1 1.16 andvar /* $NetBSD: rb.c,v 1.16 2021/09/16 21:29:41 andvar Exp $ */ 2 1.1 matt 3 1.1 matt /*- 4 1.1 matt * Copyright (c) 2001 The NetBSD Foundation, Inc. 5 1.1 matt * All rights reserved. 6 1.1 matt * 7 1.1 matt * This code is derived from software contributed to The NetBSD Foundation 8 1.1 matt * by Matt Thomas <matt (at) 3am-software.com>. 9 1.1 matt * 10 1.1 matt * Redistribution and use in source and binary forms, with or without 11 1.1 matt * modification, are permitted provided that the following conditions 12 1.1 matt * are met: 13 1.1 matt * 1. Redistributions of source code must retain the above copyright 14 1.1 matt * notice, this list of conditions and the following disclaimer. 15 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 matt * notice, this list of conditions and the following disclaimer in the 17 1.1 matt * documentation and/or other materials provided with the distribution. 18 1.1 matt * 19 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.1 matt * POSSIBILITY OF SUCH DAMAGE. 30 1.1 matt */ 31 1.1 matt 32 1.15 skrll #if HAVE_NBTOOL_CONFIG_H 33 1.15 skrll #include "nbtool_config.h" 34 1.15 skrll #endif 35 1.15 skrll 36 1.1 matt #if !defined(_KERNEL) && !defined(_STANDALONE) 37 1.1 matt #include <sys/types.h> 38 1.1 matt #include <stddef.h> 39 1.1 matt #include <assert.h> 40 1.1 matt #include <stdbool.h> 41 1.1 matt #ifdef RBDEBUG 42 1.1 matt #define KASSERT(s) assert(s) 43 1.14 roy #define __rbt_unused 44 1.1 matt #else 45 1.3 matt #define KASSERT(s) do { } while (/*CONSTCOND*/ 0) 46 1.14 roy #define __rbt_unused __unused 47 1.1 matt #endif 48 1.16 andvar __RCSID("$NetBSD: rb.c,v 1.16 2021/09/16 21:29:41 andvar Exp $"); 49 1.1 matt #else 50 1.1 matt #include <lib/libkern/libkern.h> 51 1.16 andvar __KERNEL_RCSID(0, "$NetBSD: rb.c,v 1.16 2021/09/16 21:29:41 andvar Exp $"); 52 1.14 roy #ifndef DIAGNOSTIC 53 1.14 roy #define __rbt_unused __unused 54 1.14 roy #else 55 1.14 roy #define __rbt_unused 56 1.14 roy #endif 57 1.1 matt #endif 58 1.1 matt 59 1.1 matt #ifdef _LIBC 60 1.1 matt __weak_alias(rb_tree_init, _rb_tree_init) 61 1.1 matt __weak_alias(rb_tree_find_node, _rb_tree_find_node) 62 1.1 matt __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq) 63 1.1 matt __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq) 64 1.1 matt __weak_alias(rb_tree_insert_node, _rb_tree_insert_node) 65 1.1 matt __weak_alias(rb_tree_remove_node, _rb_tree_remove_node) 66 1.1 matt __weak_alias(rb_tree_iterate, _rb_tree_iterate) 67 1.1 matt #ifdef RBDEBUG 68 1.1 matt __weak_alias(rb_tree_check, _rb_tree_check) 69 1.1 matt __weak_alias(rb_tree_depths, _rb_tree_depths) 70 1.1 matt #endif 71 1.1 matt 72 1.9 tron #include "namespace.h" 73 1.1 matt #endif 74 1.1 matt 75 1.1 matt #ifdef RBTEST 76 1.8 matt #include "rbtree.h" 77 1.1 matt #else 78 1.8 matt #include <sys/rbtree.h> 79 1.1 matt #endif 80 1.1 matt 81 1.1 matt static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *); 82 1.1 matt static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *, 83 1.1 matt unsigned int); 84 1.1 matt #ifdef RBDEBUG 85 1.1 matt static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *, 86 1.1 matt const struct rb_node *, const unsigned int); 87 1.1 matt static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *, 88 1.1 matt const struct rb_node *, bool); 89 1.1 matt #else 90 1.1 matt #define rb_tree_check_node(a, b, c, d) true 91 1.1 matt #endif 92 1.1 matt 93 1.7 rmind #define RB_NODETOITEM(rbto, rbn) \ 94 1.7 rmind ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset)) 95 1.7 rmind #define RB_ITEMTONODE(rbto, rbn) \ 96 1.7 rmind ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset)) 97 1.7 rmind 98 1.1 matt #define RB_SENTINEL_NODE NULL 99 1.1 matt 100 1.1 matt void 101 1.7 rmind rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops) 102 1.1 matt { 103 1.7 rmind 104 1.1 matt rbt->rbt_ops = ops; 105 1.11 mrg rbt->rbt_root = RB_SENTINEL_NODE; 106 1.1 matt RB_TAILQ_INIT(&rbt->rbt_nodes); 107 1.1 matt #ifndef RBSMALL 108 1.1 matt rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root; /* minimum node */ 109 1.1 matt rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root; /* maximum node */ 110 1.1 matt #endif 111 1.1 matt #ifdef RBSTATS 112 1.1 matt rbt->rbt_count = 0; 113 1.1 matt rbt->rbt_insertions = 0; 114 1.1 matt rbt->rbt_removals = 0; 115 1.1 matt rbt->rbt_insertion_rebalance_calls = 0; 116 1.1 matt rbt->rbt_insertion_rebalance_passes = 0; 117 1.1 matt rbt->rbt_removal_rebalance_calls = 0; 118 1.1 matt rbt->rbt_removal_rebalance_passes = 0; 119 1.1 matt #endif 120 1.1 matt } 121 1.1 matt 122 1.7 rmind void * 123 1.1 matt rb_tree_find_node(struct rb_tree *rbt, const void *key) 124 1.1 matt { 125 1.7 rmind const rb_tree_ops_t *rbto = rbt->rbt_ops; 126 1.7 rmind rbto_compare_key_fn compare_key = rbto->rbto_compare_key; 127 1.1 matt struct rb_node *parent = rbt->rbt_root; 128 1.1 matt 129 1.1 matt while (!RB_SENTINEL_P(parent)) { 130 1.7 rmind void *pobj = RB_NODETOITEM(rbto, parent); 131 1.7 rmind const signed int diff = (*compare_key)(rbto->rbto_context, 132 1.7 rmind pobj, key); 133 1.1 matt if (diff == 0) 134 1.7 rmind return pobj; 135 1.7 rmind parent = parent->rb_nodes[diff < 0]; 136 1.1 matt } 137 1.1 matt 138 1.1 matt return NULL; 139 1.1 matt } 140 1.7 rmind 141 1.7 rmind void * 142 1.1 matt rb_tree_find_node_geq(struct rb_tree *rbt, const void *key) 143 1.1 matt { 144 1.7 rmind const rb_tree_ops_t *rbto = rbt->rbt_ops; 145 1.7 rmind rbto_compare_key_fn compare_key = rbto->rbto_compare_key; 146 1.7 rmind struct rb_node *parent = rbt->rbt_root, *last = NULL; 147 1.1 matt 148 1.1 matt while (!RB_SENTINEL_P(parent)) { 149 1.7 rmind void *pobj = RB_NODETOITEM(rbto, parent); 150 1.7 rmind const signed int diff = (*compare_key)(rbto->rbto_context, 151 1.7 rmind pobj, key); 152 1.1 matt if (diff == 0) 153 1.7 rmind return pobj; 154 1.7 rmind if (diff > 0) 155 1.1 matt last = parent; 156 1.7 rmind parent = parent->rb_nodes[diff < 0]; 157 1.1 matt } 158 1.1 matt 159 1.13 matt return last == NULL ? NULL : RB_NODETOITEM(rbto, last); 160 1.1 matt } 161 1.7 rmind 162 1.7 rmind void * 163 1.1 matt rb_tree_find_node_leq(struct rb_tree *rbt, const void *key) 164 1.1 matt { 165 1.7 rmind const rb_tree_ops_t *rbto = rbt->rbt_ops; 166 1.7 rmind rbto_compare_key_fn compare_key = rbto->rbto_compare_key; 167 1.7 rmind struct rb_node *parent = rbt->rbt_root, *last = NULL; 168 1.1 matt 169 1.1 matt while (!RB_SENTINEL_P(parent)) { 170 1.7 rmind void *pobj = RB_NODETOITEM(rbto, parent); 171 1.7 rmind const signed int diff = (*compare_key)(rbto->rbto_context, 172 1.7 rmind pobj, key); 173 1.1 matt if (diff == 0) 174 1.7 rmind return pobj; 175 1.7 rmind if (diff < 0) 176 1.1 matt last = parent; 177 1.7 rmind parent = parent->rb_nodes[diff < 0]; 178 1.1 matt } 179 1.1 matt 180 1.13 matt return last == NULL ? NULL : RB_NODETOITEM(rbto, last); 181 1.1 matt } 182 1.7 rmind 183 1.7 rmind void * 184 1.7 rmind rb_tree_insert_node(struct rb_tree *rbt, void *object) 185 1.1 matt { 186 1.7 rmind const rb_tree_ops_t *rbto = rbt->rbt_ops; 187 1.7 rmind rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes; 188 1.7 rmind struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object); 189 1.1 matt unsigned int position; 190 1.1 matt bool rebalance; 191 1.1 matt 192 1.1 matt RBSTAT_INC(rbt->rbt_insertions); 193 1.1 matt 194 1.1 matt tmp = rbt->rbt_root; 195 1.1 matt /* 196 1.1 matt * This is a hack. Because rbt->rbt_root is just a struct rb_node *, 197 1.1 matt * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to 198 1.1 matt * avoid a lot of tests for root and know that even at root, 199 1.1 matt * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will 200 1.1 matt * update rbt->rbt_root. 201 1.1 matt */ 202 1.3 matt parent = (struct rb_node *)(void *)&rbt->rbt_root; 203 1.1 matt position = RB_DIR_LEFT; 204 1.1 matt 205 1.1 matt /* 206 1.1 matt * Find out where to place this new leaf. 207 1.1 matt */ 208 1.1 matt while (!RB_SENTINEL_P(tmp)) { 209 1.7 rmind void *tobj = RB_NODETOITEM(rbto, tmp); 210 1.7 rmind const signed int diff = (*compare_nodes)(rbto->rbto_context, 211 1.7 rmind tobj, object); 212 1.1 matt if (__predict_false(diff == 0)) { 213 1.1 matt /* 214 1.7 rmind * Node already exists; return it. 215 1.1 matt */ 216 1.7 rmind return tobj; 217 1.1 matt } 218 1.1 matt parent = tmp; 219 1.7 rmind position = (diff < 0); 220 1.1 matt tmp = parent->rb_nodes[position]; 221 1.1 matt } 222 1.1 matt 223 1.1 matt #ifdef RBDEBUG 224 1.1 matt { 225 1.1 matt struct rb_node *prev = NULL, *next = NULL; 226 1.1 matt 227 1.1 matt if (position == RB_DIR_RIGHT) 228 1.1 matt prev = parent; 229 1.1 matt else if (tmp != rbt->rbt_root) 230 1.1 matt next = parent; 231 1.1 matt 232 1.1 matt /* 233 1.1 matt * Verify our sequential position 234 1.1 matt */ 235 1.1 matt KASSERT(prev == NULL || !RB_SENTINEL_P(prev)); 236 1.1 matt KASSERT(next == NULL || !RB_SENTINEL_P(next)); 237 1.1 matt if (prev != NULL && next == NULL) 238 1.1 matt next = TAILQ_NEXT(prev, rb_link); 239 1.1 matt if (prev == NULL && next != NULL) 240 1.1 matt prev = TAILQ_PREV(next, rb_node_qh, rb_link); 241 1.1 matt KASSERT(prev == NULL || !RB_SENTINEL_P(prev)); 242 1.1 matt KASSERT(next == NULL || !RB_SENTINEL_P(next)); 243 1.7 rmind KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context, 244 1.7 rmind RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0); 245 1.7 rmind KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context, 246 1.7 rmind RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0); 247 1.1 matt } 248 1.1 matt #endif 249 1.1 matt 250 1.1 matt /* 251 1.1 matt * Initialize the node and insert as a leaf into the tree. 252 1.1 matt */ 253 1.1 matt RB_SET_FATHER(self, parent); 254 1.1 matt RB_SET_POSITION(self, position); 255 1.3 matt if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) { 256 1.1 matt RB_MARK_BLACK(self); /* root is always black */ 257 1.1 matt #ifndef RBSMALL 258 1.1 matt rbt->rbt_minmax[RB_DIR_LEFT] = self; 259 1.1 matt rbt->rbt_minmax[RB_DIR_RIGHT] = self; 260 1.1 matt #endif 261 1.1 matt rebalance = false; 262 1.1 matt } else { 263 1.1 matt KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT); 264 1.1 matt #ifndef RBSMALL 265 1.1 matt /* 266 1.1 matt * Keep track of the minimum and maximum nodes. If our 267 1.1 matt * parent is a minmax node and we on their min/max side, 268 1.1 matt * we must be the new min/max node. 269 1.1 matt */ 270 1.1 matt if (parent == rbt->rbt_minmax[position]) 271 1.1 matt rbt->rbt_minmax[position] = self; 272 1.1 matt #endif /* !RBSMALL */ 273 1.1 matt /* 274 1.1 matt * All new nodes are colored red. We only need to rebalance 275 1.1 matt * if our parent is also red. 276 1.1 matt */ 277 1.1 matt RB_MARK_RED(self); 278 1.1 matt rebalance = RB_RED_P(parent); 279 1.1 matt } 280 1.1 matt KASSERT(RB_SENTINEL_P(parent->rb_nodes[position])); 281 1.1 matt self->rb_left = parent->rb_nodes[position]; 282 1.1 matt self->rb_right = parent->rb_nodes[position]; 283 1.1 matt parent->rb_nodes[position] = self; 284 1.1 matt KASSERT(RB_CHILDLESS_P(self)); 285 1.1 matt 286 1.1 matt /* 287 1.1 matt * Insert the new node into a sorted list for easy sequential access 288 1.1 matt */ 289 1.1 matt RBSTAT_INC(rbt->rbt_count); 290 1.1 matt #ifdef RBDEBUG 291 1.1 matt if (RB_ROOT_P(rbt, self)) { 292 1.1 matt RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link); 293 1.1 matt } else if (position == RB_DIR_LEFT) { 294 1.7 rmind KASSERT((*compare_nodes)(rbto->rbto_context, 295 1.7 rmind RB_NODETOITEM(rbto, self), 296 1.7 rmind RB_NODETOITEM(rbto, RB_FATHER(self))) < 0); 297 1.1 matt RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link); 298 1.1 matt } else { 299 1.7 rmind KASSERT((*compare_nodes)(rbto->rbto_context, 300 1.7 rmind RB_NODETOITEM(rbto, RB_FATHER(self)), 301 1.7 rmind RB_NODETOITEM(rbto, self)) < 0); 302 1.1 matt RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self), 303 1.1 matt self, rb_link); 304 1.1 matt } 305 1.1 matt #endif 306 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance)); 307 1.1 matt 308 1.1 matt /* 309 1.1 matt * Rebalance tree after insertion 310 1.1 matt */ 311 1.1 matt if (rebalance) { 312 1.1 matt rb_tree_insert_rebalance(rbt, self); 313 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, true)); 314 1.1 matt } 315 1.1 matt 316 1.16 andvar /* Successfully inserted, return our node pointer. */ 317 1.7 rmind return object; 318 1.1 matt } 319 1.7 rmind 320 1.1 matt /* 321 1.1 matt * Swap the location and colors of 'self' and its child @ which. The child 322 1.1 matt * can not be a sentinel node. This is our rotation function. However, 323 1.1 matt * since it preserves coloring, it great simplifies both insertion and 324 1.1 matt * removal since rotation almost always involves the exchanging of colors 325 1.1 matt * as a separate step. 326 1.1 matt */ 327 1.1 matt static void 328 1.14 roy rb_tree_reparent_nodes(__rbt_unused struct rb_tree *rbt, 329 1.14 roy struct rb_node *old_father, const unsigned int which) 330 1.1 matt { 331 1.1 matt const unsigned int other = which ^ RB_DIR_OTHER; 332 1.1 matt struct rb_node * const grandpa = RB_FATHER(old_father); 333 1.1 matt struct rb_node * const old_child = old_father->rb_nodes[which]; 334 1.1 matt struct rb_node * const new_father = old_child; 335 1.1 matt struct rb_node * const new_child = old_father; 336 1.1 matt 337 1.1 matt KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT); 338 1.1 matt 339 1.1 matt KASSERT(!RB_SENTINEL_P(old_child)); 340 1.1 matt KASSERT(RB_FATHER(old_child) == old_father); 341 1.1 matt 342 1.1 matt KASSERT(rb_tree_check_node(rbt, old_father, NULL, false)); 343 1.1 matt KASSERT(rb_tree_check_node(rbt, old_child, NULL, false)); 344 1.7 rmind KASSERT(RB_ROOT_P(rbt, old_father) || 345 1.7 rmind rb_tree_check_node(rbt, grandpa, NULL, false)); 346 1.1 matt 347 1.1 matt /* 348 1.1 matt * Exchange descendant linkages. 349 1.1 matt */ 350 1.1 matt grandpa->rb_nodes[RB_POSITION(old_father)] = new_father; 351 1.1 matt new_child->rb_nodes[which] = old_child->rb_nodes[other]; 352 1.1 matt new_father->rb_nodes[other] = new_child; 353 1.1 matt 354 1.1 matt /* 355 1.1 matt * Update ancestor linkages 356 1.1 matt */ 357 1.1 matt RB_SET_FATHER(new_father, grandpa); 358 1.1 matt RB_SET_FATHER(new_child, new_father); 359 1.1 matt 360 1.1 matt /* 361 1.1 matt * Exchange properties between new_father and new_child. The only 362 1.1 matt * change is that new_child's position is now on the other side. 363 1.1 matt */ 364 1.1 matt #if 0 365 1.1 matt { 366 1.1 matt struct rb_node tmp; 367 1.1 matt tmp.rb_info = 0; 368 1.1 matt RB_COPY_PROPERTIES(&tmp, old_child); 369 1.1 matt RB_COPY_PROPERTIES(new_father, old_father); 370 1.1 matt RB_COPY_PROPERTIES(new_child, &tmp); 371 1.1 matt } 372 1.1 matt #else 373 1.1 matt RB_SWAP_PROPERTIES(new_father, new_child); 374 1.1 matt #endif 375 1.1 matt RB_SET_POSITION(new_child, other); 376 1.1 matt 377 1.1 matt /* 378 1.1 matt * Make sure to reparent the new child to ourself. 379 1.1 matt */ 380 1.1 matt if (!RB_SENTINEL_P(new_child->rb_nodes[which])) { 381 1.1 matt RB_SET_FATHER(new_child->rb_nodes[which], new_child); 382 1.1 matt RB_SET_POSITION(new_child->rb_nodes[which], which); 383 1.1 matt } 384 1.1 matt 385 1.1 matt KASSERT(rb_tree_check_node(rbt, new_father, NULL, false)); 386 1.1 matt KASSERT(rb_tree_check_node(rbt, new_child, NULL, false)); 387 1.7 rmind KASSERT(RB_ROOT_P(rbt, new_father) || 388 1.7 rmind rb_tree_check_node(rbt, grandpa, NULL, false)); 389 1.1 matt } 390 1.7 rmind 391 1.1 matt static void 392 1.1 matt rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self) 393 1.1 matt { 394 1.1 matt struct rb_node * father = RB_FATHER(self); 395 1.1 matt struct rb_node * grandpa = RB_FATHER(father); 396 1.1 matt struct rb_node * uncle; 397 1.1 matt unsigned int which; 398 1.1 matt unsigned int other; 399 1.1 matt 400 1.1 matt KASSERT(!RB_ROOT_P(rbt, self)); 401 1.1 matt KASSERT(RB_RED_P(self)); 402 1.1 matt KASSERT(RB_RED_P(father)); 403 1.1 matt RBSTAT_INC(rbt->rbt_insertion_rebalance_calls); 404 1.1 matt 405 1.1 matt for (;;) { 406 1.1 matt KASSERT(!RB_SENTINEL_P(self)); 407 1.1 matt 408 1.1 matt KASSERT(RB_RED_P(self)); 409 1.1 matt KASSERT(RB_RED_P(father)); 410 1.1 matt /* 411 1.1 matt * We are red and our parent is red, therefore we must have a 412 1.1 matt * grandfather and he must be black. 413 1.1 matt */ 414 1.1 matt grandpa = RB_FATHER(father); 415 1.1 matt KASSERT(RB_BLACK_P(grandpa)); 416 1.1 matt KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0); 417 1.1 matt which = (father == grandpa->rb_right); 418 1.1 matt other = which ^ RB_DIR_OTHER; 419 1.1 matt uncle = grandpa->rb_nodes[other]; 420 1.1 matt 421 1.1 matt if (RB_BLACK_P(uncle)) 422 1.1 matt break; 423 1.1 matt 424 1.1 matt RBSTAT_INC(rbt->rbt_insertion_rebalance_passes); 425 1.1 matt /* 426 1.1 matt * Case 1: our uncle is red 427 1.1 matt * Simply invert the colors of our parent and 428 1.1 matt * uncle and make our grandparent red. And 429 1.1 matt * then solve the problem up at his level. 430 1.1 matt */ 431 1.1 matt RB_MARK_BLACK(uncle); 432 1.1 matt RB_MARK_BLACK(father); 433 1.1 matt if (__predict_false(RB_ROOT_P(rbt, grandpa))) { 434 1.1 matt /* 435 1.1 matt * If our grandpa is root, don't bother 436 1.1 matt * setting him to red, just return. 437 1.1 matt */ 438 1.1 matt KASSERT(RB_BLACK_P(grandpa)); 439 1.1 matt return; 440 1.1 matt } 441 1.1 matt RB_MARK_RED(grandpa); 442 1.1 matt self = grandpa; 443 1.1 matt father = RB_FATHER(self); 444 1.1 matt KASSERT(RB_RED_P(self)); 445 1.1 matt if (RB_BLACK_P(father)) { 446 1.1 matt /* 447 1.1 matt * If our greatgrandpa is black, we're done. 448 1.1 matt */ 449 1.1 matt KASSERT(RB_BLACK_P(rbt->rbt_root)); 450 1.1 matt return; 451 1.1 matt } 452 1.1 matt } 453 1.1 matt 454 1.1 matt KASSERT(!RB_ROOT_P(rbt, self)); 455 1.1 matt KASSERT(RB_RED_P(self)); 456 1.1 matt KASSERT(RB_RED_P(father)); 457 1.1 matt KASSERT(RB_BLACK_P(uncle)); 458 1.1 matt KASSERT(RB_BLACK_P(grandpa)); 459 1.1 matt /* 460 1.1 matt * Case 2&3: our uncle is black. 461 1.1 matt */ 462 1.1 matt if (self == father->rb_nodes[other]) { 463 1.1 matt /* 464 1.1 matt * Case 2: we are on the same side as our uncle 465 1.1 matt * Swap ourselves with our parent so this case 466 1.1 matt * becomes case 3. Basically our parent becomes our 467 1.1 matt * child. 468 1.1 matt */ 469 1.1 matt rb_tree_reparent_nodes(rbt, father, other); 470 1.1 matt KASSERT(RB_FATHER(father) == self); 471 1.1 matt KASSERT(self->rb_nodes[which] == father); 472 1.1 matt KASSERT(RB_FATHER(self) == grandpa); 473 1.1 matt self = father; 474 1.1 matt father = RB_FATHER(self); 475 1.1 matt } 476 1.1 matt KASSERT(RB_RED_P(self) && RB_RED_P(father)); 477 1.1 matt KASSERT(grandpa->rb_nodes[which] == father); 478 1.1 matt /* 479 1.1 matt * Case 3: we are opposite a child of a black uncle. 480 1.1 matt * Swap our parent and grandparent. Since our grandfather 481 1.1 matt * is black, our father will become black and our new sibling 482 1.1 matt * (former grandparent) will become red. 483 1.1 matt */ 484 1.1 matt rb_tree_reparent_nodes(rbt, grandpa, which); 485 1.1 matt KASSERT(RB_FATHER(self) == father); 486 1.1 matt KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa); 487 1.1 matt KASSERT(RB_RED_P(self)); 488 1.1 matt KASSERT(RB_BLACK_P(father)); 489 1.1 matt KASSERT(RB_RED_P(grandpa)); 490 1.1 matt 491 1.1 matt /* 492 1.1 matt * Final step: Set the root to black. 493 1.1 matt */ 494 1.1 matt RB_MARK_BLACK(rbt->rbt_root); 495 1.1 matt } 496 1.7 rmind 497 1.1 matt static void 498 1.1 matt rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance) 499 1.1 matt { 500 1.1 matt const unsigned int which = RB_POSITION(self); 501 1.1 matt struct rb_node *father = RB_FATHER(self); 502 1.5 joerg #ifndef RBSMALL 503 1.1 matt const bool was_root = RB_ROOT_P(rbt, self); 504 1.5 joerg #endif 505 1.1 matt 506 1.1 matt KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self))); 507 1.1 matt KASSERT(!rebalance || RB_BLACK_P(self)); 508 1.1 matt KASSERT(RB_CHILDLESS_P(self)); 509 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, false)); 510 1.1 matt 511 1.1 matt /* 512 1.1 matt * Since we are childless, we know that self->rb_left is pointing 513 1.1 matt * to the sentinel node. 514 1.1 matt */ 515 1.1 matt father->rb_nodes[which] = self->rb_left; 516 1.1 matt 517 1.1 matt /* 518 1.1 matt * Remove ourselves from the node list, decrement the count, 519 1.1 matt * and update min/max. 520 1.1 matt */ 521 1.1 matt RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); 522 1.1 matt RBSTAT_DEC(rbt->rbt_count); 523 1.1 matt #ifndef RBSMALL 524 1.1 matt if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) { 525 1.1 matt rbt->rbt_minmax[RB_POSITION(self)] = father; 526 1.1 matt /* 527 1.1 matt * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is 528 1.1 matt * updated automatically, but we also need to update 529 1.1 matt * rbt->rbt_minmax[RB_DIR_RIGHT]; 530 1.1 matt */ 531 1.1 matt if (__predict_false(was_root)) { 532 1.1 matt rbt->rbt_minmax[RB_DIR_RIGHT] = father; 533 1.1 matt } 534 1.1 matt } 535 1.1 matt RB_SET_FATHER(self, NULL); 536 1.1 matt #endif 537 1.1 matt 538 1.1 matt /* 539 1.1 matt * Rebalance if requested. 540 1.1 matt */ 541 1.1 matt if (rebalance) 542 1.1 matt rb_tree_removal_rebalance(rbt, father, which); 543 1.1 matt KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true)); 544 1.1 matt } 545 1.7 rmind 546 1.1 matt /* 547 1.1 matt * When deleting an interior node 548 1.1 matt */ 549 1.1 matt static void 550 1.1 matt rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self, 551 1.1 matt struct rb_node *standin) 552 1.1 matt { 553 1.1 matt const unsigned int standin_which = RB_POSITION(standin); 554 1.1 matt unsigned int standin_other = standin_which ^ RB_DIR_OTHER; 555 1.1 matt struct rb_node *standin_son; 556 1.1 matt struct rb_node *standin_father = RB_FATHER(standin); 557 1.1 matt bool rebalance = RB_BLACK_P(standin); 558 1.1 matt 559 1.1 matt if (standin_father == self) { 560 1.1 matt /* 561 1.1 matt * As a child of self, any childen would be opposite of 562 1.1 matt * our parent. 563 1.1 matt */ 564 1.1 matt KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other])); 565 1.1 matt standin_son = standin->rb_nodes[standin_which]; 566 1.1 matt } else { 567 1.1 matt /* 568 1.1 matt * Since we aren't a child of self, any childen would be 569 1.1 matt * on the same side as our parent. 570 1.1 matt */ 571 1.1 matt KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which])); 572 1.1 matt standin_son = standin->rb_nodes[standin_other]; 573 1.1 matt } 574 1.1 matt 575 1.1 matt /* 576 1.1 matt * the node we are removing must have two children. 577 1.1 matt */ 578 1.1 matt KASSERT(RB_TWOCHILDREN_P(self)); 579 1.1 matt /* 580 1.1 matt * If standin has a child, it must be red. 581 1.1 matt */ 582 1.1 matt KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son)); 583 1.1 matt 584 1.1 matt /* 585 1.1 matt * Verify things are sane. 586 1.1 matt */ 587 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, false)); 588 1.1 matt KASSERT(rb_tree_check_node(rbt, standin, NULL, false)); 589 1.1 matt 590 1.1 matt if (__predict_false(RB_RED_P(standin_son))) { 591 1.1 matt /* 592 1.1 matt * We know we have a red child so if we flip it to black 593 1.1 matt * we don't have to rebalance. 594 1.1 matt */ 595 1.1 matt KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true)); 596 1.1 matt RB_MARK_BLACK(standin_son); 597 1.1 matt rebalance = false; 598 1.1 matt 599 1.1 matt if (standin_father == self) { 600 1.1 matt KASSERT(RB_POSITION(standin_son) == standin_which); 601 1.1 matt } else { 602 1.1 matt KASSERT(RB_POSITION(standin_son) == standin_other); 603 1.1 matt /* 604 1.1 matt * Change the son's parentage to point to his grandpa. 605 1.1 matt */ 606 1.1 matt RB_SET_FATHER(standin_son, standin_father); 607 1.1 matt RB_SET_POSITION(standin_son, standin_which); 608 1.1 matt } 609 1.1 matt } 610 1.1 matt 611 1.1 matt if (standin_father == self) { 612 1.1 matt /* 613 1.1 matt * If we are about to delete the standin's father, then when 614 1.1 matt * we call rebalance, we need to use ourselves as our father. 615 1.1 matt * Otherwise remember our original father. Also, sincef we are 616 1.1 matt * our standin's father we only need to reparent the standin's 617 1.1 matt * brother. 618 1.1 matt * 619 1.1 matt * | R --> S | 620 1.1 matt * | Q S --> Q T | 621 1.1 matt * | t --> | 622 1.1 matt */ 623 1.1 matt KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other])); 624 1.1 matt KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other])); 625 1.1 matt KASSERT(self->rb_nodes[standin_which] == standin); 626 1.1 matt /* 627 1.1 matt * Have our son/standin adopt his brother as his new son. 628 1.1 matt */ 629 1.1 matt standin_father = standin; 630 1.1 matt } else { 631 1.1 matt /* 632 1.1 matt * | R --> S . | 633 1.1 matt * | / \ | T --> / \ | / | 634 1.1 matt * | ..... | S --> ..... | T | 635 1.1 matt * 636 1.1 matt * Sever standin's connection to his father. 637 1.1 matt */ 638 1.1 matt standin_father->rb_nodes[standin_which] = standin_son; 639 1.1 matt /* 640 1.1 matt * Adopt the far son. 641 1.1 matt */ 642 1.1 matt standin->rb_nodes[standin_other] = self->rb_nodes[standin_other]; 643 1.1 matt RB_SET_FATHER(standin->rb_nodes[standin_other], standin); 644 1.1 matt KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other); 645 1.1 matt /* 646 1.1 matt * Use standin_other because we need to preserve standin_which 647 1.1 matt * for the removal_rebalance. 648 1.1 matt */ 649 1.1 matt standin_other = standin_which; 650 1.1 matt } 651 1.1 matt 652 1.1 matt /* 653 1.1 matt * Move the only remaining son to our standin. If our standin is our 654 1.1 matt * son, this will be the only son needed to be moved. 655 1.1 matt */ 656 1.1 matt KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]); 657 1.1 matt standin->rb_nodes[standin_other] = self->rb_nodes[standin_other]; 658 1.1 matt RB_SET_FATHER(standin->rb_nodes[standin_other], standin); 659 1.1 matt 660 1.1 matt /* 661 1.1 matt * Now copy the result of self to standin and then replace 662 1.1 matt * self with standin in the tree. 663 1.1 matt */ 664 1.1 matt RB_COPY_PROPERTIES(standin, self); 665 1.1 matt RB_SET_FATHER(standin, RB_FATHER(self)); 666 1.1 matt RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin; 667 1.1 matt 668 1.1 matt /* 669 1.1 matt * Remove ourselves from the node list, decrement the count, 670 1.1 matt * and update min/max. 671 1.1 matt */ 672 1.1 matt RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); 673 1.1 matt RBSTAT_DEC(rbt->rbt_count); 674 1.1 matt #ifndef RBSMALL 675 1.1 matt if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) 676 1.1 matt rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self); 677 1.1 matt RB_SET_FATHER(self, NULL); 678 1.1 matt #endif 679 1.1 matt 680 1.1 matt KASSERT(rb_tree_check_node(rbt, standin, NULL, false)); 681 1.1 matt KASSERT(RB_FATHER_SENTINEL_P(standin) 682 1.1 matt || rb_tree_check_node(rbt, standin_father, NULL, false)); 683 1.1 matt KASSERT(RB_LEFT_SENTINEL_P(standin) 684 1.1 matt || rb_tree_check_node(rbt, standin->rb_left, NULL, false)); 685 1.1 matt KASSERT(RB_RIGHT_SENTINEL_P(standin) 686 1.1 matt || rb_tree_check_node(rbt, standin->rb_right, NULL, false)); 687 1.1 matt 688 1.1 matt if (!rebalance) 689 1.1 matt return; 690 1.1 matt 691 1.1 matt rb_tree_removal_rebalance(rbt, standin_father, standin_which); 692 1.1 matt KASSERT(rb_tree_check_node(rbt, standin, NULL, true)); 693 1.1 matt } 694 1.1 matt 695 1.1 matt /* 696 1.1 matt * We could do this by doing 697 1.1 matt * rb_tree_node_swap(rbt, self, which); 698 1.1 matt * rb_tree_prune_node(rbt, self, false); 699 1.1 matt * 700 1.1 matt * But it's more efficient to just evalate and recolor the child. 701 1.1 matt */ 702 1.1 matt static void 703 1.1 matt rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self, 704 1.1 matt unsigned int which) 705 1.1 matt { 706 1.1 matt struct rb_node *father = RB_FATHER(self); 707 1.1 matt struct rb_node *son = self->rb_nodes[which]; 708 1.5 joerg #ifndef RBSMALL 709 1.1 matt const bool was_root = RB_ROOT_P(rbt, self); 710 1.5 joerg #endif 711 1.1 matt 712 1.1 matt KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT); 713 1.1 matt KASSERT(RB_BLACK_P(self) && RB_RED_P(son)); 714 1.1 matt KASSERT(!RB_TWOCHILDREN_P(son)); 715 1.1 matt KASSERT(RB_CHILDLESS_P(son)); 716 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, false)); 717 1.1 matt KASSERT(rb_tree_check_node(rbt, son, NULL, false)); 718 1.1 matt 719 1.1 matt /* 720 1.1 matt * Remove ourselves from the tree and give our former child our 721 1.1 matt * properties (position, color, root). 722 1.1 matt */ 723 1.1 matt RB_COPY_PROPERTIES(son, self); 724 1.1 matt father->rb_nodes[RB_POSITION(son)] = son; 725 1.1 matt RB_SET_FATHER(son, father); 726 1.1 matt 727 1.1 matt /* 728 1.1 matt * Remove ourselves from the node list, decrement the count, 729 1.1 matt * and update minmax. 730 1.1 matt */ 731 1.1 matt RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); 732 1.1 matt RBSTAT_DEC(rbt->rbt_count); 733 1.1 matt #ifndef RBSMALL 734 1.1 matt if (__predict_false(was_root)) { 735 1.1 matt KASSERT(rbt->rbt_minmax[which] == son); 736 1.1 matt rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son; 737 1.1 matt } else if (rbt->rbt_minmax[RB_POSITION(self)] == self) { 738 1.1 matt rbt->rbt_minmax[RB_POSITION(self)] = son; 739 1.1 matt } 740 1.1 matt RB_SET_FATHER(self, NULL); 741 1.1 matt #endif 742 1.1 matt 743 1.1 matt KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true)); 744 1.1 matt KASSERT(rb_tree_check_node(rbt, son, NULL, true)); 745 1.1 matt } 746 1.7 rmind 747 1.1 matt void 748 1.7 rmind rb_tree_remove_node(struct rb_tree *rbt, void *object) 749 1.1 matt { 750 1.7 rmind const rb_tree_ops_t *rbto = rbt->rbt_ops; 751 1.7 rmind struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object); 752 1.1 matt unsigned int which; 753 1.1 matt 754 1.1 matt KASSERT(!RB_SENTINEL_P(self)); 755 1.1 matt RBSTAT_INC(rbt->rbt_removals); 756 1.1 matt 757 1.1 matt /* 758 1.1 matt * In the following diagrams, we (the node to be removed) are S. Red 759 1.1 matt * nodes are lowercase. T could be either red or black. 760 1.1 matt * 761 1.1 matt * Remember the major axiom of the red-black tree: the number of 762 1.1 matt * black nodes from the root to each leaf is constant across all 763 1.1 matt * leaves, only the number of red nodes varies. 764 1.1 matt * 765 1.1 matt * Thus removing a red leaf doesn't require any other changes to a 766 1.1 matt * red-black tree. So if we must remove a node, attempt to rearrange 767 1.1 matt * the tree so we can remove a red node. 768 1.1 matt * 769 1.1 matt * The simpliest case is a childless red node or a childless root node: 770 1.1 matt * 771 1.1 matt * | T --> T | or | R --> * | 772 1.1 matt * | s --> * | 773 1.1 matt */ 774 1.1 matt if (RB_CHILDLESS_P(self)) { 775 1.1 matt const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self); 776 1.1 matt rb_tree_prune_node(rbt, self, rebalance); 777 1.1 matt return; 778 1.1 matt } 779 1.1 matt KASSERT(!RB_CHILDLESS_P(self)); 780 1.1 matt if (!RB_TWOCHILDREN_P(self)) { 781 1.1 matt /* 782 1.1 matt * The next simpliest case is the node we are deleting is 783 1.1 matt * black and has one red child. 784 1.1 matt * 785 1.1 matt * | T --> T --> T | 786 1.1 matt * | S --> R --> R | 787 1.1 matt * | r --> s --> * | 788 1.1 matt */ 789 1.1 matt which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT; 790 1.1 matt KASSERT(RB_BLACK_P(self)); 791 1.1 matt KASSERT(RB_RED_P(self->rb_nodes[which])); 792 1.1 matt KASSERT(RB_CHILDLESS_P(self->rb_nodes[which])); 793 1.1 matt rb_tree_prune_blackred_branch(rbt, self, which); 794 1.1 matt return; 795 1.1 matt } 796 1.1 matt KASSERT(RB_TWOCHILDREN_P(self)); 797 1.1 matt 798 1.1 matt /* 799 1.1 matt * We invert these because we prefer to remove from the inside of 800 1.1 matt * the tree. 801 1.1 matt */ 802 1.1 matt which = RB_POSITION(self) ^ RB_DIR_OTHER; 803 1.1 matt 804 1.1 matt /* 805 1.1 matt * Let's find the node closes to us opposite of our parent 806 1.1 matt * Now swap it with ourself, "prune" it, and rebalance, if needed. 807 1.1 matt */ 808 1.7 rmind standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which)); 809 1.1 matt rb_tree_swap_prune_and_rebalance(rbt, self, standin); 810 1.1 matt } 811 1.1 matt 812 1.1 matt static void 813 1.1 matt rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent, 814 1.1 matt unsigned int which) 815 1.1 matt { 816 1.1 matt KASSERT(!RB_SENTINEL_P(parent)); 817 1.1 matt KASSERT(RB_SENTINEL_P(parent->rb_nodes[which])); 818 1.1 matt KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT); 819 1.1 matt RBSTAT_INC(rbt->rbt_removal_rebalance_calls); 820 1.1 matt 821 1.1 matt while (RB_BLACK_P(parent->rb_nodes[which])) { 822 1.1 matt unsigned int other = which ^ RB_DIR_OTHER; 823 1.1 matt struct rb_node *brother = parent->rb_nodes[other]; 824 1.1 matt 825 1.1 matt RBSTAT_INC(rbt->rbt_removal_rebalance_passes); 826 1.1 matt 827 1.1 matt KASSERT(!RB_SENTINEL_P(brother)); 828 1.1 matt /* 829 1.1 matt * For cases 1, 2a, and 2b, our brother's children must 830 1.1 matt * be black and our father must be black 831 1.1 matt */ 832 1.1 matt if (RB_BLACK_P(parent) 833 1.1 matt && RB_BLACK_P(brother->rb_left) 834 1.1 matt && RB_BLACK_P(brother->rb_right)) { 835 1.1 matt if (RB_RED_P(brother)) { 836 1.1 matt /* 837 1.1 matt * Case 1: Our brother is red, swap its 838 1.1 matt * position (and colors) with our parent. 839 1.1 matt * This should now be case 2b (unless C or E 840 1.1 matt * has a red child which is case 3; thus no 841 1.1 matt * explicit branch to case 2b). 842 1.1 matt * 843 1.1 matt * B -> D 844 1.1 matt * A d -> b E 845 1.1 matt * C E -> A C 846 1.1 matt */ 847 1.1 matt KASSERT(RB_BLACK_P(parent)); 848 1.1 matt rb_tree_reparent_nodes(rbt, parent, other); 849 1.1 matt brother = parent->rb_nodes[other]; 850 1.1 matt KASSERT(!RB_SENTINEL_P(brother)); 851 1.1 matt KASSERT(RB_RED_P(parent)); 852 1.1 matt KASSERT(RB_BLACK_P(brother)); 853 1.1 matt KASSERT(rb_tree_check_node(rbt, brother, NULL, false)); 854 1.1 matt KASSERT(rb_tree_check_node(rbt, parent, NULL, false)); 855 1.1 matt } else { 856 1.1 matt /* 857 1.1 matt * Both our parent and brother are black. 858 1.1 matt * Change our brother to red, advance up rank 859 1.1 matt * and go through the loop again. 860 1.1 matt * 861 1.1 matt * B -> *B 862 1.1 matt * *A D -> A d 863 1.1 matt * C E -> C E 864 1.1 matt */ 865 1.1 matt RB_MARK_RED(brother); 866 1.1 matt KASSERT(RB_BLACK_P(brother->rb_left)); 867 1.1 matt KASSERT(RB_BLACK_P(brother->rb_right)); 868 1.1 matt if (RB_ROOT_P(rbt, parent)) 869 1.1 matt return; /* root == parent == black */ 870 1.1 matt KASSERT(rb_tree_check_node(rbt, brother, NULL, false)); 871 1.1 matt KASSERT(rb_tree_check_node(rbt, parent, NULL, false)); 872 1.1 matt which = RB_POSITION(parent); 873 1.1 matt parent = RB_FATHER(parent); 874 1.1 matt continue; 875 1.1 matt } 876 1.1 matt } 877 1.1 matt /* 878 1.1 matt * Avoid an else here so that case 2a above can hit either 879 1.1 matt * case 2b, 3, or 4. 880 1.1 matt */ 881 1.1 matt if (RB_RED_P(parent) 882 1.1 matt && RB_BLACK_P(brother) 883 1.1 matt && RB_BLACK_P(brother->rb_left) 884 1.1 matt && RB_BLACK_P(brother->rb_right)) { 885 1.1 matt KASSERT(RB_RED_P(parent)); 886 1.1 matt KASSERT(RB_BLACK_P(brother)); 887 1.1 matt KASSERT(RB_BLACK_P(brother->rb_left)); 888 1.1 matt KASSERT(RB_BLACK_P(brother->rb_right)); 889 1.1 matt /* 890 1.1 matt * We are black, our father is red, our brother and 891 1.1 matt * both nephews are black. Simply invert/exchange the 892 1.1 matt * colors of our father and brother (to black and red 893 1.1 matt * respectively). 894 1.1 matt * 895 1.1 matt * | f --> F | 896 1.1 matt * | * B --> * b | 897 1.1 matt * | N N --> N N | 898 1.1 matt */ 899 1.1 matt RB_MARK_BLACK(parent); 900 1.1 matt RB_MARK_RED(brother); 901 1.1 matt KASSERT(rb_tree_check_node(rbt, brother, NULL, true)); 902 1.1 matt break; /* We're done! */ 903 1.1 matt } else { 904 1.1 matt /* 905 1.1 matt * Our brother must be black and have at least one 906 1.1 matt * red child (it may have two). 907 1.1 matt */ 908 1.1 matt KASSERT(RB_BLACK_P(brother)); 909 1.1 matt KASSERT(RB_RED_P(brother->rb_nodes[which]) || 910 1.1 matt RB_RED_P(brother->rb_nodes[other])); 911 1.1 matt if (RB_BLACK_P(brother->rb_nodes[other])) { 912 1.1 matt /* 913 1.1 matt * Case 3: our brother is black, our near 914 1.1 matt * nephew is red, and our far nephew is black. 915 1.1 matt * Swap our brother with our near nephew. 916 1.1 matt * This result in a tree that matches case 4. 917 1.1 matt * (Our father could be red or black). 918 1.1 matt * 919 1.1 matt * | F --> F | 920 1.1 matt * | x B --> x B | 921 1.1 matt * | n --> n | 922 1.1 matt */ 923 1.1 matt KASSERT(RB_RED_P(brother->rb_nodes[which])); 924 1.1 matt rb_tree_reparent_nodes(rbt, brother, which); 925 1.1 matt KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]); 926 1.1 matt brother = parent->rb_nodes[other]; 927 1.1 matt KASSERT(RB_RED_P(brother->rb_nodes[other])); 928 1.1 matt } 929 1.1 matt /* 930 1.1 matt * Case 4: our brother is black and our far nephew 931 1.1 matt * is red. Swap our father and brother locations and 932 1.1 matt * change our far nephew to black. (these can be 933 1.1 matt * done in either order so we change the color first). 934 1.1 matt * The result is a valid red-black tree and is a 935 1.1 matt * terminal case. (again we don't care about the 936 1.1 matt * father's color) 937 1.1 matt * 938 1.1 matt * If the father is red, we will get a red-black-black 939 1.1 matt * tree: 940 1.1 matt * | f -> f --> b | 941 1.1 matt * | B -> B --> F N | 942 1.1 matt * | n -> N --> | 943 1.1 matt * 944 1.1 matt * If the father is black, we will get an all black 945 1.1 matt * tree: 946 1.1 matt * | F -> F --> B | 947 1.1 matt * | B -> B --> F N | 948 1.1 matt * | n -> N --> | 949 1.1 matt * 950 1.1 matt * If we had two red nephews, then after the swap, 951 1.1 matt * our former father would have a red grandson. 952 1.1 matt */ 953 1.1 matt KASSERT(RB_BLACK_P(brother)); 954 1.1 matt KASSERT(RB_RED_P(brother->rb_nodes[other])); 955 1.1 matt RB_MARK_BLACK(brother->rb_nodes[other]); 956 1.1 matt rb_tree_reparent_nodes(rbt, parent, other); 957 1.1 matt break; /* We're done! */ 958 1.1 matt } 959 1.1 matt } 960 1.1 matt KASSERT(rb_tree_check_node(rbt, parent, NULL, true)); 961 1.1 matt } 962 1.1 matt 963 1.7 rmind void * 964 1.7 rmind rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction) 965 1.1 matt { 966 1.7 rmind const rb_tree_ops_t *rbto = rbt->rbt_ops; 967 1.1 matt const unsigned int other = direction ^ RB_DIR_OTHER; 968 1.7 rmind struct rb_node *self; 969 1.7 rmind 970 1.1 matt KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT); 971 1.1 matt 972 1.7 rmind if (object == NULL) { 973 1.1 matt #ifndef RBSMALL 974 1.1 matt if (RB_SENTINEL_P(rbt->rbt_root)) 975 1.1 matt return NULL; 976 1.7 rmind return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]); 977 1.1 matt #else 978 1.1 matt self = rbt->rbt_root; 979 1.1 matt if (RB_SENTINEL_P(self)) 980 1.1 matt return NULL; 981 1.6 joerg while (!RB_SENTINEL_P(self->rb_nodes[direction])) 982 1.6 joerg self = self->rb_nodes[direction]; 983 1.7 rmind return RB_NODETOITEM(rbto, self); 984 1.1 matt #endif /* !RBSMALL */ 985 1.1 matt } 986 1.7 rmind self = RB_ITEMTONODE(rbto, object); 987 1.1 matt KASSERT(!RB_SENTINEL_P(self)); 988 1.1 matt /* 989 1.1 matt * We can't go any further in this direction. We proceed up in the 990 1.1 matt * opposite direction until our parent is in direction we want to go. 991 1.1 matt */ 992 1.1 matt if (RB_SENTINEL_P(self->rb_nodes[direction])) { 993 1.1 matt while (!RB_ROOT_P(rbt, self)) { 994 1.1 matt if (other == RB_POSITION(self)) 995 1.7 rmind return RB_NODETOITEM(rbto, RB_FATHER(self)); 996 1.1 matt self = RB_FATHER(self); 997 1.1 matt } 998 1.1 matt return NULL; 999 1.1 matt } 1000 1.1 matt 1001 1.1 matt /* 1002 1.1 matt * Advance down one in current direction and go down as far as possible 1003 1.1 matt * in the opposite direction. 1004 1.1 matt */ 1005 1.1 matt self = self->rb_nodes[direction]; 1006 1.1 matt KASSERT(!RB_SENTINEL_P(self)); 1007 1.1 matt while (!RB_SENTINEL_P(self->rb_nodes[other])) 1008 1.1 matt self = self->rb_nodes[other]; 1009 1.7 rmind return RB_NODETOITEM(rbto, self); 1010 1.1 matt } 1011 1.1 matt 1012 1.1 matt #ifdef RBDEBUG 1013 1.1 matt static const struct rb_node * 1014 1.1 matt rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self, 1015 1.1 matt const unsigned int direction) 1016 1.1 matt { 1017 1.1 matt const unsigned int other = direction ^ RB_DIR_OTHER; 1018 1.1 matt KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT); 1019 1.1 matt 1020 1.1 matt if (self == NULL) { 1021 1.1 matt #ifndef RBSMALL 1022 1.1 matt if (RB_SENTINEL_P(rbt->rbt_root)) 1023 1.1 matt return NULL; 1024 1.1 matt return rbt->rbt_minmax[direction]; 1025 1.1 matt #else 1026 1.1 matt self = rbt->rbt_root; 1027 1.1 matt if (RB_SENTINEL_P(self)) 1028 1.1 matt return NULL; 1029 1.6 joerg while (!RB_SENTINEL_P(self->rb_nodes[direction])) 1030 1.6 joerg self = self->rb_nodes[direction]; 1031 1.1 matt return self; 1032 1.1 matt #endif /* !RBSMALL */ 1033 1.1 matt } 1034 1.1 matt KASSERT(!RB_SENTINEL_P(self)); 1035 1.1 matt /* 1036 1.1 matt * We can't go any further in this direction. We proceed up in the 1037 1.1 matt * opposite direction until our parent is in direction we want to go. 1038 1.1 matt */ 1039 1.1 matt if (RB_SENTINEL_P(self->rb_nodes[direction])) { 1040 1.1 matt while (!RB_ROOT_P(rbt, self)) { 1041 1.1 matt if (other == RB_POSITION(self)) 1042 1.1 matt return RB_FATHER(self); 1043 1.1 matt self = RB_FATHER(self); 1044 1.1 matt } 1045 1.1 matt return NULL; 1046 1.1 matt } 1047 1.1 matt 1048 1.1 matt /* 1049 1.1 matt * Advance down one in current direction and go down as far as possible 1050 1.1 matt * in the opposite direction. 1051 1.1 matt */ 1052 1.1 matt self = self->rb_nodes[direction]; 1053 1.1 matt KASSERT(!RB_SENTINEL_P(self)); 1054 1.1 matt while (!RB_SENTINEL_P(self->rb_nodes[other])) 1055 1.1 matt self = self->rb_nodes[other]; 1056 1.1 matt return self; 1057 1.1 matt } 1058 1.1 matt 1059 1.1 matt static unsigned int 1060 1.1 matt rb_tree_count_black(const struct rb_node *self) 1061 1.1 matt { 1062 1.1 matt unsigned int left, right; 1063 1.1 matt 1064 1.1 matt if (RB_SENTINEL_P(self)) 1065 1.1 matt return 0; 1066 1.1 matt 1067 1.1 matt left = rb_tree_count_black(self->rb_left); 1068 1.1 matt right = rb_tree_count_black(self->rb_right); 1069 1.1 matt 1070 1.1 matt KASSERT(left == right); 1071 1.1 matt 1072 1.1 matt return left + RB_BLACK_P(self); 1073 1.1 matt } 1074 1.1 matt 1075 1.1 matt static bool 1076 1.1 matt rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self, 1077 1.1 matt const struct rb_node *prev, bool red_check) 1078 1.1 matt { 1079 1.7 rmind const rb_tree_ops_t *rbto = rbt->rbt_ops; 1080 1.7 rmind rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes; 1081 1.1 matt 1082 1.1 matt KASSERT(!RB_SENTINEL_P(self)); 1083 1.7 rmind KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context, 1084 1.7 rmind RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0); 1085 1.1 matt 1086 1.1 matt /* 1087 1.1 matt * Verify our relationship to our parent. 1088 1.1 matt */ 1089 1.1 matt if (RB_ROOT_P(rbt, self)) { 1090 1.1 matt KASSERT(self == rbt->rbt_root); 1091 1.1 matt KASSERT(RB_POSITION(self) == RB_DIR_LEFT); 1092 1.1 matt KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self); 1093 1.1 matt KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root); 1094 1.1 matt } else { 1095 1.7 rmind int diff = (*compare_nodes)(rbto->rbto_context, 1096 1.7 rmind RB_NODETOITEM(rbto, self), 1097 1.7 rmind RB_NODETOITEM(rbto, RB_FATHER(self))); 1098 1.7 rmind 1099 1.1 matt KASSERT(self != rbt->rbt_root); 1100 1.1 matt KASSERT(!RB_FATHER_SENTINEL_P(self)); 1101 1.1 matt if (RB_POSITION(self) == RB_DIR_LEFT) { 1102 1.7 rmind KASSERT(diff < 0); 1103 1.1 matt KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self); 1104 1.1 matt } else { 1105 1.7 rmind KASSERT(diff > 0); 1106 1.1 matt KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self); 1107 1.1 matt } 1108 1.1 matt } 1109 1.1 matt 1110 1.1 matt /* 1111 1.1 matt * Verify our position in the linked list against the tree itself. 1112 1.1 matt */ 1113 1.1 matt { 1114 1.1 matt const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT); 1115 1.1 matt const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT); 1116 1.1 matt KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link)); 1117 1.1 matt KASSERT(next0 == TAILQ_NEXT(self, rb_link)); 1118 1.1 matt #ifndef RBSMALL 1119 1.1 matt KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]); 1120 1.1 matt KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]); 1121 1.1 matt #endif 1122 1.1 matt } 1123 1.1 matt 1124 1.1 matt /* 1125 1.1 matt * The root must be black. 1126 1.1 matt * There can never be two adjacent red nodes. 1127 1.1 matt */ 1128 1.1 matt if (red_check) { 1129 1.1 matt KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self)); 1130 1.1 matt (void) rb_tree_count_black(self); 1131 1.1 matt if (RB_RED_P(self)) { 1132 1.1 matt const struct rb_node *brother; 1133 1.1 matt KASSERT(!RB_ROOT_P(rbt, self)); 1134 1.1 matt brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER]; 1135 1.1 matt KASSERT(RB_BLACK_P(RB_FATHER(self))); 1136 1.1 matt /* 1137 1.1 matt * I'm red and have no children, then I must either 1138 1.1 matt * have no brother or my brother also be red and 1139 1.1 matt * also have no children. (black count == 0) 1140 1.1 matt */ 1141 1.1 matt KASSERT(!RB_CHILDLESS_P(self) 1142 1.1 matt || RB_SENTINEL_P(brother) 1143 1.1 matt || RB_RED_P(brother) 1144 1.1 matt || RB_CHILDLESS_P(brother)); 1145 1.1 matt /* 1146 1.1 matt * If I'm not childless, I must have two children 1147 1.1 matt * and they must be both be black. 1148 1.1 matt */ 1149 1.1 matt KASSERT(RB_CHILDLESS_P(self) 1150 1.1 matt || (RB_TWOCHILDREN_P(self) 1151 1.1 matt && RB_BLACK_P(self->rb_left) 1152 1.1 matt && RB_BLACK_P(self->rb_right))); 1153 1.1 matt /* 1154 1.1 matt * If I'm not childless, thus I have black children, 1155 1.1 matt * then my brother must either be black or have two 1156 1.1 matt * black children. 1157 1.1 matt */ 1158 1.1 matt KASSERT(RB_CHILDLESS_P(self) 1159 1.1 matt || RB_BLACK_P(brother) 1160 1.1 matt || (RB_TWOCHILDREN_P(brother) 1161 1.1 matt && RB_BLACK_P(brother->rb_left) 1162 1.1 matt && RB_BLACK_P(brother->rb_right))); 1163 1.1 matt } else { 1164 1.1 matt /* 1165 1.1 matt * If I'm black and have one child, that child must 1166 1.1 matt * be red and childless. 1167 1.1 matt */ 1168 1.1 matt KASSERT(RB_CHILDLESS_P(self) 1169 1.1 matt || RB_TWOCHILDREN_P(self) 1170 1.1 matt || (!RB_LEFT_SENTINEL_P(self) 1171 1.1 matt && RB_RIGHT_SENTINEL_P(self) 1172 1.1 matt && RB_RED_P(self->rb_left) 1173 1.1 matt && RB_CHILDLESS_P(self->rb_left)) 1174 1.1 matt || (!RB_RIGHT_SENTINEL_P(self) 1175 1.1 matt && RB_LEFT_SENTINEL_P(self) 1176 1.1 matt && RB_RED_P(self->rb_right) 1177 1.1 matt && RB_CHILDLESS_P(self->rb_right))); 1178 1.1 matt 1179 1.1 matt /* 1180 1.1 matt * If I'm a childless black node and my parent is 1181 1.1 matt * black, my 2nd closet relative away from my parent 1182 1.1 matt * is either red or has a red parent or red children. 1183 1.1 matt */ 1184 1.1 matt if (!RB_ROOT_P(rbt, self) 1185 1.1 matt && RB_CHILDLESS_P(self) 1186 1.1 matt && RB_BLACK_P(RB_FATHER(self))) { 1187 1.1 matt const unsigned int which = RB_POSITION(self); 1188 1.1 matt const unsigned int other = which ^ RB_DIR_OTHER; 1189 1.1 matt const struct rb_node *relative0, *relative; 1190 1.1 matt 1191 1.1 matt relative0 = rb_tree_iterate_const(rbt, 1192 1.1 matt self, other); 1193 1.1 matt KASSERT(relative0 != NULL); 1194 1.1 matt relative = rb_tree_iterate_const(rbt, 1195 1.1 matt relative0, other); 1196 1.1 matt KASSERT(relative != NULL); 1197 1.1 matt KASSERT(RB_SENTINEL_P(relative->rb_nodes[which])); 1198 1.1 matt #if 0 1199 1.1 matt KASSERT(RB_RED_P(relative) 1200 1.1 matt || RB_RED_P(relative->rb_left) 1201 1.1 matt || RB_RED_P(relative->rb_right) 1202 1.1 matt || RB_RED_P(RB_FATHER(relative))); 1203 1.1 matt #endif 1204 1.1 matt } 1205 1.1 matt } 1206 1.1 matt /* 1207 1.1 matt * A grandparent's children must be real nodes and not 1208 1.1 matt * sentinels. First check out grandparent. 1209 1.1 matt */ 1210 1.1 matt KASSERT(RB_ROOT_P(rbt, self) 1211 1.1 matt || RB_ROOT_P(rbt, RB_FATHER(self)) 1212 1.1 matt || RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self)))); 1213 1.1 matt /* 1214 1.1 matt * If we are have grandchildren on our left, then 1215 1.1 matt * we must have a child on our right. 1216 1.1 matt */ 1217 1.1 matt KASSERT(RB_LEFT_SENTINEL_P(self) 1218 1.1 matt || RB_CHILDLESS_P(self->rb_left) 1219 1.1 matt || !RB_RIGHT_SENTINEL_P(self)); 1220 1.1 matt /* 1221 1.1 matt * If we are have grandchildren on our right, then 1222 1.1 matt * we must have a child on our left. 1223 1.1 matt */ 1224 1.1 matt KASSERT(RB_RIGHT_SENTINEL_P(self) 1225 1.1 matt || RB_CHILDLESS_P(self->rb_right) 1226 1.1 matt || !RB_LEFT_SENTINEL_P(self)); 1227 1.1 matt 1228 1.1 matt /* 1229 1.1 matt * If we have a child on the left and it doesn't have two 1230 1.1 matt * children make sure we don't have great-great-grandchildren on 1231 1.1 matt * the right. 1232 1.1 matt */ 1233 1.1 matt KASSERT(RB_TWOCHILDREN_P(self->rb_left) 1234 1.1 matt || RB_CHILDLESS_P(self->rb_right) 1235 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_left) 1236 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left) 1237 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right) 1238 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_right) 1239 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left) 1240 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right)); 1241 1.1 matt 1242 1.1 matt /* 1243 1.1 matt * If we have a child on the right and it doesn't have two 1244 1.1 matt * children make sure we don't have great-great-grandchildren on 1245 1.1 matt * the left. 1246 1.1 matt */ 1247 1.1 matt KASSERT(RB_TWOCHILDREN_P(self->rb_right) 1248 1.1 matt || RB_CHILDLESS_P(self->rb_left) 1249 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_left) 1250 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left) 1251 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right) 1252 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_right) 1253 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left) 1254 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right)); 1255 1.1 matt 1256 1.1 matt /* 1257 1.1 matt * If we are fully interior node, then our predecessors and 1258 1.1 matt * successors must have no children in our direction. 1259 1.1 matt */ 1260 1.1 matt if (RB_TWOCHILDREN_P(self)) { 1261 1.1 matt const struct rb_node *prev0; 1262 1.1 matt const struct rb_node *next0; 1263 1.1 matt 1264 1.1 matt prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT); 1265 1.1 matt KASSERT(prev0 != NULL); 1266 1.1 matt KASSERT(RB_RIGHT_SENTINEL_P(prev0)); 1267 1.1 matt 1268 1.1 matt next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT); 1269 1.1 matt KASSERT(next0 != NULL); 1270 1.1 matt KASSERT(RB_LEFT_SENTINEL_P(next0)); 1271 1.1 matt } 1272 1.1 matt } 1273 1.1 matt 1274 1.1 matt return true; 1275 1.1 matt } 1276 1.1 matt 1277 1.1 matt void 1278 1.1 matt rb_tree_check(const struct rb_tree *rbt, bool red_check) 1279 1.1 matt { 1280 1.1 matt const struct rb_node *self; 1281 1.1 matt const struct rb_node *prev; 1282 1.1 matt #ifdef RBSTATS 1283 1.1 matt unsigned int count = 0; 1284 1.1 matt #endif 1285 1.1 matt 1286 1.1 matt KASSERT(rbt->rbt_root != NULL); 1287 1.1 matt KASSERT(RB_LEFT_P(rbt->rbt_root)); 1288 1.1 matt 1289 1.1 matt #if defined(RBSTATS) && !defined(RBSMALL) 1290 1.1 matt KASSERT(rbt->rbt_count > 1 1291 1.1 matt || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]); 1292 1.1 matt #endif 1293 1.1 matt 1294 1.1 matt prev = NULL; 1295 1.1 matt TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) { 1296 1.1 matt rb_tree_check_node(rbt, self, prev, false); 1297 1.1 matt #ifdef RBSTATS 1298 1.1 matt count++; 1299 1.1 matt #endif 1300 1.1 matt } 1301 1.1 matt #ifdef RBSTATS 1302 1.1 matt KASSERT(rbt->rbt_count == count); 1303 1.1 matt #endif 1304 1.1 matt if (red_check) { 1305 1.1 matt KASSERT(RB_BLACK_P(rbt->rbt_root)); 1306 1.1 matt KASSERT(RB_SENTINEL_P(rbt->rbt_root) 1307 1.1 matt || rb_tree_count_black(rbt->rbt_root)); 1308 1.1 matt 1309 1.1 matt /* 1310 1.1 matt * The root must be black. 1311 1.1 matt * There can never be two adjacent red nodes. 1312 1.1 matt */ 1313 1.1 matt TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) { 1314 1.1 matt rb_tree_check_node(rbt, self, NULL, true); 1315 1.1 matt } 1316 1.1 matt } 1317 1.1 matt } 1318 1.1 matt #endif /* RBDEBUG */ 1319 1.1 matt 1320 1.1 matt #ifdef RBSTATS 1321 1.1 matt static void 1322 1.1 matt rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self, 1323 1.1 matt size_t *depths, size_t depth) 1324 1.1 matt { 1325 1.1 matt if (RB_SENTINEL_P(self)) 1326 1.1 matt return; 1327 1.1 matt 1328 1.1 matt if (RB_TWOCHILDREN_P(self)) { 1329 1.1 matt rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1); 1330 1.1 matt rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1); 1331 1.1 matt return; 1332 1.1 matt } 1333 1.1 matt depths[depth]++; 1334 1.1 matt if (!RB_LEFT_SENTINEL_P(self)) { 1335 1.1 matt rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1); 1336 1.1 matt } 1337 1.1 matt if (!RB_RIGHT_SENTINEL_P(self)) { 1338 1.1 matt rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1); 1339 1.1 matt } 1340 1.1 matt } 1341 1.1 matt 1342 1.1 matt void 1343 1.1 matt rb_tree_depths(const struct rb_tree *rbt, size_t *depths) 1344 1.1 matt { 1345 1.1 matt rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1); 1346 1.1 matt } 1347 1.1 matt #endif /* RBSTATS */ 1348