Home | History | Annotate | Line # | Download | only in gen
radixtree.c revision 1.32
      1 /*	$NetBSD: radixtree.c,v 1.32 2023/09/23 18:21:11 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * radixtree.c
     31  *
     32  * Overview:
     33  *
     34  * This is an implementation of radix tree, whose keys are uint64_t and leafs
     35  * are user provided pointers.
     36  *
     37  * Leaf nodes are just void * and this implementation doesn't care about
     38  * what they actually point to.  However, this implementation has an assumption
     39  * about their alignment.  Specifically, this implementation assumes that their
     40  * 2 LSBs are always zero and uses them for internal accounting.
     41  *
     42  * Intermediate nodes and memory allocation:
     43  *
     44  * Intermediate nodes are automatically allocated and freed internally and
     45  * basically users don't need to care about them.  The allocation is done via
     46  * kmem_zalloc(9) for _KERNEL, malloc(3) for userland, and alloc() for
     47  * _STANDALONE environment.  Only radix_tree_insert_node function can allocate
     48  * memory for intermediate nodes and thus can fail for ENOMEM.
     49  *
     50  * Memory Efficiency:
     51  *
     52  * It's designed to work efficiently with dense index distribution.
     53  * The memory consumption (number of necessary intermediate nodes) heavily
     54  * depends on the index distribution.  Basically, more dense index distribution
     55  * consumes less nodes per item.  Approximately,
     56  *
     57  *  - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
     58  *    it would look like the following.
     59  *
     60  *     root (t_height=1)
     61  *      |
     62  *      v
     63  *      [ | | | ]   (intermediate node.  RADIX_TREE_PTR_PER_NODE=4 in this fig)
     64  *       | | | |
     65  *       v v v v
     66  *       p p p p    (items)
     67  *
     68  *  - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
     69  *    it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
     70  *
     71  *     root (t_height=3)
     72  *      |
     73  *      v
     74  *      [ | | | ]
     75  *           |
     76  *           v
     77  *           [ | | | ]
     78  *                |
     79  *                v
     80  *                [ | | | ]
     81  *                   |
     82  *                   v
     83  *                   p
     84  *
     85  * The height of tree (t_height) is dynamic.  It's smaller if only small
     86  * index values are used.  As an extreme case, if only index 0 is used,
     87  * the corresponding value is directly stored in the root of the tree
     88  * (struct radix_tree) without allocating any intermediate nodes.  In that
     89  * case, t_height=0.
     90  *
     91  * Gang lookup:
     92  *
     93  * This implementation provides a way to scan many nodes quickly via
     94  * radix_tree_gang_lookup_node function and its varients.
     95  *
     96  * Tags:
     97  *
     98  * This implementation provides tagging functionality, which allows quick
     99  * scanning of a subset of leaf nodes.  Leaf nodes are untagged when inserted
    100  * into the tree and can be tagged by radix_tree_set_tag function.
    101  * radix_tree_gang_lookup_tagged_node function and its variants returns only
    102  * leaf nodes with the given tag.  To reduce amount of nodes to visit for
    103  * these functions, this implementation keeps tagging information in internal
    104  * intermediate nodes and quickly skips uninterested parts of a tree.
    105  *
    106  * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
    107  * identified by a zero-origin numbers, tagid.  For the current implementation,
    108  * RADIX_TREE_TAG_ID_MAX is 2.  A set of tags is described as a bitmask tagmask,
    109  * which is a bitwise OR of (1 << tagid).
    110  */
    111 
    112 #include <sys/cdefs.h>
    113 
    114 #if defined(_KERNEL) || defined(_STANDALONE)
    115 __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.32 2023/09/23 18:21:11 ad Exp $");
    116 #include <sys/param.h>
    117 #include <sys/errno.h>
    118 #include <sys/kmem.h>
    119 #include <sys/radixtree.h>
    120 #include <lib/libkern/libkern.h>
    121 #if defined(_STANDALONE)
    122 #include <lib/libsa/stand.h>
    123 #endif /* defined(_STANDALONE) */
    124 #else /* defined(_KERNEL) || defined(_STANDALONE) */
    125 __RCSID("$NetBSD: radixtree.c,v 1.32 2023/09/23 18:21:11 ad Exp $");
    126 #include <assert.h>
    127 #include <errno.h>
    128 #include <stdbool.h>
    129 #include <stdlib.h>
    130 #include <string.h>
    131 #if 1
    132 #define KASSERT assert
    133 #else
    134 #define KASSERT(a)	/* nothing */
    135 #endif
    136 #endif /* defined(_KERNEL) || defined(_STANDALONE) */
    137 
    138 #include <sys/radixtree.h>
    139 
    140 #define	RADIX_TREE_BITS_PER_HEIGHT	4	/* XXX tune */
    141 #define	RADIX_TREE_PTR_PER_NODE		(1 << RADIX_TREE_BITS_PER_HEIGHT)
    142 #define	RADIX_TREE_MAX_HEIGHT		(64 / RADIX_TREE_BITS_PER_HEIGHT)
    143 #define	RADIX_TREE_INVALID_HEIGHT	(RADIX_TREE_MAX_HEIGHT + 1)
    144 __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
    145 
    146 __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
    147 #define	RADIX_TREE_TAG_MASK	((1 << RADIX_TREE_TAG_ID_MAX) - 1)
    148 
    149 static inline void *
    150 entry_ptr(void *p)
    151 {
    152 
    153 	return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
    154 }
    155 
    156 static inline unsigned int
    157 entry_tagmask(void *p)
    158 {
    159 
    160 	return (uintptr_t)p & RADIX_TREE_TAG_MASK;
    161 }
    162 
    163 static inline void *
    164 entry_compose(void *p, unsigned int tagmask)
    165 {
    166 
    167 	return (void *)((uintptr_t)p | tagmask);
    168 }
    169 
    170 static inline bool
    171 entry_match_p(void *p, unsigned int tagmask)
    172 {
    173 
    174 	KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
    175 	if (p == NULL) {
    176 		return false;
    177 	}
    178 	if (tagmask == 0) {
    179 		return true;
    180 	}
    181 	return (entry_tagmask(p) & tagmask) != 0;
    182 }
    183 
    184 /*
    185  * radix_tree_node: an intermediate node
    186  *
    187  * we don't care the type of leaf nodes.  they are just void *.
    188  *
    189  * we used to maintain a count of non-NULL nodes in this structure, but it
    190  * prevented it from being aligned to a cache line boundary; the performance
    191  * benefit from being cache friendly is greater than the benefit of having
    192  * a dedicated count value, especially in multi-processor situations where
    193  * we need to avoid intra-pool-page false sharing.
    194  */
    195 
    196 struct radix_tree_node {
    197 	void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
    198 };
    199 
    200 /*
    201  * p_refs[0].pptr == &t->t_root
    202  *	:
    203  * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
    204  *	:
    205  *	:
    206  * p_refs[t->t_height].pptr == &leaf_pointer
    207  */
    208 
    209 struct radix_tree_path {
    210 	struct radix_tree_node_ref {
    211 		void **pptr;
    212 	} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
    213 	/*
    214 	 * p_lastidx is either the index of the last valid element of p_refs[]
    215 	 * or RADIX_TREE_INVALID_HEIGHT.
    216 	 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
    217 	 * that the height of the tree is not enough to cover the given index.
    218 	 */
    219 	unsigned int p_lastidx;
    220 };
    221 
    222 static inline void **
    223 path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
    224     unsigned int height)
    225 {
    226 
    227 	KASSERT(height <= t->t_height);
    228 	return p->p_refs[height].pptr;
    229 }
    230 
    231 static inline struct radix_tree_node *
    232 path_node(const struct radix_tree * t, const struct radix_tree_path *p,
    233     unsigned int height)
    234 {
    235 
    236 	KASSERT(height <= t->t_height);
    237 	return entry_ptr(*path_pptr(t, p, height));
    238 }
    239 
    240 /*
    241  * radix_tree_init_tree:
    242  *
    243  * Initialize a tree.
    244  */
    245 
    246 void
    247 radix_tree_init_tree(struct radix_tree *t)
    248 {
    249 
    250 	t->t_height = 0;
    251 	t->t_root = NULL;
    252 }
    253 
    254 /*
    255  * radix_tree_fini_tree:
    256  *
    257  * Finish using a tree.
    258  */
    259 
    260 void
    261 radix_tree_fini_tree(struct radix_tree *t)
    262 {
    263 
    264 	KASSERT(t->t_root == NULL);
    265 	KASSERT(t->t_height == 0);
    266 }
    267 
    268 /*
    269  * radix_tree_empty_tree_p:
    270  *
    271  * Return if the tree is empty.
    272  */
    273 
    274 bool
    275 radix_tree_empty_tree_p(struct radix_tree *t)
    276 {
    277 
    278 	return t->t_root == NULL;
    279 }
    280 
    281 /*
    282  * radix_tree_empty_tree_p:
    283  *
    284  * Return true if the tree has any nodes with the given tag.  Otherwise
    285  * return false.
    286  *
    287  * It's illegal to call this function with tagmask 0.
    288  */
    289 
    290 bool
    291 radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
    292 {
    293 
    294 	KASSERT(tagmask != 0);
    295 	return (entry_tagmask(t->t_root) & tagmask) == 0;
    296 }
    297 
    298 static void
    299 radix_tree_node_init(struct radix_tree_node *n)
    300 {
    301 
    302 	memset(n, 0, sizeof(*n));
    303 }
    304 
    305 #if defined(_KERNEL)
    306 /*
    307  * radix_tree_init:
    308  *
    309  * initialize the subsystem.
    310  */
    311 
    312 void
    313 radix_tree_init(void)
    314 {
    315 
    316 	/* nothing right now */
    317 }
    318 
    319 /*
    320  * radix_tree_await_memory:
    321  *
    322  * after an insert has failed with ENOMEM, wait for memory to become
    323  * available, so the caller can retry.  this needs to ensure that the
    324  * maximum possible required number of nodes is available.
    325  */
    326 
    327 void
    328 radix_tree_await_memory(void)
    329 {
    330 	struct radix_tree_node *nodes[RADIX_TREE_MAX_HEIGHT];
    331 	int i;
    332 
    333 	for (i = 0; i < __arraycount(nodes); i++) {
    334 		nodes[i] = kmem_intr_alloc(sizeof(struct radix_tree_node),
    335 		    KM_SLEEP);
    336 	}
    337 	while (--i >= 0) {
    338 		kmem_free(nodes[i], sizeof(struct radix_tree_node));
    339 	}
    340 }
    341 
    342 #endif /* defined(_KERNEL) */
    343 
    344 /*
    345  * radix_tree_sum_node:
    346  *
    347  * return the logical sum of all entries in the given node.  used to quickly
    348  * check for tag masks or empty nodes.
    349  */
    350 
    351 static uintptr_t
    352 radix_tree_sum_node(const struct radix_tree_node *n)
    353 {
    354 #if RADIX_TREE_PTR_PER_NODE > 16
    355 	unsigned int i;
    356 	uintptr_t sum;
    357 
    358 	for (i = 0, sum = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    359 		sum |= (uintptr_t)n->n_ptrs[i];
    360 	}
    361 	return sum;
    362 #else /* RADIX_TREE_PTR_PER_NODE > 16 */
    363 	uintptr_t sum;
    364 
    365 	/*
    366 	 * Unrolling the above is much better than a tight loop with two
    367 	 * test+branch pairs.  On x86 with gcc 5.5.0 this compiles into 19
    368 	 * deterministic instructions including the "return" and prologue &
    369 	 * epilogue.
    370 	 */
    371 	sum = (uintptr_t)n->n_ptrs[0];
    372 	sum |= (uintptr_t)n->n_ptrs[1];
    373 	sum |= (uintptr_t)n->n_ptrs[2];
    374 	sum |= (uintptr_t)n->n_ptrs[3];
    375 #if RADIX_TREE_PTR_PER_NODE > 4
    376 	sum |= (uintptr_t)n->n_ptrs[4];
    377 	sum |= (uintptr_t)n->n_ptrs[5];
    378 	sum |= (uintptr_t)n->n_ptrs[6];
    379 	sum |= (uintptr_t)n->n_ptrs[7];
    380 #endif
    381 #if RADIX_TREE_PTR_PER_NODE > 8
    382 	sum |= (uintptr_t)n->n_ptrs[8];
    383 	sum |= (uintptr_t)n->n_ptrs[9];
    384 	sum |= (uintptr_t)n->n_ptrs[10];
    385 	sum |= (uintptr_t)n->n_ptrs[11];
    386 	sum |= (uintptr_t)n->n_ptrs[12];
    387 	sum |= (uintptr_t)n->n_ptrs[13];
    388 	sum |= (uintptr_t)n->n_ptrs[14];
    389 	sum |= (uintptr_t)n->n_ptrs[15];
    390 #endif
    391 	return sum;
    392 #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
    393 }
    394 
    395 static int __unused
    396 radix_tree_node_count_ptrs(const struct radix_tree_node *n)
    397 {
    398 	unsigned int i, c;
    399 
    400 	for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    401 		c += (n->n_ptrs[i] != NULL);
    402 	}
    403 	return c;
    404 }
    405 
    406 static struct radix_tree_node *
    407 radix_tree_alloc_node(void)
    408 {
    409 	struct radix_tree_node *n;
    410 
    411 #if defined(_KERNEL)
    412 	/*
    413 	 * note that kmem_alloc can block.
    414 	 */
    415 	n = kmem_intr_alloc(sizeof(struct radix_tree_node), KM_SLEEP);
    416 #elif defined(_STANDALONE)
    417 	n = alloc(sizeof(*n));
    418 #else /* defined(_STANDALONE) */
    419 	n = malloc(sizeof(*n));
    420 #endif /* defined(_STANDALONE) */
    421 	if (n != NULL) {
    422 		radix_tree_node_init(n);
    423 	}
    424 	KASSERT(n == NULL || radix_tree_sum_node(n) == 0);
    425 	return n;
    426 }
    427 
    428 static void
    429 radix_tree_free_node(struct radix_tree_node *n)
    430 {
    431 
    432 	KASSERT(radix_tree_sum_node(n) == 0);
    433 #if defined(_KERNEL)
    434 	kmem_intr_free(n, sizeof(struct radix_tree_node));
    435 #elif defined(_STANDALONE)
    436 	dealloc(n, sizeof(*n));
    437 #else
    438 	free(n);
    439 #endif
    440 }
    441 
    442 /*
    443  * radix_tree_grow:
    444  *
    445  * increase the height of the tree.
    446  */
    447 
    448 static __noinline int
    449 radix_tree_grow(struct radix_tree *t, unsigned int newheight)
    450 {
    451 	const unsigned int tagmask = entry_tagmask(t->t_root);
    452 	struct radix_tree_node *newnodes[RADIX_TREE_MAX_HEIGHT];
    453 	void *root;
    454 	int h;
    455 
    456 	KASSERT(newheight <= RADIX_TREE_MAX_HEIGHT);
    457 	if ((root = t->t_root) == NULL) {
    458 		t->t_height = newheight;
    459 		return 0;
    460 	}
    461 	for (h = t->t_height; h < newheight; h++) {
    462 		newnodes[h] = radix_tree_alloc_node();
    463 		if (__predict_false(newnodes[h] == NULL)) {
    464 			while (--h >= (int)t->t_height) {
    465 				newnodes[h]->n_ptrs[0] = NULL;
    466 				radix_tree_free_node(newnodes[h]);
    467 			}
    468 			return ENOMEM;
    469 		}
    470 		newnodes[h]->n_ptrs[0] = root;
    471 		root = entry_compose(newnodes[h], tagmask);
    472 	}
    473 	t->t_root = root;
    474 	t->t_height = h;
    475 	return 0;
    476 }
    477 
    478 /*
    479  * radix_tree_lookup_ptr:
    480  *
    481  * an internal helper function used for various exported functions.
    482  *
    483  * return the pointer to store the node for the given index.
    484  *
    485  * if alloc is true, try to allocate the storage.  (note for _KERNEL:
    486  * in that case, this function can block.)  if the allocation failed or
    487  * alloc is false, return NULL.
    488  *
    489  * if path is not NULL, fill it for the caller's investigation.
    490  *
    491  * if tagmask is not zero, search only for nodes with the tag set.
    492  * note that, however, this function doesn't check the tagmask for the leaf
    493  * pointer.  it's a caller's responsibility to investigate the value which
    494  * is pointed by the returned pointer if necessary.
    495  *
    496  * while this function is a bit large, as it's called with some constant
    497  * arguments, inlining might have benefits.  anyway, a compiler will decide.
    498  */
    499 
    500 static inline void **
    501 radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
    502     struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
    503 {
    504 	struct radix_tree_node *n;
    505 	int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    506 	int shift;
    507 	void **vpp;
    508 	const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
    509 	struct radix_tree_node_ref *refs = NULL;
    510 
    511 	/*
    512 	 * check unsupported combinations
    513 	 */
    514 	KASSERT(tagmask == 0 || !alloc);
    515 	KASSERT(path == NULL || !alloc);
    516 	vpp = &t->t_root;
    517 	if (path != NULL) {
    518 		refs = path->p_refs;
    519 		refs->pptr = vpp;
    520 	}
    521 	n = NULL;
    522 	for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
    523 		struct radix_tree_node *c;
    524 		void *entry;
    525 		const uint64_t i = (idx >> shift) & mask;
    526 
    527 		if (shift >= hshift) {
    528 			unsigned int newheight;
    529 
    530 			KASSERT(vpp == &t->t_root);
    531 			if (i == 0) {
    532 				shift -= RADIX_TREE_BITS_PER_HEIGHT;
    533 				continue;
    534 			}
    535 			if (!alloc) {
    536 				if (path != NULL) {
    537 					KASSERT((refs - path->p_refs) == 0);
    538 					path->p_lastidx =
    539 					    RADIX_TREE_INVALID_HEIGHT;
    540 				}
    541 				return NULL;
    542 			}
    543 			newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
    544 			if (radix_tree_grow(t, newheight)) {
    545 				return NULL;
    546 			}
    547 			hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    548 		}
    549 		entry = *vpp;
    550 		c = entry_ptr(entry);
    551 		if (c == NULL ||
    552 		    (tagmask != 0 &&
    553 		    (entry_tagmask(entry) & tagmask) == 0)) {
    554 			if (!alloc) {
    555 				if (path != NULL) {
    556 					path->p_lastidx = refs - path->p_refs;
    557 				}
    558 				return NULL;
    559 			}
    560 			c = radix_tree_alloc_node();
    561 			if (c == NULL) {
    562 				return NULL;
    563 			}
    564 			*vpp = c;
    565 		}
    566 		n = c;
    567 		vpp = &n->n_ptrs[i];
    568 		if (path != NULL) {
    569 			refs++;
    570 			refs->pptr = vpp;
    571 		}
    572 		shift -= RADIX_TREE_BITS_PER_HEIGHT;
    573 	}
    574 	if (alloc) {
    575 		KASSERT(*vpp == NULL);
    576 	}
    577 	if (path != NULL) {
    578 		path->p_lastidx = refs - path->p_refs;
    579 	}
    580 	return vpp;
    581 }
    582 
    583 /*
    584  * radix_tree_undo_insert_node:
    585  *
    586  * Undo the effects of a failed insert.  The conditions that led to the
    587  * insert may change and it may not be retried.  If the insert is not
    588  * retried, there will be no corresponding radix_tree_remove_node() for
    589  * this index in the future.  Therefore any adjustments made to the tree
    590  * before memory was exhausted must be reverted.
    591  */
    592 
    593 static __noinline void
    594 radix_tree_undo_insert_node(struct radix_tree *t, uint64_t idx)
    595 {
    596 	struct radix_tree_path path;
    597 	int i;
    598 
    599 	(void)radix_tree_lookup_ptr(t, idx, &path, false, 0);
    600 	if (path.p_lastidx == RADIX_TREE_INVALID_HEIGHT) {
    601 		/*
    602 		 * no nodes were inserted.
    603 		 */
    604 		return;
    605 	}
    606 	for (i = path.p_lastidx - 1; i >= 0; i--) {
    607 		struct radix_tree_node ** const pptr =
    608 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    609 		struct radix_tree_node *n;
    610 
    611 		KASSERT(pptr != NULL);
    612 		n = entry_ptr(*pptr);
    613 		KASSERT(n != NULL);
    614 		if (radix_tree_sum_node(n) != 0) {
    615 			break;
    616 		}
    617 		radix_tree_free_node(n);
    618 		*pptr = NULL;
    619 	}
    620 	/*
    621 	 * fix up height
    622 	 */
    623 	if (i < 0) {
    624 		KASSERT(t->t_root == NULL);
    625 		t->t_height = 0;
    626 	}
    627 }
    628 
    629 /*
    630  * radix_tree_insert_node:
    631  *
    632  * Insert the node at the given index.
    633  *
    634  * It's illegal to insert NULL.  It's illegal to insert a non-aligned pointer.
    635  *
    636  * This function returns ENOMEM if necessary memory allocation failed.
    637  * Otherwise, this function returns 0.
    638  *
    639  * Note that inserting a node can involves memory allocation for intermediate
    640  * nodes.  If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
    641  *
    642  * For the newly inserted node, all tags are cleared.
    643  */
    644 
    645 int
    646 radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
    647 {
    648 	void **vpp;
    649 
    650 	KASSERT(p != NULL);
    651 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    652 	vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
    653 	if (__predict_false(vpp == NULL)) {
    654 		radix_tree_undo_insert_node(t, idx);
    655 		return ENOMEM;
    656 	}
    657 	KASSERT(*vpp == NULL);
    658 	*vpp = p;
    659 	return 0;
    660 }
    661 
    662 /*
    663  * radix_tree_replace_node:
    664  *
    665  * Replace a node at the given index with the given node and return the
    666  * replaced one.
    667  *
    668  * It's illegal to try to replace a node which has not been inserted.
    669  *
    670  * This function keeps tags intact.
    671  */
    672 
    673 void *
    674 radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
    675 {
    676 	void **vpp;
    677 	void *oldp;
    678 
    679 	KASSERT(p != NULL);
    680 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    681 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    682 	KASSERT(vpp != NULL);
    683 	oldp = *vpp;
    684 	KASSERT(oldp != NULL);
    685 	*vpp = entry_compose(p, entry_tagmask(*vpp));
    686 	return entry_ptr(oldp);
    687 }
    688 
    689 /*
    690  * radix_tree_remove_node:
    691  *
    692  * Remove the node at the given index.
    693  *
    694  * It's illegal to try to remove a node which has not been inserted.
    695  */
    696 
    697 void *
    698 radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
    699 {
    700 	struct radix_tree_path path;
    701 	void **vpp;
    702 	void *oldp;
    703 	int i;
    704 
    705 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
    706 	KASSERT(vpp != NULL);
    707 	oldp = *vpp;
    708 	KASSERT(oldp != NULL);
    709 	KASSERT(path.p_lastidx == t->t_height);
    710 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
    711 	*vpp = NULL;
    712 	for (i = t->t_height - 1; i >= 0; i--) {
    713 		void *entry;
    714 		struct radix_tree_node ** const pptr =
    715 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    716 		struct radix_tree_node *n;
    717 
    718 		KASSERT(pptr != NULL);
    719 		entry = *pptr;
    720 		n = entry_ptr(entry);
    721 		KASSERT(n != NULL);
    722 		if (radix_tree_sum_node(n) != 0) {
    723 			break;
    724 		}
    725 		radix_tree_free_node(n);
    726 		*pptr = NULL;
    727 	}
    728 	/*
    729 	 * fix up height
    730 	 */
    731 	if (i < 0) {
    732 		KASSERT(t->t_root == NULL);
    733 		t->t_height = 0;
    734 	}
    735 	/*
    736 	 * update tags
    737 	 */
    738 	for (; i >= 0; i--) {
    739 		void *entry;
    740 		struct radix_tree_node ** const pptr =
    741 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    742 		struct radix_tree_node *n;
    743 		unsigned int newmask;
    744 
    745 		KASSERT(pptr != NULL);
    746 		entry = *pptr;
    747 		n = entry_ptr(entry);
    748 		KASSERT(n != NULL);
    749 		KASSERT(radix_tree_sum_node(n) != 0);
    750 		newmask = radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK;
    751 		if (newmask == entry_tagmask(entry)) {
    752 			break;
    753 		}
    754 		*pptr = entry_compose(n, newmask);
    755 	}
    756 	/*
    757 	 * XXX is it worth to try to reduce height?
    758 	 * if we do that, make radix_tree_grow rollback its change as well.
    759 	 */
    760 	return entry_ptr(oldp);
    761 }
    762 
    763 /*
    764  * radix_tree_lookup_node:
    765  *
    766  * Returns the node at the given index.
    767  * Returns NULL if nothing is found at the given index.
    768  */
    769 
    770 void *
    771 radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
    772 {
    773 	void **vpp;
    774 
    775 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    776 	if (vpp == NULL) {
    777 		return NULL;
    778 	}
    779 	return entry_ptr(*vpp);
    780 }
    781 
    782 static inline void
    783 gang_lookup_init(struct radix_tree *t, uint64_t idx,
    784     struct radix_tree_path *path, const unsigned int tagmask)
    785 {
    786 	void **vpp __unused;
    787 
    788 	vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
    789 	KASSERT(vpp == NULL ||
    790 	    vpp == path_pptr(t, path, path->p_lastidx));
    791 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    792 	KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
    793 	   path->p_lastidx == t->t_height ||
    794 	   !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
    795 }
    796 
    797 /*
    798  * gang_lookup_scan:
    799  *
    800  * a helper routine for radix_tree_gang_lookup_node and its variants.
    801  */
    802 
    803 static inline unsigned int
    804 __attribute__((__always_inline__))
    805 gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
    806     void **results, const unsigned int maxresults, const unsigned int tagmask,
    807     const bool reverse, const bool dense)
    808 {
    809 
    810 	/*
    811 	 * we keep the path updated only for lastidx-1.
    812 	 * vpp is what path_pptr(t, path, lastidx) would be.
    813 	 */
    814 	void **vpp;
    815 	unsigned int nfound;
    816 	unsigned int lastidx;
    817 	/*
    818 	 * set up scan direction dependant constants so that we can iterate
    819 	 * n_ptrs as the following.
    820 	 *
    821 	 *	for (i = first; i != guard; i += step)
    822 	 *		visit n->n_ptrs[i];
    823 	 */
    824 	const int step = reverse ? -1 : 1;
    825 	const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
    826 	const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
    827 	const unsigned int guard = last + step;
    828 
    829 	KASSERT(maxresults > 0);
    830 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    831 	lastidx = path->p_lastidx;
    832 	KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
    833 	   lastidx == t->t_height ||
    834 	   !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
    835 	nfound = 0;
    836 	if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
    837 		/*
    838 		 * requested idx is beyond the right-most node.
    839 		 */
    840 		if (reverse && !dense) {
    841 			lastidx = 0;
    842 			vpp = path_pptr(t, path, lastidx);
    843 			goto descend;
    844 		}
    845 		return 0;
    846 	}
    847 	vpp = path_pptr(t, path, lastidx);
    848 	while (/*CONSTCOND*/true) {
    849 		struct radix_tree_node *n;
    850 		unsigned int i;
    851 
    852 		if (entry_match_p(*vpp, tagmask)) {
    853 			KASSERT(lastidx == t->t_height);
    854 			/*
    855 			 * record the matching non-NULL leaf.
    856 			 */
    857 			results[nfound] = entry_ptr(*vpp);
    858 			nfound++;
    859 			if (nfound == maxresults) {
    860 				return nfound;
    861 			}
    862 		} else if (dense) {
    863 			return nfound;
    864 		}
    865 scan_siblings:
    866 		/*
    867 		 * try to find the next matching non-NULL sibling.
    868 		 */
    869 		if (lastidx == 0) {
    870 			/*
    871 			 * the root has no siblings.
    872 			 * we've done.
    873 			 */
    874 			KASSERT(vpp == &t->t_root);
    875 			break;
    876 		}
    877 		n = path_node(t, path, lastidx - 1);
    878 		for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
    879 			KASSERT(i < RADIX_TREE_PTR_PER_NODE);
    880 			if (entry_match_p(n->n_ptrs[i], tagmask)) {
    881 				vpp = &n->n_ptrs[i];
    882 				break;
    883 			} else if (dense) {
    884 				return nfound;
    885 			}
    886 		}
    887 		if (i == guard) {
    888 			/*
    889 			 * not found.  go to parent.
    890 			 */
    891 			lastidx--;
    892 			vpp = path_pptr(t, path, lastidx);
    893 			goto scan_siblings;
    894 		}
    895 descend:
    896 		/*
    897 		 * following the left-most (or right-most in the case of
    898 		 * reverse scan) child node, descend until reaching the leaf or
    899 		 * a non-matching entry.
    900 		 */
    901 		while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
    902 			/*
    903 			 * save vpp in the path so that we can come back to this
    904 			 * node after finishing visiting children.
    905 			 */
    906 			path->p_refs[lastidx].pptr = vpp;
    907 			n = entry_ptr(*vpp);
    908 			vpp = &n->n_ptrs[first];
    909 			lastidx++;
    910 		}
    911 	}
    912 	return nfound;
    913 }
    914 
    915 /*
    916  * radix_tree_gang_lookup_node:
    917  *
    918  * Scan the tree starting from the given index in the ascending order and
    919  * return found nodes.
    920  *
    921  * results should be an array large enough to hold maxresults pointers.
    922  * This function returns the number of nodes found, up to maxresults.
    923  * Returning less than maxresults means there are no more nodes in the tree.
    924  *
    925  * If dense == true, this function stops scanning when it founds a hole of
    926  * indexes.  I.e. an index for which radix_tree_lookup_node would returns NULL.
    927  * If dense == false, this function skips holes and continue scanning until
    928  * maxresults nodes are found or it reaches the limit of the index range.
    929  *
    930  * The result of this function is semantically equivalent to what could be
    931  * obtained by repeated calls of radix_tree_lookup_node with increasing index.
    932  * but this function is expected to be computationally cheaper when looking up
    933  * multiple nodes at once.  Especially, it's expected to be much cheaper when
    934  * node indexes are distributed sparsely.
    935  *
    936  * Note that this function doesn't return index values of found nodes.
    937  * Thus, in the case of dense == false, if index values are important for
    938  * a caller, it's the caller's responsibility to check them, typically
    939  * by examining the returned nodes using some caller-specific knowledge
    940  * about them.
    941  * In the case of dense == true, a node returned via results[N] is always for
    942  * the index (idx + N).
    943  */
    944 
    945 unsigned int
    946 radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
    947     void **results, unsigned int maxresults, bool dense)
    948 {
    949 	struct radix_tree_path path;
    950 
    951 	gang_lookup_init(t, idx, &path, 0);
    952 	return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
    953 }
    954 
    955 /*
    956  * radix_tree_gang_lookup_node_reverse:
    957  *
    958  * Same as radix_tree_gang_lookup_node except that this one scans the
    959  * tree in the reverse order.  I.e. descending index values.
    960  */
    961 
    962 unsigned int
    963 radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
    964     void **results, unsigned int maxresults, bool dense)
    965 {
    966 	struct radix_tree_path path;
    967 
    968 	gang_lookup_init(t, idx, &path, 0);
    969 	return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
    970 }
    971 
    972 /*
    973  * radix_tree_gang_lookup_tagged_node:
    974  *
    975  * Same as radix_tree_gang_lookup_node except that this one only returns
    976  * nodes tagged with tagid.
    977  *
    978  * It's illegal to call this function with tagmask 0.
    979  */
    980 
    981 unsigned int
    982 radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
    983     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
    984 {
    985 	struct radix_tree_path path;
    986 
    987 	KASSERT(tagmask != 0);
    988 	gang_lookup_init(t, idx, &path, tagmask);
    989 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
    990 	    dense);
    991 }
    992 
    993 /*
    994  * radix_tree_gang_lookup_tagged_node_reverse:
    995  *
    996  * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
    997  * tree in the reverse order.  I.e. descending index values.
    998  */
    999 
   1000 unsigned int
   1001 radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
   1002     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
   1003 {
   1004 	struct radix_tree_path path;
   1005 
   1006 	KASSERT(tagmask != 0);
   1007 	gang_lookup_init(t, idx, &path, tagmask);
   1008 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
   1009 	    dense);
   1010 }
   1011 
   1012 /*
   1013  * radix_tree_get_tag:
   1014  *
   1015  * Return the tagmask for the node at the given index.
   1016  *
   1017  * It's illegal to call this function for a node which has not been inserted.
   1018  */
   1019 
   1020 unsigned int
   1021 radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1022 {
   1023 	/*
   1024 	 * the following two implementations should behave same.
   1025 	 * the former one was chosen because it seems faster.
   1026 	 */
   1027 #if 1
   1028 	void **vpp;
   1029 
   1030 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
   1031 	if (vpp == NULL) {
   1032 		return false;
   1033 	}
   1034 	KASSERT(*vpp != NULL);
   1035 	return (entry_tagmask(*vpp) & tagmask);
   1036 #else
   1037 	void **vpp;
   1038 
   1039 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
   1040 	KASSERT(vpp != NULL);
   1041 	return (entry_tagmask(*vpp) & tagmask);
   1042 #endif
   1043 }
   1044 
   1045 /*
   1046  * radix_tree_set_tag:
   1047  *
   1048  * Set the tag for the node at the given index.
   1049  *
   1050  * It's illegal to call this function for a node which has not been inserted.
   1051  * It's illegal to call this function with tagmask 0.
   1052  */
   1053 
   1054 void
   1055 radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1056 {
   1057 	struct radix_tree_path path;
   1058 	void **vpp __unused;
   1059 	int i;
   1060 
   1061 	KASSERT(tagmask != 0);
   1062 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1063 	KASSERT(vpp != NULL);
   1064 	KASSERT(*vpp != NULL);
   1065 	KASSERT(path.p_lastidx == t->t_height);
   1066 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1067 	for (i = t->t_height; i >= 0; i--) {
   1068 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1069 		void *entry;
   1070 
   1071 		KASSERT(pptr != NULL);
   1072 		entry = *pptr;
   1073 		if ((entry_tagmask(entry) & tagmask) != 0) {
   1074 			break;
   1075 		}
   1076 		*pptr = (void *)((uintptr_t)entry | tagmask);
   1077 	}
   1078 }
   1079 
   1080 /*
   1081  * radix_tree_clear_tag:
   1082  *
   1083  * Clear the tag for the node at the given index.
   1084  *
   1085  * It's illegal to call this function for a node which has not been inserted.
   1086  * It's illegal to call this function with tagmask 0.
   1087  */
   1088 
   1089 void
   1090 radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1091 {
   1092 	struct radix_tree_path path;
   1093 	void **vpp;
   1094 	int i;
   1095 
   1096 	KASSERT(tagmask != 0);
   1097 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1098 	KASSERT(vpp != NULL);
   1099 	KASSERT(*vpp != NULL);
   1100 	KASSERT(path.p_lastidx == t->t_height);
   1101 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1102 	/*
   1103 	 * if already cleared, nothing to do
   1104 	 */
   1105 	if ((entry_tagmask(*vpp) & tagmask) == 0) {
   1106 		return;
   1107 	}
   1108 	/*
   1109 	 * clear the tag only if no children have the tag.
   1110 	 */
   1111 	for (i = t->t_height; i >= 0; i--) {
   1112 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1113 		void *entry;
   1114 
   1115 		KASSERT(pptr != NULL);
   1116 		entry = *pptr;
   1117 		KASSERT((entry_tagmask(entry) & tagmask) != 0);
   1118 		*pptr = entry_compose(entry_ptr(entry),
   1119 		    entry_tagmask(entry) & ~tagmask);
   1120 		/*
   1121 		 * check if we should proceed to process the next level.
   1122 		 */
   1123 		if (0 < i) {
   1124 			struct radix_tree_node *n = path_node(t, &path, i - 1);
   1125 
   1126 			if ((radix_tree_sum_node(n) & tagmask) != 0) {
   1127 				break;
   1128 			}
   1129 		}
   1130 	}
   1131 }
   1132 
   1133 #if defined(UNITTEST)
   1134 
   1135 #include <inttypes.h>
   1136 #include <stdio.h>
   1137 
   1138 static void
   1139 radix_tree_dump_node(const struct radix_tree *t, void *vp,
   1140     uint64_t offset, unsigned int height)
   1141 {
   1142 	struct radix_tree_node *n;
   1143 	unsigned int i;
   1144 
   1145 	for (i = 0; i < t->t_height - height; i++) {
   1146 		printf(" ");
   1147 	}
   1148 	if (entry_tagmask(vp) == 0) {
   1149 		printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
   1150 	} else {
   1151 		printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
   1152 		    entry_tagmask(vp));
   1153 	}
   1154 	if (height == 0) {
   1155 		printf(" (leaf)\n");
   1156 		return;
   1157 	}
   1158 	n = entry_ptr(vp);
   1159 	assert((radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK) ==
   1160 	    entry_tagmask(vp));
   1161 	printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
   1162 	for (i = 0; i < __arraycount(n->n_ptrs); i++) {
   1163 		void *c;
   1164 
   1165 		c = n->n_ptrs[i];
   1166 		if (c == NULL) {
   1167 			continue;
   1168 		}
   1169 		radix_tree_dump_node(t, c,
   1170 		    offset + i * (UINT64_C(1) <<
   1171 		    (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
   1172 	}
   1173 }
   1174 
   1175 void radix_tree_dump(const struct radix_tree *);
   1176 
   1177 void
   1178 radix_tree_dump(const struct radix_tree *t)
   1179 {
   1180 
   1181 	printf("tree %p height=%u\n", t, t->t_height);
   1182 	radix_tree_dump_node(t, t->t_root, 0, t->t_height);
   1183 }
   1184 
   1185 static void
   1186 test1(void)
   1187 {
   1188 	struct radix_tree s;
   1189 	struct radix_tree *t = &s;
   1190 	void *results[3];
   1191 
   1192 	radix_tree_init_tree(t);
   1193 	radix_tree_dump(t);
   1194 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1195 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1196 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
   1197 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1198 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1199 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1200 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1201 	    0);
   1202 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1203 	    0);
   1204 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1205 	    == 0);
   1206 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1207 	    == 0);
   1208 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1209 	    == 0);
   1210 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1211 	    == 0);
   1212 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
   1213 	    == 0);
   1214 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
   1215 	    == 0);
   1216 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1217 	    false, 1) == 0);
   1218 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1219 	    true, 1) == 0);
   1220 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1221 	    false, 1) == 0);
   1222 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1223 	    true, 1) == 0);
   1224 	assert(radix_tree_empty_tree_p(t));
   1225 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1226 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1227 	assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
   1228 	assert(!radix_tree_empty_tree_p(t));
   1229 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1230 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1231 	assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
   1232 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1233 	memset(results, 0, sizeof(results));
   1234 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1235 	assert(results[0] == (void *)0xdeadbea0);
   1236 	memset(results, 0, sizeof(results));
   1237 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1238 	assert(results[0] == (void *)0xdeadbea0);
   1239 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1240 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1241 	memset(results, 0, sizeof(results));
   1242 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1243 	    1);
   1244 	assert(results[0] == (void *)0xdeadbea0);
   1245 	memset(results, 0, sizeof(results));
   1246 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1247 	    1);
   1248 	assert(results[0] == (void *)0xdeadbea0);
   1249 	memset(results, 0, sizeof(results));
   1250 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1251 	    == 1);
   1252 	assert(results[0] == (void *)0xdeadbea0);
   1253 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1254 	    == 0);
   1255 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1256 	    == 0);
   1257 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1258 	    == 0);
   1259 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1260 	    false, 1) == 0);
   1261 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1262 	    true, 1) == 0);
   1263 	assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
   1264 	assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
   1265 	assert(!radix_tree_empty_tree_p(t));
   1266 	radix_tree_dump(t);
   1267 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1268 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1269 	memset(results, 0, sizeof(results));
   1270 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1271 	assert(results[0] == (void *)0xdeadbea0);
   1272 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1273 	memset(results, 0, sizeof(results));
   1274 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
   1275 	assert(results[0] == (void *)0xdeadbea0);
   1276 	memset(results, 0, sizeof(results));
   1277 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
   1278 	assert(results[0] == (void *)0xdeadbea0);
   1279 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
   1280 	    == 0);
   1281 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
   1282 	    == 0);
   1283 	memset(results, 0, sizeof(results));
   1284 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1285 	    == 1);
   1286 	memset(results, 0, sizeof(results));
   1287 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1288 	    == 1);
   1289 	assert(results[0] == (void *)0xdeadbea0);
   1290 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1291 	    == 0);
   1292 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1293 	    == 0);
   1294 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1295 	    false, 1) == 0);
   1296 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1297 	    true, 1) == 0);
   1298 	assert(!radix_tree_get_tag(t, 1000, 1));
   1299 	assert(!radix_tree_get_tag(t, 1000, 2));
   1300 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
   1301 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1302 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1303 	radix_tree_set_tag(t, 1000, 2);
   1304 	assert(!radix_tree_get_tag(t, 1000, 1));
   1305 	assert(radix_tree_get_tag(t, 1000, 2));
   1306 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1307 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1308 	assert(!radix_tree_empty_tagged_tree_p(t, 2));
   1309 	radix_tree_dump(t);
   1310 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1311 	assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
   1312 	radix_tree_dump(t);
   1313 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1314 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1315 	assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
   1316 	    == 0);
   1317 	radix_tree_dump(t);
   1318 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1319 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1320 	assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
   1321 	    (void *)0xdea0);
   1322 	radix_tree_dump(t);
   1323 	assert(!radix_tree_get_tag(t, 0, 2));
   1324 	assert(radix_tree_get_tag(t, 1000, 2));
   1325 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
   1326 	radix_tree_set_tag(t, 0, 2);
   1327 	radix_tree_set_tag(t, UINT64_C(10000000000), 2);
   1328 	radix_tree_dump(t);
   1329 	assert(radix_tree_get_tag(t, 0, 2));
   1330 	assert(radix_tree_get_tag(t, 1000, 2));
   1331 	assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1332 	radix_tree_clear_tag(t, 0, 2);
   1333 	radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
   1334 	radix_tree_dump(t);
   1335 	assert(!radix_tree_get_tag(t, 0, 2));
   1336 	assert(radix_tree_get_tag(t, 1000, 2));
   1337 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1338 	radix_tree_dump(t);
   1339 	assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
   1340 	    (void *)0xdeadbea0);
   1341 	assert(!radix_tree_get_tag(t, 1000, 1));
   1342 	assert(radix_tree_get_tag(t, 1000, 2));
   1343 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1344 	memset(results, 0, sizeof(results));
   1345 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
   1346 	assert(results[0] == (void *)0xbea0);
   1347 	assert(results[1] == (void *)0x12345678);
   1348 	assert(results[2] == (void *)0xdea0);
   1349 	memset(results, 0, sizeof(results));
   1350 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1351 	assert(results[0] == (void *)0xbea0);
   1352 	memset(results, 0, sizeof(results));
   1353 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
   1354 	assert(results[0] == (void *)0x12345678);
   1355 	assert(results[1] == (void *)0xdea0);
   1356 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
   1357 	memset(results, 0, sizeof(results));
   1358 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
   1359 	assert(results[0] == (void *)0xdea0);
   1360 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
   1361 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1362 	    false) == 0);
   1363 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1364 	    true) == 0);
   1365 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1366 	    3, false) == 0);
   1367 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1368 	    3, true) == 0);
   1369 	memset(results, 0, sizeof(results));
   1370 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
   1371 	    == 1);
   1372 	assert(results[0] == (void *)0x12345678);
   1373 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
   1374 	    == 0);
   1375 	assert(entry_tagmask(t->t_root) != 0);
   1376 	assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
   1377 	assert(entry_tagmask(t->t_root) == 0);
   1378 	radix_tree_dump(t);
   1379 	assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
   1380 	    == 0);
   1381 	memset(results, 0, sizeof(results));
   1382 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1383 	    false) == 2);
   1384 	assert(results[0] == (void *)0xdea0);
   1385 	assert(results[1] == (void *)0xfff0);
   1386 	memset(results, 0, sizeof(results));
   1387 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1388 	    true) == 2);
   1389 	assert(results[0] == (void *)0xdea0);
   1390 	assert(results[1] == (void *)0xfff0);
   1391 	memset(results, 0, sizeof(results));
   1392 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1393 	    results, 3, false) == 3);
   1394 	assert(results[0] == (void *)0xfff0);
   1395 	assert(results[1] == (void *)0xdea0);
   1396 	assert(results[2] == (void *)0xbea0);
   1397 	memset(results, 0, sizeof(results));
   1398 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1399 	    results, 3, true) == 2);
   1400 	assert(results[0] == (void *)0xfff0);
   1401 	assert(results[1] == (void *)0xdea0);
   1402 	assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
   1403 	    (void *)0xdea0);
   1404 	assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
   1405 	    (void *)0xfff0);
   1406 	radix_tree_dump(t);
   1407 	assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
   1408 	radix_tree_dump(t);
   1409 	radix_tree_fini_tree(t);
   1410 }
   1411 
   1412 #include <sys/time.h>
   1413 
   1414 struct testnode {
   1415 	uint64_t idx;
   1416 	bool tagged[RADIX_TREE_TAG_ID_MAX];
   1417 };
   1418 
   1419 static void
   1420 printops(const char *title, const char *name, int tag, unsigned int n,
   1421     const struct timeval *stv, const struct timeval *etv)
   1422 {
   1423 	uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
   1424 	uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
   1425 
   1426 	printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
   1427 	    (double)n / (e - s) * 1000000);
   1428 }
   1429 
   1430 #define	TEST2_GANG_LOOKUP_NODES	16
   1431 
   1432 static bool
   1433 test2_should_tag(unsigned int i, unsigned int tagid)
   1434 {
   1435 
   1436 	if (tagid == 0) {
   1437 		return (i % 4) == 0;	/* 25% */
   1438 	} else {
   1439 		return (i % 7) == 0;	/* 14% */
   1440 	}
   1441 	return 1;
   1442 }
   1443 
   1444 static void
   1445 check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
   1446     unsigned int count)
   1447 {
   1448 	unsigned int tag;
   1449 
   1450 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1451 		if ((tagmask & (1 << tag)) == 0) {
   1452 			continue;
   1453 		}
   1454 		if (((tagmask - 1) & tagmask) == 0) {
   1455 			assert(count == ntagged[tag]);
   1456 		} else {
   1457 			assert(count >= ntagged[tag]);
   1458 		}
   1459 	}
   1460 }
   1461 
   1462 static void
   1463 test2(const char *title, bool dense)
   1464 {
   1465 	struct radix_tree s;
   1466 	struct radix_tree *t = &s;
   1467 	struct testnode *n;
   1468 	unsigned int i;
   1469 	unsigned int nnodes = 100000;
   1470 	unsigned int removed;
   1471 	unsigned int tag;
   1472 	unsigned int tagmask;
   1473 	unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
   1474 	struct testnode *nodes;
   1475 	struct timeval stv;
   1476 	struct timeval etv;
   1477 
   1478 	nodes = malloc(nnodes * sizeof(*nodes));
   1479 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1480 		ntagged[tag] = 0;
   1481 	}
   1482 	radix_tree_init_tree(t);
   1483 	for (i = 0; i < nnodes; i++) {
   1484 		n = &nodes[i];
   1485 		n->idx = random();
   1486 		if (sizeof(long) == 4) {
   1487 			n->idx <<= 32;
   1488 			n->idx |= (uint32_t)random();
   1489 		}
   1490 		if (dense) {
   1491 			n->idx %= nnodes * 2;
   1492 		}
   1493 		while (radix_tree_lookup_node(t, n->idx) != NULL) {
   1494 			n->idx++;
   1495 		}
   1496 		radix_tree_insert_node(t, n->idx, n);
   1497 		for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1498 			tagmask = 1 << tag;
   1499 
   1500 			n->tagged[tag] = test2_should_tag(i, tag);
   1501 			if (n->tagged[tag]) {
   1502 				radix_tree_set_tag(t, n->idx, tagmask);
   1503 				ntagged[tag]++;
   1504 			}
   1505 			assert((n->tagged[tag] ? tagmask : 0) ==
   1506 			    radix_tree_get_tag(t, n->idx, tagmask));
   1507 		}
   1508 	}
   1509 
   1510 	gettimeofday(&stv, NULL);
   1511 	for (i = 0; i < nnodes; i++) {
   1512 		n = &nodes[i];
   1513 		assert(radix_tree_lookup_node(t, n->idx) == n);
   1514 	}
   1515 	gettimeofday(&etv, NULL);
   1516 	printops(title, "lookup", 0, nnodes, &stv, &etv);
   1517 
   1518 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1519 		unsigned int count = 0;
   1520 
   1521 		gettimeofday(&stv, NULL);
   1522 		for (i = 0; i < nnodes; i++) {
   1523 			unsigned int tagged;
   1524 
   1525 			n = &nodes[i];
   1526 			tagged = radix_tree_get_tag(t, n->idx, tagmask);
   1527 			assert((tagged & ~tagmask) == 0);
   1528 			for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1529 				assert((tagmask & (1 << tag)) == 0 ||
   1530 				    n->tagged[tag] == !!(tagged & (1 << tag)));
   1531 			}
   1532 			if (tagged) {
   1533 				count++;
   1534 			}
   1535 		}
   1536 		gettimeofday(&etv, NULL);
   1537 		check_tag_count(ntagged, tagmask, count);
   1538 		printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
   1539 	}
   1540 
   1541 	gettimeofday(&stv, NULL);
   1542 	for (i = 0; i < nnodes; i++) {
   1543 		n = &nodes[i];
   1544 		radix_tree_remove_node(t, n->idx);
   1545 	}
   1546 	gettimeofday(&etv, NULL);
   1547 	printops(title, "remove", 0, nnodes, &stv, &etv);
   1548 
   1549 	gettimeofday(&stv, NULL);
   1550 	for (i = 0; i < nnodes; i++) {
   1551 		n = &nodes[i];
   1552 		radix_tree_insert_node(t, n->idx, n);
   1553 	}
   1554 	gettimeofday(&etv, NULL);
   1555 	printops(title, "insert", 0, nnodes, &stv, &etv);
   1556 
   1557 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1558 		tagmask = 1 << tag;
   1559 
   1560 		ntagged[tag] = 0;
   1561 		gettimeofday(&stv, NULL);
   1562 		for (i = 0; i < nnodes; i++) {
   1563 			n = &nodes[i];
   1564 			if (n->tagged[tag]) {
   1565 				radix_tree_set_tag(t, n->idx, tagmask);
   1566 				ntagged[tag]++;
   1567 			}
   1568 		}
   1569 		gettimeofday(&etv, NULL);
   1570 		printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
   1571 	}
   1572 
   1573 	gettimeofday(&stv, NULL);
   1574 	{
   1575 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1576 		uint64_t nextidx;
   1577 		unsigned int nfound;
   1578 		unsigned int total;
   1579 
   1580 		nextidx = 0;
   1581 		total = 0;
   1582 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1583 		    (void *)results, __arraycount(results), false)) > 0) {
   1584 			nextidx = results[nfound - 1]->idx + 1;
   1585 			total += nfound;
   1586 			if (nextidx == 0) {
   1587 				break;
   1588 			}
   1589 		}
   1590 		assert(total == nnodes);
   1591 	}
   1592 	gettimeofday(&etv, NULL);
   1593 	printops(title, "ganglookup", 0, nnodes, &stv, &etv);
   1594 
   1595 	gettimeofday(&stv, NULL);
   1596 	{
   1597 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1598 		uint64_t nextidx;
   1599 		unsigned int nfound;
   1600 		unsigned int total;
   1601 
   1602 		nextidx = UINT64_MAX;
   1603 		total = 0;
   1604 		while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
   1605 		    (void *)results, __arraycount(results), false)) > 0) {
   1606 			nextidx = results[nfound - 1]->idx - 1;
   1607 			total += nfound;
   1608 			if (nextidx == UINT64_MAX) {
   1609 				break;
   1610 			}
   1611 		}
   1612 		assert(total == nnodes);
   1613 	}
   1614 	gettimeofday(&etv, NULL);
   1615 	printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
   1616 
   1617 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1618 		unsigned int total = 0;
   1619 
   1620 		gettimeofday(&stv, NULL);
   1621 		{
   1622 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1623 			uint64_t nextidx;
   1624 			unsigned int nfound;
   1625 
   1626 			nextidx = 0;
   1627 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1628 			    nextidx, (void *)results, __arraycount(results),
   1629 			    false, tagmask)) > 0) {
   1630 				nextidx = results[nfound - 1]->idx + 1;
   1631 				total += nfound;
   1632 			}
   1633 		}
   1634 		gettimeofday(&etv, NULL);
   1635 		check_tag_count(ntagged, tagmask, total);
   1636 		assert(tagmask != 0 || total == 0);
   1637 		printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
   1638 	}
   1639 
   1640 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1641 		unsigned int total = 0;
   1642 
   1643 		gettimeofday(&stv, NULL);
   1644 		{
   1645 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1646 			uint64_t nextidx;
   1647 			unsigned int nfound;
   1648 
   1649 			nextidx = UINT64_MAX;
   1650 			while ((nfound =
   1651 			    radix_tree_gang_lookup_tagged_node_reverse(t,
   1652 			    nextidx, (void *)results, __arraycount(results),
   1653 			    false, tagmask)) > 0) {
   1654 				nextidx = results[nfound - 1]->idx - 1;
   1655 				total += nfound;
   1656 				if (nextidx == UINT64_MAX) {
   1657 					break;
   1658 				}
   1659 			}
   1660 		}
   1661 		gettimeofday(&etv, NULL);
   1662 		check_tag_count(ntagged, tagmask, total);
   1663 		assert(tagmask != 0 || total == 0);
   1664 		printops(title, "ganglookup_tag_reverse", tagmask, total,
   1665 		    &stv, &etv);
   1666 	}
   1667 
   1668 	removed = 0;
   1669 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1670 		unsigned int total;
   1671 
   1672 		total = 0;
   1673 		tagmask = 1 << tag;
   1674 		gettimeofday(&stv, NULL);
   1675 		{
   1676 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1677 			uint64_t nextidx;
   1678 			unsigned int nfound;
   1679 
   1680 			nextidx = 0;
   1681 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1682 			    nextidx, (void *)results, __arraycount(results),
   1683 			    false, tagmask)) > 0) {
   1684 				for (i = 0; i < nfound; i++) {
   1685 					radix_tree_remove_node(t,
   1686 					    results[i]->idx);
   1687 				}
   1688 				nextidx = results[nfound - 1]->idx + 1;
   1689 				total += nfound;
   1690 				if (nextidx == 0) {
   1691 					break;
   1692 				}
   1693 			}
   1694 		}
   1695 		gettimeofday(&etv, NULL);
   1696 		if (tag == 0) {
   1697 			check_tag_count(ntagged, tagmask, total);
   1698 		} else {
   1699 			assert(total <= ntagged[tag]);
   1700 		}
   1701 		printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
   1702 		    &etv);
   1703 		removed += total;
   1704 	}
   1705 
   1706 	gettimeofday(&stv, NULL);
   1707 	{
   1708 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1709 		uint64_t nextidx;
   1710 		unsigned int nfound;
   1711 		unsigned int total;
   1712 
   1713 		nextidx = 0;
   1714 		total = 0;
   1715 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1716 		    (void *)results, __arraycount(results), false)) > 0) {
   1717 			for (i = 0; i < nfound; i++) {
   1718 				assert(results[i] == radix_tree_remove_node(t,
   1719 				    results[i]->idx));
   1720 			}
   1721 			nextidx = results[nfound - 1]->idx + 1;
   1722 			total += nfound;
   1723 			if (nextidx == 0) {
   1724 				break;
   1725 			}
   1726 		}
   1727 		assert(total == nnodes - removed);
   1728 	}
   1729 	gettimeofday(&etv, NULL);
   1730 	printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
   1731 
   1732 	assert(radix_tree_empty_tree_p(t));
   1733 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1734 		assert(radix_tree_empty_tagged_tree_p(t, tagmask));
   1735 	}
   1736 	radix_tree_fini_tree(t);
   1737 	free(nodes);
   1738 }
   1739 
   1740 int
   1741 main(int argc, char *argv[])
   1742 {
   1743 
   1744 	test1();
   1745 	test2("dense", true);
   1746 	test2("sparse", false);
   1747 	return 0;
   1748 }
   1749 
   1750 #endif /* defined(UNITTEST) */
   1751