfound - 1]->idx + 1;
   1688 				total += nfound;
   1689 				if (nextidx == 0) {
   1690 					break;
   1691 				}
   1692 			}
   1693 		}
   1694 		gettimeofday(&etv, NULL);
   1695 		if (tag == 0) {
   1696 			check_tag_count(ntagged, tagmask, total);
   1697 		} else {
   1698 			assert(total <= ntagged[tag]);
   1699 		}
   1700 		printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
   1701 		    &etv);
   1702 		removed += total;
   1703 	}
   1704 
   1705 	gettimeofday(&stv, NULL);
   1706 	{
   1707 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1708 		uint64_t nextidx;
   1709 		unsigned int nfound;
   1710 		unsigned int total;
   1711 
   1712 		nextidx = 0;
   1713 		total = 0;
   1714 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1715 		    (void *)results, __arraycount(results), false)) > 0) {
   1716 			for (i = 0; i < nfound; i++) {
   1717 				assert(results[i] == radix_tree_remove_node(t,
   1718 				    results[i]->idx));
   1719 			}
   1720 			nextidx = results[nfound - 1]->idx + 1;
   1721 			total += nfound;
   1722 			if (nextidx == 0) {
   1723 				break;
   1724 			}
   1725 		}
   1726 		assert(total == nnodes - removed);
   1727 	}
   1728 	gettimeofday(&etv, NULL);
   1729 	printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
   1730 
   1731 	assert(radix_tree_empty_tree_p(t));
   1732 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1733 		assert(radix_tree_empty_tagged_tree_p(t, tagmask));
   1734 	}
   1735 	radix_tree_fini_tree(t);
   1736 	free(nodes);
   1737 }
   1738 
   1739 int
   1740 main(int argc, char *argv[])
   1741 {
   1742 
   1743 	test1();
   1744 	test2("dense", true);
   1745 	test2("sparse", false);
   1746 	return 0;
   1747 }
   1748 
   1749 #endif /* defined(UNITTEST) */
   1750