Home | History | Annotate | Line # | Download | only in gen
radixtree.c revision 1.7
      1 /*	$NetBSD: radixtree.c,v 1.7 2011/05/19 10:06:56 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c)2011 YAMAMOTO Takashi,
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * radix tree
     31  *
     32  * it's designed to work efficiently with dense index distribution.
     33  * the memory consumption (number of necessary intermediate nodes)
     34  * heavily depends on index distribution.  basically, more dense index
     35  * distribution consumes less nodes per item.
     36  * approximately,
     37  * the best case: about RADIX_TREE_PTR_PER_NODE items per node.
     38  * the worst case: RADIX_TREE_MAX_HEIGHT nodes per item.
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 
     43 #if defined(_KERNEL) || defined(_STANDALONE)
     44 __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.7 2011/05/19 10:06:56 yamt Exp $");
     45 #include <sys/param.h>
     46 #include <sys/errno.h>
     47 #include <sys/pool.h>
     48 #include <sys/radixtree.h>
     49 #include <lib/libkern/libkern.h>
     50 #if defined(_STANDALONE)
     51 #include <lib/libsa/stand.h>
     52 #endif /* defined(_STANDALONE) */
     53 #else /* defined(_KERNEL) || defined(_STANDALONE) */
     54 __RCSID("$NetBSD: radixtree.c,v 1.7 2011/05/19 10:06:56 yamt Exp $");
     55 #include <assert.h>
     56 #include <errno.h>
     57 #include <stdbool.h>
     58 #include <stdlib.h>
     59 #if 1
     60 #define KASSERT assert
     61 #else
     62 #define KASSERT(a)	/* nothing */
     63 #endif
     64 #endif /* defined(_KERNEL) || defined(_STANDALONE) */
     65 
     66 #include <sys/radixtree.h>
     67 
     68 #define	RADIX_TREE_BITS_PER_HEIGHT	4	/* XXX tune */
     69 #define	RADIX_TREE_PTR_PER_NODE		(1 << RADIX_TREE_BITS_PER_HEIGHT)
     70 #define	RADIX_TREE_MAX_HEIGHT		(64 / RADIX_TREE_BITS_PER_HEIGHT)
     71 __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
     72 
     73 __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
     74 #define	RADIX_TREE_TAG_MASK	((1 << RADIX_TREE_TAG_ID_MAX) - 1)
     75 
     76 static inline void *
     77 entry_ptr(void *p)
     78 {
     79 
     80 	return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
     81 }
     82 
     83 static inline unsigned int
     84 entry_tagmask(void *p)
     85 {
     86 
     87 	return (uintptr_t)p & RADIX_TREE_TAG_MASK;
     88 }
     89 
     90 static inline void *
     91 entry_compose(void *p, unsigned int tagmask)
     92 {
     93 
     94 	return (void *)((uintptr_t)p | tagmask);
     95 }
     96 
     97 static inline bool
     98 entry_match_p(void *p, unsigned int tagmask)
     99 {
    100 
    101 	KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
    102 	if (p == NULL) {
    103 		return false;
    104 	}
    105 	if (tagmask == 0) {
    106 		return true;
    107 	}
    108 	return (entry_tagmask(p) & tagmask) != 0;
    109 }
    110 
    111 static inline unsigned int
    112 tagid_to_mask(radix_tree_tagid_t id)
    113 {
    114 
    115 	KASSERT(id >= 0);
    116 	KASSERT(id < RADIX_TREE_TAG_ID_MAX);
    117 	return 1U << id;
    118 }
    119 
    120 /*
    121  * radix_tree_node: an intermediate node
    122  *
    123  * we don't care the type of leaf nodes.  they are just void *.
    124  */
    125 
    126 struct radix_tree_node {
    127 	void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
    128 	unsigned int n_nptrs;	/* # of non-NULL pointers in n_ptrs */
    129 };
    130 
    131 /*
    132  * any_children_tagmask:
    133  *
    134  * return OR'ed tagmask of the given node's children.
    135  */
    136 
    137 static unsigned int
    138 any_children_tagmask(struct radix_tree_node *n)
    139 {
    140 	unsigned int mask;
    141 	int i;
    142 
    143 	mask = 0;
    144 	for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    145 		mask |= (unsigned int)(uintptr_t)n->n_ptrs[i];
    146 	}
    147 	return mask & RADIX_TREE_TAG_MASK;
    148 }
    149 
    150 /*
    151  * p_refs[0].pptr == &t->t_root
    152  *	:
    153  * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
    154  *	:
    155  *	:
    156  * p_refs[t->t_height].pptr == &leaf_pointer
    157  */
    158 
    159 struct radix_tree_path {
    160 	struct radix_tree_node_ref {
    161 		void **pptr;
    162 	} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
    163 	int p_lastidx;
    164 };
    165 
    166 static inline void **
    167 path_pptr(struct radix_tree *t, struct radix_tree_path *p,
    168     unsigned int height)
    169 {
    170 
    171 	KASSERT(height <= t->t_height);
    172 	return p->p_refs[height].pptr;
    173 }
    174 
    175 static inline struct radix_tree_node *
    176 path_node(struct radix_tree * t, struct radix_tree_path *p, unsigned int height)
    177 {
    178 
    179 	KASSERT(height <= t->t_height);
    180 	return entry_ptr(*path_pptr(t, p, height));
    181 }
    182 
    183 static inline unsigned int
    184 path_idx(struct radix_tree * t, struct radix_tree_path *p, unsigned int height)
    185 {
    186 
    187 	KASSERT(height <= t->t_height);
    188 	return path_pptr(t, p, height + 1) - path_node(t, p, height)->n_ptrs;
    189 }
    190 
    191 /*
    192  * radix_tree_init_tree:
    193  *
    194  * initialize a tree.
    195  */
    196 
    197 void
    198 radix_tree_init_tree(struct radix_tree *t)
    199 {
    200 
    201 	t->t_height = 0;
    202 	t->t_root = NULL;
    203 }
    204 
    205 /*
    206  * radix_tree_init_tree:
    207  *
    208  * clean up a tree.
    209  */
    210 
    211 void
    212 radix_tree_fini_tree(struct radix_tree *t)
    213 {
    214 
    215 	KASSERT(t->t_root == NULL);
    216 	KASSERT(t->t_height == 0);
    217 }
    218 
    219 static void
    220 radix_tree_node_init(struct radix_tree_node *n)
    221 {
    222 
    223 	memset(n, 0, sizeof(*n));
    224 }
    225 
    226 #if defined(_KERNEL)
    227 pool_cache_t radix_tree_node_cache __read_mostly;
    228 
    229 static int
    230 radix_tree_node_ctor(void *dummy, void *item, int flags)
    231 {
    232 	struct radix_tree_node *n = item;
    233 
    234 	KASSERT(dummy == NULL);
    235 	radix_tree_node_init(n);
    236 	return 0;
    237 }
    238 
    239 /*
    240  * radix_tree_init:
    241  *
    242  * initialize the subsystem.
    243  */
    244 
    245 void
    246 radix_tree_init(void)
    247 {
    248 
    249 	radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
    250 	    0, 0, 0, "radix_tree_node", NULL, IPL_NONE, radix_tree_node_ctor,
    251 	    NULL, NULL);
    252 	KASSERT(radix_tree_node_cache != NULL);
    253 }
    254 #endif /* defined(_KERNEL) */
    255 
    256 static bool __unused
    257 radix_tree_node_clean_p(const struct radix_tree_node *n)
    258 {
    259 	unsigned int i;
    260 
    261 	if (n->n_nptrs != 0) {
    262 		return false;
    263 	}
    264 	for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    265 		if (n->n_ptrs[i] != NULL) {
    266 			return false;
    267 		}
    268 	}
    269 	return true;
    270 }
    271 
    272 static struct radix_tree_node *
    273 radix_tree_alloc_node(void)
    274 {
    275 	struct radix_tree_node *n;
    276 
    277 #if defined(_KERNEL)
    278 	n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
    279 #else /* defined(_KERNEL) */
    280 #if defined(_STANDALONE)
    281 	n = alloc(sizeof(*n));
    282 #else /* defined(_STANDALONE) */
    283 	n = malloc(sizeof(*n));
    284 #endif /* defined(_STANDALONE) */
    285 	if (n != NULL) {
    286 		radix_tree_node_init(n);
    287 	}
    288 #endif /* defined(_KERNEL) */
    289 	KASSERT(n == NULL || radix_tree_node_clean_p(n));
    290 	return n;
    291 }
    292 
    293 static void
    294 radix_tree_free_node(struct radix_tree_node *n)
    295 {
    296 
    297 	KASSERT(radix_tree_node_clean_p(n));
    298 #if defined(_KERNEL)
    299 	pool_cache_put(radix_tree_node_cache, n);
    300 #elif defined(_STANDALONE)
    301 	dealloc(n, sizeof(*n));
    302 #else
    303 	free(n);
    304 #endif
    305 }
    306 
    307 static int
    308 radix_tree_grow(struct radix_tree *t, unsigned int newheight)
    309 {
    310 	const unsigned int tagmask = entry_tagmask(t->t_root);
    311 
    312 	KASSERT(newheight <= 64 / RADIX_TREE_BITS_PER_HEIGHT);
    313 	if (t->t_root == NULL) {
    314 		t->t_height = newheight;
    315 		return 0;
    316 	}
    317 	while (t->t_height < newheight) {
    318 		struct radix_tree_node *n;
    319 
    320 		n = radix_tree_alloc_node();
    321 		if (n == NULL) {
    322 			/*
    323 			 * don't bother to revert our changes.
    324 			 * the caller will likely retry.
    325 			 */
    326 			return ENOMEM;
    327 		}
    328 		n->n_nptrs = 1;
    329 		n->n_ptrs[0] = t->t_root;
    330 		t->t_root = entry_compose(n, tagmask);
    331 		t->t_height++;
    332 	}
    333 	return 0;
    334 }
    335 
    336 /*
    337  * radix_tree_lookup_ptr:
    338  *
    339  * an internal helper function used for various exported functions.
    340  *
    341  * return the pointer to store the node for the given index.
    342  *
    343  * if alloc is true, try to allocate the storage.  (note for _KERNEL:
    344  * in that case, this function can block.)  if the allocation failed or
    345  * alloc is false, return NULL.
    346  *
    347  * if path is not NULL, fill it for the caller's investigation.
    348  *
    349  * if tagmask is not zero, search only for nodes with the tag set.
    350  *
    351  * while this function is a bit large, as it's called with some constant
    352  * arguments, inlining might have benefits.  anyway, a compiler will decide.
    353  */
    354 
    355 static inline void **
    356 radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
    357     struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
    358 {
    359 	struct radix_tree_node *n;
    360 	int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    361 	int shift;
    362 	void **vpp;
    363 	const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
    364 	struct radix_tree_node_ref *refs = NULL;
    365 
    366 	/*
    367 	 * check unsupported combinations
    368 	 */
    369 	KASSERT(tagmask == 0 || !alloc);
    370 	KASSERT(path == NULL || !alloc);
    371 	vpp = &t->t_root;
    372 	if (path != NULL) {
    373 		refs = path->p_refs;
    374 		refs->pptr = vpp;
    375 	}
    376 	n = NULL;
    377 	for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
    378 		struct radix_tree_node *c;
    379 		void *entry;
    380 		const uint64_t i = (idx >> shift) & mask;
    381 
    382 		if (shift >= hshift) {
    383 			unsigned int newheight;
    384 
    385 			KASSERT(vpp == &t->t_root);
    386 			if (i == 0) {
    387 				shift -= RADIX_TREE_BITS_PER_HEIGHT;
    388 				continue;
    389 			}
    390 			if (!alloc) {
    391 				if (path != NULL) {
    392 					KASSERT((refs - path->p_refs) == 0);
    393 					path->p_lastidx = 0;
    394 				}
    395 				return NULL;
    396 			}
    397 			newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
    398 			if (radix_tree_grow(t, newheight)) {
    399 				return NULL;
    400 			}
    401 			hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    402 		}
    403 		entry = *vpp;
    404 		c = entry_ptr(entry);
    405 		if (c == NULL ||
    406 		    (tagmask != 0 &&
    407 		    (entry_tagmask(entry) & tagmask) == 0)) {
    408 			if (!alloc) {
    409 				if (path != NULL) {
    410 					path->p_lastidx = refs - path->p_refs;
    411 				}
    412 				return NULL;
    413 			}
    414 			c = radix_tree_alloc_node();
    415 			if (c == NULL) {
    416 				return NULL;
    417 			}
    418 			*vpp = c;
    419 			if (n != NULL) {
    420 				KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
    421 				n->n_nptrs++;
    422 			}
    423 		}
    424 		n = c;
    425 		vpp = &n->n_ptrs[i];
    426 		if (path != NULL) {
    427 			refs++;
    428 			refs->pptr = vpp;
    429 		}
    430 		shift -= RADIX_TREE_BITS_PER_HEIGHT;
    431 	}
    432 	if (alloc) {
    433 		KASSERT(*vpp == NULL);
    434 		if (n != NULL) {
    435 			KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
    436 			n->n_nptrs++;
    437 		}
    438 	}
    439 	if (path != NULL) {
    440 		path->p_lastidx = refs - path->p_refs;
    441 	}
    442 	return vpp;
    443 }
    444 
    445 /*
    446  * radix_tree_insert_node:
    447  *
    448  * insert the node at idx.
    449  * it's illegal to insert NULL.
    450  * it's illegal to insert a non-aligned pointer.
    451  *
    452  * this function returns ENOMEM if necessary memory allocation failed.
    453  * otherwise, this function returns 0.
    454  *
    455  * note that inserting a node can involves memory allocation for intermediate
    456  * nodes.  if _KERNEL, it's done with non-blocking IPL_NONE memory allocation.
    457  *
    458  * for the newly inserted node, all tags are cleared.
    459  */
    460 
    461 int
    462 radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
    463 {
    464 	void **vpp;
    465 
    466 	KASSERT(p != NULL);
    467 	KASSERT(entry_compose(p, 0) == p);
    468 	vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
    469 	if (vpp == NULL) {
    470 		return ENOMEM;
    471 	}
    472 	KASSERT(*vpp == NULL);
    473 	*vpp = p;
    474 	return 0;
    475 }
    476 
    477 /*
    478  * radix_tree_replace_node:
    479  *
    480  * replace a node at the given index with the given node.
    481  * return the old node.
    482  * it's illegal to try to replace a node which has not been inserted.
    483  *
    484  * this function doesn't change tags.
    485  */
    486 
    487 void *
    488 radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
    489 {
    490 	void **vpp;
    491 	void *oldp;
    492 
    493 	KASSERT(p != NULL);
    494 	KASSERT(entry_compose(p, 0) == p);
    495 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    496 	KASSERT(vpp != NULL);
    497 	oldp = *vpp;
    498 	KASSERT(oldp != NULL);
    499 	*vpp = entry_compose(p, entry_tagmask(*vpp));
    500 	return entry_ptr(oldp);
    501 }
    502 
    503 /*
    504  * radix_tree_remove_node:
    505  *
    506  * remove the node at idx.
    507  * it's illegal to try to remove a node which has not been inserted.
    508  */
    509 
    510 void *
    511 radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
    512 {
    513 	struct radix_tree_path path;
    514 	void **vpp;
    515 	void *oldp;
    516 	int i;
    517 
    518 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
    519 	KASSERT(vpp != NULL);
    520 	oldp = *vpp;
    521 	KASSERT(oldp != NULL);
    522 	KASSERT(path.p_lastidx == t->t_height);
    523 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
    524 	*vpp = NULL;
    525 	for (i = t->t_height - 1; i >= 0; i--) {
    526 		void *entry;
    527 		struct radix_tree_node ** const pptr =
    528 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    529 		struct radix_tree_node *n;
    530 
    531 		KASSERT(pptr != NULL);
    532 		entry = *pptr;
    533 		n = entry_ptr(entry);
    534 		KASSERT(n != NULL);
    535 		KASSERT(n->n_nptrs > 0);
    536 		n->n_nptrs--;
    537 		if (n->n_nptrs > 0) {
    538 			break;
    539 		}
    540 		radix_tree_free_node(n);
    541 		*pptr = NULL;
    542 	}
    543 	/*
    544 	 * fix up height
    545 	 */
    546 	if (i < 0) {
    547 		KASSERT(t->t_root == NULL);
    548 		t->t_height = 0;
    549 	}
    550 	/*
    551 	 * update tags
    552 	 */
    553 	for (; i >= 0; i--) {
    554 		void *entry;
    555 		struct radix_tree_node ** const pptr =
    556 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    557 		struct radix_tree_node *n;
    558 		unsigned int newmask;
    559 
    560 		KASSERT(pptr != NULL);
    561 		entry = *pptr;
    562 		n = entry_ptr(entry);
    563 		KASSERT(n != NULL);
    564 		KASSERT(n->n_nptrs > 0);
    565 		newmask = any_children_tagmask(n);
    566 		if (newmask == entry_tagmask(entry)) {
    567 			break;
    568 		}
    569 		*pptr = entry_compose(n, newmask);
    570 	}
    571 	/*
    572 	 * XXX is it worth to try to reduce height?
    573 	 * if we do that, make radix_tree_grow rollback its change as well.
    574 	 */
    575 	return entry_ptr(oldp);
    576 }
    577 
    578 /*
    579  * radix_tree_lookup_node:
    580  *
    581  * returns the node at idx.
    582  * returns NULL if nothing is found at idx.
    583  */
    584 
    585 void *
    586 radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
    587 {
    588 	void **vpp;
    589 
    590 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    591 	if (vpp == NULL) {
    592 		return NULL;
    593 	}
    594 	return entry_ptr(*vpp);
    595 }
    596 
    597 static inline void
    598 gang_lookup_init(struct radix_tree *t, uint64_t idx,
    599     struct radix_tree_path *path, const unsigned int tagmask)
    600 {
    601 	void **vpp;
    602 
    603 	vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
    604 	KASSERT(vpp == NULL ||
    605 	    vpp == path_pptr(t, path, path->p_lastidx));
    606 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    607 }
    608 
    609 static inline unsigned int
    610 gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
    611     void **results, unsigned int maxresults, const unsigned int tagmask)
    612 {
    613 	void **vpp;
    614 	int nfound;
    615 	unsigned int lastidx;
    616 
    617 	KASSERT(maxresults > 0);
    618 	lastidx = path->p_lastidx;
    619 	if (lastidx == 0) {
    620 		return 0;
    621 	}
    622 	nfound = 0;
    623 	vpp = path_pptr(t, path, lastidx);
    624 	while (/*CONSTCOND*/true) {
    625 		struct radix_tree_node *n;
    626 		int i;
    627 
    628 		if (entry_match_p(*vpp, tagmask)) {
    629 			KASSERT(lastidx == t->t_height);
    630 			/*
    631 			 * record the non-NULL leaf.
    632 			 */
    633 			results[nfound] = entry_ptr(*vpp);
    634 			nfound++;
    635 			if (nfound == maxresults) {
    636 				return nfound;
    637 			}
    638 		}
    639 scan_siblings:
    640 		/*
    641 		 * try to find the next non-NULL sibling.
    642 		 */
    643 		n = path_node(t, path, lastidx - 1);
    644 		if (*vpp != NULL && n->n_nptrs == 1) {
    645 			/*
    646 			 * optimization
    647 			 */
    648 			goto no_siblings;
    649 		}
    650 		for (i = path_idx(t, path, lastidx - 1) + 1;
    651 		    i < RADIX_TREE_PTR_PER_NODE;
    652 		    i++) {
    653 			if (entry_match_p(n->n_ptrs[i], tagmask)) {
    654 				vpp = &n->n_ptrs[i];
    655 				path->p_refs[lastidx].pptr = vpp;
    656 				KASSERT(path_idx(t, path, lastidx - 1)
    657 				    == i);
    658 				break;
    659 			}
    660 		}
    661 		if (i == RADIX_TREE_PTR_PER_NODE) {
    662 no_siblings:
    663 			/*
    664 			 * not found.  go to parent.
    665 			 */
    666 			lastidx--;
    667 			if (lastidx == 0) {
    668 				return nfound;
    669 			}
    670 			vpp = path_pptr(t, path, lastidx);
    671 			goto scan_siblings;
    672 		}
    673 		/*
    674 		 * descending the left-most child node, upto the leaf or NULL.
    675 		 */
    676 		while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
    677 			n = entry_ptr(*vpp);
    678 			vpp = &n->n_ptrs[0];
    679 			lastidx++;
    680 			path->p_refs[lastidx].pptr = vpp;
    681 		}
    682 	}
    683 }
    684 
    685 /*
    686  * radix_tree_gang_lookup_node:
    687  *
    688  * search nodes starting from idx in the ascending order.
    689  * results should be an array large enough to hold maxresults pointers.
    690  * returns the number of nodes found, up to maxresults.
    691  * returning less than maxresults means there are no more nodes.
    692  *
    693  * the result of this function is semantically equivalent to what could be
    694  * obtained by repeated calls of radix_tree_lookup_node with increasing index.
    695  * but this function is much faster when node indexes are distributed sparsely.
    696  *
    697  * note that this function doesn't return exact values of node indexes of
    698  * found nodes.  if they are important for a caller, it's the caller's
    699  * responsibility to check them, typically by examinining the returned nodes
    700  * using some caller-specific knowledge about them.
    701  */
    702 
    703 unsigned int
    704 radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
    705     void **results, unsigned int maxresults)
    706 {
    707 	struct radix_tree_path path;
    708 
    709 	gang_lookup_init(t, idx, &path, 0);
    710 	return gang_lookup_scan(t, &path, results, maxresults, 0);
    711 }
    712 
    713 /*
    714  * radix_tree_gang_lookup_tagged_node:
    715  *
    716  * same as radix_tree_gang_lookup_node except that this one only returns
    717  * nodes tagged with tagid.
    718  */
    719 
    720 unsigned int
    721 radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
    722     void **results, unsigned int maxresults, radix_tree_tagid_t tagid)
    723 {
    724 	struct radix_tree_path path;
    725 	const unsigned int tagmask = tagid_to_mask(tagid);
    726 
    727 	gang_lookup_init(t, idx, &path, tagmask);
    728 	return gang_lookup_scan(t, &path, results, maxresults, tagmask);
    729 }
    730 
    731 /*
    732  * radix_tree_get_tag:
    733  *
    734  * return if the tag is set for the node at the given index.  (true if set)
    735  * it's illegal to call this function for a node which has not been inserted.
    736  */
    737 
    738 bool
    739 radix_tree_get_tag(struct radix_tree *t, uint64_t idx,
    740     radix_tree_tagid_t tagid)
    741 {
    742 #if 1
    743 	const unsigned int tagmask = tagid_to_mask(tagid);
    744 	void **vpp;
    745 
    746 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
    747 	if (vpp == NULL) {
    748 		return false;
    749 	}
    750 	KASSERT(*vpp != NULL);
    751 	return (entry_tagmask(*vpp) & tagmask) != 0;
    752 #else
    753 	const unsigned int tagmask = tagid_to_mask(tagid);
    754 	void **vpp;
    755 
    756 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    757 	KASSERT(vpp != NULL);
    758 	return (entry_tagmask(*vpp) & tagmask) != 0;
    759 #endif
    760 }
    761 
    762 /*
    763  * radix_tree_set_tag:
    764  *
    765  * set the tag for the node at the given index.
    766  * it's illegal to call this function for a node which has not been inserted.
    767  */
    768 
    769 void
    770 radix_tree_set_tag(struct radix_tree *t, uint64_t idx,
    771     radix_tree_tagid_t tagid)
    772 {
    773 	struct radix_tree_path path;
    774 	const unsigned int tagmask = tagid_to_mask(tagid);
    775 	void **vpp;
    776 	int i;
    777 
    778 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
    779 	KASSERT(vpp != NULL);
    780 	KASSERT(*vpp != NULL);
    781 	KASSERT(path.p_lastidx == t->t_height);
    782 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
    783 	for (i = t->t_height; i >= 0; i--) {
    784 		void ** const pptr = (void **)path_pptr(t, &path, i);
    785 		void *entry;
    786 
    787 		KASSERT(pptr != NULL);
    788 		entry = *pptr;
    789 		if ((entry_tagmask(entry) & tagmask) != 0) {
    790 			break;
    791 		}
    792 		*pptr = (void *)((uintptr_t)entry | tagmask);
    793 	}
    794 }
    795 
    796 /*
    797  * radix_tree_clear_tag:
    798  *
    799  * clear the tag for the node at the given index.
    800  * it's illegal to call this function for a node which has not been inserted.
    801  */
    802 
    803 void
    804 radix_tree_clear_tag(struct radix_tree *t, uint64_t idx,
    805     radix_tree_tagid_t tagid)
    806 {
    807 	struct radix_tree_path path;
    808 	const unsigned int tagmask = tagid_to_mask(tagid);
    809 	void **vpp;
    810 	int i;
    811 
    812 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
    813 	KASSERT(vpp != NULL);
    814 	KASSERT(*vpp != NULL);
    815 	KASSERT(path.p_lastidx == t->t_height);
    816 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
    817 	/*
    818 	 * if already cleared, nothing to do
    819 	 */
    820 	if ((entry_tagmask(*vpp) & tagmask) == 0) {
    821 		return;
    822 	}
    823 	/*
    824 	 * clear the tag only if no children have the tag.
    825 	 */
    826 	for (i = t->t_height; i >= 0; i--) {
    827 		void ** const pptr = (void **)path_pptr(t, &path, i);
    828 		void *entry;
    829 
    830 		KASSERT(pptr != NULL);
    831 		entry = *pptr;
    832 		KASSERT((entry_tagmask(entry) & tagmask) != 0);
    833 		*pptr = entry_compose(entry_ptr(entry),
    834 		    entry_tagmask(entry) & ~tagmask);
    835 		/*
    836 		 * check if we should proceed to process the next level.
    837 		 */
    838 		if (0 < i) {
    839 			struct radix_tree_node *n = path_node(t, &path, i - 1);
    840 
    841 			if ((any_children_tagmask(n) & tagmask) != 0) {
    842 				break;
    843 			}
    844 		}
    845 	}
    846 }
    847 
    848 #if defined(UNITTEST)
    849 
    850 #include <inttypes.h>
    851 #include <stdio.h>
    852 
    853 static void
    854 radix_tree_dump_node(const struct radix_tree *t, void *vp,
    855     uint64_t offset, unsigned int height)
    856 {
    857 	struct radix_tree_node *n;
    858 	unsigned int i;
    859 
    860 	for (i = 0; i < t->t_height - height; i++) {
    861 		printf(" ");
    862 	}
    863 	if (entry_tagmask(vp) == 0) {
    864 		printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
    865 	} else {
    866 		printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
    867 		    entry_tagmask(vp));
    868 	}
    869 	if (height == 0) {
    870 		printf(" (leaf)\n");
    871 		return;
    872 	}
    873 	n = entry_ptr(vp);
    874 	assert(any_children_tagmask(n) == entry_tagmask(vp));
    875 	printf(" (%u children)\n", n->n_nptrs);
    876 	for (i = 0; i < __arraycount(n->n_ptrs); i++) {
    877 		void *c;
    878 
    879 		c = n->n_ptrs[i];
    880 		if (c == NULL) {
    881 			continue;
    882 		}
    883 		radix_tree_dump_node(t, c,
    884 		    offset + i * (UINT64_C(1) <<
    885 		    (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
    886 	}
    887 }
    888 
    889 void radix_tree_dump(const struct radix_tree *);
    890 
    891 void
    892 radix_tree_dump(const struct radix_tree *t)
    893 {
    894 
    895 	printf("tree %p height=%u\n", t, t->t_height);
    896 	radix_tree_dump_node(t, t->t_root, 0, t->t_height);
    897 }
    898 
    899 static void
    900 test1(void)
    901 {
    902 	struct radix_tree s;
    903 	struct radix_tree *t = &s;
    904 	void *results[3];
    905 
    906 	radix_tree_init_tree(t);
    907 	radix_tree_dump(t);
    908 	assert(radix_tree_lookup_node(t, 0) == NULL);
    909 	assert(radix_tree_lookup_node(t, 1000) == NULL);
    910 	assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
    911 	radix_tree_dump(t);
    912 	assert(!radix_tree_get_tag(t, 1000, 0));
    913 	assert(!radix_tree_get_tag(t, 1000, 1));
    914 	radix_tree_set_tag(t, 1000, 1);
    915 	assert(!radix_tree_get_tag(t, 1000, 0));
    916 	assert(radix_tree_get_tag(t, 1000, 1));
    917 	radix_tree_dump(t);
    918 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
    919 	assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
    920 	radix_tree_dump(t);
    921 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
    922 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
    923 	assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
    924 	    == 0);
    925 	radix_tree_dump(t);
    926 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
    927 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
    928 	assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
    929 	    (void *)0xdea0);
    930 	radix_tree_dump(t);
    931 	assert(!radix_tree_get_tag(t, 0, 1));
    932 	assert(radix_tree_get_tag(t, 1000, 1));
    933 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
    934 	radix_tree_set_tag(t, 0, 1);;
    935 	radix_tree_set_tag(t, UINT64_C(10000000000), 1);
    936 	radix_tree_dump(t);
    937 	assert(radix_tree_get_tag(t, 0, 1));
    938 	assert(radix_tree_get_tag(t, 1000, 1));
    939 	assert(radix_tree_get_tag(t, UINT64_C(10000000000), 1));
    940 	radix_tree_clear_tag(t, 0, 1);;
    941 	radix_tree_clear_tag(t, UINT64_C(10000000000), 1);
    942 	radix_tree_dump(t);
    943 	assert(!radix_tree_get_tag(t, 0, 1));
    944 	assert(radix_tree_get_tag(t, 1000, 1));
    945 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
    946 	radix_tree_dump(t);
    947 	assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
    948 	    (void *)0xdeadbea0);
    949 	assert(!radix_tree_get_tag(t, 1000, 0));
    950 	assert(radix_tree_get_tag(t, 1000, 1));
    951 	assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 3);
    952 	assert(results[0] == (void *)0xbea0);
    953 	assert(results[1] == (void *)0x12345678);
    954 	assert(results[2] == (void *)0xdea0);
    955 	assert(radix_tree_gang_lookup_node(t, 1, results, 3) == 2);
    956 	assert(results[0] == (void *)0x12345678);
    957 	assert(results[1] == (void *)0xdea0);
    958 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3) == 1);
    959 	assert(results[0] == (void *)0xdea0);
    960 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3)
    961 	    == 0);
    962 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
    963 	    3) == 0);
    964 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, 1) == 1);
    965 	assert(results[0] == (void *)0x12345678);
    966 	assert(entry_tagmask(t->t_root) != 0);
    967 	assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
    968 	assert(entry_tagmask(t->t_root) == 0);
    969 	radix_tree_dump(t);
    970 	assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
    971 	    (void *)0xdea0);
    972 	radix_tree_dump(t);
    973 	assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
    974 	radix_tree_dump(t);
    975 	radix_tree_fini_tree(t);
    976 }
    977 
    978 #include <sys/time.h>
    979 
    980 struct testnode {
    981 	uint64_t idx;
    982 };
    983 
    984 static void
    985 printops(const char *name, unsigned int n, const struct timeval *stv,
    986     const struct timeval *etv)
    987 {
    988 	uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
    989 	uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
    990 
    991 	printf("%lf %s/s\n", (double)n / (e - s) * 1000000, name);
    992 }
    993 
    994 #define	TEST2_GANG_LOOKUP_NODES	16
    995 
    996 static bool
    997 test2_should_tag(unsigned int i, radix_tree_tagid_t tagid)
    998 {
    999 
   1000 	if (tagid == 0) {
   1001 		return (i & 0x3) == 0;
   1002 	} else {
   1003 		return (i % 7) == 0;
   1004 	}
   1005 }
   1006 
   1007 static void
   1008 test2(bool dense)
   1009 {
   1010 	struct radix_tree s;
   1011 	struct radix_tree *t = &s;
   1012 	struct testnode *n;
   1013 	unsigned int i;
   1014 	unsigned int nnodes = 100000;
   1015 	unsigned int removed;
   1016 	radix_tree_tagid_t tag;
   1017 	unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
   1018 	struct testnode *nodes;
   1019 	struct timeval stv;
   1020 	struct timeval etv;
   1021 
   1022 	nodes = malloc(nnodes * sizeof(*nodes));
   1023 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1024 		ntagged[tag] = 0;
   1025 	}
   1026 	radix_tree_init_tree(t);
   1027 	for (i = 0; i < nnodes; i++) {
   1028 		n = &nodes[i];
   1029 		n->idx = random();
   1030 		if (sizeof(long) == 4) {
   1031 			n->idx <<= 32;
   1032 			n->idx |= (uint32_t)random();
   1033 		}
   1034 		if (dense) {
   1035 			n->idx %= nnodes * 2;
   1036 		}
   1037 		while (radix_tree_lookup_node(t, n->idx) != NULL) {
   1038 			n->idx++;
   1039 		}
   1040 		radix_tree_insert_node(t, n->idx, n);
   1041 		for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1042 			if (test2_should_tag(i, tag)) {
   1043 				radix_tree_set_tag(t, n->idx, tag);
   1044 				ntagged[tag]++;
   1045 			}
   1046 			assert(test2_should_tag(i, tag) ==
   1047 			    radix_tree_get_tag(t, n->idx, tag));
   1048 		}
   1049 	}
   1050 
   1051 	gettimeofday(&stv, NULL);
   1052 	for (i = 0; i < nnodes; i++) {
   1053 		n = &nodes[i];
   1054 		assert(radix_tree_lookup_node(t, n->idx) == n);
   1055 	}
   1056 	gettimeofday(&etv, NULL);
   1057 	printops("lookup", nnodes, &stv, &etv);
   1058 
   1059 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1060 		gettimeofday(&stv, NULL);
   1061 		for (i = 0; i < nnodes; i++) {
   1062 			n = &nodes[i];
   1063 			assert(test2_should_tag(i, tag) ==
   1064 			    radix_tree_get_tag(t, n->idx, tag));
   1065 		}
   1066 		gettimeofday(&etv, NULL);
   1067 		printops("get_tag", ntagged[tag], &stv, &etv);
   1068 	}
   1069 
   1070 	gettimeofday(&stv, NULL);
   1071 	for (i = 0; i < nnodes; i++) {
   1072 		n = &nodes[i];
   1073 		radix_tree_remove_node(t, n->idx);
   1074 	}
   1075 	gettimeofday(&etv, NULL);
   1076 	printops("remove", nnodes, &stv, &etv);
   1077 
   1078 	gettimeofday(&stv, NULL);
   1079 	for (i = 0; i < nnodes; i++) {
   1080 		n = &nodes[i];
   1081 		radix_tree_insert_node(t, n->idx, n);
   1082 	}
   1083 	gettimeofday(&etv, NULL);
   1084 	printops("insert", nnodes, &stv, &etv);
   1085 
   1086 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1087 		ntagged[tag] = 0;
   1088 		gettimeofday(&stv, NULL);
   1089 		for (i = 0; i < nnodes; i++) {
   1090 			n = &nodes[i];
   1091 			if (test2_should_tag(i, tag)) {
   1092 				radix_tree_set_tag(t, n->idx, tag);
   1093 				ntagged[tag]++;
   1094 			}
   1095 		}
   1096 		gettimeofday(&etv, NULL);
   1097 		printops("set_tag", ntagged[tag], &stv, &etv);
   1098 	}
   1099 
   1100 	gettimeofday(&stv, NULL);
   1101 	{
   1102 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1103 		uint64_t nextidx;
   1104 		unsigned int nfound;
   1105 		unsigned int total;
   1106 
   1107 		nextidx = 0;
   1108 		total = 0;
   1109 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1110 		    (void *)results, __arraycount(results))) > 0) {
   1111 			nextidx = results[nfound - 1]->idx + 1;
   1112 			total += nfound;
   1113 		}
   1114 		assert(total == nnodes);
   1115 	}
   1116 	gettimeofday(&etv, NULL);
   1117 	printops("ganglookup", nnodes, &stv, &etv);
   1118 
   1119 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1120 		gettimeofday(&stv, NULL);
   1121 		{
   1122 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1123 			uint64_t nextidx;
   1124 			unsigned int nfound;
   1125 			unsigned int total;
   1126 
   1127 			nextidx = 0;
   1128 			total = 0;
   1129 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1130 			    nextidx, (void *)results, __arraycount(results),
   1131 			    tag)) > 0) {
   1132 				nextidx = results[nfound - 1]->idx + 1;
   1133 				total += nfound;
   1134 			}
   1135 			assert(total == ntagged[tag]);
   1136 		}
   1137 		gettimeofday(&etv, NULL);
   1138 		printops("ganglookup_tag", ntagged[tag], &stv, &etv);
   1139 	}
   1140 
   1141 	removed = 0;
   1142 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1143 		unsigned int total;
   1144 
   1145 		total = 0;
   1146 		gettimeofday(&stv, NULL);
   1147 		{
   1148 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1149 			uint64_t nextidx;
   1150 			unsigned int nfound;
   1151 
   1152 			nextidx = 0;
   1153 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1154 			    nextidx, (void *)results, __arraycount(results),
   1155 			    tag)) > 0) {
   1156 				for (i = 0; i < nfound; i++) {
   1157 					radix_tree_remove_node(t,
   1158 					    results[i]->idx);
   1159 				}
   1160 				nextidx = results[nfound - 1]->idx + 1;
   1161 				total += nfound;
   1162 			}
   1163 			assert(tag != 0 || total == ntagged[tag]);
   1164 			assert(total <= ntagged[tag]);
   1165 		}
   1166 		gettimeofday(&etv, NULL);
   1167 		printops("ganglookup_tag+remove", total, &stv, &etv);
   1168 		removed += total;
   1169 	}
   1170 
   1171 	gettimeofday(&stv, NULL);
   1172 	{
   1173 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1174 		uint64_t nextidx;
   1175 		unsigned int nfound;
   1176 		unsigned int total;
   1177 
   1178 		nextidx = 0;
   1179 		total = 0;
   1180 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1181 		    (void *)results, __arraycount(results))) > 0) {
   1182 			for (i = 0; i < nfound; i++) {
   1183 				assert(results[i] == radix_tree_remove_node(t,
   1184 				    results[i]->idx));
   1185 			}
   1186 			nextidx = results[nfound - 1]->idx + 1;
   1187 			total += nfound;
   1188 		}
   1189 		assert(total == nnodes - removed);
   1190 	}
   1191 	gettimeofday(&etv, NULL);
   1192 	printops("ganglookup+remove", nnodes - removed, &stv, &etv);
   1193 
   1194 	radix_tree_fini_tree(t);
   1195 	free(nodes);
   1196 }
   1197 
   1198 int
   1199 main(int argc, char *argv[])
   1200 {
   1201 
   1202 	test1();
   1203 	printf("dense distribution:\n");
   1204 	test2(true);
   1205 	printf("sparse distribution:\n");
   1206 	test2(false);
   1207 	return 0;
   1208 }
   1209 
   1210 #endif /* defined(UNITTEST) */
   1211