Home | History | Annotate | Line # | Download | only in gen
rb.c revision 1.10.2.1
      1  1.10.2.1  cherry /*	$NetBSD: rb.c,v 1.10.2.1 2011/06/23 14:17:49 cherry Exp $	*/
      2       1.1    matt 
      3       1.1    matt /*-
      4       1.1    matt  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5       1.1    matt  * All rights reserved.
      6       1.1    matt  *
      7       1.1    matt  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1    matt  * by Matt Thomas <matt (at) 3am-software.com>.
      9       1.1    matt  *
     10       1.1    matt  * Redistribution and use in source and binary forms, with or without
     11       1.1    matt  * modification, are permitted provided that the following conditions
     12       1.1    matt  * are met:
     13       1.1    matt  * 1. Redistributions of source code must retain the above copyright
     14       1.1    matt  *    notice, this list of conditions and the following disclaimer.
     15       1.1    matt  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1    matt  *    notice, this list of conditions and the following disclaimer in the
     17       1.1    matt  *    documentation and/or other materials provided with the distribution.
     18       1.1    matt  *
     19       1.1    matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.1    matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1    matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1    matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.1    matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1    matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1    matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1    matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1    matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1    matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1    matt  * POSSIBILITY OF SUCH DAMAGE.
     30       1.1    matt  */
     31       1.1    matt 
     32       1.1    matt #if !defined(_KERNEL) && !defined(_STANDALONE)
     33       1.1    matt #include <sys/types.h>
     34       1.1    matt #include <stddef.h>
     35       1.1    matt #include <assert.h>
     36       1.1    matt #include <stdbool.h>
     37       1.1    matt #ifdef RBDEBUG
     38       1.1    matt #define	KASSERT(s)	assert(s)
     39       1.1    matt #else
     40       1.3    matt #define KASSERT(s)	do { } while (/*CONSTCOND*/ 0)
     41       1.1    matt #endif
     42  1.10.2.1  cherry __RCSID("$NetBSD: rb.c,v 1.10.2.1 2011/06/23 14:17:49 cherry Exp $");
     43       1.1    matt #else
     44       1.1    matt #include <lib/libkern/libkern.h>
     45  1.10.2.1  cherry __KERNEL_RCSID(0, "$NetBSD: rb.c,v 1.10.2.1 2011/06/23 14:17:49 cherry Exp $");
     46       1.1    matt #endif
     47       1.1    matt 
     48       1.1    matt #ifdef _LIBC
     49       1.1    matt __weak_alias(rb_tree_init, _rb_tree_init)
     50       1.1    matt __weak_alias(rb_tree_find_node, _rb_tree_find_node)
     51       1.1    matt __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
     52       1.1    matt __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
     53       1.1    matt __weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
     54       1.1    matt __weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
     55       1.1    matt __weak_alias(rb_tree_iterate, _rb_tree_iterate)
     56       1.1    matt #ifdef RBDEBUG
     57       1.1    matt __weak_alias(rb_tree_check, _rb_tree_check)
     58       1.1    matt __weak_alias(rb_tree_depths, _rb_tree_depths)
     59       1.1    matt #endif
     60       1.1    matt 
     61       1.9    tron #include "namespace.h"
     62       1.1    matt #endif
     63       1.1    matt 
     64       1.1    matt #ifdef RBTEST
     65       1.8    matt #include "rbtree.h"
     66       1.1    matt #else
     67       1.8    matt #include <sys/rbtree.h>
     68       1.1    matt #endif
     69       1.1    matt 
     70       1.1    matt static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
     71       1.1    matt static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
     72       1.1    matt 	unsigned int);
     73       1.1    matt #ifdef RBDEBUG
     74       1.1    matt static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
     75       1.1    matt 	const struct rb_node *, const unsigned int);
     76       1.1    matt static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
     77       1.1    matt 	const struct rb_node *, bool);
     78       1.1    matt #else
     79       1.1    matt #define	rb_tree_check_node(a, b, c, d)	true
     80       1.1    matt #endif
     81       1.1    matt 
     82       1.7   rmind #define	RB_NODETOITEM(rbto, rbn)	\
     83       1.7   rmind     ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
     84       1.7   rmind #define	RB_ITEMTONODE(rbto, rbn)	\
     85       1.7   rmind     ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
     86       1.7   rmind 
     87       1.1    matt #define	RB_SENTINEL_NODE	NULL
     88       1.1    matt 
     89       1.1    matt void
     90       1.7   rmind rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
     91       1.1    matt {
     92       1.7   rmind 
     93       1.1    matt 	rbt->rbt_ops = ops;
     94  1.10.2.1  cherry 	rbt->rbt_root = RB_SENTINEL_NODE;
     95       1.1    matt 	RB_TAILQ_INIT(&rbt->rbt_nodes);
     96       1.1    matt #ifndef RBSMALL
     97       1.1    matt 	rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;	/* minimum node */
     98       1.1    matt 	rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;	/* maximum node */
     99       1.1    matt #endif
    100       1.1    matt #ifdef RBSTATS
    101       1.1    matt 	rbt->rbt_count = 0;
    102       1.1    matt 	rbt->rbt_insertions = 0;
    103       1.1    matt 	rbt->rbt_removals = 0;
    104       1.1    matt 	rbt->rbt_insertion_rebalance_calls = 0;
    105       1.1    matt 	rbt->rbt_insertion_rebalance_passes = 0;
    106       1.1    matt 	rbt->rbt_removal_rebalance_calls = 0;
    107       1.1    matt 	rbt->rbt_removal_rebalance_passes = 0;
    108       1.1    matt #endif
    109       1.1    matt }
    110       1.1    matt 
    111       1.7   rmind void *
    112       1.1    matt rb_tree_find_node(struct rb_tree *rbt, const void *key)
    113       1.1    matt {
    114       1.7   rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    115       1.7   rmind 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    116       1.1    matt 	struct rb_node *parent = rbt->rbt_root;
    117       1.1    matt 
    118       1.1    matt 	while (!RB_SENTINEL_P(parent)) {
    119       1.7   rmind 		void *pobj = RB_NODETOITEM(rbto, parent);
    120       1.7   rmind 		const signed int diff = (*compare_key)(rbto->rbto_context,
    121       1.7   rmind 		    pobj, key);
    122       1.1    matt 		if (diff == 0)
    123       1.7   rmind 			return pobj;
    124       1.7   rmind 		parent = parent->rb_nodes[diff < 0];
    125       1.1    matt 	}
    126       1.1    matt 
    127       1.1    matt 	return NULL;
    128       1.1    matt }
    129       1.7   rmind 
    130       1.7   rmind void *
    131       1.1    matt rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
    132       1.1    matt {
    133       1.7   rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    134       1.7   rmind 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    135       1.7   rmind 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
    136       1.1    matt 
    137       1.1    matt 	while (!RB_SENTINEL_P(parent)) {
    138       1.7   rmind 		void *pobj = RB_NODETOITEM(rbto, parent);
    139       1.7   rmind 		const signed int diff = (*compare_key)(rbto->rbto_context,
    140       1.7   rmind 		    pobj, key);
    141       1.1    matt 		if (diff == 0)
    142       1.7   rmind 			return pobj;
    143       1.7   rmind 		if (diff > 0)
    144       1.1    matt 			last = parent;
    145       1.7   rmind 		parent = parent->rb_nodes[diff < 0];
    146       1.1    matt 	}
    147       1.1    matt 
    148       1.7   rmind 	return RB_NODETOITEM(rbto, last);
    149       1.1    matt }
    150       1.7   rmind 
    151       1.7   rmind void *
    152       1.1    matt rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
    153       1.1    matt {
    154       1.7   rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    155       1.7   rmind 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    156       1.7   rmind 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
    157       1.1    matt 
    158       1.1    matt 	while (!RB_SENTINEL_P(parent)) {
    159       1.7   rmind 		void *pobj = RB_NODETOITEM(rbto, parent);
    160       1.7   rmind 		const signed int diff = (*compare_key)(rbto->rbto_context,
    161       1.7   rmind 		    pobj, key);
    162       1.1    matt 		if (diff == 0)
    163       1.7   rmind 			return pobj;
    164       1.7   rmind 		if (diff < 0)
    165       1.1    matt 			last = parent;
    166       1.7   rmind 		parent = parent->rb_nodes[diff < 0];
    167       1.1    matt 	}
    168       1.1    matt 
    169       1.7   rmind 	return RB_NODETOITEM(rbto, last);
    170       1.1    matt }
    171       1.7   rmind 
    172       1.7   rmind void *
    173       1.7   rmind rb_tree_insert_node(struct rb_tree *rbt, void *object)
    174       1.1    matt {
    175       1.7   rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    176       1.7   rmind 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
    177       1.7   rmind 	struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
    178       1.1    matt 	unsigned int position;
    179       1.1    matt 	bool rebalance;
    180       1.1    matt 
    181       1.1    matt 	RBSTAT_INC(rbt->rbt_insertions);
    182       1.1    matt 
    183       1.1    matt 	tmp = rbt->rbt_root;
    184       1.1    matt 	/*
    185       1.1    matt 	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
    186       1.1    matt 	 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
    187       1.1    matt 	 * avoid a lot of tests for root and know that even at root,
    188       1.1    matt 	 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
    189       1.1    matt 	 * update rbt->rbt_root.
    190       1.1    matt 	 */
    191       1.3    matt 	parent = (struct rb_node *)(void *)&rbt->rbt_root;
    192       1.1    matt 	position = RB_DIR_LEFT;
    193       1.1    matt 
    194       1.1    matt 	/*
    195       1.1    matt 	 * Find out where to place this new leaf.
    196       1.1    matt 	 */
    197       1.1    matt 	while (!RB_SENTINEL_P(tmp)) {
    198       1.7   rmind 		void *tobj = RB_NODETOITEM(rbto, tmp);
    199       1.7   rmind 		const signed int diff = (*compare_nodes)(rbto->rbto_context,
    200       1.7   rmind 		    tobj, object);
    201       1.1    matt 		if (__predict_false(diff == 0)) {
    202       1.1    matt 			/*
    203       1.7   rmind 			 * Node already exists; return it.
    204       1.1    matt 			 */
    205       1.7   rmind 			return tobj;
    206       1.1    matt 		}
    207       1.1    matt 		parent = tmp;
    208       1.7   rmind 		position = (diff < 0);
    209       1.1    matt 		tmp = parent->rb_nodes[position];
    210       1.1    matt 	}
    211       1.1    matt 
    212       1.1    matt #ifdef RBDEBUG
    213       1.1    matt 	{
    214       1.1    matt 		struct rb_node *prev = NULL, *next = NULL;
    215       1.1    matt 
    216       1.1    matt 		if (position == RB_DIR_RIGHT)
    217       1.1    matt 			prev = parent;
    218       1.1    matt 		else if (tmp != rbt->rbt_root)
    219       1.1    matt 			next = parent;
    220       1.1    matt 
    221       1.1    matt 		/*
    222       1.1    matt 		 * Verify our sequential position
    223       1.1    matt 		 */
    224       1.1    matt 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
    225       1.1    matt 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
    226       1.1    matt 		if (prev != NULL && next == NULL)
    227       1.1    matt 			next = TAILQ_NEXT(prev, rb_link);
    228       1.1    matt 		if (prev == NULL && next != NULL)
    229       1.1    matt 			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
    230       1.1    matt 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
    231       1.1    matt 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
    232       1.7   rmind 		KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
    233       1.7   rmind 		    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
    234       1.7   rmind 		KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
    235       1.7   rmind 		    RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
    236       1.1    matt 	}
    237       1.1    matt #endif
    238       1.1    matt 
    239       1.1    matt 	/*
    240       1.1    matt 	 * Initialize the node and insert as a leaf into the tree.
    241       1.1    matt 	 */
    242       1.1    matt 	RB_SET_FATHER(self, parent);
    243       1.1    matt 	RB_SET_POSITION(self, position);
    244       1.3    matt 	if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
    245       1.1    matt 		RB_MARK_BLACK(self);		/* root is always black */
    246       1.1    matt #ifndef RBSMALL
    247       1.1    matt 		rbt->rbt_minmax[RB_DIR_LEFT] = self;
    248       1.1    matt 		rbt->rbt_minmax[RB_DIR_RIGHT] = self;
    249       1.1    matt #endif
    250       1.1    matt 		rebalance = false;
    251       1.1    matt 	} else {
    252       1.1    matt 		KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
    253       1.1    matt #ifndef RBSMALL
    254       1.1    matt 		/*
    255       1.1    matt 		 * Keep track of the minimum and maximum nodes.  If our
    256       1.1    matt 		 * parent is a minmax node and we on their min/max side,
    257       1.1    matt 		 * we must be the new min/max node.
    258       1.1    matt 		 */
    259       1.1    matt 		if (parent == rbt->rbt_minmax[position])
    260       1.1    matt 			rbt->rbt_minmax[position] = self;
    261       1.1    matt #endif /* !RBSMALL */
    262       1.1    matt 		/*
    263       1.1    matt 		 * All new nodes are colored red.  We only need to rebalance
    264       1.1    matt 		 * if our parent is also red.
    265       1.1    matt 		 */
    266       1.1    matt 		RB_MARK_RED(self);
    267       1.1    matt 		rebalance = RB_RED_P(parent);
    268       1.1    matt 	}
    269       1.1    matt 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
    270       1.1    matt 	self->rb_left = parent->rb_nodes[position];
    271       1.1    matt 	self->rb_right = parent->rb_nodes[position];
    272       1.1    matt 	parent->rb_nodes[position] = self;
    273       1.1    matt 	KASSERT(RB_CHILDLESS_P(self));
    274       1.1    matt 
    275       1.1    matt 	/*
    276       1.1    matt 	 * Insert the new node into a sorted list for easy sequential access
    277       1.1    matt 	 */
    278       1.1    matt 	RBSTAT_INC(rbt->rbt_count);
    279       1.1    matt #ifdef RBDEBUG
    280       1.1    matt 	if (RB_ROOT_P(rbt, self)) {
    281       1.1    matt 		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
    282       1.1    matt 	} else if (position == RB_DIR_LEFT) {
    283       1.7   rmind 		KASSERT((*compare_nodes)(rbto->rbto_context,
    284       1.7   rmind 		    RB_NODETOITEM(rbto, self),
    285       1.7   rmind 		    RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
    286       1.1    matt 		RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
    287       1.1    matt 	} else {
    288       1.7   rmind 		KASSERT((*compare_nodes)(rbto->rbto_context,
    289       1.7   rmind 		    RB_NODETOITEM(rbto, RB_FATHER(self)),
    290       1.7   rmind 		    RB_NODETOITEM(rbto, self)) < 0);
    291       1.1    matt 		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
    292       1.1    matt 		    self, rb_link);
    293       1.1    matt 	}
    294       1.1    matt #endif
    295       1.1    matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
    296       1.1    matt 
    297       1.1    matt 	/*
    298       1.1    matt 	 * Rebalance tree after insertion
    299       1.1    matt 	 */
    300       1.1    matt 	if (rebalance) {
    301       1.1    matt 		rb_tree_insert_rebalance(rbt, self);
    302       1.1    matt 		KASSERT(rb_tree_check_node(rbt, self, NULL, true));
    303       1.1    matt 	}
    304       1.1    matt 
    305       1.7   rmind 	/* Succesfully inserted, return our node pointer. */
    306       1.7   rmind 	return object;
    307       1.1    matt }
    308       1.7   rmind 
    309       1.1    matt /*
    310       1.1    matt  * Swap the location and colors of 'self' and its child @ which.  The child
    311       1.1    matt  * can not be a sentinel node.  This is our rotation function.  However,
    312       1.1    matt  * since it preserves coloring, it great simplifies both insertion and
    313       1.1    matt  * removal since rotation almost always involves the exchanging of colors
    314       1.1    matt  * as a separate step.
    315       1.1    matt  */
    316       1.3    matt /*ARGSUSED*/
    317       1.1    matt static void
    318       1.1    matt rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
    319       1.1    matt 	const unsigned int which)
    320       1.1    matt {
    321       1.1    matt 	const unsigned int other = which ^ RB_DIR_OTHER;
    322       1.1    matt 	struct rb_node * const grandpa = RB_FATHER(old_father);
    323       1.1    matt 	struct rb_node * const old_child = old_father->rb_nodes[which];
    324       1.1    matt 	struct rb_node * const new_father = old_child;
    325       1.1    matt 	struct rb_node * const new_child = old_father;
    326       1.1    matt 
    327       1.1    matt 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    328       1.1    matt 
    329       1.1    matt 	KASSERT(!RB_SENTINEL_P(old_child));
    330       1.1    matt 	KASSERT(RB_FATHER(old_child) == old_father);
    331       1.1    matt 
    332       1.1    matt 	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
    333       1.1    matt 	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
    334       1.7   rmind 	KASSERT(RB_ROOT_P(rbt, old_father) ||
    335       1.7   rmind 	    rb_tree_check_node(rbt, grandpa, NULL, false));
    336       1.1    matt 
    337       1.1    matt 	/*
    338       1.1    matt 	 * Exchange descendant linkages.
    339       1.1    matt 	 */
    340       1.1    matt 	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
    341       1.1    matt 	new_child->rb_nodes[which] = old_child->rb_nodes[other];
    342       1.1    matt 	new_father->rb_nodes[other] = new_child;
    343       1.1    matt 
    344       1.1    matt 	/*
    345       1.1    matt 	 * Update ancestor linkages
    346       1.1    matt 	 */
    347       1.1    matt 	RB_SET_FATHER(new_father, grandpa);
    348       1.1    matt 	RB_SET_FATHER(new_child, new_father);
    349       1.1    matt 
    350       1.1    matt 	/*
    351       1.1    matt 	 * Exchange properties between new_father and new_child.  The only
    352       1.1    matt 	 * change is that new_child's position is now on the other side.
    353       1.1    matt 	 */
    354       1.1    matt #if 0
    355       1.1    matt 	{
    356       1.1    matt 		struct rb_node tmp;
    357       1.1    matt 		tmp.rb_info = 0;
    358       1.1    matt 		RB_COPY_PROPERTIES(&tmp, old_child);
    359       1.1    matt 		RB_COPY_PROPERTIES(new_father, old_father);
    360       1.1    matt 		RB_COPY_PROPERTIES(new_child, &tmp);
    361       1.1    matt 	}
    362       1.1    matt #else
    363       1.1    matt 	RB_SWAP_PROPERTIES(new_father, new_child);
    364       1.1    matt #endif
    365       1.1    matt 	RB_SET_POSITION(new_child, other);
    366       1.1    matt 
    367       1.1    matt 	/*
    368       1.1    matt 	 * Make sure to reparent the new child to ourself.
    369       1.1    matt 	 */
    370       1.1    matt 	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
    371       1.1    matt 		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
    372       1.1    matt 		RB_SET_POSITION(new_child->rb_nodes[which], which);
    373       1.1    matt 	}
    374       1.1    matt 
    375       1.1    matt 	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
    376       1.1    matt 	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
    377       1.7   rmind 	KASSERT(RB_ROOT_P(rbt, new_father) ||
    378       1.7   rmind 	    rb_tree_check_node(rbt, grandpa, NULL, false));
    379       1.1    matt }
    380       1.7   rmind 
    381       1.1    matt static void
    382       1.1    matt rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
    383       1.1    matt {
    384       1.1    matt 	struct rb_node * father = RB_FATHER(self);
    385       1.1    matt 	struct rb_node * grandpa = RB_FATHER(father);
    386       1.1    matt 	struct rb_node * uncle;
    387       1.1    matt 	unsigned int which;
    388       1.1    matt 	unsigned int other;
    389       1.1    matt 
    390       1.1    matt 	KASSERT(!RB_ROOT_P(rbt, self));
    391       1.1    matt 	KASSERT(RB_RED_P(self));
    392       1.1    matt 	KASSERT(RB_RED_P(father));
    393       1.1    matt 	RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
    394       1.1    matt 
    395       1.1    matt 	for (;;) {
    396       1.1    matt 		KASSERT(!RB_SENTINEL_P(self));
    397       1.1    matt 
    398       1.1    matt 		KASSERT(RB_RED_P(self));
    399       1.1    matt 		KASSERT(RB_RED_P(father));
    400       1.1    matt 		/*
    401       1.1    matt 		 * We are red and our parent is red, therefore we must have a
    402       1.1    matt 		 * grandfather and he must be black.
    403       1.1    matt 		 */
    404       1.1    matt 		grandpa = RB_FATHER(father);
    405       1.1    matt 		KASSERT(RB_BLACK_P(grandpa));
    406       1.1    matt 		KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
    407       1.1    matt 		which = (father == grandpa->rb_right);
    408       1.1    matt 		other = which ^ RB_DIR_OTHER;
    409       1.1    matt 		uncle = grandpa->rb_nodes[other];
    410       1.1    matt 
    411       1.1    matt 		if (RB_BLACK_P(uncle))
    412       1.1    matt 			break;
    413       1.1    matt 
    414       1.1    matt 		RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
    415       1.1    matt 		/*
    416       1.1    matt 		 * Case 1: our uncle is red
    417       1.1    matt 		 *   Simply invert the colors of our parent and
    418       1.1    matt 		 *   uncle and make our grandparent red.  And
    419       1.1    matt 		 *   then solve the problem up at his level.
    420       1.1    matt 		 */
    421       1.1    matt 		RB_MARK_BLACK(uncle);
    422       1.1    matt 		RB_MARK_BLACK(father);
    423       1.1    matt 		if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
    424       1.1    matt 			/*
    425       1.1    matt 			 * If our grandpa is root, don't bother
    426       1.1    matt 			 * setting him to red, just return.
    427       1.1    matt 			 */
    428       1.1    matt 			KASSERT(RB_BLACK_P(grandpa));
    429       1.1    matt 			return;
    430       1.1    matt 		}
    431       1.1    matt 		RB_MARK_RED(grandpa);
    432       1.1    matt 		self = grandpa;
    433       1.1    matt 		father = RB_FATHER(self);
    434       1.1    matt 		KASSERT(RB_RED_P(self));
    435       1.1    matt 		if (RB_BLACK_P(father)) {
    436       1.1    matt 			/*
    437       1.1    matt 			 * If our greatgrandpa is black, we're done.
    438       1.1    matt 			 */
    439       1.1    matt 			KASSERT(RB_BLACK_P(rbt->rbt_root));
    440       1.1    matt 			return;
    441       1.1    matt 		}
    442       1.1    matt 	}
    443       1.1    matt 
    444       1.1    matt 	KASSERT(!RB_ROOT_P(rbt, self));
    445       1.1    matt 	KASSERT(RB_RED_P(self));
    446       1.1    matt 	KASSERT(RB_RED_P(father));
    447       1.1    matt 	KASSERT(RB_BLACK_P(uncle));
    448       1.1    matt 	KASSERT(RB_BLACK_P(grandpa));
    449       1.1    matt 	/*
    450       1.1    matt 	 * Case 2&3: our uncle is black.
    451       1.1    matt 	 */
    452       1.1    matt 	if (self == father->rb_nodes[other]) {
    453       1.1    matt 		/*
    454       1.1    matt 		 * Case 2: we are on the same side as our uncle
    455       1.1    matt 		 *   Swap ourselves with our parent so this case
    456       1.1    matt 		 *   becomes case 3.  Basically our parent becomes our
    457       1.1    matt 		 *   child.
    458       1.1    matt 		 */
    459       1.1    matt 		rb_tree_reparent_nodes(rbt, father, other);
    460       1.1    matt 		KASSERT(RB_FATHER(father) == self);
    461       1.1    matt 		KASSERT(self->rb_nodes[which] == father);
    462       1.1    matt 		KASSERT(RB_FATHER(self) == grandpa);
    463       1.1    matt 		self = father;
    464       1.1    matt 		father = RB_FATHER(self);
    465       1.1    matt 	}
    466       1.1    matt 	KASSERT(RB_RED_P(self) && RB_RED_P(father));
    467       1.1    matt 	KASSERT(grandpa->rb_nodes[which] == father);
    468       1.1    matt 	/*
    469       1.1    matt 	 * Case 3: we are opposite a child of a black uncle.
    470       1.1    matt 	 *   Swap our parent and grandparent.  Since our grandfather
    471       1.1    matt 	 *   is black, our father will become black and our new sibling
    472       1.1    matt 	 *   (former grandparent) will become red.
    473       1.1    matt 	 */
    474       1.1    matt 	rb_tree_reparent_nodes(rbt, grandpa, which);
    475       1.1    matt 	KASSERT(RB_FATHER(self) == father);
    476       1.1    matt 	KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
    477       1.1    matt 	KASSERT(RB_RED_P(self));
    478       1.1    matt 	KASSERT(RB_BLACK_P(father));
    479       1.1    matt 	KASSERT(RB_RED_P(grandpa));
    480       1.1    matt 
    481       1.1    matt 	/*
    482       1.1    matt 	 * Final step: Set the root to black.
    483       1.1    matt 	 */
    484       1.1    matt 	RB_MARK_BLACK(rbt->rbt_root);
    485       1.1    matt }
    486       1.7   rmind 
    487       1.1    matt static void
    488       1.1    matt rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
    489       1.1    matt {
    490       1.1    matt 	const unsigned int which = RB_POSITION(self);
    491       1.1    matt 	struct rb_node *father = RB_FATHER(self);
    492       1.5   joerg #ifndef RBSMALL
    493       1.1    matt 	const bool was_root = RB_ROOT_P(rbt, self);
    494       1.5   joerg #endif
    495       1.1    matt 
    496       1.1    matt 	KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
    497       1.1    matt 	KASSERT(!rebalance || RB_BLACK_P(self));
    498       1.1    matt 	KASSERT(RB_CHILDLESS_P(self));
    499       1.1    matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    500       1.1    matt 
    501       1.1    matt 	/*
    502       1.1    matt 	 * Since we are childless, we know that self->rb_left is pointing
    503       1.1    matt 	 * to the sentinel node.
    504       1.1    matt 	 */
    505       1.1    matt 	father->rb_nodes[which] = self->rb_left;
    506       1.1    matt 
    507       1.1    matt 	/*
    508       1.1    matt 	 * Remove ourselves from the node list, decrement the count,
    509       1.1    matt 	 * and update min/max.
    510       1.1    matt 	 */
    511       1.1    matt 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    512       1.1    matt 	RBSTAT_DEC(rbt->rbt_count);
    513       1.1    matt #ifndef RBSMALL
    514       1.1    matt 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
    515       1.1    matt 		rbt->rbt_minmax[RB_POSITION(self)] = father;
    516       1.1    matt 		/*
    517       1.1    matt 		 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
    518       1.1    matt 		 * updated automatically, but we also need to update
    519       1.1    matt 		 * rbt->rbt_minmax[RB_DIR_RIGHT];
    520       1.1    matt 		 */
    521       1.1    matt 		if (__predict_false(was_root)) {
    522       1.1    matt 			rbt->rbt_minmax[RB_DIR_RIGHT] = father;
    523       1.1    matt 		}
    524       1.1    matt 	}
    525       1.1    matt 	RB_SET_FATHER(self, NULL);
    526       1.1    matt #endif
    527       1.1    matt 
    528       1.1    matt 	/*
    529       1.1    matt 	 * Rebalance if requested.
    530       1.1    matt 	 */
    531       1.1    matt 	if (rebalance)
    532       1.1    matt 		rb_tree_removal_rebalance(rbt, father, which);
    533       1.1    matt 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
    534       1.1    matt }
    535       1.7   rmind 
    536       1.1    matt /*
    537       1.1    matt  * When deleting an interior node
    538       1.1    matt  */
    539       1.1    matt static void
    540       1.1    matt rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
    541       1.1    matt 	struct rb_node *standin)
    542       1.1    matt {
    543       1.1    matt 	const unsigned int standin_which = RB_POSITION(standin);
    544       1.1    matt 	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
    545       1.1    matt 	struct rb_node *standin_son;
    546       1.1    matt 	struct rb_node *standin_father = RB_FATHER(standin);
    547       1.1    matt 	bool rebalance = RB_BLACK_P(standin);
    548       1.1    matt 
    549       1.1    matt 	if (standin_father == self) {
    550       1.1    matt 		/*
    551       1.1    matt 		 * As a child of self, any childen would be opposite of
    552       1.1    matt 		 * our parent.
    553       1.1    matt 		 */
    554       1.1    matt 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
    555       1.1    matt 		standin_son = standin->rb_nodes[standin_which];
    556       1.1    matt 	} else {
    557       1.1    matt 		/*
    558       1.1    matt 		 * Since we aren't a child of self, any childen would be
    559       1.1    matt 		 * on the same side as our parent.
    560       1.1    matt 		 */
    561       1.1    matt 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
    562       1.1    matt 		standin_son = standin->rb_nodes[standin_other];
    563       1.1    matt 	}
    564       1.1    matt 
    565       1.1    matt 	/*
    566       1.1    matt 	 * the node we are removing must have two children.
    567       1.1    matt 	 */
    568       1.1    matt 	KASSERT(RB_TWOCHILDREN_P(self));
    569       1.1    matt 	/*
    570       1.1    matt 	 * If standin has a child, it must be red.
    571       1.1    matt 	 */
    572       1.1    matt 	KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
    573       1.1    matt 
    574       1.1    matt 	/*
    575       1.1    matt 	 * Verify things are sane.
    576       1.1    matt 	 */
    577       1.1    matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    578       1.1    matt 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
    579       1.1    matt 
    580       1.1    matt 	if (__predict_false(RB_RED_P(standin_son))) {
    581       1.1    matt 		/*
    582       1.1    matt 		 * We know we have a red child so if we flip it to black
    583       1.1    matt 		 * we don't have to rebalance.
    584       1.1    matt 		 */
    585       1.1    matt 		KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
    586       1.1    matt 		RB_MARK_BLACK(standin_son);
    587       1.1    matt 		rebalance = false;
    588       1.1    matt 
    589       1.1    matt 		if (standin_father == self) {
    590       1.1    matt 			KASSERT(RB_POSITION(standin_son) == standin_which);
    591       1.1    matt 		} else {
    592       1.1    matt 			KASSERT(RB_POSITION(standin_son) == standin_other);
    593       1.1    matt 			/*
    594       1.1    matt 			 * Change the son's parentage to point to his grandpa.
    595       1.1    matt 			 */
    596       1.1    matt 			RB_SET_FATHER(standin_son, standin_father);
    597       1.1    matt 			RB_SET_POSITION(standin_son, standin_which);
    598       1.1    matt 		}
    599       1.1    matt 	}
    600       1.1    matt 
    601       1.1    matt 	if (standin_father == self) {
    602       1.1    matt 		/*
    603       1.1    matt 		 * If we are about to delete the standin's father, then when
    604       1.1    matt 		 * we call rebalance, we need to use ourselves as our father.
    605       1.1    matt 		 * Otherwise remember our original father.  Also, sincef we are
    606       1.1    matt 		 * our standin's father we only need to reparent the standin's
    607       1.1    matt 		 * brother.
    608       1.1    matt 		 *
    609       1.1    matt 		 * |    R      -->     S    |
    610       1.1    matt 		 * |  Q   S    -->   Q   T  |
    611       1.1    matt 		 * |        t  -->          |
    612       1.1    matt 		 */
    613       1.1    matt 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
    614       1.1    matt 		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
    615       1.1    matt 		KASSERT(self->rb_nodes[standin_which] == standin);
    616       1.1    matt 		/*
    617       1.1    matt 		 * Have our son/standin adopt his brother as his new son.
    618       1.1    matt 		 */
    619       1.1    matt 		standin_father = standin;
    620       1.1    matt 	} else {
    621       1.1    matt 		/*
    622       1.1    matt 		 * |    R          -->    S       .  |
    623       1.1    matt 		 * |   / \  |   T  -->   / \  |  /   |
    624       1.1    matt 		 * |  ..... | S    -->  ..... | T    |
    625       1.1    matt 		 *
    626       1.1    matt 		 * Sever standin's connection to his father.
    627       1.1    matt 		 */
    628       1.1    matt 		standin_father->rb_nodes[standin_which] = standin_son;
    629       1.1    matt 		/*
    630       1.1    matt 		 * Adopt the far son.
    631       1.1    matt 		 */
    632       1.1    matt 		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
    633       1.1    matt 		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
    634       1.1    matt 		KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
    635       1.1    matt 		/*
    636       1.1    matt 		 * Use standin_other because we need to preserve standin_which
    637       1.1    matt 		 * for the removal_rebalance.
    638       1.1    matt 		 */
    639       1.1    matt 		standin_other = standin_which;
    640       1.1    matt 	}
    641       1.1    matt 
    642       1.1    matt 	/*
    643       1.1    matt 	 * Move the only remaining son to our standin.  If our standin is our
    644       1.1    matt 	 * son, this will be the only son needed to be moved.
    645       1.1    matt 	 */
    646       1.1    matt 	KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
    647       1.1    matt 	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
    648       1.1    matt 	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
    649       1.1    matt 
    650       1.1    matt 	/*
    651       1.1    matt 	 * Now copy the result of self to standin and then replace
    652       1.1    matt 	 * self with standin in the tree.
    653       1.1    matt 	 */
    654       1.1    matt 	RB_COPY_PROPERTIES(standin, self);
    655       1.1    matt 	RB_SET_FATHER(standin, RB_FATHER(self));
    656       1.1    matt 	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
    657       1.1    matt 
    658       1.1    matt 	/*
    659       1.1    matt 	 * Remove ourselves from the node list, decrement the count,
    660       1.1    matt 	 * and update min/max.
    661       1.1    matt 	 */
    662       1.1    matt 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    663       1.1    matt 	RBSTAT_DEC(rbt->rbt_count);
    664       1.1    matt #ifndef RBSMALL
    665       1.1    matt 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
    666       1.1    matt 		rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
    667       1.1    matt 	RB_SET_FATHER(self, NULL);
    668       1.1    matt #endif
    669       1.1    matt 
    670       1.1    matt 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
    671       1.1    matt 	KASSERT(RB_FATHER_SENTINEL_P(standin)
    672       1.1    matt 		|| rb_tree_check_node(rbt, standin_father, NULL, false));
    673       1.1    matt 	KASSERT(RB_LEFT_SENTINEL_P(standin)
    674       1.1    matt 		|| rb_tree_check_node(rbt, standin->rb_left, NULL, false));
    675       1.1    matt 	KASSERT(RB_RIGHT_SENTINEL_P(standin)
    676       1.1    matt 		|| rb_tree_check_node(rbt, standin->rb_right, NULL, false));
    677       1.1    matt 
    678       1.1    matt 	if (!rebalance)
    679       1.1    matt 		return;
    680       1.1    matt 
    681       1.1    matt 	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
    682       1.1    matt 	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
    683       1.1    matt }
    684       1.1    matt 
    685       1.1    matt /*
    686       1.1    matt  * We could do this by doing
    687       1.1    matt  *	rb_tree_node_swap(rbt, self, which);
    688       1.1    matt  *	rb_tree_prune_node(rbt, self, false);
    689       1.1    matt  *
    690       1.1    matt  * But it's more efficient to just evalate and recolor the child.
    691       1.1    matt  */
    692       1.1    matt static void
    693       1.1    matt rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
    694       1.1    matt 	unsigned int which)
    695       1.1    matt {
    696       1.1    matt 	struct rb_node *father = RB_FATHER(self);
    697       1.1    matt 	struct rb_node *son = self->rb_nodes[which];
    698       1.5   joerg #ifndef RBSMALL
    699       1.1    matt 	const bool was_root = RB_ROOT_P(rbt, self);
    700       1.5   joerg #endif
    701       1.1    matt 
    702       1.1    matt 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    703       1.1    matt 	KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
    704       1.1    matt 	KASSERT(!RB_TWOCHILDREN_P(son));
    705       1.1    matt 	KASSERT(RB_CHILDLESS_P(son));
    706       1.1    matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    707       1.1    matt 	KASSERT(rb_tree_check_node(rbt, son, NULL, false));
    708       1.1    matt 
    709       1.1    matt 	/*
    710       1.1    matt 	 * Remove ourselves from the tree and give our former child our
    711       1.1    matt 	 * properties (position, color, root).
    712       1.1    matt 	 */
    713       1.1    matt 	RB_COPY_PROPERTIES(son, self);
    714       1.1    matt 	father->rb_nodes[RB_POSITION(son)] = son;
    715       1.1    matt 	RB_SET_FATHER(son, father);
    716       1.1    matt 
    717       1.1    matt 	/*
    718       1.1    matt 	 * Remove ourselves from the node list, decrement the count,
    719       1.1    matt 	 * and update minmax.
    720       1.1    matt 	 */
    721       1.1    matt 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    722       1.1    matt 	RBSTAT_DEC(rbt->rbt_count);
    723       1.1    matt #ifndef RBSMALL
    724       1.1    matt 	if (__predict_false(was_root)) {
    725       1.1    matt 		KASSERT(rbt->rbt_minmax[which] == son);
    726       1.1    matt 		rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
    727       1.1    matt 	} else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
    728       1.1    matt 		rbt->rbt_minmax[RB_POSITION(self)] = son;
    729       1.1    matt 	}
    730       1.1    matt 	RB_SET_FATHER(self, NULL);
    731       1.1    matt #endif
    732       1.1    matt 
    733       1.1    matt 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
    734       1.1    matt 	KASSERT(rb_tree_check_node(rbt, son, NULL, true));
    735       1.1    matt }
    736       1.7   rmind 
    737       1.1    matt void
    738       1.7   rmind rb_tree_remove_node(struct rb_tree *rbt, void *object)
    739       1.1    matt {
    740       1.7   rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    741       1.7   rmind 	struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
    742       1.1    matt 	unsigned int which;
    743       1.1    matt 
    744       1.1    matt 	KASSERT(!RB_SENTINEL_P(self));
    745       1.1    matt 	RBSTAT_INC(rbt->rbt_removals);
    746       1.1    matt 
    747       1.1    matt 	/*
    748       1.1    matt 	 * In the following diagrams, we (the node to be removed) are S.  Red
    749       1.1    matt 	 * nodes are lowercase.  T could be either red or black.
    750       1.1    matt 	 *
    751       1.1    matt 	 * Remember the major axiom of the red-black tree: the number of
    752       1.1    matt 	 * black nodes from the root to each leaf is constant across all
    753       1.1    matt 	 * leaves, only the number of red nodes varies.
    754       1.1    matt 	 *
    755       1.1    matt 	 * Thus removing a red leaf doesn't require any other changes to a
    756       1.1    matt 	 * red-black tree.  So if we must remove a node, attempt to rearrange
    757       1.1    matt 	 * the tree so we can remove a red node.
    758       1.1    matt 	 *
    759       1.1    matt 	 * The simpliest case is a childless red node or a childless root node:
    760       1.1    matt 	 *
    761       1.1    matt 	 * |    T  -->    T  |    or    |  R  -->  *  |
    762       1.1    matt 	 * |  s    -->  *    |
    763       1.1    matt 	 */
    764       1.1    matt 	if (RB_CHILDLESS_P(self)) {
    765       1.1    matt 		const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
    766       1.1    matt 		rb_tree_prune_node(rbt, self, rebalance);
    767       1.1    matt 		return;
    768       1.1    matt 	}
    769       1.1    matt 	KASSERT(!RB_CHILDLESS_P(self));
    770       1.1    matt 	if (!RB_TWOCHILDREN_P(self)) {
    771       1.1    matt 		/*
    772       1.1    matt 		 * The next simpliest case is the node we are deleting is
    773       1.1    matt 		 * black and has one red child.
    774       1.1    matt 		 *
    775       1.1    matt 		 * |      T  -->      T  -->      T  |
    776       1.1    matt 		 * |    S    -->  R      -->  R      |
    777       1.1    matt 		 * |  r      -->    s    -->    *    |
    778       1.1    matt 		 */
    779       1.1    matt 		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
    780       1.1    matt 		KASSERT(RB_BLACK_P(self));
    781       1.1    matt 		KASSERT(RB_RED_P(self->rb_nodes[which]));
    782       1.1    matt 		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
    783       1.1    matt 		rb_tree_prune_blackred_branch(rbt, self, which);
    784       1.1    matt 		return;
    785       1.1    matt 	}
    786       1.1    matt 	KASSERT(RB_TWOCHILDREN_P(self));
    787       1.1    matt 
    788       1.1    matt 	/*
    789       1.1    matt 	 * We invert these because we prefer to remove from the inside of
    790       1.1    matt 	 * the tree.
    791       1.1    matt 	 */
    792       1.1    matt 	which = RB_POSITION(self) ^ RB_DIR_OTHER;
    793       1.1    matt 
    794       1.1    matt 	/*
    795       1.1    matt 	 * Let's find the node closes to us opposite of our parent
    796       1.1    matt 	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
    797       1.1    matt 	 */
    798       1.7   rmind 	standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
    799       1.1    matt 	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
    800       1.1    matt }
    801       1.1    matt 
    802       1.1    matt static void
    803       1.1    matt rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
    804       1.1    matt 	unsigned int which)
    805       1.1    matt {
    806       1.1    matt 	KASSERT(!RB_SENTINEL_P(parent));
    807       1.1    matt 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
    808       1.1    matt 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    809       1.1    matt 	RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
    810       1.1    matt 
    811       1.1    matt 	while (RB_BLACK_P(parent->rb_nodes[which])) {
    812       1.1    matt 		unsigned int other = which ^ RB_DIR_OTHER;
    813       1.1    matt 		struct rb_node *brother = parent->rb_nodes[other];
    814       1.1    matt 
    815       1.1    matt 		RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
    816       1.1    matt 
    817       1.1    matt 		KASSERT(!RB_SENTINEL_P(brother));
    818       1.1    matt 		/*
    819       1.1    matt 		 * For cases 1, 2a, and 2b, our brother's children must
    820       1.1    matt 		 * be black and our father must be black
    821       1.1    matt 		 */
    822       1.1    matt 		if (RB_BLACK_P(parent)
    823       1.1    matt 		    && RB_BLACK_P(brother->rb_left)
    824       1.1    matt 		    && RB_BLACK_P(brother->rb_right)) {
    825       1.1    matt 			if (RB_RED_P(brother)) {
    826       1.1    matt 				/*
    827       1.1    matt 				 * Case 1: Our brother is red, swap its
    828       1.1    matt 				 * position (and colors) with our parent.
    829       1.1    matt 				 * This should now be case 2b (unless C or E
    830       1.1    matt 				 * has a red child which is case 3; thus no
    831       1.1    matt 				 * explicit branch to case 2b).
    832       1.1    matt 				 *
    833       1.1    matt 				 *    B         ->        D
    834       1.1    matt 				 *  A     d     ->    b     E
    835       1.1    matt 				 *      C   E   ->  A   C
    836       1.1    matt 				 */
    837       1.1    matt 				KASSERT(RB_BLACK_P(parent));
    838       1.1    matt 				rb_tree_reparent_nodes(rbt, parent, other);
    839       1.1    matt 				brother = parent->rb_nodes[other];
    840       1.1    matt 				KASSERT(!RB_SENTINEL_P(brother));
    841       1.1    matt 				KASSERT(RB_RED_P(parent));
    842       1.1    matt 				KASSERT(RB_BLACK_P(brother));
    843       1.1    matt 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
    844       1.1    matt 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
    845       1.1    matt 			} else {
    846       1.1    matt 				/*
    847       1.1    matt 				 * Both our parent and brother are black.
    848       1.1    matt 				 * Change our brother to red, advance up rank
    849       1.1    matt 				 * and go through the loop again.
    850       1.1    matt 				 *
    851       1.1    matt 				 *    B         ->   *B
    852       1.1    matt 				 * *A     D     ->  A     d
    853       1.1    matt 				 *      C   E   ->      C   E
    854       1.1    matt 				 */
    855       1.1    matt 				RB_MARK_RED(brother);
    856       1.1    matt 				KASSERT(RB_BLACK_P(brother->rb_left));
    857       1.1    matt 				KASSERT(RB_BLACK_P(brother->rb_right));
    858       1.1    matt 				if (RB_ROOT_P(rbt, parent))
    859       1.1    matt 					return;	/* root == parent == black */
    860       1.1    matt 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
    861       1.1    matt 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
    862       1.1    matt 				which = RB_POSITION(parent);
    863       1.1    matt 				parent = RB_FATHER(parent);
    864       1.1    matt 				continue;
    865       1.1    matt 			}
    866       1.1    matt 		}
    867       1.1    matt 		/*
    868       1.1    matt 		 * Avoid an else here so that case 2a above can hit either
    869       1.1    matt 		 * case 2b, 3, or 4.
    870       1.1    matt 		 */
    871       1.1    matt 		if (RB_RED_P(parent)
    872       1.1    matt 		    && RB_BLACK_P(brother)
    873       1.1    matt 		    && RB_BLACK_P(brother->rb_left)
    874       1.1    matt 		    && RB_BLACK_P(brother->rb_right)) {
    875       1.1    matt 			KASSERT(RB_RED_P(parent));
    876       1.1    matt 			KASSERT(RB_BLACK_P(brother));
    877       1.1    matt 			KASSERT(RB_BLACK_P(brother->rb_left));
    878       1.1    matt 			KASSERT(RB_BLACK_P(brother->rb_right));
    879       1.1    matt 			/*
    880       1.1    matt 			 * We are black, our father is red, our brother and
    881       1.1    matt 			 * both nephews are black.  Simply invert/exchange the
    882       1.1    matt 			 * colors of our father and brother (to black and red
    883       1.1    matt 			 * respectively).
    884       1.1    matt 			 *
    885       1.1    matt 			 *	|    f        -->    F        |
    886       1.1    matt 			 *	|  *     B    -->  *     b    |
    887       1.1    matt 			 *	|      N   N  -->      N   N  |
    888       1.1    matt 			 */
    889       1.1    matt 			RB_MARK_BLACK(parent);
    890       1.1    matt 			RB_MARK_RED(brother);
    891       1.1    matt 			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
    892       1.1    matt 			break;		/* We're done! */
    893       1.1    matt 		} else {
    894       1.1    matt 			/*
    895       1.1    matt 			 * Our brother must be black and have at least one
    896       1.1    matt 			 * red child (it may have two).
    897       1.1    matt 			 */
    898       1.1    matt 			KASSERT(RB_BLACK_P(brother));
    899       1.1    matt 			KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
    900       1.1    matt 				RB_RED_P(brother->rb_nodes[other]));
    901       1.1    matt 			if (RB_BLACK_P(brother->rb_nodes[other])) {
    902       1.1    matt 				/*
    903       1.1    matt 				 * Case 3: our brother is black, our near
    904       1.1    matt 				 * nephew is red, and our far nephew is black.
    905       1.1    matt 				 * Swap our brother with our near nephew.
    906       1.1    matt 				 * This result in a tree that matches case 4.
    907       1.1    matt 				 * (Our father could be red or black).
    908       1.1    matt 				 *
    909       1.1    matt 				 *	|    F      -->    F      |
    910       1.1    matt 				 *	|  x     B  -->  x   B    |
    911       1.1    matt 				 *	|      n    -->        n  |
    912       1.1    matt 				 */
    913       1.1    matt 				KASSERT(RB_RED_P(brother->rb_nodes[which]));
    914       1.1    matt 				rb_tree_reparent_nodes(rbt, brother, which);
    915       1.1    matt 				KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
    916       1.1    matt 				brother = parent->rb_nodes[other];
    917       1.1    matt 				KASSERT(RB_RED_P(brother->rb_nodes[other]));
    918       1.1    matt 			}
    919       1.1    matt 			/*
    920       1.1    matt 			 * Case 4: our brother is black and our far nephew
    921       1.1    matt 			 * is red.  Swap our father and brother locations and
    922       1.1    matt 			 * change our far nephew to black.  (these can be
    923       1.1    matt 			 * done in either order so we change the color first).
    924       1.1    matt 			 * The result is a valid red-black tree and is a
    925       1.1    matt 			 * terminal case.  (again we don't care about the
    926       1.1    matt 			 * father's color)
    927       1.1    matt 			 *
    928       1.1    matt 			 * If the father is red, we will get a red-black-black
    929       1.1    matt 			 * tree:
    930       1.1    matt 			 *	|  f      ->  f      -->    b    |
    931       1.1    matt 			 *	|    B    ->    B    -->  F   N  |
    932       1.1    matt 			 *	|      n  ->      N  -->         |
    933       1.1    matt 			 *
    934       1.1    matt 			 * If the father is black, we will get an all black
    935       1.1    matt 			 * tree:
    936       1.1    matt 			 *	|  F      ->  F      -->    B    |
    937       1.1    matt 			 *	|    B    ->    B    -->  F   N  |
    938       1.1    matt 			 *	|      n  ->      N  -->         |
    939       1.1    matt 			 *
    940       1.1    matt 			 * If we had two red nephews, then after the swap,
    941       1.1    matt 			 * our former father would have a red grandson.
    942       1.1    matt 			 */
    943       1.1    matt 			KASSERT(RB_BLACK_P(brother));
    944       1.1    matt 			KASSERT(RB_RED_P(brother->rb_nodes[other]));
    945       1.1    matt 			RB_MARK_BLACK(brother->rb_nodes[other]);
    946       1.1    matt 			rb_tree_reparent_nodes(rbt, parent, other);
    947       1.1    matt 			break;		/* We're done! */
    948       1.1    matt 		}
    949       1.1    matt 	}
    950       1.1    matt 	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
    951       1.1    matt }
    952       1.1    matt 
    953       1.7   rmind void *
    954       1.7   rmind rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
    955       1.1    matt {
    956       1.7   rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    957       1.1    matt 	const unsigned int other = direction ^ RB_DIR_OTHER;
    958       1.7   rmind 	struct rb_node *self;
    959       1.7   rmind 
    960       1.1    matt 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
    961       1.1    matt 
    962       1.7   rmind 	if (object == NULL) {
    963       1.1    matt #ifndef RBSMALL
    964       1.1    matt 		if (RB_SENTINEL_P(rbt->rbt_root))
    965       1.1    matt 			return NULL;
    966       1.7   rmind 		return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
    967       1.1    matt #else
    968       1.1    matt 		self = rbt->rbt_root;
    969       1.1    matt 		if (RB_SENTINEL_P(self))
    970       1.1    matt 			return NULL;
    971       1.6   joerg 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
    972       1.6   joerg 			self = self->rb_nodes[direction];
    973       1.7   rmind 		return RB_NODETOITEM(rbto, self);
    974       1.1    matt #endif /* !RBSMALL */
    975       1.1    matt 	}
    976       1.7   rmind 	self = RB_ITEMTONODE(rbto, object);
    977       1.1    matt 	KASSERT(!RB_SENTINEL_P(self));
    978       1.1    matt 	/*
    979       1.1    matt 	 * We can't go any further in this direction.  We proceed up in the
    980       1.1    matt 	 * opposite direction until our parent is in direction we want to go.
    981       1.1    matt 	 */
    982       1.1    matt 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
    983       1.1    matt 		while (!RB_ROOT_P(rbt, self)) {
    984       1.1    matt 			if (other == RB_POSITION(self))
    985       1.7   rmind 				return RB_NODETOITEM(rbto, RB_FATHER(self));
    986       1.1    matt 			self = RB_FATHER(self);
    987       1.1    matt 		}
    988       1.1    matt 		return NULL;
    989       1.1    matt 	}
    990       1.1    matt 
    991       1.1    matt 	/*
    992       1.1    matt 	 * Advance down one in current direction and go down as far as possible
    993       1.1    matt 	 * in the opposite direction.
    994       1.1    matt 	 */
    995       1.1    matt 	self = self->rb_nodes[direction];
    996       1.1    matt 	KASSERT(!RB_SENTINEL_P(self));
    997       1.1    matt 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
    998       1.1    matt 		self = self->rb_nodes[other];
    999       1.7   rmind 	return RB_NODETOITEM(rbto, self);
   1000       1.1    matt }
   1001       1.1    matt 
   1002       1.1    matt #ifdef RBDEBUG
   1003       1.1    matt static const struct rb_node *
   1004       1.1    matt rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
   1005       1.1    matt 	const unsigned int direction)
   1006       1.1    matt {
   1007       1.1    matt 	const unsigned int other = direction ^ RB_DIR_OTHER;
   1008       1.1    matt 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
   1009       1.1    matt 
   1010       1.1    matt 	if (self == NULL) {
   1011       1.1    matt #ifndef RBSMALL
   1012       1.1    matt 		if (RB_SENTINEL_P(rbt->rbt_root))
   1013       1.1    matt 			return NULL;
   1014       1.1    matt 		return rbt->rbt_minmax[direction];
   1015       1.1    matt #else
   1016       1.1    matt 		self = rbt->rbt_root;
   1017       1.1    matt 		if (RB_SENTINEL_P(self))
   1018       1.1    matt 			return NULL;
   1019       1.6   joerg 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
   1020       1.6   joerg 			self = self->rb_nodes[direction];
   1021       1.1    matt 		return self;
   1022       1.1    matt #endif /* !RBSMALL */
   1023       1.1    matt 	}
   1024       1.1    matt 	KASSERT(!RB_SENTINEL_P(self));
   1025       1.1    matt 	/*
   1026       1.1    matt 	 * We can't go any further in this direction.  We proceed up in the
   1027       1.1    matt 	 * opposite direction until our parent is in direction we want to go.
   1028       1.1    matt 	 */
   1029       1.1    matt 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
   1030       1.1    matt 		while (!RB_ROOT_P(rbt, self)) {
   1031       1.1    matt 			if (other == RB_POSITION(self))
   1032       1.1    matt 				return RB_FATHER(self);
   1033       1.1    matt 			self = RB_FATHER(self);
   1034       1.1    matt 		}
   1035       1.1    matt 		return NULL;
   1036       1.1    matt 	}
   1037       1.1    matt 
   1038       1.1    matt 	/*
   1039       1.1    matt 	 * Advance down one in current direction and go down as far as possible
   1040       1.1    matt 	 * in the opposite direction.
   1041       1.1    matt 	 */
   1042       1.1    matt 	self = self->rb_nodes[direction];
   1043       1.1    matt 	KASSERT(!RB_SENTINEL_P(self));
   1044       1.1    matt 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
   1045       1.1    matt 		self = self->rb_nodes[other];
   1046       1.1    matt 	return self;
   1047       1.1    matt }
   1048       1.1    matt 
   1049       1.1    matt static unsigned int
   1050       1.1    matt rb_tree_count_black(const struct rb_node *self)
   1051       1.1    matt {
   1052       1.1    matt 	unsigned int left, right;
   1053       1.1    matt 
   1054       1.1    matt 	if (RB_SENTINEL_P(self))
   1055       1.1    matt 		return 0;
   1056       1.1    matt 
   1057       1.1    matt 	left = rb_tree_count_black(self->rb_left);
   1058       1.1    matt 	right = rb_tree_count_black(self->rb_right);
   1059       1.1    matt 
   1060       1.1    matt 	KASSERT(left == right);
   1061       1.1    matt 
   1062       1.1    matt 	return left + RB_BLACK_P(self);
   1063       1.1    matt }
   1064       1.1    matt 
   1065       1.1    matt static bool
   1066       1.1    matt rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
   1067       1.1    matt 	const struct rb_node *prev, bool red_check)
   1068       1.1    matt {
   1069       1.7   rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
   1070       1.7   rmind 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
   1071       1.1    matt 
   1072       1.1    matt 	KASSERT(!RB_SENTINEL_P(self));
   1073       1.7   rmind 	KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
   1074       1.7   rmind 	    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
   1075       1.1    matt 
   1076       1.1    matt 	/*
   1077       1.1    matt 	 * Verify our relationship to our parent.
   1078       1.1    matt 	 */
   1079       1.1    matt 	if (RB_ROOT_P(rbt, self)) {
   1080       1.1    matt 		KASSERT(self == rbt->rbt_root);
   1081       1.1    matt 		KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
   1082       1.1    matt 		KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
   1083       1.1    matt 		KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
   1084       1.1    matt 	} else {
   1085       1.7   rmind 		int diff = (*compare_nodes)(rbto->rbto_context,
   1086       1.7   rmind 		    RB_NODETOITEM(rbto, self),
   1087       1.7   rmind 		    RB_NODETOITEM(rbto, RB_FATHER(self)));
   1088       1.7   rmind 
   1089       1.1    matt 		KASSERT(self != rbt->rbt_root);
   1090       1.1    matt 		KASSERT(!RB_FATHER_SENTINEL_P(self));
   1091       1.1    matt 		if (RB_POSITION(self) == RB_DIR_LEFT) {
   1092       1.7   rmind 			KASSERT(diff < 0);
   1093       1.1    matt 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
   1094       1.1    matt 		} else {
   1095       1.7   rmind 			KASSERT(diff > 0);
   1096       1.1    matt 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
   1097       1.1    matt 		}
   1098       1.1    matt 	}
   1099       1.1    matt 
   1100       1.1    matt 	/*
   1101       1.1    matt 	 * Verify our position in the linked list against the tree itself.
   1102       1.1    matt 	 */
   1103       1.1    matt 	{
   1104       1.1    matt 		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
   1105       1.1    matt 		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
   1106       1.1    matt 		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
   1107       1.1    matt 		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
   1108       1.1    matt #ifndef RBSMALL
   1109       1.1    matt 		KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
   1110       1.1    matt 		KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
   1111       1.1    matt #endif
   1112       1.1    matt 	}
   1113       1.1    matt 
   1114       1.1    matt 	/*
   1115       1.1    matt 	 * The root must be black.
   1116       1.1    matt 	 * There can never be two adjacent red nodes.
   1117       1.1    matt 	 */
   1118       1.1    matt 	if (red_check) {
   1119       1.1    matt 		KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
   1120       1.1    matt 		(void) rb_tree_count_black(self);
   1121       1.1    matt 		if (RB_RED_P(self)) {
   1122       1.1    matt 			const struct rb_node *brother;
   1123       1.1    matt 			KASSERT(!RB_ROOT_P(rbt, self));
   1124       1.1    matt 			brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
   1125       1.1    matt 			KASSERT(RB_BLACK_P(RB_FATHER(self)));
   1126       1.1    matt 			/*
   1127       1.1    matt 			 * I'm red and have no children, then I must either
   1128       1.1    matt 			 * have no brother or my brother also be red and
   1129       1.1    matt 			 * also have no children.  (black count == 0)
   1130       1.1    matt 			 */
   1131       1.1    matt 			KASSERT(!RB_CHILDLESS_P(self)
   1132       1.1    matt 				|| RB_SENTINEL_P(brother)
   1133       1.1    matt 				|| RB_RED_P(brother)
   1134       1.1    matt 				|| RB_CHILDLESS_P(brother));
   1135       1.1    matt 			/*
   1136       1.1    matt 			 * If I'm not childless, I must have two children
   1137       1.1    matt 			 * and they must be both be black.
   1138       1.1    matt 			 */
   1139       1.1    matt 			KASSERT(RB_CHILDLESS_P(self)
   1140       1.1    matt 				|| (RB_TWOCHILDREN_P(self)
   1141       1.1    matt 				    && RB_BLACK_P(self->rb_left)
   1142       1.1    matt 				    && RB_BLACK_P(self->rb_right)));
   1143       1.1    matt 			/*
   1144       1.1    matt 			 * If I'm not childless, thus I have black children,
   1145       1.1    matt 			 * then my brother must either be black or have two
   1146       1.1    matt 			 * black children.
   1147       1.1    matt 			 */
   1148       1.1    matt 			KASSERT(RB_CHILDLESS_P(self)
   1149       1.1    matt 				|| RB_BLACK_P(brother)
   1150       1.1    matt 				|| (RB_TWOCHILDREN_P(brother)
   1151       1.1    matt 				    && RB_BLACK_P(brother->rb_left)
   1152       1.1    matt 				    && RB_BLACK_P(brother->rb_right)));
   1153       1.1    matt 		} else {
   1154       1.1    matt 			/*
   1155       1.1    matt 			 * If I'm black and have one child, that child must
   1156       1.1    matt 			 * be red and childless.
   1157       1.1    matt 			 */
   1158       1.1    matt 			KASSERT(RB_CHILDLESS_P(self)
   1159       1.1    matt 				|| RB_TWOCHILDREN_P(self)
   1160       1.1    matt 				|| (!RB_LEFT_SENTINEL_P(self)
   1161       1.1    matt 				    && RB_RIGHT_SENTINEL_P(self)
   1162       1.1    matt 				    && RB_RED_P(self->rb_left)
   1163       1.1    matt 				    && RB_CHILDLESS_P(self->rb_left))
   1164       1.1    matt 				|| (!RB_RIGHT_SENTINEL_P(self)
   1165       1.1    matt 				    && RB_LEFT_SENTINEL_P(self)
   1166       1.1    matt 				    && RB_RED_P(self->rb_right)
   1167       1.1    matt 				    && RB_CHILDLESS_P(self->rb_right)));
   1168       1.1    matt 
   1169       1.1    matt 			/*
   1170       1.1    matt 			 * If I'm a childless black node and my parent is
   1171       1.1    matt 			 * black, my 2nd closet relative away from my parent
   1172       1.1    matt 			 * is either red or has a red parent or red children.
   1173       1.1    matt 			 */
   1174       1.1    matt 			if (!RB_ROOT_P(rbt, self)
   1175       1.1    matt 			    && RB_CHILDLESS_P(self)
   1176       1.1    matt 			    && RB_BLACK_P(RB_FATHER(self))) {
   1177       1.1    matt 				const unsigned int which = RB_POSITION(self);
   1178       1.1    matt 				const unsigned int other = which ^ RB_DIR_OTHER;
   1179       1.1    matt 				const struct rb_node *relative0, *relative;
   1180       1.1    matt 
   1181       1.1    matt 				relative0 = rb_tree_iterate_const(rbt,
   1182       1.1    matt 				    self, other);
   1183       1.1    matt 				KASSERT(relative0 != NULL);
   1184       1.1    matt 				relative = rb_tree_iterate_const(rbt,
   1185       1.1    matt 				    relative0, other);
   1186       1.1    matt 				KASSERT(relative != NULL);
   1187       1.1    matt 				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
   1188       1.1    matt #if 0
   1189       1.1    matt 				KASSERT(RB_RED_P(relative)
   1190       1.1    matt 					|| RB_RED_P(relative->rb_left)
   1191       1.1    matt 					|| RB_RED_P(relative->rb_right)
   1192       1.1    matt 					|| RB_RED_P(RB_FATHER(relative)));
   1193       1.1    matt #endif
   1194       1.1    matt 			}
   1195       1.1    matt 		}
   1196       1.1    matt 		/*
   1197       1.1    matt 		 * A grandparent's children must be real nodes and not
   1198       1.1    matt 		 * sentinels.  First check out grandparent.
   1199       1.1    matt 		 */
   1200       1.1    matt 		KASSERT(RB_ROOT_P(rbt, self)
   1201       1.1    matt 			|| RB_ROOT_P(rbt, RB_FATHER(self))
   1202       1.1    matt 			|| RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
   1203       1.1    matt 		/*
   1204       1.1    matt 		 * If we are have grandchildren on our left, then
   1205       1.1    matt 		 * we must have a child on our right.
   1206       1.1    matt 		 */
   1207       1.1    matt 		KASSERT(RB_LEFT_SENTINEL_P(self)
   1208       1.1    matt 			|| RB_CHILDLESS_P(self->rb_left)
   1209       1.1    matt 			|| !RB_RIGHT_SENTINEL_P(self));
   1210       1.1    matt 		/*
   1211       1.1    matt 		 * If we are have grandchildren on our right, then
   1212       1.1    matt 		 * we must have a child on our left.
   1213       1.1    matt 		 */
   1214       1.1    matt 		KASSERT(RB_RIGHT_SENTINEL_P(self)
   1215       1.1    matt 			|| RB_CHILDLESS_P(self->rb_right)
   1216       1.1    matt 			|| !RB_LEFT_SENTINEL_P(self));
   1217       1.1    matt 
   1218       1.1    matt 		/*
   1219       1.1    matt 		 * If we have a child on the left and it doesn't have two
   1220       1.1    matt 		 * children make sure we don't have great-great-grandchildren on
   1221       1.1    matt 		 * the right.
   1222       1.1    matt 		 */
   1223       1.1    matt 		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
   1224       1.1    matt 			|| RB_CHILDLESS_P(self->rb_right)
   1225       1.1    matt 			|| RB_CHILDLESS_P(self->rb_right->rb_left)
   1226       1.1    matt 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
   1227       1.1    matt 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
   1228       1.1    matt 			|| RB_CHILDLESS_P(self->rb_right->rb_right)
   1229       1.1    matt 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
   1230       1.1    matt 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
   1231       1.1    matt 
   1232       1.1    matt 		/*
   1233       1.1    matt 		 * If we have a child on the right and it doesn't have two
   1234       1.1    matt 		 * children make sure we don't have great-great-grandchildren on
   1235       1.1    matt 		 * the left.
   1236       1.1    matt 		 */
   1237       1.1    matt 		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
   1238       1.1    matt 			|| RB_CHILDLESS_P(self->rb_left)
   1239       1.1    matt 			|| RB_CHILDLESS_P(self->rb_left->rb_left)
   1240       1.1    matt 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
   1241       1.1    matt 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
   1242       1.1    matt 			|| RB_CHILDLESS_P(self->rb_left->rb_right)
   1243       1.1    matt 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
   1244       1.1    matt 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
   1245       1.1    matt 
   1246       1.1    matt 		/*
   1247       1.1    matt 		 * If we are fully interior node, then our predecessors and
   1248       1.1    matt 		 * successors must have no children in our direction.
   1249       1.1    matt 		 */
   1250       1.1    matt 		if (RB_TWOCHILDREN_P(self)) {
   1251       1.1    matt 			const struct rb_node *prev0;
   1252       1.1    matt 			const struct rb_node *next0;
   1253       1.1    matt 
   1254       1.1    matt 			prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
   1255       1.1    matt 			KASSERT(prev0 != NULL);
   1256       1.1    matt 			KASSERT(RB_RIGHT_SENTINEL_P(prev0));
   1257       1.1    matt 
   1258       1.1    matt 			next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
   1259       1.1    matt 			KASSERT(next0 != NULL);
   1260       1.1    matt 			KASSERT(RB_LEFT_SENTINEL_P(next0));
   1261       1.1    matt 		}
   1262       1.1    matt 	}
   1263       1.1    matt 
   1264       1.1    matt 	return true;
   1265       1.1    matt }
   1266       1.1    matt 
   1267       1.1    matt void
   1268       1.1    matt rb_tree_check(const struct rb_tree *rbt, bool red_check)
   1269       1.1    matt {
   1270       1.1    matt 	const struct rb_node *self;
   1271       1.1    matt 	const struct rb_node *prev;
   1272       1.1    matt #ifdef RBSTATS
   1273       1.1    matt 	unsigned int count = 0;
   1274       1.1    matt #endif
   1275       1.1    matt 
   1276       1.1    matt 	KASSERT(rbt->rbt_root != NULL);
   1277       1.1    matt 	KASSERT(RB_LEFT_P(rbt->rbt_root));
   1278       1.1    matt 
   1279       1.1    matt #if defined(RBSTATS) && !defined(RBSMALL)
   1280       1.1    matt 	KASSERT(rbt->rbt_count > 1
   1281       1.1    matt 	    || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
   1282       1.1    matt #endif
   1283       1.1    matt 
   1284       1.1    matt 	prev = NULL;
   1285       1.1    matt 	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
   1286       1.1    matt 		rb_tree_check_node(rbt, self, prev, false);
   1287       1.1    matt #ifdef RBSTATS
   1288       1.1    matt 		count++;
   1289       1.1    matt #endif
   1290       1.1    matt 	}
   1291       1.1    matt #ifdef RBSTATS
   1292       1.1    matt 	KASSERT(rbt->rbt_count == count);
   1293       1.1    matt #endif
   1294       1.1    matt 	if (red_check) {
   1295       1.1    matt 		KASSERT(RB_BLACK_P(rbt->rbt_root));
   1296       1.1    matt 		KASSERT(RB_SENTINEL_P(rbt->rbt_root)
   1297       1.1    matt 			|| rb_tree_count_black(rbt->rbt_root));
   1298       1.1    matt 
   1299       1.1    matt 		/*
   1300       1.1    matt 		 * The root must be black.
   1301       1.1    matt 		 * There can never be two adjacent red nodes.
   1302       1.1    matt 		 */
   1303       1.1    matt 		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
   1304       1.1    matt 			rb_tree_check_node(rbt, self, NULL, true);
   1305       1.1    matt 		}
   1306       1.1    matt 	}
   1307       1.1    matt }
   1308       1.1    matt #endif /* RBDEBUG */
   1309       1.1    matt 
   1310       1.1    matt #ifdef RBSTATS
   1311       1.1    matt static void
   1312       1.1    matt rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
   1313       1.1    matt 	size_t *depths, size_t depth)
   1314       1.1    matt {
   1315       1.1    matt 	if (RB_SENTINEL_P(self))
   1316       1.1    matt 		return;
   1317       1.1    matt 
   1318       1.1    matt 	if (RB_TWOCHILDREN_P(self)) {
   1319       1.1    matt 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
   1320       1.1    matt 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
   1321       1.1    matt 		return;
   1322       1.1    matt 	}
   1323       1.1    matt 	depths[depth]++;
   1324       1.1    matt 	if (!RB_LEFT_SENTINEL_P(self)) {
   1325       1.1    matt 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
   1326       1.1    matt 	}
   1327       1.1    matt 	if (!RB_RIGHT_SENTINEL_P(self)) {
   1328       1.1    matt 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
   1329       1.1    matt 	}
   1330       1.1    matt }
   1331       1.1    matt 
   1332       1.1    matt void
   1333       1.1    matt rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
   1334       1.1    matt {
   1335       1.1    matt 	rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
   1336       1.1    matt }
   1337       1.1    matt #endif /* RBSTATS */
   1338