rb.c revision 1.1 1 1.1 matt /* $NetBSD: rb.c,v 1.1 2008/06/30 19:04:00 matt Exp $ */
2 1.1 matt
3 1.1 matt /*-
4 1.1 matt * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 1.1 matt * All rights reserved.
6 1.1 matt *
7 1.1 matt * This code is derived from software contributed to The NetBSD Foundation
8 1.1 matt * by Matt Thomas <matt (at) 3am-software.com>.
9 1.1 matt *
10 1.1 matt * Redistribution and use in source and binary forms, with or without
11 1.1 matt * modification, are permitted provided that the following conditions
12 1.1 matt * are met:
13 1.1 matt * 1. Redistributions of source code must retain the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer.
15 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 matt * notice, this list of conditions and the following disclaimer in the
17 1.1 matt * documentation and/or other materials provided with the distribution.
18 1.1 matt *
19 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
30 1.1 matt */
31 1.1 matt
32 1.1 matt #if !defined(_KERNEL) && !defined(_STANDALONE)
33 1.1 matt #include <sys/types.h>
34 1.1 matt #include <sys/types.h>
35 1.1 matt #include <stddef.h>
36 1.1 matt #include <assert.h>
37 1.1 matt #include <stdbool.h>
38 1.1 matt #ifdef RBDEBUG
39 1.1 matt #define KASSERT(s) assert(s)
40 1.1 matt #else
41 1.1 matt #define KASSERT(s) (void) 0
42 1.1 matt #endif
43 1.1 matt #else
44 1.1 matt #include <lib/libkern/libkern.h>
45 1.1 matt #endif
46 1.1 matt
47 1.1 matt #ifdef _LIBC
48 1.1 matt __weak_alias(rb_tree_init, _rb_tree_init)
49 1.1 matt __weak_alias(rb_tree_find_node, _rb_tree_find_node)
50 1.1 matt __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
51 1.1 matt __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
52 1.1 matt __weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
53 1.1 matt __weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
54 1.1 matt __weak_alias(rb_tree_iterate, _rb_tree_iterate)
55 1.1 matt #ifdef RBDEBUG
56 1.1 matt __weak_alias(rb_tree_check, _rb_tree_check)
57 1.1 matt __weak_alias(rb_tree_depths, _rb_tree_depths)
58 1.1 matt #endif
59 1.1 matt
60 1.1 matt #define rb_tree_init _rb_tree_init
61 1.1 matt #define rb_tree_find_node _rb_tree_find_node
62 1.1 matt #define rb_tree_find_node_geq _rb_tree_find_node_geq
63 1.1 matt #define rb_tree_find_node_leq _rb_tree_find_node_leq
64 1.1 matt #define rb_tree_insert_node _rb_tree_insert_node
65 1.1 matt #define rb_tree_remove_node _rb_tree_remove_node
66 1.1 matt #define rb_tree_iterate _rb_tree_iterate
67 1.1 matt #ifdef RBDEBUG
68 1.1 matt #define rb_tree_check _rb_tree_check
69 1.1 matt #define rb_tree_depths _rb_tree_depths
70 1.1 matt #endif
71 1.1 matt #endif
72 1.1 matt
73 1.1 matt #ifdef RBTEST
74 1.1 matt #include "rb.h"
75 1.1 matt #else
76 1.1 matt #include <sys/rb.h>
77 1.1 matt #endif
78 1.1 matt
79 1.1 matt static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
80 1.1 matt static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
81 1.1 matt unsigned int);
82 1.1 matt #ifdef RBDEBUG
83 1.1 matt static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
84 1.1 matt const struct rb_node *, const unsigned int);
85 1.1 matt static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
86 1.1 matt const struct rb_node *, bool);
87 1.1 matt #else
88 1.1 matt #define rb_tree_check_node(a, b, c, d) true
89 1.1 matt #endif
90 1.1 matt
91 1.1 matt #define RB_SENTINEL_NODE NULL
92 1.1 matt
93 1.1 matt void
94 1.1 matt rb_tree_init(struct rb_tree *rbt, const struct rb_tree_ops *ops)
95 1.1 matt {
96 1.1 matt rbt->rbt_ops = ops;
97 1.1 matt *((const struct rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
98 1.1 matt RB_TAILQ_INIT(&rbt->rbt_nodes);
99 1.1 matt #ifndef RBSMALL
100 1.1 matt rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root; /* minimum node */
101 1.1 matt rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root; /* maximum node */
102 1.1 matt #endif
103 1.1 matt #ifdef RBSTATS
104 1.1 matt rbt->rbt_count = 0;
105 1.1 matt rbt->rbt_insertions = 0;
106 1.1 matt rbt->rbt_removals = 0;
107 1.1 matt rbt->rbt_insertion_rebalance_calls = 0;
108 1.1 matt rbt->rbt_insertion_rebalance_passes = 0;
109 1.1 matt rbt->rbt_removal_rebalance_calls = 0;
110 1.1 matt rbt->rbt_removal_rebalance_passes = 0;
111 1.1 matt #endif
112 1.1 matt }
113 1.1 matt
114 1.1 matt struct rb_node *
115 1.1 matt rb_tree_find_node(struct rb_tree *rbt, const void *key)
116 1.1 matt {
117 1.1 matt rb_compare_key_fn compare_key = rbt->rbt_ops->rb_compare_key;
118 1.1 matt struct rb_node *parent = rbt->rbt_root;
119 1.1 matt
120 1.1 matt while (!RB_SENTINEL_P(parent)) {
121 1.1 matt const signed int diff = (*compare_key)(parent, key);
122 1.1 matt if (diff == 0)
123 1.1 matt return parent;
124 1.1 matt parent = parent->rb_nodes[diff > 0];
125 1.1 matt }
126 1.1 matt
127 1.1 matt return NULL;
128 1.1 matt }
129 1.1 matt
130 1.1 matt struct rb_node *
131 1.1 matt rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
132 1.1 matt {
133 1.1 matt rb_compare_key_fn compare_key = rbt->rbt_ops->rb_compare_key;
134 1.1 matt struct rb_node *parent = rbt->rbt_root;
135 1.1 matt struct rb_node *last = NULL;
136 1.1 matt
137 1.1 matt while (!RB_SENTINEL_P(parent)) {
138 1.1 matt const signed int diff = (*compare_key)(parent, key);
139 1.1 matt if (diff == 0)
140 1.1 matt return parent;
141 1.1 matt if (diff < 0)
142 1.1 matt last = parent;
143 1.1 matt parent = parent->rb_nodes[diff > 0];
144 1.1 matt }
145 1.1 matt
146 1.1 matt return last;
147 1.1 matt }
148 1.1 matt
149 1.1 matt struct rb_node *
150 1.1 matt rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
151 1.1 matt {
152 1.1 matt rb_compare_key_fn compare_key = rbt->rbt_ops->rb_compare_key;
153 1.1 matt struct rb_node *parent = rbt->rbt_root;
154 1.1 matt struct rb_node *last = NULL;
155 1.1 matt
156 1.1 matt while (!RB_SENTINEL_P(parent)) {
157 1.1 matt const signed int diff = (*compare_key)(parent, key);
158 1.1 matt if (diff == 0)
159 1.1 matt return parent;
160 1.1 matt if (diff > 0)
161 1.1 matt last = parent;
162 1.1 matt parent = parent->rb_nodes[diff > 0];
163 1.1 matt }
164 1.1 matt
165 1.1 matt return last;
166 1.1 matt }
167 1.1 matt
168 1.1 matt bool
170 1.1 matt rb_tree_insert_node(struct rb_tree *rbt, struct rb_node *self)
171 1.1 matt {
172 1.1 matt rb_compare_nodes_fn compare_nodes = rbt->rbt_ops->rb_compare_nodes;
173 1.1 matt struct rb_node *parent, *tmp;
174 1.1 matt unsigned int position;
175 1.1 matt bool rebalance;
176 1.1 matt
177 1.1 matt RBSTAT_INC(rbt->rbt_insertions);
178 1.1 matt
179 1.1 matt tmp = rbt->rbt_root;
180 1.1 matt /*
181 1.1 matt * This is a hack. Because rbt->rbt_root is just a struct rb_node *,
182 1.1 matt * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
183 1.1 matt * avoid a lot of tests for root and know that even at root,
184 1.1 matt * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
185 1.1 matt * update rbt->rbt_root.
186 1.1 matt */
187 1.1 matt parent = (struct rb_node *)&rbt->rbt_root;
188 1.1 matt position = RB_DIR_LEFT;
189 1.1 matt
190 1.1 matt /*
191 1.1 matt * Find out where to place this new leaf.
192 1.1 matt */
193 1.1 matt while (!RB_SENTINEL_P(tmp)) {
194 1.1 matt const signed int diff = (*compare_nodes)(tmp, self);
195 1.1 matt if (__predict_false(diff == 0)) {
196 1.1 matt /*
197 1.1 matt * Node already exists; don't insert.
198 1.1 matt */
199 1.1 matt return false;
200 1.1 matt }
201 1.1 matt parent = tmp;
202 1.1 matt position = (diff > 0);
203 1.1 matt tmp = parent->rb_nodes[position];
204 1.1 matt }
205 1.1 matt
206 1.1 matt #ifdef RBDEBUG
207 1.1 matt {
208 1.1 matt struct rb_node *prev = NULL, *next = NULL;
209 1.1 matt
210 1.1 matt if (position == RB_DIR_RIGHT)
211 1.1 matt prev = parent;
212 1.1 matt else if (tmp != rbt->rbt_root)
213 1.1 matt next = parent;
214 1.1 matt
215 1.1 matt /*
216 1.1 matt * Verify our sequential position
217 1.1 matt */
218 1.1 matt KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
219 1.1 matt KASSERT(next == NULL || !RB_SENTINEL_P(next));
220 1.1 matt if (prev != NULL && next == NULL)
221 1.1 matt next = TAILQ_NEXT(prev, rb_link);
222 1.1 matt if (prev == NULL && next != NULL)
223 1.1 matt prev = TAILQ_PREV(next, rb_node_qh, rb_link);
224 1.1 matt KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
225 1.1 matt KASSERT(next == NULL || !RB_SENTINEL_P(next));
226 1.1 matt KASSERT(prev == NULL || (*compare_nodes)(prev, self) > 0);
227 1.1 matt KASSERT(next == NULL || (*compare_nodes)(self, next) > 0);
228 1.1 matt }
229 1.1 matt #endif
230 1.1 matt
231 1.1 matt /*
232 1.1 matt * Initialize the node and insert as a leaf into the tree.
233 1.1 matt */
234 1.1 matt RB_SET_FATHER(self, parent);
235 1.1 matt RB_SET_POSITION(self, position);
236 1.1 matt if (__predict_false(parent == (struct rb_node *) &rbt->rbt_root)) {
237 1.1 matt RB_MARK_BLACK(self); /* root is always black */
238 1.1 matt #ifndef RBSMALL
239 1.1 matt rbt->rbt_minmax[RB_DIR_LEFT] = self;
240 1.1 matt rbt->rbt_minmax[RB_DIR_RIGHT] = self;
241 1.1 matt #endif
242 1.1 matt rebalance = false;
243 1.1 matt } else {
244 1.1 matt KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
245 1.1 matt #ifndef RBSMALL
246 1.1 matt /*
247 1.1 matt * Keep track of the minimum and maximum nodes. If our
248 1.1 matt * parent is a minmax node and we on their min/max side,
249 1.1 matt * we must be the new min/max node.
250 1.1 matt */
251 1.1 matt if (parent == rbt->rbt_minmax[position])
252 1.1 matt rbt->rbt_minmax[position] = self;
253 1.1 matt #endif /* !RBSMALL */
254 1.1 matt /*
255 1.1 matt * All new nodes are colored red. We only need to rebalance
256 1.1 matt * if our parent is also red.
257 1.1 matt */
258 1.1 matt RB_MARK_RED(self);
259 1.1 matt rebalance = RB_RED_P(parent);
260 1.1 matt }
261 1.1 matt KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
262 1.1 matt self->rb_left = parent->rb_nodes[position];
263 1.1 matt self->rb_right = parent->rb_nodes[position];
264 1.1 matt parent->rb_nodes[position] = self;
265 1.1 matt KASSERT(RB_CHILDLESS_P(self));
266 1.1 matt
267 1.1 matt /*
268 1.1 matt * Insert the new node into a sorted list for easy sequential access
269 1.1 matt */
270 1.1 matt RBSTAT_INC(rbt->rbt_count);
271 1.1 matt #ifdef RBDEBUG
272 1.1 matt if (RB_ROOT_P(rbt, self)) {
273 1.1 matt RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
274 1.1 matt } else if (position == RB_DIR_LEFT) {
275 1.1 matt KASSERT((*compare_nodes)(self, RB_FATHER(self)) > 0);
276 1.1 matt RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
277 1.1 matt } else {
278 1.1 matt KASSERT((*compare_nodes)(RB_FATHER(self), self) > 0);
279 1.1 matt RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
280 1.1 matt self, rb_link);
281 1.1 matt }
282 1.1 matt #endif
283 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
284 1.1 matt
285 1.1 matt /*
286 1.1 matt * Rebalance tree after insertion
287 1.1 matt */
288 1.1 matt if (rebalance) {
289 1.1 matt rb_tree_insert_rebalance(rbt, self);
290 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, true));
291 1.1 matt }
292 1.1 matt
293 1.1 matt return true;
294 1.1 matt }
295 1.1 matt
296 1.1 matt /*
298 1.1 matt * Swap the location and colors of 'self' and its child @ which. The child
299 1.1 matt * can not be a sentinel node. This is our rotation function. However,
300 1.1 matt * since it preserves coloring, it great simplifies both insertion and
301 1.1 matt * removal since rotation almost always involves the exchanging of colors
302 1.1 matt * as a separate step.
303 1.1 matt */
304 1.1 matt static void
305 1.1 matt rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
306 1.1 matt const unsigned int which)
307 1.1 matt {
308 1.1 matt const unsigned int other = which ^ RB_DIR_OTHER;
309 1.1 matt struct rb_node * const grandpa = RB_FATHER(old_father);
310 1.1 matt struct rb_node * const old_child = old_father->rb_nodes[which];
311 1.1 matt struct rb_node * const new_father = old_child;
312 1.1 matt struct rb_node * const new_child = old_father;
313 1.1 matt
314 1.1 matt KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
315 1.1 matt
316 1.1 matt KASSERT(!RB_SENTINEL_P(old_child));
317 1.1 matt KASSERT(RB_FATHER(old_child) == old_father);
318 1.1 matt
319 1.1 matt KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
320 1.1 matt KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
321 1.1 matt KASSERT(RB_ROOT_P(rbt, old_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
322 1.1 matt
323 1.1 matt /*
324 1.1 matt * Exchange descendant linkages.
325 1.1 matt */
326 1.1 matt grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
327 1.1 matt new_child->rb_nodes[which] = old_child->rb_nodes[other];
328 1.1 matt new_father->rb_nodes[other] = new_child;
329 1.1 matt
330 1.1 matt /*
331 1.1 matt * Update ancestor linkages
332 1.1 matt */
333 1.1 matt RB_SET_FATHER(new_father, grandpa);
334 1.1 matt RB_SET_FATHER(new_child, new_father);
335 1.1 matt
336 1.1 matt /*
337 1.1 matt * Exchange properties between new_father and new_child. The only
338 1.1 matt * change is that new_child's position is now on the other side.
339 1.1 matt */
340 1.1 matt #if 0
341 1.1 matt {
342 1.1 matt struct rb_node tmp;
343 1.1 matt tmp.rb_info = 0;
344 1.1 matt RB_COPY_PROPERTIES(&tmp, old_child);
345 1.1 matt RB_COPY_PROPERTIES(new_father, old_father);
346 1.1 matt RB_COPY_PROPERTIES(new_child, &tmp);
347 1.1 matt }
348 1.1 matt #else
349 1.1 matt RB_SWAP_PROPERTIES(new_father, new_child);
350 1.1 matt #endif
351 1.1 matt RB_SET_POSITION(new_child, other);
352 1.1 matt
353 1.1 matt /*
354 1.1 matt * Make sure to reparent the new child to ourself.
355 1.1 matt */
356 1.1 matt if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
357 1.1 matt RB_SET_FATHER(new_child->rb_nodes[which], new_child);
358 1.1 matt RB_SET_POSITION(new_child->rb_nodes[which], which);
359 1.1 matt }
360 1.1 matt
361 1.1 matt KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
362 1.1 matt KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
363 1.1 matt KASSERT(RB_ROOT_P(rbt, new_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
364 1.1 matt }
365 1.1 matt
366 1.1 matt static void
368 1.1 matt rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
369 1.1 matt {
370 1.1 matt struct rb_node * father = RB_FATHER(self);
371 1.1 matt struct rb_node * grandpa = RB_FATHER(father);
372 1.1 matt struct rb_node * uncle;
373 1.1 matt unsigned int which;
374 1.1 matt unsigned int other;
375 1.1 matt
376 1.1 matt KASSERT(!RB_ROOT_P(rbt, self));
377 1.1 matt KASSERT(RB_RED_P(self));
378 1.1 matt KASSERT(RB_RED_P(father));
379 1.1 matt RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
380 1.1 matt
381 1.1 matt for (;;) {
382 1.1 matt KASSERT(!RB_SENTINEL_P(self));
383 1.1 matt
384 1.1 matt KASSERT(RB_RED_P(self));
385 1.1 matt KASSERT(RB_RED_P(father));
386 1.1 matt /*
387 1.1 matt * We are red and our parent is red, therefore we must have a
388 1.1 matt * grandfather and he must be black.
389 1.1 matt */
390 1.1 matt grandpa = RB_FATHER(father);
391 1.1 matt KASSERT(RB_BLACK_P(grandpa));
392 1.1 matt KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
393 1.1 matt which = (father == grandpa->rb_right);
394 1.1 matt other = which ^ RB_DIR_OTHER;
395 1.1 matt uncle = grandpa->rb_nodes[other];
396 1.1 matt
397 1.1 matt if (RB_BLACK_P(uncle))
398 1.1 matt break;
399 1.1 matt
400 1.1 matt RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
401 1.1 matt /*
402 1.1 matt * Case 1: our uncle is red
403 1.1 matt * Simply invert the colors of our parent and
404 1.1 matt * uncle and make our grandparent red. And
405 1.1 matt * then solve the problem up at his level.
406 1.1 matt */
407 1.1 matt RB_MARK_BLACK(uncle);
408 1.1 matt RB_MARK_BLACK(father);
409 1.1 matt if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
410 1.1 matt /*
411 1.1 matt * If our grandpa is root, don't bother
412 1.1 matt * setting him to red, just return.
413 1.1 matt */
414 1.1 matt KASSERT(RB_BLACK_P(grandpa));
415 1.1 matt return;
416 1.1 matt }
417 1.1 matt RB_MARK_RED(grandpa);
418 1.1 matt self = grandpa;
419 1.1 matt father = RB_FATHER(self);
420 1.1 matt KASSERT(RB_RED_P(self));
421 1.1 matt if (RB_BLACK_P(father)) {
422 1.1 matt /*
423 1.1 matt * If our greatgrandpa is black, we're done.
424 1.1 matt */
425 1.1 matt KASSERT(RB_BLACK_P(rbt->rbt_root));
426 1.1 matt return;
427 1.1 matt }
428 1.1 matt }
429 1.1 matt
430 1.1 matt KASSERT(!RB_ROOT_P(rbt, self));
431 1.1 matt KASSERT(RB_RED_P(self));
432 1.1 matt KASSERT(RB_RED_P(father));
433 1.1 matt KASSERT(RB_BLACK_P(uncle));
434 1.1 matt KASSERT(RB_BLACK_P(grandpa));
435 1.1 matt /*
436 1.1 matt * Case 2&3: our uncle is black.
437 1.1 matt */
438 1.1 matt if (self == father->rb_nodes[other]) {
439 1.1 matt /*
440 1.1 matt * Case 2: we are on the same side as our uncle
441 1.1 matt * Swap ourselves with our parent so this case
442 1.1 matt * becomes case 3. Basically our parent becomes our
443 1.1 matt * child.
444 1.1 matt */
445 1.1 matt rb_tree_reparent_nodes(rbt, father, other);
446 1.1 matt KASSERT(RB_FATHER(father) == self);
447 1.1 matt KASSERT(self->rb_nodes[which] == father);
448 1.1 matt KASSERT(RB_FATHER(self) == grandpa);
449 1.1 matt self = father;
450 1.1 matt father = RB_FATHER(self);
451 1.1 matt }
452 1.1 matt KASSERT(RB_RED_P(self) && RB_RED_P(father));
453 1.1 matt KASSERT(grandpa->rb_nodes[which] == father);
454 1.1 matt /*
455 1.1 matt * Case 3: we are opposite a child of a black uncle.
456 1.1 matt * Swap our parent and grandparent. Since our grandfather
457 1.1 matt * is black, our father will become black and our new sibling
458 1.1 matt * (former grandparent) will become red.
459 1.1 matt */
460 1.1 matt rb_tree_reparent_nodes(rbt, grandpa, which);
461 1.1 matt KASSERT(RB_FATHER(self) == father);
462 1.1 matt KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
463 1.1 matt KASSERT(RB_RED_P(self));
464 1.1 matt KASSERT(RB_BLACK_P(father));
465 1.1 matt KASSERT(RB_RED_P(grandpa));
466 1.1 matt
467 1.1 matt /*
468 1.1 matt * Final step: Set the root to black.
469 1.1 matt */
470 1.1 matt RB_MARK_BLACK(rbt->rbt_root);
471 1.1 matt }
472 1.1 matt
473 1.1 matt static void
475 1.1 matt rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
476 1.1 matt {
477 1.1 matt const unsigned int which = RB_POSITION(self);
478 1.1 matt struct rb_node *father = RB_FATHER(self);
479 1.1 matt const bool was_root = RB_ROOT_P(rbt, self);
480 1.1 matt
481 1.1 matt KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
482 1.1 matt KASSERT(!rebalance || RB_BLACK_P(self));
483 1.1 matt KASSERT(RB_CHILDLESS_P(self));
484 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, false));
485 1.1 matt
486 1.1 matt /*
487 1.1 matt * Since we are childless, we know that self->rb_left is pointing
488 1.1 matt * to the sentinel node.
489 1.1 matt */
490 1.1 matt father->rb_nodes[which] = self->rb_left;
491 1.1 matt
492 1.1 matt /*
493 1.1 matt * Remove ourselves from the node list, decrement the count,
494 1.1 matt * and update min/max.
495 1.1 matt */
496 1.1 matt RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
497 1.1 matt RBSTAT_DEC(rbt->rbt_count);
498 1.1 matt #ifndef RBSMALL
499 1.1 matt if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
500 1.1 matt rbt->rbt_minmax[RB_POSITION(self)] = father;
501 1.1 matt /*
502 1.1 matt * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
503 1.1 matt * updated automatically, but we also need to update
504 1.1 matt * rbt->rbt_minmax[RB_DIR_RIGHT];
505 1.1 matt */
506 1.1 matt if (__predict_false(was_root)) {
507 1.1 matt rbt->rbt_minmax[RB_DIR_RIGHT] = father;
508 1.1 matt }
509 1.1 matt }
510 1.1 matt RB_SET_FATHER(self, NULL);
511 1.1 matt #endif
512 1.1 matt
513 1.1 matt /*
514 1.1 matt * Rebalance if requested.
515 1.1 matt */
516 1.1 matt if (rebalance)
517 1.1 matt rb_tree_removal_rebalance(rbt, father, which);
518 1.1 matt KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
519 1.1 matt }
520 1.1 matt
521 1.1 matt /*
523 1.1 matt * When deleting an interior node
524 1.1 matt */
525 1.1 matt static void
526 1.1 matt rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
527 1.1 matt struct rb_node *standin)
528 1.1 matt {
529 1.1 matt const unsigned int standin_which = RB_POSITION(standin);
530 1.1 matt unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
531 1.1 matt struct rb_node *standin_son;
532 1.1 matt struct rb_node *standin_father = RB_FATHER(standin);
533 1.1 matt bool rebalance = RB_BLACK_P(standin);
534 1.1 matt
535 1.1 matt if (standin_father == self) {
536 1.1 matt /*
537 1.1 matt * As a child of self, any childen would be opposite of
538 1.1 matt * our parent.
539 1.1 matt */
540 1.1 matt KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
541 1.1 matt standin_son = standin->rb_nodes[standin_which];
542 1.1 matt } else {
543 1.1 matt /*
544 1.1 matt * Since we aren't a child of self, any childen would be
545 1.1 matt * on the same side as our parent.
546 1.1 matt */
547 1.1 matt KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
548 1.1 matt standin_son = standin->rb_nodes[standin_other];
549 1.1 matt }
550 1.1 matt
551 1.1 matt /*
552 1.1 matt * the node we are removing must have two children.
553 1.1 matt */
554 1.1 matt KASSERT(RB_TWOCHILDREN_P(self));
555 1.1 matt /*
556 1.1 matt * If standin has a child, it must be red.
557 1.1 matt */
558 1.1 matt KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
559 1.1 matt
560 1.1 matt /*
561 1.1 matt * Verify things are sane.
562 1.1 matt */
563 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, false));
564 1.1 matt KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
565 1.1 matt
566 1.1 matt if (__predict_false(RB_RED_P(standin_son))) {
567 1.1 matt /*
568 1.1 matt * We know we have a red child so if we flip it to black
569 1.1 matt * we don't have to rebalance.
570 1.1 matt */
571 1.1 matt KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
572 1.1 matt RB_MARK_BLACK(standin_son);
573 1.1 matt rebalance = false;
574 1.1 matt
575 1.1 matt if (standin_father == self) {
576 1.1 matt KASSERT(RB_POSITION(standin_son) == standin_which);
577 1.1 matt } else {
578 1.1 matt KASSERT(RB_POSITION(standin_son) == standin_other);
579 1.1 matt /*
580 1.1 matt * Change the son's parentage to point to his grandpa.
581 1.1 matt */
582 1.1 matt RB_SET_FATHER(standin_son, standin_father);
583 1.1 matt RB_SET_POSITION(standin_son, standin_which);
584 1.1 matt }
585 1.1 matt }
586 1.1 matt
587 1.1 matt if (standin_father == self) {
588 1.1 matt /*
589 1.1 matt * If we are about to delete the standin's father, then when
590 1.1 matt * we call rebalance, we need to use ourselves as our father.
591 1.1 matt * Otherwise remember our original father. Also, sincef we are
592 1.1 matt * our standin's father we only need to reparent the standin's
593 1.1 matt * brother.
594 1.1 matt *
595 1.1 matt * | R --> S |
596 1.1 matt * | Q S --> Q T |
597 1.1 matt * | t --> |
598 1.1 matt */
599 1.1 matt KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
600 1.1 matt KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
601 1.1 matt KASSERT(self->rb_nodes[standin_which] == standin);
602 1.1 matt /*
603 1.1 matt * Have our son/standin adopt his brother as his new son.
604 1.1 matt */
605 1.1 matt standin_father = standin;
606 1.1 matt } else {
607 1.1 matt /*
608 1.1 matt * | R --> S . |
609 1.1 matt * | / \ | T --> / \ | / |
610 1.1 matt * | ..... | S --> ..... | T |
611 1.1 matt *
612 1.1 matt * Sever standin's connection to his father.
613 1.1 matt */
614 1.1 matt standin_father->rb_nodes[standin_which] = standin_son;
615 1.1 matt /*
616 1.1 matt * Adopt the far son.
617 1.1 matt */
618 1.1 matt standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
619 1.1 matt RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
620 1.1 matt KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
621 1.1 matt /*
622 1.1 matt * Use standin_other because we need to preserve standin_which
623 1.1 matt * for the removal_rebalance.
624 1.1 matt */
625 1.1 matt standin_other = standin_which;
626 1.1 matt }
627 1.1 matt
628 1.1 matt /*
629 1.1 matt * Move the only remaining son to our standin. If our standin is our
630 1.1 matt * son, this will be the only son needed to be moved.
631 1.1 matt */
632 1.1 matt KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
633 1.1 matt standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
634 1.1 matt RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
635 1.1 matt
636 1.1 matt /*
637 1.1 matt * Now copy the result of self to standin and then replace
638 1.1 matt * self with standin in the tree.
639 1.1 matt */
640 1.1 matt RB_COPY_PROPERTIES(standin, self);
641 1.1 matt RB_SET_FATHER(standin, RB_FATHER(self));
642 1.1 matt RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
643 1.1 matt
644 1.1 matt /*
645 1.1 matt * Remove ourselves from the node list, decrement the count,
646 1.1 matt * and update min/max.
647 1.1 matt */
648 1.1 matt RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
649 1.1 matt RBSTAT_DEC(rbt->rbt_count);
650 1.1 matt #ifndef RBSMALL
651 1.1 matt if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
652 1.1 matt rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
653 1.1 matt RB_SET_FATHER(self, NULL);
654 1.1 matt #endif
655 1.1 matt
656 1.1 matt KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
657 1.1 matt KASSERT(RB_FATHER_SENTINEL_P(standin)
658 1.1 matt || rb_tree_check_node(rbt, standin_father, NULL, false));
659 1.1 matt KASSERT(RB_LEFT_SENTINEL_P(standin)
660 1.1 matt || rb_tree_check_node(rbt, standin->rb_left, NULL, false));
661 1.1 matt KASSERT(RB_RIGHT_SENTINEL_P(standin)
662 1.1 matt || rb_tree_check_node(rbt, standin->rb_right, NULL, false));
663 1.1 matt
664 1.1 matt if (!rebalance)
665 1.1 matt return;
666 1.1 matt
667 1.1 matt rb_tree_removal_rebalance(rbt, standin_father, standin_which);
668 1.1 matt KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
669 1.1 matt }
670 1.1 matt
671 1.1 matt /*
672 1.1 matt * We could do this by doing
673 1.1 matt * rb_tree_node_swap(rbt, self, which);
674 1.1 matt * rb_tree_prune_node(rbt, self, false);
675 1.1 matt *
676 1.1 matt * But it's more efficient to just evalate and recolor the child.
677 1.1 matt */
678 1.1 matt static void
679 1.1 matt rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
680 1.1 matt unsigned int which)
681 1.1 matt {
682 1.1 matt struct rb_node *father = RB_FATHER(self);
683 1.1 matt struct rb_node *son = self->rb_nodes[which];
684 1.1 matt const bool was_root = RB_ROOT_P(rbt, self);
685 1.1 matt
686 1.1 matt KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
687 1.1 matt KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
688 1.1 matt KASSERT(!RB_TWOCHILDREN_P(son));
689 1.1 matt KASSERT(RB_CHILDLESS_P(son));
690 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, false));
691 1.1 matt KASSERT(rb_tree_check_node(rbt, son, NULL, false));
692 1.1 matt
693 1.1 matt /*
694 1.1 matt * Remove ourselves from the tree and give our former child our
695 1.1 matt * properties (position, color, root).
696 1.1 matt */
697 1.1 matt RB_COPY_PROPERTIES(son, self);
698 1.1 matt father->rb_nodes[RB_POSITION(son)] = son;
699 1.1 matt RB_SET_FATHER(son, father);
700 1.1 matt
701 1.1 matt /*
702 1.1 matt * Remove ourselves from the node list, decrement the count,
703 1.1 matt * and update minmax.
704 1.1 matt */
705 1.1 matt RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
706 1.1 matt RBSTAT_DEC(rbt->rbt_count);
707 1.1 matt #ifndef RBSMALL
708 1.1 matt if (__predict_false(was_root)) {
709 1.1 matt KASSERT(rbt->rbt_minmax[which] == son);
710 1.1 matt rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
711 1.1 matt } else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
712 1.1 matt rbt->rbt_minmax[RB_POSITION(self)] = son;
713 1.1 matt }
714 1.1 matt RB_SET_FATHER(self, NULL);
715 1.1 matt #endif
716 1.1 matt
717 1.1 matt KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
718 1.1 matt KASSERT(rb_tree_check_node(rbt, son, NULL, true));
719 1.1 matt }
720 1.1 matt /*
721 1.1 matt *
722 1.1 matt */
723 1.1 matt void
724 1.1 matt rb_tree_remove_node(struct rb_tree *rbt, struct rb_node *self)
725 1.1 matt {
726 1.1 matt struct rb_node *standin;
727 1.1 matt unsigned int which;
728 1.1 matt
729 1.1 matt KASSERT(!RB_SENTINEL_P(self));
730 1.1 matt RBSTAT_INC(rbt->rbt_removals);
731 1.1 matt
732 1.1 matt /*
733 1.1 matt * In the following diagrams, we (the node to be removed) are S. Red
734 1.1 matt * nodes are lowercase. T could be either red or black.
735 1.1 matt *
736 1.1 matt * Remember the major axiom of the red-black tree: the number of
737 1.1 matt * black nodes from the root to each leaf is constant across all
738 1.1 matt * leaves, only the number of red nodes varies.
739 1.1 matt *
740 1.1 matt * Thus removing a red leaf doesn't require any other changes to a
741 1.1 matt * red-black tree. So if we must remove a node, attempt to rearrange
742 1.1 matt * the tree so we can remove a red node.
743 1.1 matt *
744 1.1 matt * The simpliest case is a childless red node or a childless root node:
745 1.1 matt *
746 1.1 matt * | T --> T | or | R --> * |
747 1.1 matt * | s --> * |
748 1.1 matt */
749 1.1 matt if (RB_CHILDLESS_P(self)) {
750 1.1 matt const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
751 1.1 matt rb_tree_prune_node(rbt, self, rebalance);
752 1.1 matt return;
753 1.1 matt }
754 1.1 matt KASSERT(!RB_CHILDLESS_P(self));
755 1.1 matt if (!RB_TWOCHILDREN_P(self)) {
756 1.1 matt /*
757 1.1 matt * The next simpliest case is the node we are deleting is
758 1.1 matt * black and has one red child.
759 1.1 matt *
760 1.1 matt * | T --> T --> T |
761 1.1 matt * | S --> R --> R |
762 1.1 matt * | r --> s --> * |
763 1.1 matt */
764 1.1 matt which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
765 1.1 matt KASSERT(RB_BLACK_P(self));
766 1.1 matt KASSERT(RB_RED_P(self->rb_nodes[which]));
767 1.1 matt KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
768 1.1 matt rb_tree_prune_blackred_branch(rbt, self, which);
769 1.1 matt return;
770 1.1 matt }
771 1.1 matt KASSERT(RB_TWOCHILDREN_P(self));
772 1.1 matt
773 1.1 matt /*
774 1.1 matt * We invert these because we prefer to remove from the inside of
775 1.1 matt * the tree.
776 1.1 matt */
777 1.1 matt which = RB_POSITION(self) ^ RB_DIR_OTHER;
778 1.1 matt
779 1.1 matt /*
780 1.1 matt * Let's find the node closes to us opposite of our parent
781 1.1 matt * Now swap it with ourself, "prune" it, and rebalance, if needed.
782 1.1 matt */
783 1.1 matt standin = rb_tree_iterate(rbt, self, which);
784 1.1 matt rb_tree_swap_prune_and_rebalance(rbt, self, standin);
785 1.1 matt }
786 1.1 matt
787 1.1 matt static void
788 1.1 matt rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
789 1.1 matt unsigned int which)
790 1.1 matt {
791 1.1 matt KASSERT(!RB_SENTINEL_P(parent));
792 1.1 matt KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
793 1.1 matt KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
794 1.1 matt RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
795 1.1 matt
796 1.1 matt while (RB_BLACK_P(parent->rb_nodes[which])) {
797 1.1 matt unsigned int other = which ^ RB_DIR_OTHER;
798 1.1 matt struct rb_node *brother = parent->rb_nodes[other];
799 1.1 matt
800 1.1 matt RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
801 1.1 matt
802 1.1 matt KASSERT(!RB_SENTINEL_P(brother));
803 1.1 matt /*
804 1.1 matt * For cases 1, 2a, and 2b, our brother's children must
805 1.1 matt * be black and our father must be black
806 1.1 matt */
807 1.1 matt if (RB_BLACK_P(parent)
808 1.1 matt && RB_BLACK_P(brother->rb_left)
809 1.1 matt && RB_BLACK_P(brother->rb_right)) {
810 1.1 matt if (RB_RED_P(brother)) {
811 1.1 matt /*
812 1.1 matt * Case 1: Our brother is red, swap its
813 1.1 matt * position (and colors) with our parent.
814 1.1 matt * This should now be case 2b (unless C or E
815 1.1 matt * has a red child which is case 3; thus no
816 1.1 matt * explicit branch to case 2b).
817 1.1 matt *
818 1.1 matt * B -> D
819 1.1 matt * A d -> b E
820 1.1 matt * C E -> A C
821 1.1 matt */
822 1.1 matt KASSERT(RB_BLACK_P(parent));
823 1.1 matt rb_tree_reparent_nodes(rbt, parent, other);
824 1.1 matt brother = parent->rb_nodes[other];
825 1.1 matt KASSERT(!RB_SENTINEL_P(brother));
826 1.1 matt KASSERT(RB_RED_P(parent));
827 1.1 matt KASSERT(RB_BLACK_P(brother));
828 1.1 matt KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
829 1.1 matt KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
830 1.1 matt } else {
831 1.1 matt /*
832 1.1 matt * Both our parent and brother are black.
833 1.1 matt * Change our brother to red, advance up rank
834 1.1 matt * and go through the loop again.
835 1.1 matt *
836 1.1 matt * B -> *B
837 1.1 matt * *A D -> A d
838 1.1 matt * C E -> C E
839 1.1 matt */
840 1.1 matt RB_MARK_RED(brother);
841 1.1 matt KASSERT(RB_BLACK_P(brother->rb_left));
842 1.1 matt KASSERT(RB_BLACK_P(brother->rb_right));
843 1.1 matt if (RB_ROOT_P(rbt, parent))
844 1.1 matt return; /* root == parent == black */
845 1.1 matt KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
846 1.1 matt KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
847 1.1 matt which = RB_POSITION(parent);
848 1.1 matt parent = RB_FATHER(parent);
849 1.1 matt continue;
850 1.1 matt }
851 1.1 matt }
852 1.1 matt /*
853 1.1 matt * Avoid an else here so that case 2a above can hit either
854 1.1 matt * case 2b, 3, or 4.
855 1.1 matt */
856 1.1 matt if (RB_RED_P(parent)
857 1.1 matt && RB_BLACK_P(brother)
858 1.1 matt && RB_BLACK_P(brother->rb_left)
859 1.1 matt && RB_BLACK_P(brother->rb_right)) {
860 1.1 matt KASSERT(RB_RED_P(parent));
861 1.1 matt KASSERT(RB_BLACK_P(brother));
862 1.1 matt KASSERT(RB_BLACK_P(brother->rb_left));
863 1.1 matt KASSERT(RB_BLACK_P(brother->rb_right));
864 1.1 matt /*
865 1.1 matt * We are black, our father is red, our brother and
866 1.1 matt * both nephews are black. Simply invert/exchange the
867 1.1 matt * colors of our father and brother (to black and red
868 1.1 matt * respectively).
869 1.1 matt *
870 1.1 matt * | f --> F |
871 1.1 matt * | * B --> * b |
872 1.1 matt * | N N --> N N |
873 1.1 matt */
874 1.1 matt RB_MARK_BLACK(parent);
875 1.1 matt RB_MARK_RED(brother);
876 1.1 matt KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
877 1.1 matt break; /* We're done! */
878 1.1 matt } else {
879 1.1 matt /*
880 1.1 matt * Our brother must be black and have at least one
881 1.1 matt * red child (it may have two).
882 1.1 matt */
883 1.1 matt KASSERT(RB_BLACK_P(brother));
884 1.1 matt KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
885 1.1 matt RB_RED_P(brother->rb_nodes[other]));
886 1.1 matt if (RB_BLACK_P(brother->rb_nodes[other])) {
887 1.1 matt /*
888 1.1 matt * Case 3: our brother is black, our near
889 1.1 matt * nephew is red, and our far nephew is black.
890 1.1 matt * Swap our brother with our near nephew.
891 1.1 matt * This result in a tree that matches case 4.
892 1.1 matt * (Our father could be red or black).
893 1.1 matt *
894 1.1 matt * | F --> F |
895 1.1 matt * | x B --> x B |
896 1.1 matt * | n --> n |
897 1.1 matt */
898 1.1 matt KASSERT(RB_RED_P(brother->rb_nodes[which]));
899 1.1 matt rb_tree_reparent_nodes(rbt, brother, which);
900 1.1 matt KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
901 1.1 matt brother = parent->rb_nodes[other];
902 1.1 matt KASSERT(RB_RED_P(brother->rb_nodes[other]));
903 1.1 matt }
904 1.1 matt /*
905 1.1 matt * Case 4: our brother is black and our far nephew
906 1.1 matt * is red. Swap our father and brother locations and
907 1.1 matt * change our far nephew to black. (these can be
908 1.1 matt * done in either order so we change the color first).
909 1.1 matt * The result is a valid red-black tree and is a
910 1.1 matt * terminal case. (again we don't care about the
911 1.1 matt * father's color)
912 1.1 matt *
913 1.1 matt * If the father is red, we will get a red-black-black
914 1.1 matt * tree:
915 1.1 matt * | f -> f --> b |
916 1.1 matt * | B -> B --> F N |
917 1.1 matt * | n -> N --> |
918 1.1 matt *
919 1.1 matt * If the father is black, we will get an all black
920 1.1 matt * tree:
921 1.1 matt * | F -> F --> B |
922 1.1 matt * | B -> B --> F N |
923 1.1 matt * | n -> N --> |
924 1.1 matt *
925 1.1 matt * If we had two red nephews, then after the swap,
926 1.1 matt * our former father would have a red grandson.
927 1.1 matt */
928 1.1 matt KASSERT(RB_BLACK_P(brother));
929 1.1 matt KASSERT(RB_RED_P(brother->rb_nodes[other]));
930 1.1 matt RB_MARK_BLACK(brother->rb_nodes[other]);
931 1.1 matt rb_tree_reparent_nodes(rbt, parent, other);
932 1.1 matt break; /* We're done! */
933 1.1 matt }
934 1.1 matt }
935 1.1 matt KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
936 1.1 matt }
937 1.1 matt
938 1.1 matt struct rb_node *
939 1.1 matt rb_tree_iterate(struct rb_tree *rbt, struct rb_node *self,
940 1.1 matt const unsigned int direction)
941 1.1 matt {
942 1.1 matt const unsigned int other = direction ^ RB_DIR_OTHER;
943 1.1 matt KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
944 1.1 matt
945 1.1 matt if (self == NULL) {
946 1.1 matt #ifndef RBSMALL
947 1.1 matt if (RB_SENTINEL_P(rbt->rbt_root))
948 1.1 matt return NULL;
949 1.1 matt return rbt->rbt_minmax[direction];
950 1.1 matt #else
951 1.1 matt self = rbt->rbt_root;
952 1.1 matt if (RB_SENTINEL_P(self))
953 1.1 matt return NULL;
954 1.1 matt while (!RB_SENTINEL_P(self->rb_nodes[other]))
955 1.1 matt self = self->rb_nodes[other];
956 1.1 matt return self;
957 1.1 matt #endif /* !RBSMALL */
958 1.1 matt }
959 1.1 matt KASSERT(!RB_SENTINEL_P(self));
960 1.1 matt /*
961 1.1 matt * We can't go any further in this direction. We proceed up in the
962 1.1 matt * opposite direction until our parent is in direction we want to go.
963 1.1 matt */
964 1.1 matt if (RB_SENTINEL_P(self->rb_nodes[direction])) {
965 1.1 matt while (!RB_ROOT_P(rbt, self)) {
966 1.1 matt if (other == RB_POSITION(self))
967 1.1 matt return RB_FATHER(self);
968 1.1 matt self = RB_FATHER(self);
969 1.1 matt }
970 1.1 matt return NULL;
971 1.1 matt }
972 1.1 matt
973 1.1 matt /*
974 1.1 matt * Advance down one in current direction and go down as far as possible
975 1.1 matt * in the opposite direction.
976 1.1 matt */
977 1.1 matt self = self->rb_nodes[direction];
978 1.1 matt KASSERT(!RB_SENTINEL_P(self));
979 1.1 matt while (!RB_SENTINEL_P(self->rb_nodes[other]))
980 1.1 matt self = self->rb_nodes[other];
981 1.1 matt return self;
982 1.1 matt }
983 1.1 matt
984 1.1 matt #ifdef RBDEBUG
985 1.1 matt static const struct rb_node *
986 1.1 matt rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
987 1.1 matt const unsigned int direction)
988 1.1 matt {
989 1.1 matt const unsigned int other = direction ^ RB_DIR_OTHER;
990 1.1 matt KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
991 1.1 matt
992 1.1 matt if (self == NULL) {
993 1.1 matt #ifndef RBSMALL
994 1.1 matt if (RB_SENTINEL_P(rbt->rbt_root))
995 1.1 matt return NULL;
996 1.1 matt return rbt->rbt_minmax[direction];
997 1.1 matt #else
998 1.1 matt self = rbt->rbt_root;
999 1.1 matt if (RB_SENTINEL_P(self))
1000 1.1 matt return NULL;
1001 1.1 matt while (!RB_SENTINEL_P(self->rb_nodes[other]))
1002 1.1 matt self = self->rb_nodes[other];
1003 1.1 matt return self;
1004 1.1 matt #endif /* !RBSMALL */
1005 1.1 matt }
1006 1.1 matt KASSERT(!RB_SENTINEL_P(self));
1007 1.1 matt /*
1008 1.1 matt * We can't go any further in this direction. We proceed up in the
1009 1.1 matt * opposite direction until our parent is in direction we want to go.
1010 1.1 matt */
1011 1.1 matt if (RB_SENTINEL_P(self->rb_nodes[direction])) {
1012 1.1 matt while (!RB_ROOT_P(rbt, self)) {
1013 1.1 matt if (other == RB_POSITION(self))
1014 1.1 matt return RB_FATHER(self);
1015 1.1 matt self = RB_FATHER(self);
1016 1.1 matt }
1017 1.1 matt return NULL;
1018 1.1 matt }
1019 1.1 matt
1020 1.1 matt /*
1021 1.1 matt * Advance down one in current direction and go down as far as possible
1022 1.1 matt * in the opposite direction.
1023 1.1 matt */
1024 1.1 matt self = self->rb_nodes[direction];
1025 1.1 matt KASSERT(!RB_SENTINEL_P(self));
1026 1.1 matt while (!RB_SENTINEL_P(self->rb_nodes[other]))
1027 1.1 matt self = self->rb_nodes[other];
1028 1.1 matt return self;
1029 1.1 matt }
1030 1.1 matt
1031 1.1 matt static unsigned int
1032 1.1 matt rb_tree_count_black(const struct rb_node *self)
1033 1.1 matt {
1034 1.1 matt unsigned int left, right;
1035 1.1 matt
1036 1.1 matt if (RB_SENTINEL_P(self))
1037 1.1 matt return 0;
1038 1.1 matt
1039 1.1 matt left = rb_tree_count_black(self->rb_left);
1040 1.1 matt right = rb_tree_count_black(self->rb_right);
1041 1.1 matt
1042 1.1 matt KASSERT(left == right);
1043 1.1 matt
1044 1.1 matt return left + RB_BLACK_P(self);
1045 1.1 matt }
1046 1.1 matt
1047 1.1 matt static bool
1048 1.1 matt rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
1049 1.1 matt const struct rb_node *prev, bool red_check)
1050 1.1 matt {
1051 1.1 matt rb_compare_nodes_fn compare_nodes = rbt->rbt_ops->rb_compare_nodes;
1052 1.1 matt
1053 1.1 matt KASSERT(!RB_SENTINEL_P(self));
1054 1.1 matt KASSERT(prev == NULL || (*compare_nodes)(prev, self) > 0);
1055 1.1 matt
1056 1.1 matt /*
1057 1.1 matt * Verify our relationship to our parent.
1058 1.1 matt */
1059 1.1 matt if (RB_ROOT_P(rbt, self)) {
1060 1.1 matt KASSERT(self == rbt->rbt_root);
1061 1.1 matt KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
1062 1.1 matt KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1063 1.1 matt KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
1064 1.1 matt } else {
1065 1.1 matt KASSERT(self != rbt->rbt_root);
1066 1.1 matt KASSERT(!RB_FATHER_SENTINEL_P(self));
1067 1.1 matt if (RB_POSITION(self) == RB_DIR_LEFT) {
1068 1.1 matt KASSERT((*compare_nodes)(self, RB_FATHER(self)) > 0);
1069 1.1 matt KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1070 1.1 matt } else {
1071 1.1 matt KASSERT((*compare_nodes)(self, RB_FATHER(self)) < 0);
1072 1.1 matt KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
1073 1.1 matt }
1074 1.1 matt }
1075 1.1 matt
1076 1.1 matt /*
1077 1.1 matt * Verify our position in the linked list against the tree itself.
1078 1.1 matt */
1079 1.1 matt {
1080 1.1 matt const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1081 1.1 matt const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1082 1.1 matt KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
1083 1.1 matt KASSERT(next0 == TAILQ_NEXT(self, rb_link));
1084 1.1 matt #ifndef RBSMALL
1085 1.1 matt KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
1086 1.1 matt KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
1087 1.1 matt #endif
1088 1.1 matt }
1089 1.1 matt
1090 1.1 matt /*
1091 1.1 matt * The root must be black.
1092 1.1 matt * There can never be two adjacent red nodes.
1093 1.1 matt */
1094 1.1 matt if (red_check) {
1095 1.1 matt KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
1096 1.1 matt (void) rb_tree_count_black(self);
1097 1.1 matt if (RB_RED_P(self)) {
1098 1.1 matt const struct rb_node *brother;
1099 1.1 matt KASSERT(!RB_ROOT_P(rbt, self));
1100 1.1 matt brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
1101 1.1 matt KASSERT(RB_BLACK_P(RB_FATHER(self)));
1102 1.1 matt /*
1103 1.1 matt * I'm red and have no children, then I must either
1104 1.1 matt * have no brother or my brother also be red and
1105 1.1 matt * also have no children. (black count == 0)
1106 1.1 matt */
1107 1.1 matt KASSERT(!RB_CHILDLESS_P(self)
1108 1.1 matt || RB_SENTINEL_P(brother)
1109 1.1 matt || RB_RED_P(brother)
1110 1.1 matt || RB_CHILDLESS_P(brother));
1111 1.1 matt /*
1112 1.1 matt * If I'm not childless, I must have two children
1113 1.1 matt * and they must be both be black.
1114 1.1 matt */
1115 1.1 matt KASSERT(RB_CHILDLESS_P(self)
1116 1.1 matt || (RB_TWOCHILDREN_P(self)
1117 1.1 matt && RB_BLACK_P(self->rb_left)
1118 1.1 matt && RB_BLACK_P(self->rb_right)));
1119 1.1 matt /*
1120 1.1 matt * If I'm not childless, thus I have black children,
1121 1.1 matt * then my brother must either be black or have two
1122 1.1 matt * black children.
1123 1.1 matt */
1124 1.1 matt KASSERT(RB_CHILDLESS_P(self)
1125 1.1 matt || RB_BLACK_P(brother)
1126 1.1 matt || (RB_TWOCHILDREN_P(brother)
1127 1.1 matt && RB_BLACK_P(brother->rb_left)
1128 1.1 matt && RB_BLACK_P(brother->rb_right)));
1129 1.1 matt } else {
1130 1.1 matt /*
1131 1.1 matt * If I'm black and have one child, that child must
1132 1.1 matt * be red and childless.
1133 1.1 matt */
1134 1.1 matt KASSERT(RB_CHILDLESS_P(self)
1135 1.1 matt || RB_TWOCHILDREN_P(self)
1136 1.1 matt || (!RB_LEFT_SENTINEL_P(self)
1137 1.1 matt && RB_RIGHT_SENTINEL_P(self)
1138 1.1 matt && RB_RED_P(self->rb_left)
1139 1.1 matt && RB_CHILDLESS_P(self->rb_left))
1140 1.1 matt || (!RB_RIGHT_SENTINEL_P(self)
1141 1.1 matt && RB_LEFT_SENTINEL_P(self)
1142 1.1 matt && RB_RED_P(self->rb_right)
1143 1.1 matt && RB_CHILDLESS_P(self->rb_right)));
1144 1.1 matt
1145 1.1 matt /*
1146 1.1 matt * If I'm a childless black node and my parent is
1147 1.1 matt * black, my 2nd closet relative away from my parent
1148 1.1 matt * is either red or has a red parent or red children.
1149 1.1 matt */
1150 1.1 matt if (!RB_ROOT_P(rbt, self)
1151 1.1 matt && RB_CHILDLESS_P(self)
1152 1.1 matt && RB_BLACK_P(RB_FATHER(self))) {
1153 1.1 matt const unsigned int which = RB_POSITION(self);
1154 1.1 matt const unsigned int other = which ^ RB_DIR_OTHER;
1155 1.1 matt const struct rb_node *relative0, *relative;
1156 1.1 matt
1157 1.1 matt relative0 = rb_tree_iterate_const(rbt,
1158 1.1 matt self, other);
1159 1.1 matt KASSERT(relative0 != NULL);
1160 1.1 matt relative = rb_tree_iterate_const(rbt,
1161 1.1 matt relative0, other);
1162 1.1 matt KASSERT(relative != NULL);
1163 1.1 matt KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
1164 1.1 matt #if 0
1165 1.1 matt KASSERT(RB_RED_P(relative)
1166 1.1 matt || RB_RED_P(relative->rb_left)
1167 1.1 matt || RB_RED_P(relative->rb_right)
1168 1.1 matt || RB_RED_P(RB_FATHER(relative)));
1169 1.1 matt #endif
1170 1.1 matt }
1171 1.1 matt }
1172 1.1 matt /*
1173 1.1 matt * A grandparent's children must be real nodes and not
1174 1.1 matt * sentinels. First check out grandparent.
1175 1.1 matt */
1176 1.1 matt KASSERT(RB_ROOT_P(rbt, self)
1177 1.1 matt || RB_ROOT_P(rbt, RB_FATHER(self))
1178 1.1 matt || RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
1179 1.1 matt /*
1180 1.1 matt * If we are have grandchildren on our left, then
1181 1.1 matt * we must have a child on our right.
1182 1.1 matt */
1183 1.1 matt KASSERT(RB_LEFT_SENTINEL_P(self)
1184 1.1 matt || RB_CHILDLESS_P(self->rb_left)
1185 1.1 matt || !RB_RIGHT_SENTINEL_P(self));
1186 1.1 matt /*
1187 1.1 matt * If we are have grandchildren on our right, then
1188 1.1 matt * we must have a child on our left.
1189 1.1 matt */
1190 1.1 matt KASSERT(RB_RIGHT_SENTINEL_P(self)
1191 1.1 matt || RB_CHILDLESS_P(self->rb_right)
1192 1.1 matt || !RB_LEFT_SENTINEL_P(self));
1193 1.1 matt
1194 1.1 matt /*
1195 1.1 matt * If we have a child on the left and it doesn't have two
1196 1.1 matt * children make sure we don't have great-great-grandchildren on
1197 1.1 matt * the right.
1198 1.1 matt */
1199 1.1 matt KASSERT(RB_TWOCHILDREN_P(self->rb_left)
1200 1.1 matt || RB_CHILDLESS_P(self->rb_right)
1201 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_left)
1202 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
1203 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
1204 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_right)
1205 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
1206 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
1207 1.1 matt
1208 1.1 matt /*
1209 1.1 matt * If we have a child on the right and it doesn't have two
1210 1.1 matt * children make sure we don't have great-great-grandchildren on
1211 1.1 matt * the left.
1212 1.1 matt */
1213 1.1 matt KASSERT(RB_TWOCHILDREN_P(self->rb_right)
1214 1.1 matt || RB_CHILDLESS_P(self->rb_left)
1215 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_left)
1216 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
1217 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
1218 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_right)
1219 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
1220 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
1221 1.1 matt
1222 1.1 matt /*
1223 1.1 matt * If we are fully interior node, then our predecessors and
1224 1.1 matt * successors must have no children in our direction.
1225 1.1 matt */
1226 1.1 matt if (RB_TWOCHILDREN_P(self)) {
1227 1.1 matt const struct rb_node *prev0;
1228 1.1 matt const struct rb_node *next0;
1229 1.1 matt
1230 1.1 matt prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1231 1.1 matt KASSERT(prev0 != NULL);
1232 1.1 matt KASSERT(RB_RIGHT_SENTINEL_P(prev0));
1233 1.1 matt
1234 1.1 matt next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1235 1.1 matt KASSERT(next0 != NULL);
1236 1.1 matt KASSERT(RB_LEFT_SENTINEL_P(next0));
1237 1.1 matt }
1238 1.1 matt }
1239 1.1 matt
1240 1.1 matt return true;
1241 1.1 matt }
1242 1.1 matt
1243 1.1 matt void
1244 1.1 matt rb_tree_check(const struct rb_tree *rbt, bool red_check)
1245 1.1 matt {
1246 1.1 matt const struct rb_node *self;
1247 1.1 matt const struct rb_node *prev;
1248 1.1 matt #ifdef RBSTATS
1249 1.1 matt unsigned int count = 0;
1250 1.1 matt #endif
1251 1.1 matt
1252 1.1 matt KASSERT(rbt->rbt_root != NULL);
1253 1.1 matt KASSERT(RB_LEFT_P(rbt->rbt_root));
1254 1.1 matt
1255 1.1 matt #if defined(RBSTATS) && !defined(RBSMALL)
1256 1.1 matt KASSERT(rbt->rbt_count > 1
1257 1.1 matt || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
1258 1.1 matt #endif
1259 1.1 matt
1260 1.1 matt prev = NULL;
1261 1.1 matt TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1262 1.1 matt rb_tree_check_node(rbt, self, prev, false);
1263 1.1 matt #ifdef RBSTATS
1264 1.1 matt count++;
1265 1.1 matt #endif
1266 1.1 matt }
1267 1.1 matt #ifdef RBSTATS
1268 1.1 matt KASSERT(rbt->rbt_count == count);
1269 1.1 matt #endif
1270 1.1 matt if (red_check) {
1271 1.1 matt KASSERT(RB_BLACK_P(rbt->rbt_root));
1272 1.1 matt KASSERT(RB_SENTINEL_P(rbt->rbt_root)
1273 1.1 matt || rb_tree_count_black(rbt->rbt_root));
1274 1.1 matt
1275 1.1 matt /*
1276 1.1 matt * The root must be black.
1277 1.1 matt * There can never be two adjacent red nodes.
1278 1.1 matt */
1279 1.1 matt TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1280 1.1 matt rb_tree_check_node(rbt, self, NULL, true);
1281 1.1 matt }
1282 1.1 matt }
1283 1.1 matt }
1284 1.1 matt #endif /* RBDEBUG */
1285 1.1 matt
1286 1.1 matt #ifdef RBSTATS
1287 1.1 matt static void
1288 1.1 matt rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
1289 1.1 matt size_t *depths, size_t depth)
1290 1.1 matt {
1291 1.1 matt if (RB_SENTINEL_P(self))
1292 1.1 matt return;
1293 1.1 matt
1294 1.1 matt if (RB_TWOCHILDREN_P(self)) {
1295 1.1 matt rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1296 1.1 matt rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1297 1.1 matt return;
1298 1.1 matt }
1299 1.1 matt depths[depth]++;
1300 1.1 matt if (!RB_LEFT_SENTINEL_P(self)) {
1301 1.1 matt rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1302 1.1 matt }
1303 1.1 matt if (!RB_RIGHT_SENTINEL_P(self)) {
1304 1.1 matt rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1305 1.1 matt }
1306 1.1 matt }
1307 1.1 matt
1308 1.1 matt void
1309 rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
1310 {
1311 rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
1312 }
1313 #endif /* RBSTATS */
1314