radixtree.c revision 1.32 1 /* $NetBSD: radixtree.c,v 1.32 2023/09/23 18:21:11 ad Exp $ */
2
3 /*-
4 * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * radixtree.c
31 *
32 * Overview:
33 *
34 * This is an implementation of radix tree, whose keys are uint64_t and leafs
35 * are user provided pointers.
36 *
37 * Leaf nodes are just void * and this implementation doesn't care about
38 * what they actually point to. However, this implementation has an assumption
39 * about their alignment. Specifically, this implementation assumes that their
40 * 2 LSBs are always zero and uses them for internal accounting.
41 *
42 * Intermediate nodes and memory allocation:
43 *
44 * Intermediate nodes are automatically allocated and freed internally and
45 * basically users don't need to care about them. The allocation is done via
46 * kmem_zalloc(9) for _KERNEL, malloc(3) for userland, and alloc() for
47 * _STANDALONE environment. Only radix_tree_insert_node function can allocate
48 * memory for intermediate nodes and thus can fail for ENOMEM.
49 *
50 * Memory Efficiency:
51 *
52 * It's designed to work efficiently with dense index distribution.
53 * The memory consumption (number of necessary intermediate nodes) heavily
54 * depends on the index distribution. Basically, more dense index distribution
55 * consumes less nodes per item. Approximately,
56 *
57 * - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
58 * it would look like the following.
59 *
60 * root (t_height=1)
61 * |
62 * v
63 * [ | | | ] (intermediate node. RADIX_TREE_PTR_PER_NODE=4 in this fig)
64 * | | | |
65 * v v v v
66 * p p p p (items)
67 *
68 * - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
69 * it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
70 *
71 * root (t_height=3)
72 * |
73 * v
74 * [ | | | ]
75 * |
76 * v
77 * [ | | | ]
78 * |
79 * v
80 * [ | | | ]
81 * |
82 * v
83 * p
84 *
85 * The height of tree (t_height) is dynamic. It's smaller if only small
86 * index values are used. As an extreme case, if only index 0 is used,
87 * the corresponding value is directly stored in the root of the tree
88 * (struct radix_tree) without allocating any intermediate nodes. In that
89 * case, t_height=0.
90 *
91 * Gang lookup:
92 *
93 * This implementation provides a way to scan many nodes quickly via
94 * radix_tree_gang_lookup_node function and its varients.
95 *
96 * Tags:
97 *
98 * This implementation provides tagging functionality, which allows quick
99 * scanning of a subset of leaf nodes. Leaf nodes are untagged when inserted
100 * into the tree and can be tagged by radix_tree_set_tag function.
101 * radix_tree_gang_lookup_tagged_node function and its variants returns only
102 * leaf nodes with the given tag. To reduce amount of nodes to visit for
103 * these functions, this implementation keeps tagging information in internal
104 * intermediate nodes and quickly skips uninterested parts of a tree.
105 *
106 * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
107 * identified by a zero-origin numbers, tagid. For the current implementation,
108 * RADIX_TREE_TAG_ID_MAX is 2. A set of tags is described as a bitmask tagmask,
109 * which is a bitwise OR of (1 << tagid).
110 */
111
112 #include <sys/cdefs.h>
113
114 #if defined(_KERNEL) || defined(_STANDALONE)
115 __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.32 2023/09/23 18:21:11 ad Exp $");
116 #include <sys/param.h>
117 #include <sys/errno.h>
118 #include <sys/kmem.h>
119 #include <sys/radixtree.h>
120 #include <lib/libkern/libkern.h>
121 #if defined(_STANDALONE)
122 #include <lib/libsa/stand.h>
123 #endif /* defined(_STANDALONE) */
124 #else /* defined(_KERNEL) || defined(_STANDALONE) */
125 __RCSID("$NetBSD: radixtree.c,v 1.32 2023/09/23 18:21:11 ad Exp $");
126 #include <assert.h>
127 #include <errno.h>
128 #include <stdbool.h>
129 #include <stdlib.h>
130 #include <string.h>
131 #if 1
132 #define KASSERT assert
133 #else
134 #define KASSERT(a) /* nothing */
135 #endif
136 #endif /* defined(_KERNEL) || defined(_STANDALONE) */
137
138 #include <sys/radixtree.h>
139
140 #define RADIX_TREE_BITS_PER_HEIGHT 4 /* XXX tune */
141 #define RADIX_TREE_PTR_PER_NODE (1 << RADIX_TREE_BITS_PER_HEIGHT)
142 #define RADIX_TREE_MAX_HEIGHT (64 / RADIX_TREE_BITS_PER_HEIGHT)
143 #define RADIX_TREE_INVALID_HEIGHT (RADIX_TREE_MAX_HEIGHT + 1)
144 __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
145
146 __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
147 #define RADIX_TREE_TAG_MASK ((1 << RADIX_TREE_TAG_ID_MAX) - 1)
148
149 static inline void *
150 entry_ptr(void *p)
151 {
152
153 return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
154 }
155
156 static inline unsigned int
157 entry_tagmask(void *p)
158 {
159
160 return (uintptr_t)p & RADIX_TREE_TAG_MASK;
161 }
162
163 static inline void *
164 entry_compose(void *p, unsigned int tagmask)
165 {
166
167 return (void *)((uintptr_t)p | tagmask);
168 }
169
170 static inline bool
171 entry_match_p(void *p, unsigned int tagmask)
172 {
173
174 KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
175 if (p == NULL) {
176 return false;
177 }
178 if (tagmask == 0) {
179 return true;
180 }
181 return (entry_tagmask(p) & tagmask) != 0;
182 }
183
184 /*
185 * radix_tree_node: an intermediate node
186 *
187 * we don't care the type of leaf nodes. they are just void *.
188 *
189 * we used to maintain a count of non-NULL nodes in this structure, but it
190 * prevented it from being aligned to a cache line boundary; the performance
191 * benefit from being cache friendly is greater than the benefit of having
192 * a dedicated count value, especially in multi-processor situations where
193 * we need to avoid intra-pool-page false sharing.
194 */
195
196 struct radix_tree_node {
197 void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
198 };
199
200 /*
201 * p_refs[0].pptr == &t->t_root
202 * :
203 * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
204 * :
205 * :
206 * p_refs[t->t_height].pptr == &leaf_pointer
207 */
208
209 struct radix_tree_path {
210 struct radix_tree_node_ref {
211 void **pptr;
212 } p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
213 /*
214 * p_lastidx is either the index of the last valid element of p_refs[]
215 * or RADIX_TREE_INVALID_HEIGHT.
216 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
217 * that the height of the tree is not enough to cover the given index.
218 */
219 unsigned int p_lastidx;
220 };
221
222 static inline void **
223 path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
224 unsigned int height)
225 {
226
227 KASSERT(height <= t->t_height);
228 return p->p_refs[height].pptr;
229 }
230
231 static inline struct radix_tree_node *
232 path_node(const struct radix_tree * t, const struct radix_tree_path *p,
233 unsigned int height)
234 {
235
236 KASSERT(height <= t->t_height);
237 return entry_ptr(*path_pptr(t, p, height));
238 }
239
240 /*
241 * radix_tree_init_tree:
242 *
243 * Initialize a tree.
244 */
245
246 void
247 radix_tree_init_tree(struct radix_tree *t)
248 {
249
250 t->t_height = 0;
251 t->t_root = NULL;
252 }
253
254 /*
255 * radix_tree_fini_tree:
256 *
257 * Finish using a tree.
258 */
259
260 void
261 radix_tree_fini_tree(struct radix_tree *t)
262 {
263
264 KASSERT(t->t_root == NULL);
265 KASSERT(t->t_height == 0);
266 }
267
268 /*
269 * radix_tree_empty_tree_p:
270 *
271 * Return if the tree is empty.
272 */
273
274 bool
275 radix_tree_empty_tree_p(struct radix_tree *t)
276 {
277
278 return t->t_root == NULL;
279 }
280
281 /*
282 * radix_tree_empty_tree_p:
283 *
284 * Return true if the tree has any nodes with the given tag. Otherwise
285 * return false.
286 *
287 * It's illegal to call this function with tagmask 0.
288 */
289
290 bool
291 radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
292 {
293
294 KASSERT(tagmask != 0);
295 return (entry_tagmask(t->t_root) & tagmask) == 0;
296 }
297
298 static void
299 radix_tree_node_init(struct radix_tree_node *n)
300 {
301
302 memset(n, 0, sizeof(*n));
303 }
304
305 #if defined(_KERNEL)
306 /*
307 * radix_tree_init:
308 *
309 * initialize the subsystem.
310 */
311
312 void
313 radix_tree_init(void)
314 {
315
316 /* nothing right now */
317 }
318
319 /*
320 * radix_tree_await_memory:
321 *
322 * after an insert has failed with ENOMEM, wait for memory to become
323 * available, so the caller can retry. this needs to ensure that the
324 * maximum possible required number of nodes is available.
325 */
326
327 void
328 radix_tree_await_memory(void)
329 {
330 struct radix_tree_node *nodes[RADIX_TREE_MAX_HEIGHT];
331 int i;
332
333 for (i = 0; i < __arraycount(nodes); i++) {
334 nodes[i] = kmem_intr_alloc(sizeof(struct radix_tree_node),
335 KM_SLEEP);
336 }
337 while (--i >= 0) {
338 kmem_free(nodes[i], sizeof(struct radix_tree_node));
339 }
340 }
341
342 #endif /* defined(_KERNEL) */
343
344 /*
345 * radix_tree_sum_node:
346 *
347 * return the logical sum of all entries in the given node. used to quickly
348 * check for tag masks or empty nodes.
349 */
350
351 static uintptr_t
352 radix_tree_sum_node(const struct radix_tree_node *n)
353 {
354 #if RADIX_TREE_PTR_PER_NODE > 16
355 unsigned int i;
356 uintptr_t sum;
357
358 for (i = 0, sum = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
359 sum |= (uintptr_t)n->n_ptrs[i];
360 }
361 return sum;
362 #else /* RADIX_TREE_PTR_PER_NODE > 16 */
363 uintptr_t sum;
364
365 /*
366 * Unrolling the above is much better than a tight loop with two
367 * test+branch pairs. On x86 with gcc 5.5.0 this compiles into 19
368 * deterministic instructions including the "return" and prologue &
369 * epilogue.
370 */
371 sum = (uintptr_t)n->n_ptrs[0];
372 sum |= (uintptr_t)n->n_ptrs[1];
373 sum |= (uintptr_t)n->n_ptrs[2];
374 sum |= (uintptr_t)n->n_ptrs[3];
375 #if RADIX_TREE_PTR_PER_NODE > 4
376 sum |= (uintptr_t)n->n_ptrs[4];
377 sum |= (uintptr_t)n->n_ptrs[5];
378 sum |= (uintptr_t)n->n_ptrs[6];
379 sum |= (uintptr_t)n->n_ptrs[7];
380 #endif
381 #if RADIX_TREE_PTR_PER_NODE > 8
382 sum |= (uintptr_t)n->n_ptrs[8];
383 sum |= (uintptr_t)n->n_ptrs[9];
384 sum |= (uintptr_t)n->n_ptrs[10];
385 sum |= (uintptr_t)n->n_ptrs[11];
386 sum |= (uintptr_t)n->n_ptrs[12];
387 sum |= (uintptr_t)n->n_ptrs[13];
388 sum |= (uintptr_t)n->n_ptrs[14];
389 sum |= (uintptr_t)n->n_ptrs[15];
390 #endif
391 return sum;
392 #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
393 }
394
395 static int __unused
396 radix_tree_node_count_ptrs(const struct radix_tree_node *n)
397 {
398 unsigned int i, c;
399
400 for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
401 c += (n->n_ptrs[i] != NULL);
402 }
403 return c;
404 }
405
406 static struct radix_tree_node *
407 radix_tree_alloc_node(void)
408 {
409 struct radix_tree_node *n;
410
411 #if defined(_KERNEL)
412 /*
413 * note that kmem_alloc can block.
414 */
415 n = kmem_intr_alloc(sizeof(struct radix_tree_node), KM_SLEEP);
416 #elif defined(_STANDALONE)
417 n = alloc(sizeof(*n));
418 #else /* defined(_STANDALONE) */
419 n = malloc(sizeof(*n));
420 #endif /* defined(_STANDALONE) */
421 if (n != NULL) {
422 radix_tree_node_init(n);
423 }
424 KASSERT(n == NULL || radix_tree_sum_node(n) == 0);
425 return n;
426 }
427
428 static void
429 radix_tree_free_node(struct radix_tree_node *n)
430 {
431
432 KASSERT(radix_tree_sum_node(n) == 0);
433 #if defined(_KERNEL)
434 kmem_intr_free(n, sizeof(struct radix_tree_node));
435 #elif defined(_STANDALONE)
436 dealloc(n, sizeof(*n));
437 #else
438 free(n);
439 #endif
440 }
441
442 /*
443 * radix_tree_grow:
444 *
445 * increase the height of the tree.
446 */
447
448 static __noinline int
449 radix_tree_grow(struct radix_tree *t, unsigned int newheight)
450 {
451 const unsigned int tagmask = entry_tagmask(t->t_root);
452 struct radix_tree_node *newnodes[RADIX_TREE_MAX_HEIGHT];
453 void *root;
454 int h;
455
456 KASSERT(newheight <= RADIX_TREE_MAX_HEIGHT);
457 if ((root = t->t_root) == NULL) {
458 t->t_height = newheight;
459 return 0;
460 }
461 for (h = t->t_height; h < newheight; h++) {
462 newnodes[h] = radix_tree_alloc_node();
463 if (__predict_false(newnodes[h] == NULL)) {
464 while (--h >= (int)t->t_height) {
465 newnodes[h]->n_ptrs[0] = NULL;
466 radix_tree_free_node(newnodes[h]);
467 }
468 return ENOMEM;
469 }
470 newnodes[h]->n_ptrs[0] = root;
471 root = entry_compose(newnodes[h], tagmask);
472 }
473 t->t_root = root;
474 t->t_height = h;
475 return 0;
476 }
477
478 /*
479 * radix_tree_lookup_ptr:
480 *
481 * an internal helper function used for various exported functions.
482 *
483 * return the pointer to store the node for the given index.
484 *
485 * if alloc is true, try to allocate the storage. (note for _KERNEL:
486 * in that case, this function can block.) if the allocation failed or
487 * alloc is false, return NULL.
488 *
489 * if path is not NULL, fill it for the caller's investigation.
490 *
491 * if tagmask is not zero, search only for nodes with the tag set.
492 * note that, however, this function doesn't check the tagmask for the leaf
493 * pointer. it's a caller's responsibility to investigate the value which
494 * is pointed by the returned pointer if necessary.
495 *
496 * while this function is a bit large, as it's called with some constant
497 * arguments, inlining might have benefits. anyway, a compiler will decide.
498 */
499
500 static inline void **
501 radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
502 struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
503 {
504 struct radix_tree_node *n;
505 int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
506 int shift;
507 void **vpp;
508 const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
509 struct radix_tree_node_ref *refs = NULL;
510
511 /*
512 * check unsupported combinations
513 */
514 KASSERT(tagmask == 0 || !alloc);
515 KASSERT(path == NULL || !alloc);
516 vpp = &t->t_root;
517 if (path != NULL) {
518 refs = path->p_refs;
519 refs->pptr = vpp;
520 }
521 n = NULL;
522 for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
523 struct radix_tree_node *c;
524 void *entry;
525 const uint64_t i = (idx >> shift) & mask;
526
527 if (shift >= hshift) {
528 unsigned int newheight;
529
530 KASSERT(vpp == &t->t_root);
531 if (i == 0) {
532 shift -= RADIX_TREE_BITS_PER_HEIGHT;
533 continue;
534 }
535 if (!alloc) {
536 if (path != NULL) {
537 KASSERT((refs - path->p_refs) == 0);
538 path->p_lastidx =
539 RADIX_TREE_INVALID_HEIGHT;
540 }
541 return NULL;
542 }
543 newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
544 if (radix_tree_grow(t, newheight)) {
545 return NULL;
546 }
547 hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
548 }
549 entry = *vpp;
550 c = entry_ptr(entry);
551 if (c == NULL ||
552 (tagmask != 0 &&
553 (entry_tagmask(entry) & tagmask) == 0)) {
554 if (!alloc) {
555 if (path != NULL) {
556 path->p_lastidx = refs - path->p_refs;
557 }
558 return NULL;
559 }
560 c = radix_tree_alloc_node();
561 if (c == NULL) {
562 return NULL;
563 }
564 *vpp = c;
565 }
566 n = c;
567 vpp = &n->n_ptrs[i];
568 if (path != NULL) {
569 refs++;
570 refs->pptr = vpp;
571 }
572 shift -= RADIX_TREE_BITS_PER_HEIGHT;
573 }
574 if (alloc) {
575 KASSERT(*vpp == NULL);
576 }
577 if (path != NULL) {
578 path->p_lastidx = refs - path->p_refs;
579 }
580 return vpp;
581 }
582
583 /*
584 * radix_tree_undo_insert_node:
585 *
586 * Undo the effects of a failed insert. The conditions that led to the
587 * insert may change and it may not be retried. If the insert is not
588 * retried, there will be no corresponding radix_tree_remove_node() for
589 * this index in the future. Therefore any adjustments made to the tree
590 * before memory was exhausted must be reverted.
591 */
592
593 static __noinline void
594 radix_tree_undo_insert_node(struct radix_tree *t, uint64_t idx)
595 {
596 struct radix_tree_path path;
597 int i;
598
599 (void)radix_tree_lookup_ptr(t, idx, &path, false, 0);
600 if (path.p_lastidx == RADIX_TREE_INVALID_HEIGHT) {
601 /*
602 * no nodes were inserted.
603 */
604 return;
605 }
606 for (i = path.p_lastidx - 1; i >= 0; i--) {
607 struct radix_tree_node ** const pptr =
608 (struct radix_tree_node **)path_pptr(t, &path, i);
609 struct radix_tree_node *n;
610
611 KASSERT(pptr != NULL);
612 n = entry_ptr(*pptr);
613 KASSERT(n != NULL);
614 if (radix_tree_sum_node(n) != 0) {
615 break;
616 }
617 radix_tree_free_node(n);
618 *pptr = NULL;
619 }
620 /*
621 * fix up height
622 */
623 if (i < 0) {
624 KASSERT(t->t_root == NULL);
625 t->t_height = 0;
626 }
627 }
628
629 /*
630 * radix_tree_insert_node:
631 *
632 * Insert the node at the given index.
633 *
634 * It's illegal to insert NULL. It's illegal to insert a non-aligned pointer.
635 *
636 * This function returns ENOMEM if necessary memory allocation failed.
637 * Otherwise, this function returns 0.
638 *
639 * Note that inserting a node can involves memory allocation for intermediate
640 * nodes. If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
641 *
642 * For the newly inserted node, all tags are cleared.
643 */
644
645 int
646 radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
647 {
648 void **vpp;
649
650 KASSERT(p != NULL);
651 KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
652 vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
653 if (__predict_false(vpp == NULL)) {
654 radix_tree_undo_insert_node(t, idx);
655 return ENOMEM;
656 }
657 KASSERT(*vpp == NULL);
658 *vpp = p;
659 return 0;
660 }
661
662 /*
663 * radix_tree_replace_node:
664 *
665 * Replace a node at the given index with the given node and return the
666 * replaced one.
667 *
668 * It's illegal to try to replace a node which has not been inserted.
669 *
670 * This function keeps tags intact.
671 */
672
673 void *
674 radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
675 {
676 void **vpp;
677 void *oldp;
678
679 KASSERT(p != NULL);
680 KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
681 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
682 KASSERT(vpp != NULL);
683 oldp = *vpp;
684 KASSERT(oldp != NULL);
685 *vpp = entry_compose(p, entry_tagmask(*vpp));
686 return entry_ptr(oldp);
687 }
688
689 /*
690 * radix_tree_remove_node:
691 *
692 * Remove the node at the given index.
693 *
694 * It's illegal to try to remove a node which has not been inserted.
695 */
696
697 void *
698 radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
699 {
700 struct radix_tree_path path;
701 void **vpp;
702 void *oldp;
703 int i;
704
705 vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
706 KASSERT(vpp != NULL);
707 oldp = *vpp;
708 KASSERT(oldp != NULL);
709 KASSERT(path.p_lastidx == t->t_height);
710 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
711 *vpp = NULL;
712 for (i = t->t_height - 1; i >= 0; i--) {
713 void *entry;
714 struct radix_tree_node ** const pptr =
715 (struct radix_tree_node **)path_pptr(t, &path, i);
716 struct radix_tree_node *n;
717
718 KASSERT(pptr != NULL);
719 entry = *pptr;
720 n = entry_ptr(entry);
721 KASSERT(n != NULL);
722 if (radix_tree_sum_node(n) != 0) {
723 break;
724 }
725 radix_tree_free_node(n);
726 *pptr = NULL;
727 }
728 /*
729 * fix up height
730 */
731 if (i < 0) {
732 KASSERT(t->t_root == NULL);
733 t->t_height = 0;
734 }
735 /*
736 * update tags
737 */
738 for (; i >= 0; i--) {
739 void *entry;
740 struct radix_tree_node ** const pptr =
741 (struct radix_tree_node **)path_pptr(t, &path, i);
742 struct radix_tree_node *n;
743 unsigned int newmask;
744
745 KASSERT(pptr != NULL);
746 entry = *pptr;
747 n = entry_ptr(entry);
748 KASSERT(n != NULL);
749 KASSERT(radix_tree_sum_node(n) != 0);
750 newmask = radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK;
751 if (newmask == entry_tagmask(entry)) {
752 break;
753 }
754 *pptr = entry_compose(n, newmask);
755 }
756 /*
757 * XXX is it worth to try to reduce height?
758 * if we do that, make radix_tree_grow rollback its change as well.
759 */
760 return entry_ptr(oldp);
761 }
762
763 /*
764 * radix_tree_lookup_node:
765 *
766 * Returns the node at the given index.
767 * Returns NULL if nothing is found at the given index.
768 */
769
770 void *
771 radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
772 {
773 void **vpp;
774
775 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
776 if (vpp == NULL) {
777 return NULL;
778 }
779 return entry_ptr(*vpp);
780 }
781
782 static inline void
783 gang_lookup_init(struct radix_tree *t, uint64_t idx,
784 struct radix_tree_path *path, const unsigned int tagmask)
785 {
786 void **vpp __unused;
787
788 vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
789 KASSERT(vpp == NULL ||
790 vpp == path_pptr(t, path, path->p_lastidx));
791 KASSERT(&t->t_root == path_pptr(t, path, 0));
792 KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
793 path->p_lastidx == t->t_height ||
794 !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
795 }
796
797 /*
798 * gang_lookup_scan:
799 *
800 * a helper routine for radix_tree_gang_lookup_node and its variants.
801 */
802
803 static inline unsigned int
804 __attribute__((__always_inline__))
805 gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
806 void **results, const unsigned int maxresults, const unsigned int tagmask,
807 const bool reverse, const bool dense)
808 {
809
810 /*
811 * we keep the path updated only for lastidx-1.
812 * vpp is what path_pptr(t, path, lastidx) would be.
813 */
814 void **vpp;
815 unsigned int nfound;
816 unsigned int lastidx;
817 /*
818 * set up scan direction dependant constants so that we can iterate
819 * n_ptrs as the following.
820 *
821 * for (i = first; i != guard; i += step)
822 * visit n->n_ptrs[i];
823 */
824 const int step = reverse ? -1 : 1;
825 const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
826 const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
827 const unsigned int guard = last + step;
828
829 KASSERT(maxresults > 0);
830 KASSERT(&t->t_root == path_pptr(t, path, 0));
831 lastidx = path->p_lastidx;
832 KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
833 lastidx == t->t_height ||
834 !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
835 nfound = 0;
836 if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
837 /*
838 * requested idx is beyond the right-most node.
839 */
840 if (reverse && !dense) {
841 lastidx = 0;
842 vpp = path_pptr(t, path, lastidx);
843 goto descend;
844 }
845 return 0;
846 }
847 vpp = path_pptr(t, path, lastidx);
848 while (/*CONSTCOND*/true) {
849 struct radix_tree_node *n;
850 unsigned int i;
851
852 if (entry_match_p(*vpp, tagmask)) {
853 KASSERT(lastidx == t->t_height);
854 /*
855 * record the matching non-NULL leaf.
856 */
857 results[nfound] = entry_ptr(*vpp);
858 nfound++;
859 if (nfound == maxresults) {
860 return nfound;
861 }
862 } else if (dense) {
863 return nfound;
864 }
865 scan_siblings:
866 /*
867 * try to find the next matching non-NULL sibling.
868 */
869 if (lastidx == 0) {
870 /*
871 * the root has no siblings.
872 * we've done.
873 */
874 KASSERT(vpp == &t->t_root);
875 break;
876 }
877 n = path_node(t, path, lastidx - 1);
878 for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
879 KASSERT(i < RADIX_TREE_PTR_PER_NODE);
880 if (entry_match_p(n->n_ptrs[i], tagmask)) {
881 vpp = &n->n_ptrs[i];
882 break;
883 } else if (dense) {
884 return nfound;
885 }
886 }
887 if (i == guard) {
888 /*
889 * not found. go to parent.
890 */
891 lastidx--;
892 vpp = path_pptr(t, path, lastidx);
893 goto scan_siblings;
894 }
895 descend:
896 /*
897 * following the left-most (or right-most in the case of
898 * reverse scan) child node, descend until reaching the leaf or
899 * a non-matching entry.
900 */
901 while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
902 /*
903 * save vpp in the path so that we can come back to this
904 * node after finishing visiting children.
905 */
906 path->p_refs[lastidx].pptr = vpp;
907 n = entry_ptr(*vpp);
908 vpp = &n->n_ptrs[first];
909 lastidx++;
910 }
911 }
912 return nfound;
913 }
914
915 /*
916 * radix_tree_gang_lookup_node:
917 *
918 * Scan the tree starting from the given index in the ascending order and
919 * return found nodes.
920 *
921 * results should be an array large enough to hold maxresults pointers.
922 * This function returns the number of nodes found, up to maxresults.
923 * Returning less than maxresults means there are no more nodes in the tree.
924 *
925 * If dense == true, this function stops scanning when it founds a hole of
926 * indexes. I.e. an index for which radix_tree_lookup_node would returns NULL.
927 * If dense == false, this function skips holes and continue scanning until
928 * maxresults nodes are found or it reaches the limit of the index range.
929 *
930 * The result of this function is semantically equivalent to what could be
931 * obtained by repeated calls of radix_tree_lookup_node with increasing index.
932 * but this function is expected to be computationally cheaper when looking up
933 * multiple nodes at once. Especially, it's expected to be much cheaper when
934 * node indexes are distributed sparsely.
935 *
936 * Note that this function doesn't return index values of found nodes.
937 * Thus, in the case of dense == false, if index values are important for
938 * a caller, it's the caller's responsibility to check them, typically
939 * by examining the returned nodes using some caller-specific knowledge
940 * about them.
941 * In the case of dense == true, a node returned via results[N] is always for
942 * the index (idx + N).
943 */
944
945 unsigned int
946 radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
947 void **results, unsigned int maxresults, bool dense)
948 {
949 struct radix_tree_path path;
950
951 gang_lookup_init(t, idx, &path, 0);
952 return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
953 }
954
955 /*
956 * radix_tree_gang_lookup_node_reverse:
957 *
958 * Same as radix_tree_gang_lookup_node except that this one scans the
959 * tree in the reverse order. I.e. descending index values.
960 */
961
962 unsigned int
963 radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
964 void **results, unsigned int maxresults, bool dense)
965 {
966 struct radix_tree_path path;
967
968 gang_lookup_init(t, idx, &path, 0);
969 return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
970 }
971
972 /*
973 * radix_tree_gang_lookup_tagged_node:
974 *
975 * Same as radix_tree_gang_lookup_node except that this one only returns
976 * nodes tagged with tagid.
977 *
978 * It's illegal to call this function with tagmask 0.
979 */
980
981 unsigned int
982 radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
983 void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
984 {
985 struct radix_tree_path path;
986
987 KASSERT(tagmask != 0);
988 gang_lookup_init(t, idx, &path, tagmask);
989 return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
990 dense);
991 }
992
993 /*
994 * radix_tree_gang_lookup_tagged_node_reverse:
995 *
996 * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
997 * tree in the reverse order. I.e. descending index values.
998 */
999
1000 unsigned int
1001 radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
1002 void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
1003 {
1004 struct radix_tree_path path;
1005
1006 KASSERT(tagmask != 0);
1007 gang_lookup_init(t, idx, &path, tagmask);
1008 return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
1009 dense);
1010 }
1011
1012 /*
1013 * radix_tree_get_tag:
1014 *
1015 * Return the tagmask for the node at the given index.
1016 *
1017 * It's illegal to call this function for a node which has not been inserted.
1018 */
1019
1020 unsigned int
1021 radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1022 {
1023 /*
1024 * the following two implementations should behave same.
1025 * the former one was chosen because it seems faster.
1026 */
1027 #if 1
1028 void **vpp;
1029
1030 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
1031 if (vpp == NULL) {
1032 return false;
1033 }
1034 KASSERT(*vpp != NULL);
1035 return (entry_tagmask(*vpp) & tagmask);
1036 #else
1037 void **vpp;
1038
1039 vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
1040 KASSERT(vpp != NULL);
1041 return (entry_tagmask(*vpp) & tagmask);
1042 #endif
1043 }
1044
1045 /*
1046 * radix_tree_set_tag:
1047 *
1048 * Set the tag for the node at the given index.
1049 *
1050 * It's illegal to call this function for a node which has not been inserted.
1051 * It's illegal to call this function with tagmask 0.
1052 */
1053
1054 void
1055 radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1056 {
1057 struct radix_tree_path path;
1058 void **vpp __unused;
1059 int i;
1060
1061 KASSERT(tagmask != 0);
1062 vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
1063 KASSERT(vpp != NULL);
1064 KASSERT(*vpp != NULL);
1065 KASSERT(path.p_lastidx == t->t_height);
1066 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
1067 for (i = t->t_height; i >= 0; i--) {
1068 void ** const pptr = (void **)path_pptr(t, &path, i);
1069 void *entry;
1070
1071 KASSERT(pptr != NULL);
1072 entry = *pptr;
1073 if ((entry_tagmask(entry) & tagmask) != 0) {
1074 break;
1075 }
1076 *pptr = (void *)((uintptr_t)entry | tagmask);
1077 }
1078 }
1079
1080 /*
1081 * radix_tree_clear_tag:
1082 *
1083 * Clear the tag for the node at the given index.
1084 *
1085 * It's illegal to call this function for a node which has not been inserted.
1086 * It's illegal to call this function with tagmask 0.
1087 */
1088
1089 void
1090 radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1091 {
1092 struct radix_tree_path path;
1093 void **vpp;
1094 int i;
1095
1096 KASSERT(tagmask != 0);
1097 vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
1098 KASSERT(vpp != NULL);
1099 KASSERT(*vpp != NULL);
1100 KASSERT(path.p_lastidx == t->t_height);
1101 KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
1102 /*
1103 * if already cleared, nothing to do
1104 */
1105 if ((entry_tagmask(*vpp) & tagmask) == 0) {
1106 return;
1107 }
1108 /*
1109 * clear the tag only if no children have the tag.
1110 */
1111 for (i = t->t_height; i >= 0; i--) {
1112 void ** const pptr = (void **)path_pptr(t, &path, i);
1113 void *entry;
1114
1115 KASSERT(pptr != NULL);
1116 entry = *pptr;
1117 KASSERT((entry_tagmask(entry) & tagmask) != 0);
1118 *pptr = entry_compose(entry_ptr(entry),
1119 entry_tagmask(entry) & ~tagmask);
1120 /*
1121 * check if we should proceed to process the next level.
1122 */
1123 if (0 < i) {
1124 struct radix_tree_node *n = path_node(t, &path, i - 1);
1125
1126 if ((radix_tree_sum_node(n) & tagmask) != 0) {
1127 break;
1128 }
1129 }
1130 }
1131 }
1132
1133 #if defined(UNITTEST)
1134
1135 #include <inttypes.h>
1136 #include <stdio.h>
1137
1138 static void
1139 radix_tree_dump_node(const struct radix_tree *t, void *vp,
1140 uint64_t offset, unsigned int height)
1141 {
1142 struct radix_tree_node *n;
1143 unsigned int i;
1144
1145 for (i = 0; i < t->t_height - height; i++) {
1146 printf(" ");
1147 }
1148 if (entry_tagmask(vp) == 0) {
1149 printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
1150 } else {
1151 printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
1152 entry_tagmask(vp));
1153 }
1154 if (height == 0) {
1155 printf(" (leaf)\n");
1156 return;
1157 }
1158 n = entry_ptr(vp);
1159 assert((radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK) ==
1160 entry_tagmask(vp));
1161 printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
1162 for (i = 0; i < __arraycount(n->n_ptrs); i++) {
1163 void *c;
1164
1165 c = n->n_ptrs[i];
1166 if (c == NULL) {
1167 continue;
1168 }
1169 radix_tree_dump_node(t, c,
1170 offset + i * (UINT64_C(1) <<
1171 (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
1172 }
1173 }
1174
1175 void radix_tree_dump(const struct radix_tree *);
1176
1177 void
1178 radix_tree_dump(const struct radix_tree *t)
1179 {
1180
1181 printf("tree %p height=%u\n", t, t->t_height);
1182 radix_tree_dump_node(t, t->t_root, 0, t->t_height);
1183 }
1184
1185 static void
1186 test1(void)
1187 {
1188 struct radix_tree s;
1189 struct radix_tree *t = &s;
1190 void *results[3];
1191
1192 radix_tree_init_tree(t);
1193 radix_tree_dump(t);
1194 assert(radix_tree_lookup_node(t, 0) == NULL);
1195 assert(radix_tree_lookup_node(t, 1000) == NULL);
1196 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
1197 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1198 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1199 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1200 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1201 0);
1202 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1203 0);
1204 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1205 == 0);
1206 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1207 == 0);
1208 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1209 == 0);
1210 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1211 == 0);
1212 assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
1213 == 0);
1214 assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
1215 == 0);
1216 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1217 false, 1) == 0);
1218 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1219 true, 1) == 0);
1220 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1221 false, 1) == 0);
1222 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1223 true, 1) == 0);
1224 assert(radix_tree_empty_tree_p(t));
1225 assert(radix_tree_empty_tagged_tree_p(t, 1));
1226 assert(radix_tree_empty_tagged_tree_p(t, 2));
1227 assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
1228 assert(!radix_tree_empty_tree_p(t));
1229 assert(radix_tree_empty_tagged_tree_p(t, 1));
1230 assert(radix_tree_empty_tagged_tree_p(t, 2));
1231 assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
1232 assert(radix_tree_lookup_node(t, 1000) == NULL);
1233 memset(results, 0, sizeof(results));
1234 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1235 assert(results[0] == (void *)0xdeadbea0);
1236 memset(results, 0, sizeof(results));
1237 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1238 assert(results[0] == (void *)0xdeadbea0);
1239 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1240 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1241 memset(results, 0, sizeof(results));
1242 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1243 1);
1244 assert(results[0] == (void *)0xdeadbea0);
1245 memset(results, 0, sizeof(results));
1246 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1247 1);
1248 assert(results[0] == (void *)0xdeadbea0);
1249 memset(results, 0, sizeof(results));
1250 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1251 == 1);
1252 assert(results[0] == (void *)0xdeadbea0);
1253 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1254 == 0);
1255 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1256 == 0);
1257 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1258 == 0);
1259 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1260 false, 1) == 0);
1261 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1262 true, 1) == 0);
1263 assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
1264 assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
1265 assert(!radix_tree_empty_tree_p(t));
1266 radix_tree_dump(t);
1267 assert(radix_tree_lookup_node(t, 0) == NULL);
1268 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1269 memset(results, 0, sizeof(results));
1270 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1271 assert(results[0] == (void *)0xdeadbea0);
1272 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1273 memset(results, 0, sizeof(results));
1274 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
1275 assert(results[0] == (void *)0xdeadbea0);
1276 memset(results, 0, sizeof(results));
1277 assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
1278 assert(results[0] == (void *)0xdeadbea0);
1279 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
1280 == 0);
1281 assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
1282 == 0);
1283 memset(results, 0, sizeof(results));
1284 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1285 == 1);
1286 memset(results, 0, sizeof(results));
1287 assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1288 == 1);
1289 assert(results[0] == (void *)0xdeadbea0);
1290 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1291 == 0);
1292 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1293 == 0);
1294 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1295 false, 1) == 0);
1296 assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1297 true, 1) == 0);
1298 assert(!radix_tree_get_tag(t, 1000, 1));
1299 assert(!radix_tree_get_tag(t, 1000, 2));
1300 assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
1301 assert(radix_tree_empty_tagged_tree_p(t, 1));
1302 assert(radix_tree_empty_tagged_tree_p(t, 2));
1303 radix_tree_set_tag(t, 1000, 2);
1304 assert(!radix_tree_get_tag(t, 1000, 1));
1305 assert(radix_tree_get_tag(t, 1000, 2));
1306 assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1307 assert(radix_tree_empty_tagged_tree_p(t, 1));
1308 assert(!radix_tree_empty_tagged_tree_p(t, 2));
1309 radix_tree_dump(t);
1310 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1311 assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
1312 radix_tree_dump(t);
1313 assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1314 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1315 assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
1316 == 0);
1317 radix_tree_dump(t);
1318 assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1319 assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1320 assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
1321 (void *)0xdea0);
1322 radix_tree_dump(t);
1323 assert(!radix_tree_get_tag(t, 0, 2));
1324 assert(radix_tree_get_tag(t, 1000, 2));
1325 assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
1326 radix_tree_set_tag(t, 0, 2);
1327 radix_tree_set_tag(t, UINT64_C(10000000000), 2);
1328 radix_tree_dump(t);
1329 assert(radix_tree_get_tag(t, 0, 2));
1330 assert(radix_tree_get_tag(t, 1000, 2));
1331 assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1332 radix_tree_clear_tag(t, 0, 2);
1333 radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
1334 radix_tree_dump(t);
1335 assert(!radix_tree_get_tag(t, 0, 2));
1336 assert(radix_tree_get_tag(t, 1000, 2));
1337 assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1338 radix_tree_dump(t);
1339 assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
1340 (void *)0xdeadbea0);
1341 assert(!radix_tree_get_tag(t, 1000, 1));
1342 assert(radix_tree_get_tag(t, 1000, 2));
1343 assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1344 memset(results, 0, sizeof(results));
1345 assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
1346 assert(results[0] == (void *)0xbea0);
1347 assert(results[1] == (void *)0x12345678);
1348 assert(results[2] == (void *)0xdea0);
1349 memset(results, 0, sizeof(results));
1350 assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1351 assert(results[0] == (void *)0xbea0);
1352 memset(results, 0, sizeof(results));
1353 assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
1354 assert(results[0] == (void *)0x12345678);
1355 assert(results[1] == (void *)0xdea0);
1356 assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
1357 memset(results, 0, sizeof(results));
1358 assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
1359 assert(results[0] == (void *)0xdea0);
1360 assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
1361 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1362 false) == 0);
1363 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1364 true) == 0);
1365 assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1366 3, false) == 0);
1367 assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1368 3, true) == 0);
1369 memset(results, 0, sizeof(results));
1370 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
1371 == 1);
1372 assert(results[0] == (void *)0x12345678);
1373 assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
1374 == 0);
1375 assert(entry_tagmask(t->t_root) != 0);
1376 assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
1377 assert(entry_tagmask(t->t_root) == 0);
1378 radix_tree_dump(t);
1379 assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
1380 == 0);
1381 memset(results, 0, sizeof(results));
1382 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1383 false) == 2);
1384 assert(results[0] == (void *)0xdea0);
1385 assert(results[1] == (void *)0xfff0);
1386 memset(results, 0, sizeof(results));
1387 assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1388 true) == 2);
1389 assert(results[0] == (void *)0xdea0);
1390 assert(results[1] == (void *)0xfff0);
1391 memset(results, 0, sizeof(results));
1392 assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1393 results, 3, false) == 3);
1394 assert(results[0] == (void *)0xfff0);
1395 assert(results[1] == (void *)0xdea0);
1396 assert(results[2] == (void *)0xbea0);
1397 memset(results, 0, sizeof(results));
1398 assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1399 results, 3, true) == 2);
1400 assert(results[0] == (void *)0xfff0);
1401 assert(results[1] == (void *)0xdea0);
1402 assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
1403 (void *)0xdea0);
1404 assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
1405 (void *)0xfff0);
1406 radix_tree_dump(t);
1407 assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
1408 radix_tree_dump(t);
1409 radix_tree_fini_tree(t);
1410 }
1411
1412 #include <sys/time.h>
1413
1414 struct testnode {
1415 uint64_t idx;
1416 bool tagged[RADIX_TREE_TAG_ID_MAX];
1417 };
1418
1419 static void
1420 printops(const char *title, const char *name, int tag, unsigned int n,
1421 const struct timeval *stv, const struct timeval *etv)
1422 {
1423 uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
1424 uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
1425
1426 printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
1427 (double)n / (e - s) * 1000000);
1428 }
1429
1430 #define TEST2_GANG_LOOKUP_NODES 16
1431
1432 static bool
1433 test2_should_tag(unsigned int i, unsigned int tagid)
1434 {
1435
1436 if (tagid == 0) {
1437 return (i % 4) == 0; /* 25% */
1438 } else {
1439 return (i % 7) == 0; /* 14% */
1440 }
1441 return 1;
1442 }
1443
1444 static void
1445 check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
1446 unsigned int count)
1447 {
1448 unsigned int tag;
1449
1450 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1451 if ((tagmask & (1 << tag)) == 0) {
1452 continue;
1453 }
1454 if (((tagmask - 1) & tagmask) == 0) {
1455 assert(count == ntagged[tag]);
1456 } else {
1457 assert(count >= ntagged[tag]);
1458 }
1459 }
1460 }
1461
1462 static void
1463 test2(const char *title, bool dense)
1464 {
1465 struct radix_tree s;
1466 struct radix_tree *t = &s;
1467 struct testnode *n;
1468 unsigned int i;
1469 unsigned int nnodes = 100000;
1470 unsigned int removed;
1471 unsigned int tag;
1472 unsigned int tagmask;
1473 unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
1474 struct testnode *nodes;
1475 struct timeval stv;
1476 struct timeval etv;
1477
1478 nodes = malloc(nnodes * sizeof(*nodes));
1479 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1480 ntagged[tag] = 0;
1481 }
1482 radix_tree_init_tree(t);
1483 for (i = 0; i < nnodes; i++) {
1484 n = &nodes[i];
1485 n->idx = random();
1486 if (sizeof(long) == 4) {
1487 n->idx <<= 32;
1488 n->idx |= (uint32_t)random();
1489 }
1490 if (dense) {
1491 n->idx %= nnodes * 2;
1492 }
1493 while (radix_tree_lookup_node(t, n->idx) != NULL) {
1494 n->idx++;
1495 }
1496 radix_tree_insert_node(t, n->idx, n);
1497 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1498 tagmask = 1 << tag;
1499
1500 n->tagged[tag] = test2_should_tag(i, tag);
1501 if (n->tagged[tag]) {
1502 radix_tree_set_tag(t, n->idx, tagmask);
1503 ntagged[tag]++;
1504 }
1505 assert((n->tagged[tag] ? tagmask : 0) ==
1506 radix_tree_get_tag(t, n->idx, tagmask));
1507 }
1508 }
1509
1510 gettimeofday(&stv, NULL);
1511 for (i = 0; i < nnodes; i++) {
1512 n = &nodes[i];
1513 assert(radix_tree_lookup_node(t, n->idx) == n);
1514 }
1515 gettimeofday(&etv, NULL);
1516 printops(title, "lookup", 0, nnodes, &stv, &etv);
1517
1518 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1519 unsigned int count = 0;
1520
1521 gettimeofday(&stv, NULL);
1522 for (i = 0; i < nnodes; i++) {
1523 unsigned int tagged;
1524
1525 n = &nodes[i];
1526 tagged = radix_tree_get_tag(t, n->idx, tagmask);
1527 assert((tagged & ~tagmask) == 0);
1528 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1529 assert((tagmask & (1 << tag)) == 0 ||
1530 n->tagged[tag] == !!(tagged & (1 << tag)));
1531 }
1532 if (tagged) {
1533 count++;
1534 }
1535 }
1536 gettimeofday(&etv, NULL);
1537 check_tag_count(ntagged, tagmask, count);
1538 printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
1539 }
1540
1541 gettimeofday(&stv, NULL);
1542 for (i = 0; i < nnodes; i++) {
1543 n = &nodes[i];
1544 radix_tree_remove_node(t, n->idx);
1545 }
1546 gettimeofday(&etv, NULL);
1547 printops(title, "remove", 0, nnodes, &stv, &etv);
1548
1549 gettimeofday(&stv, NULL);
1550 for (i = 0; i < nnodes; i++) {
1551 n = &nodes[i];
1552 radix_tree_insert_node(t, n->idx, n);
1553 }
1554 gettimeofday(&etv, NULL);
1555 printops(title, "insert", 0, nnodes, &stv, &etv);
1556
1557 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1558 tagmask = 1 << tag;
1559
1560 ntagged[tag] = 0;
1561 gettimeofday(&stv, NULL);
1562 for (i = 0; i < nnodes; i++) {
1563 n = &nodes[i];
1564 if (n->tagged[tag]) {
1565 radix_tree_set_tag(t, n->idx, tagmask);
1566 ntagged[tag]++;
1567 }
1568 }
1569 gettimeofday(&etv, NULL);
1570 printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
1571 }
1572
1573 gettimeofday(&stv, NULL);
1574 {
1575 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1576 uint64_t nextidx;
1577 unsigned int nfound;
1578 unsigned int total;
1579
1580 nextidx = 0;
1581 total = 0;
1582 while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1583 (void *)results, __arraycount(results), false)) > 0) {
1584 nextidx = results[nfound - 1]->idx + 1;
1585 total += nfound;
1586 if (nextidx == 0) {
1587 break;
1588 }
1589 }
1590 assert(total == nnodes);
1591 }
1592 gettimeofday(&etv, NULL);
1593 printops(title, "ganglookup", 0, nnodes, &stv, &etv);
1594
1595 gettimeofday(&stv, NULL);
1596 {
1597 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1598 uint64_t nextidx;
1599 unsigned int nfound;
1600 unsigned int total;
1601
1602 nextidx = UINT64_MAX;
1603 total = 0;
1604 while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
1605 (void *)results, __arraycount(results), false)) > 0) {
1606 nextidx = results[nfound - 1]->idx - 1;
1607 total += nfound;
1608 if (nextidx == UINT64_MAX) {
1609 break;
1610 }
1611 }
1612 assert(total == nnodes);
1613 }
1614 gettimeofday(&etv, NULL);
1615 printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
1616
1617 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1618 unsigned int total = 0;
1619
1620 gettimeofday(&stv, NULL);
1621 {
1622 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1623 uint64_t nextidx;
1624 unsigned int nfound;
1625
1626 nextidx = 0;
1627 while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1628 nextidx, (void *)results, __arraycount(results),
1629 false, tagmask)) > 0) {
1630 nextidx = results[nfound - 1]->idx + 1;
1631 total += nfound;
1632 }
1633 }
1634 gettimeofday(&etv, NULL);
1635 check_tag_count(ntagged, tagmask, total);
1636 assert(tagmask != 0 || total == 0);
1637 printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
1638 }
1639
1640 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1641 unsigned int total = 0;
1642
1643 gettimeofday(&stv, NULL);
1644 {
1645 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1646 uint64_t nextidx;
1647 unsigned int nfound;
1648
1649 nextidx = UINT64_MAX;
1650 while ((nfound =
1651 radix_tree_gang_lookup_tagged_node_reverse(t,
1652 nextidx, (void *)results, __arraycount(results),
1653 false, tagmask)) > 0) {
1654 nextidx = results[nfound - 1]->idx - 1;
1655 total += nfound;
1656 if (nextidx == UINT64_MAX) {
1657 break;
1658 }
1659 }
1660 }
1661 gettimeofday(&etv, NULL);
1662 check_tag_count(ntagged, tagmask, total);
1663 assert(tagmask != 0 || total == 0);
1664 printops(title, "ganglookup_tag_reverse", tagmask, total,
1665 &stv, &etv);
1666 }
1667
1668 removed = 0;
1669 for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1670 unsigned int total;
1671
1672 total = 0;
1673 tagmask = 1 << tag;
1674 gettimeofday(&stv, NULL);
1675 {
1676 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1677 uint64_t nextidx;
1678 unsigned int nfound;
1679
1680 nextidx = 0;
1681 while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1682 nextidx, (void *)results, __arraycount(results),
1683 false, tagmask)) > 0) {
1684 for (i = 0; i < nfound; i++) {
1685 radix_tree_remove_node(t,
1686 results[i]->idx);
1687 }
1688 nextidx = results[nfound - 1]->idx + 1;
1689 total += nfound;
1690 if (nextidx == 0) {
1691 break;
1692 }
1693 }
1694 }
1695 gettimeofday(&etv, NULL);
1696 if (tag == 0) {
1697 check_tag_count(ntagged, tagmask, total);
1698 } else {
1699 assert(total <= ntagged[tag]);
1700 }
1701 printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
1702 &etv);
1703 removed += total;
1704 }
1705
1706 gettimeofday(&stv, NULL);
1707 {
1708 struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1709 uint64_t nextidx;
1710 unsigned int nfound;
1711 unsigned int total;
1712
1713 nextidx = 0;
1714 total = 0;
1715 while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1716 (void *)results, __arraycount(results), false)) > 0) {
1717 for (i = 0; i < nfound; i++) {
1718 assert(results[i] == radix_tree_remove_node(t,
1719 results[i]->idx));
1720 }
1721 nextidx = results[nfound - 1]->idx + 1;
1722 total += nfound;
1723 if (nextidx == 0) {
1724 break;
1725 }
1726 }
1727 assert(total == nnodes - removed);
1728 }
1729 gettimeofday(&etv, NULL);
1730 printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
1731
1732 assert(radix_tree_empty_tree_p(t));
1733 for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1734 assert(radix_tree_empty_tagged_tree_p(t, tagmask));
1735 }
1736 radix_tree_fini_tree(t);
1737 free(nodes);
1738 }
1739
1740 int
1741 main(int argc, char *argv[])
1742 {
1743
1744 test1();
1745 test2("dense", true);
1746 test2("sparse", false);
1747 return 0;
1748 }
1749
1750 #endif /* defined(UNITTEST) */
1751