Home | History | Annotate | Line # | Download | only in gen
rb.c revision 1.13
      1  1.13   matt /*	$NetBSD: rb.c,v 1.13 2014/08/22 17:19:48 matt Exp $	*/
      2   1.1   matt 
      3   1.1   matt /*-
      4   1.1   matt  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5   1.1   matt  * All rights reserved.
      6   1.1   matt  *
      7   1.1   matt  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1   matt  * by Matt Thomas <matt (at) 3am-software.com>.
      9   1.1   matt  *
     10   1.1   matt  * Redistribution and use in source and binary forms, with or without
     11   1.1   matt  * modification, are permitted provided that the following conditions
     12   1.1   matt  * are met:
     13   1.1   matt  * 1. Redistributions of source code must retain the above copyright
     14   1.1   matt  *    notice, this list of conditions and the following disclaimer.
     15   1.1   matt  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1   matt  *    notice, this list of conditions and the following disclaimer in the
     17   1.1   matt  *    documentation and/or other materials provided with the distribution.
     18   1.1   matt  *
     19   1.1   matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1   matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1   matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1   matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1   matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1   matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1   matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1   matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1   matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1   matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1   matt  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1   matt  */
     31   1.1   matt 
     32   1.1   matt #if !defined(_KERNEL) && !defined(_STANDALONE)
     33   1.1   matt #include <sys/types.h>
     34   1.1   matt #include <stddef.h>
     35   1.1   matt #include <assert.h>
     36   1.1   matt #include <stdbool.h>
     37   1.1   matt #ifdef RBDEBUG
     38   1.1   matt #define	KASSERT(s)	assert(s)
     39   1.1   matt #else
     40   1.3   matt #define KASSERT(s)	do { } while (/*CONSTCOND*/ 0)
     41   1.1   matt #endif
     42  1.13   matt __RCSID("$NetBSD: rb.c,v 1.13 2014/08/22 17:19:48 matt Exp $");
     43   1.1   matt #else
     44   1.1   matt #include <lib/libkern/libkern.h>
     45  1.13   matt __KERNEL_RCSID(0, "$NetBSD: rb.c,v 1.13 2014/08/22 17:19:48 matt Exp $");
     46   1.1   matt #endif
     47   1.1   matt 
     48   1.1   matt #ifdef _LIBC
     49   1.1   matt __weak_alias(rb_tree_init, _rb_tree_init)
     50   1.1   matt __weak_alias(rb_tree_find_node, _rb_tree_find_node)
     51   1.1   matt __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
     52   1.1   matt __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
     53   1.1   matt __weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
     54   1.1   matt __weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
     55   1.1   matt __weak_alias(rb_tree_iterate, _rb_tree_iterate)
     56   1.1   matt #ifdef RBDEBUG
     57   1.1   matt __weak_alias(rb_tree_check, _rb_tree_check)
     58   1.1   matt __weak_alias(rb_tree_depths, _rb_tree_depths)
     59   1.1   matt #endif
     60   1.1   matt 
     61   1.9   tron #include "namespace.h"
     62   1.1   matt #endif
     63   1.1   matt 
     64   1.1   matt #ifdef RBTEST
     65   1.8   matt #include "rbtree.h"
     66   1.1   matt #else
     67   1.8   matt #include <sys/rbtree.h>
     68   1.1   matt #endif
     69   1.1   matt 
     70   1.1   matt static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
     71   1.1   matt static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
     72   1.1   matt 	unsigned int);
     73   1.1   matt #ifdef RBDEBUG
     74   1.1   matt static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
     75   1.1   matt 	const struct rb_node *, const unsigned int);
     76   1.1   matt static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
     77   1.1   matt 	const struct rb_node *, bool);
     78   1.1   matt #else
     79   1.1   matt #define	rb_tree_check_node(a, b, c, d)	true
     80   1.1   matt #endif
     81   1.1   matt 
     82   1.7  rmind #define	RB_NODETOITEM(rbto, rbn)	\
     83   1.7  rmind     ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
     84   1.7  rmind #define	RB_ITEMTONODE(rbto, rbn)	\
     85   1.7  rmind     ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
     86   1.7  rmind 
     87   1.1   matt #define	RB_SENTINEL_NODE	NULL
     88   1.1   matt 
     89   1.1   matt void
     90   1.7  rmind rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
     91   1.1   matt {
     92   1.7  rmind 
     93   1.1   matt 	rbt->rbt_ops = ops;
     94  1.11    mrg 	rbt->rbt_root = RB_SENTINEL_NODE;
     95   1.1   matt 	RB_TAILQ_INIT(&rbt->rbt_nodes);
     96   1.1   matt #ifndef RBSMALL
     97   1.1   matt 	rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;	/* minimum node */
     98   1.1   matt 	rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;	/* maximum node */
     99   1.1   matt #endif
    100   1.1   matt #ifdef RBSTATS
    101   1.1   matt 	rbt->rbt_count = 0;
    102   1.1   matt 	rbt->rbt_insertions = 0;
    103   1.1   matt 	rbt->rbt_removals = 0;
    104   1.1   matt 	rbt->rbt_insertion_rebalance_calls = 0;
    105   1.1   matt 	rbt->rbt_insertion_rebalance_passes = 0;
    106   1.1   matt 	rbt->rbt_removal_rebalance_calls = 0;
    107   1.1   matt 	rbt->rbt_removal_rebalance_passes = 0;
    108   1.1   matt #endif
    109   1.1   matt }
    110   1.1   matt 
    111   1.7  rmind void *
    112   1.1   matt rb_tree_find_node(struct rb_tree *rbt, const void *key)
    113   1.1   matt {
    114   1.7  rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    115   1.7  rmind 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    116   1.1   matt 	struct rb_node *parent = rbt->rbt_root;
    117   1.1   matt 
    118   1.1   matt 	while (!RB_SENTINEL_P(parent)) {
    119   1.7  rmind 		void *pobj = RB_NODETOITEM(rbto, parent);
    120   1.7  rmind 		const signed int diff = (*compare_key)(rbto->rbto_context,
    121   1.7  rmind 		    pobj, key);
    122   1.1   matt 		if (diff == 0)
    123   1.7  rmind 			return pobj;
    124   1.7  rmind 		parent = parent->rb_nodes[diff < 0];
    125   1.1   matt 	}
    126   1.1   matt 
    127   1.1   matt 	return NULL;
    128   1.1   matt }
    129   1.7  rmind 
    130   1.7  rmind void *
    131   1.1   matt rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
    132   1.1   matt {
    133   1.7  rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    134   1.7  rmind 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    135   1.7  rmind 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
    136   1.1   matt 
    137   1.1   matt 	while (!RB_SENTINEL_P(parent)) {
    138   1.7  rmind 		void *pobj = RB_NODETOITEM(rbto, parent);
    139   1.7  rmind 		const signed int diff = (*compare_key)(rbto->rbto_context,
    140   1.7  rmind 		    pobj, key);
    141   1.1   matt 		if (diff == 0)
    142   1.7  rmind 			return pobj;
    143   1.7  rmind 		if (diff > 0)
    144   1.1   matt 			last = parent;
    145   1.7  rmind 		parent = parent->rb_nodes[diff < 0];
    146   1.1   matt 	}
    147   1.1   matt 
    148  1.13   matt 	return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
    149   1.1   matt }
    150   1.7  rmind 
    151   1.7  rmind void *
    152   1.1   matt rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
    153   1.1   matt {
    154   1.7  rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    155   1.7  rmind 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    156   1.7  rmind 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
    157   1.1   matt 
    158   1.1   matt 	while (!RB_SENTINEL_P(parent)) {
    159   1.7  rmind 		void *pobj = RB_NODETOITEM(rbto, parent);
    160   1.7  rmind 		const signed int diff = (*compare_key)(rbto->rbto_context,
    161   1.7  rmind 		    pobj, key);
    162   1.1   matt 		if (diff == 0)
    163   1.7  rmind 			return pobj;
    164   1.7  rmind 		if (diff < 0)
    165   1.1   matt 			last = parent;
    166   1.7  rmind 		parent = parent->rb_nodes[diff < 0];
    167   1.1   matt 	}
    168   1.1   matt 
    169  1.13   matt 	return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
    170   1.1   matt }
    171   1.7  rmind 
    172   1.7  rmind void *
    173   1.7  rmind rb_tree_insert_node(struct rb_tree *rbt, void *object)
    174   1.1   matt {
    175   1.7  rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    176   1.7  rmind 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
    177   1.7  rmind 	struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
    178   1.1   matt 	unsigned int position;
    179   1.1   matt 	bool rebalance;
    180   1.1   matt 
    181   1.1   matt 	RBSTAT_INC(rbt->rbt_insertions);
    182   1.1   matt 
    183   1.1   matt 	tmp = rbt->rbt_root;
    184   1.1   matt 	/*
    185   1.1   matt 	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
    186   1.1   matt 	 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
    187   1.1   matt 	 * avoid a lot of tests for root and know that even at root,
    188   1.1   matt 	 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
    189   1.1   matt 	 * update rbt->rbt_root.
    190   1.1   matt 	 */
    191   1.3   matt 	parent = (struct rb_node *)(void *)&rbt->rbt_root;
    192   1.1   matt 	position = RB_DIR_LEFT;
    193   1.1   matt 
    194   1.1   matt 	/*
    195   1.1   matt 	 * Find out where to place this new leaf.
    196   1.1   matt 	 */
    197   1.1   matt 	while (!RB_SENTINEL_P(tmp)) {
    198   1.7  rmind 		void *tobj = RB_NODETOITEM(rbto, tmp);
    199   1.7  rmind 		const signed int diff = (*compare_nodes)(rbto->rbto_context,
    200   1.7  rmind 		    tobj, object);
    201   1.1   matt 		if (__predict_false(diff == 0)) {
    202   1.1   matt 			/*
    203   1.7  rmind 			 * Node already exists; return it.
    204   1.1   matt 			 */
    205   1.7  rmind 			return tobj;
    206   1.1   matt 		}
    207   1.1   matt 		parent = tmp;
    208   1.7  rmind 		position = (diff < 0);
    209   1.1   matt 		tmp = parent->rb_nodes[position];
    210   1.1   matt 	}
    211   1.1   matt 
    212   1.1   matt #ifdef RBDEBUG
    213   1.1   matt 	{
    214   1.1   matt 		struct rb_node *prev = NULL, *next = NULL;
    215   1.1   matt 
    216   1.1   matt 		if (position == RB_DIR_RIGHT)
    217   1.1   matt 			prev = parent;
    218   1.1   matt 		else if (tmp != rbt->rbt_root)
    219   1.1   matt 			next = parent;
    220   1.1   matt 
    221   1.1   matt 		/*
    222   1.1   matt 		 * Verify our sequential position
    223   1.1   matt 		 */
    224   1.1   matt 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
    225   1.1   matt 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
    226   1.1   matt 		if (prev != NULL && next == NULL)
    227   1.1   matt 			next = TAILQ_NEXT(prev, rb_link);
    228   1.1   matt 		if (prev == NULL && next != NULL)
    229   1.1   matt 			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
    230   1.1   matt 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
    231   1.1   matt 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
    232   1.7  rmind 		KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
    233   1.7  rmind 		    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
    234   1.7  rmind 		KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
    235   1.7  rmind 		    RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
    236   1.1   matt 	}
    237   1.1   matt #endif
    238   1.1   matt 
    239   1.1   matt 	/*
    240   1.1   matt 	 * Initialize the node and insert as a leaf into the tree.
    241   1.1   matt 	 */
    242   1.1   matt 	RB_SET_FATHER(self, parent);
    243   1.1   matt 	RB_SET_POSITION(self, position);
    244   1.3   matt 	if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
    245   1.1   matt 		RB_MARK_BLACK(self);		/* root is always black */
    246   1.1   matt #ifndef RBSMALL
    247   1.1   matt 		rbt->rbt_minmax[RB_DIR_LEFT] = self;
    248   1.1   matt 		rbt->rbt_minmax[RB_DIR_RIGHT] = self;
    249   1.1   matt #endif
    250   1.1   matt 		rebalance = false;
    251   1.1   matt 	} else {
    252   1.1   matt 		KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
    253   1.1   matt #ifndef RBSMALL
    254   1.1   matt 		/*
    255   1.1   matt 		 * Keep track of the minimum and maximum nodes.  If our
    256   1.1   matt 		 * parent is a minmax node and we on their min/max side,
    257   1.1   matt 		 * we must be the new min/max node.
    258   1.1   matt 		 */
    259   1.1   matt 		if (parent == rbt->rbt_minmax[position])
    260   1.1   matt 			rbt->rbt_minmax[position] = self;
    261   1.1   matt #endif /* !RBSMALL */
    262   1.1   matt 		/*
    263   1.1   matt 		 * All new nodes are colored red.  We only need to rebalance
    264   1.1   matt 		 * if our parent is also red.
    265   1.1   matt 		 */
    266   1.1   matt 		RB_MARK_RED(self);
    267   1.1   matt 		rebalance = RB_RED_P(parent);
    268   1.1   matt 	}
    269   1.1   matt 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
    270   1.1   matt 	self->rb_left = parent->rb_nodes[position];
    271   1.1   matt 	self->rb_right = parent->rb_nodes[position];
    272   1.1   matt 	parent->rb_nodes[position] = self;
    273   1.1   matt 	KASSERT(RB_CHILDLESS_P(self));
    274   1.1   matt 
    275   1.1   matt 	/*
    276   1.1   matt 	 * Insert the new node into a sorted list for easy sequential access
    277   1.1   matt 	 */
    278   1.1   matt 	RBSTAT_INC(rbt->rbt_count);
    279   1.1   matt #ifdef RBDEBUG
    280   1.1   matt 	if (RB_ROOT_P(rbt, self)) {
    281   1.1   matt 		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
    282   1.1   matt 	} else if (position == RB_DIR_LEFT) {
    283   1.7  rmind 		KASSERT((*compare_nodes)(rbto->rbto_context,
    284   1.7  rmind 		    RB_NODETOITEM(rbto, self),
    285   1.7  rmind 		    RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
    286   1.1   matt 		RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
    287   1.1   matt 	} else {
    288   1.7  rmind 		KASSERT((*compare_nodes)(rbto->rbto_context,
    289   1.7  rmind 		    RB_NODETOITEM(rbto, RB_FATHER(self)),
    290   1.7  rmind 		    RB_NODETOITEM(rbto, self)) < 0);
    291   1.1   matt 		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
    292   1.1   matt 		    self, rb_link);
    293   1.1   matt 	}
    294   1.1   matt #endif
    295   1.1   matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
    296   1.1   matt 
    297   1.1   matt 	/*
    298   1.1   matt 	 * Rebalance tree after insertion
    299   1.1   matt 	 */
    300   1.1   matt 	if (rebalance) {
    301   1.1   matt 		rb_tree_insert_rebalance(rbt, self);
    302   1.1   matt 		KASSERT(rb_tree_check_node(rbt, self, NULL, true));
    303   1.1   matt 	}
    304   1.1   matt 
    305   1.7  rmind 	/* Succesfully inserted, return our node pointer. */
    306   1.7  rmind 	return object;
    307   1.1   matt }
    308   1.7  rmind 
    309   1.1   matt /*
    310   1.1   matt  * Swap the location and colors of 'self' and its child @ which.  The child
    311   1.1   matt  * can not be a sentinel node.  This is our rotation function.  However,
    312   1.1   matt  * since it preserves coloring, it great simplifies both insertion and
    313   1.1   matt  * removal since rotation almost always involves the exchanging of colors
    314   1.1   matt  * as a separate step.
    315   1.1   matt  */
    316   1.3   matt /*ARGSUSED*/
    317   1.1   matt static void
    318   1.1   matt rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
    319   1.1   matt 	const unsigned int which)
    320   1.1   matt {
    321   1.1   matt 	const unsigned int other = which ^ RB_DIR_OTHER;
    322   1.1   matt 	struct rb_node * const grandpa = RB_FATHER(old_father);
    323   1.1   matt 	struct rb_node * const old_child = old_father->rb_nodes[which];
    324   1.1   matt 	struct rb_node * const new_father = old_child;
    325   1.1   matt 	struct rb_node * const new_child = old_father;
    326   1.1   matt 
    327   1.1   matt 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    328   1.1   matt 
    329   1.1   matt 	KASSERT(!RB_SENTINEL_P(old_child));
    330   1.1   matt 	KASSERT(RB_FATHER(old_child) == old_father);
    331   1.1   matt 
    332   1.1   matt 	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
    333   1.1   matt 	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
    334   1.7  rmind 	KASSERT(RB_ROOT_P(rbt, old_father) ||
    335   1.7  rmind 	    rb_tree_check_node(rbt, grandpa, NULL, false));
    336   1.1   matt 
    337   1.1   matt 	/*
    338   1.1   matt 	 * Exchange descendant linkages.
    339   1.1   matt 	 */
    340   1.1   matt 	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
    341   1.1   matt 	new_child->rb_nodes[which] = old_child->rb_nodes[other];
    342   1.1   matt 	new_father->rb_nodes[other] = new_child;
    343   1.1   matt 
    344   1.1   matt 	/*
    345   1.1   matt 	 * Update ancestor linkages
    346   1.1   matt 	 */
    347   1.1   matt 	RB_SET_FATHER(new_father, grandpa);
    348   1.1   matt 	RB_SET_FATHER(new_child, new_father);
    349   1.1   matt 
    350   1.1   matt 	/*
    351   1.1   matt 	 * Exchange properties between new_father and new_child.  The only
    352   1.1   matt 	 * change is that new_child's position is now on the other side.
    353   1.1   matt 	 */
    354   1.1   matt #if 0
    355   1.1   matt 	{
    356   1.1   matt 		struct rb_node tmp;
    357   1.1   matt 		tmp.rb_info = 0;
    358   1.1   matt 		RB_COPY_PROPERTIES(&tmp, old_child);
    359   1.1   matt 		RB_COPY_PROPERTIES(new_father, old_father);
    360   1.1   matt 		RB_COPY_PROPERTIES(new_child, &tmp);
    361   1.1   matt 	}
    362   1.1   matt #else
    363   1.1   matt 	RB_SWAP_PROPERTIES(new_father, new_child);
    364   1.1   matt #endif
    365   1.1   matt 	RB_SET_POSITION(new_child, other);
    366   1.1   matt 
    367   1.1   matt 	/*
    368   1.1   matt 	 * Make sure to reparent the new child to ourself.
    369   1.1   matt 	 */
    370   1.1   matt 	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
    371   1.1   matt 		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
    372   1.1   matt 		RB_SET_POSITION(new_child->rb_nodes[which], which);
    373   1.1   matt 	}
    374   1.1   matt 
    375   1.1   matt 	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
    376   1.1   matt 	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
    377   1.7  rmind 	KASSERT(RB_ROOT_P(rbt, new_father) ||
    378   1.7  rmind 	    rb_tree_check_node(rbt, grandpa, NULL, false));
    379   1.1   matt }
    380   1.7  rmind 
    381   1.1   matt static void
    382   1.1   matt rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
    383   1.1   matt {
    384   1.1   matt 	struct rb_node * father = RB_FATHER(self);
    385   1.1   matt 	struct rb_node * grandpa = RB_FATHER(father);
    386   1.1   matt 	struct rb_node * uncle;
    387   1.1   matt 	unsigned int which;
    388   1.1   matt 	unsigned int other;
    389   1.1   matt 
    390   1.1   matt 	KASSERT(!RB_ROOT_P(rbt, self));
    391   1.1   matt 	KASSERT(RB_RED_P(self));
    392   1.1   matt 	KASSERT(RB_RED_P(father));
    393   1.1   matt 	RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
    394   1.1   matt 
    395   1.1   matt 	for (;;) {
    396   1.1   matt 		KASSERT(!RB_SENTINEL_P(self));
    397   1.1   matt 
    398   1.1   matt 		KASSERT(RB_RED_P(self));
    399   1.1   matt 		KASSERT(RB_RED_P(father));
    400   1.1   matt 		/*
    401   1.1   matt 		 * We are red and our parent is red, therefore we must have a
    402   1.1   matt 		 * grandfather and he must be black.
    403   1.1   matt 		 */
    404   1.1   matt 		grandpa = RB_FATHER(father);
    405   1.1   matt 		KASSERT(RB_BLACK_P(grandpa));
    406   1.1   matt 		KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
    407   1.1   matt 		which = (father == grandpa->rb_right);
    408   1.1   matt 		other = which ^ RB_DIR_OTHER;
    409   1.1   matt 		uncle = grandpa->rb_nodes[other];
    410   1.1   matt 
    411   1.1   matt 		if (RB_BLACK_P(uncle))
    412   1.1   matt 			break;
    413   1.1   matt 
    414   1.1   matt 		RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
    415   1.1   matt 		/*
    416   1.1   matt 		 * Case 1: our uncle is red
    417   1.1   matt 		 *   Simply invert the colors of our parent and
    418   1.1   matt 		 *   uncle and make our grandparent red.  And
    419   1.1   matt 		 *   then solve the problem up at his level.
    420   1.1   matt 		 */
    421   1.1   matt 		RB_MARK_BLACK(uncle);
    422   1.1   matt 		RB_MARK_BLACK(father);
    423   1.1   matt 		if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
    424   1.1   matt 			/*
    425   1.1   matt 			 * If our grandpa is root, don't bother
    426   1.1   matt 			 * setting him to red, just return.
    427   1.1   matt 			 */
    428   1.1   matt 			KASSERT(RB_BLACK_P(grandpa));
    429   1.1   matt 			return;
    430   1.1   matt 		}
    431   1.1   matt 		RB_MARK_RED(grandpa);
    432   1.1   matt 		self = grandpa;
    433   1.1   matt 		father = RB_FATHER(self);
    434   1.1   matt 		KASSERT(RB_RED_P(self));
    435   1.1   matt 		if (RB_BLACK_P(father)) {
    436   1.1   matt 			/*
    437   1.1   matt 			 * If our greatgrandpa is black, we're done.
    438   1.1   matt 			 */
    439   1.1   matt 			KASSERT(RB_BLACK_P(rbt->rbt_root));
    440   1.1   matt 			return;
    441   1.1   matt 		}
    442   1.1   matt 	}
    443   1.1   matt 
    444   1.1   matt 	KASSERT(!RB_ROOT_P(rbt, self));
    445   1.1   matt 	KASSERT(RB_RED_P(self));
    446   1.1   matt 	KASSERT(RB_RED_P(father));
    447   1.1   matt 	KASSERT(RB_BLACK_P(uncle));
    448   1.1   matt 	KASSERT(RB_BLACK_P(grandpa));
    449   1.1   matt 	/*
    450   1.1   matt 	 * Case 2&3: our uncle is black.
    451   1.1   matt 	 */
    452   1.1   matt 	if (self == father->rb_nodes[other]) {
    453   1.1   matt 		/*
    454   1.1   matt 		 * Case 2: we are on the same side as our uncle
    455   1.1   matt 		 *   Swap ourselves with our parent so this case
    456   1.1   matt 		 *   becomes case 3.  Basically our parent becomes our
    457   1.1   matt 		 *   child.
    458   1.1   matt 		 */
    459   1.1   matt 		rb_tree_reparent_nodes(rbt, father, other);
    460   1.1   matt 		KASSERT(RB_FATHER(father) == self);
    461   1.1   matt 		KASSERT(self->rb_nodes[which] == father);
    462   1.1   matt 		KASSERT(RB_FATHER(self) == grandpa);
    463   1.1   matt 		self = father;
    464   1.1   matt 		father = RB_FATHER(self);
    465   1.1   matt 	}
    466   1.1   matt 	KASSERT(RB_RED_P(self) && RB_RED_P(father));
    467   1.1   matt 	KASSERT(grandpa->rb_nodes[which] == father);
    468   1.1   matt 	/*
    469   1.1   matt 	 * Case 3: we are opposite a child of a black uncle.
    470   1.1   matt 	 *   Swap our parent and grandparent.  Since our grandfather
    471   1.1   matt 	 *   is black, our father will become black and our new sibling
    472   1.1   matt 	 *   (former grandparent) will become red.
    473   1.1   matt 	 */
    474   1.1   matt 	rb_tree_reparent_nodes(rbt, grandpa, which);
    475   1.1   matt 	KASSERT(RB_FATHER(self) == father);
    476   1.1   matt 	KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
    477   1.1   matt 	KASSERT(RB_RED_P(self));
    478   1.1   matt 	KASSERT(RB_BLACK_P(father));
    479   1.1   matt 	KASSERT(RB_RED_P(grandpa));
    480   1.1   matt 
    481   1.1   matt 	/*
    482   1.1   matt 	 * Final step: Set the root to black.
    483   1.1   matt 	 */
    484   1.1   matt 	RB_MARK_BLACK(rbt->rbt_root);
    485   1.1   matt }
    486   1.7  rmind 
    487   1.1   matt static void
    488   1.1   matt rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
    489   1.1   matt {
    490   1.1   matt 	const unsigned int which = RB_POSITION(self);
    491   1.1   matt 	struct rb_node *father = RB_FATHER(self);
    492   1.5  joerg #ifndef RBSMALL
    493   1.1   matt 	const bool was_root = RB_ROOT_P(rbt, self);
    494   1.5  joerg #endif
    495   1.1   matt 
    496   1.1   matt 	KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
    497   1.1   matt 	KASSERT(!rebalance || RB_BLACK_P(self));
    498   1.1   matt 	KASSERT(RB_CHILDLESS_P(self));
    499   1.1   matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    500   1.1   matt 
    501   1.1   matt 	/*
    502   1.1   matt 	 * Since we are childless, we know that self->rb_left is pointing
    503   1.1   matt 	 * to the sentinel node.
    504   1.1   matt 	 */
    505   1.1   matt 	father->rb_nodes[which] = self->rb_left;
    506   1.1   matt 
    507   1.1   matt 	/*
    508   1.1   matt 	 * Remove ourselves from the node list, decrement the count,
    509   1.1   matt 	 * and update min/max.
    510   1.1   matt 	 */
    511   1.1   matt 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    512   1.1   matt 	RBSTAT_DEC(rbt->rbt_count);
    513   1.1   matt #ifndef RBSMALL
    514   1.1   matt 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
    515   1.1   matt 		rbt->rbt_minmax[RB_POSITION(self)] = father;
    516   1.1   matt 		/*
    517   1.1   matt 		 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
    518   1.1   matt 		 * updated automatically, but we also need to update
    519   1.1   matt 		 * rbt->rbt_minmax[RB_DIR_RIGHT];
    520   1.1   matt 		 */
    521   1.1   matt 		if (__predict_false(was_root)) {
    522   1.1   matt 			rbt->rbt_minmax[RB_DIR_RIGHT] = father;
    523   1.1   matt 		}
    524   1.1   matt 	}
    525   1.1   matt 	RB_SET_FATHER(self, NULL);
    526   1.1   matt #endif
    527   1.1   matt 
    528   1.1   matt 	/*
    529   1.1   matt 	 * Rebalance if requested.
    530   1.1   matt 	 */
    531   1.1   matt 	if (rebalance)
    532   1.1   matt 		rb_tree_removal_rebalance(rbt, father, which);
    533   1.1   matt 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
    534   1.1   matt }
    535   1.7  rmind 
    536   1.1   matt /*
    537   1.1   matt  * When deleting an interior node
    538   1.1   matt  */
    539   1.1   matt static void
    540   1.1   matt rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
    541   1.1   matt 	struct rb_node *standin)
    542   1.1   matt {
    543   1.1   matt 	const unsigned int standin_which = RB_POSITION(standin);
    544   1.1   matt 	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
    545   1.1   matt 	struct rb_node *standin_son;
    546   1.1   matt 	struct rb_node *standin_father = RB_FATHER(standin);
    547   1.1   matt 	bool rebalance = RB_BLACK_P(standin);
    548   1.1   matt 
    549   1.1   matt 	if (standin_father == self) {
    550   1.1   matt 		/*
    551   1.1   matt 		 * As a child of self, any childen would be opposite of
    552   1.1   matt 		 * our parent.
    553   1.1   matt 		 */
    554   1.1   matt 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
    555   1.1   matt 		standin_son = standin->rb_nodes[standin_which];
    556   1.1   matt 	} else {
    557   1.1   matt 		/*
    558   1.1   matt 		 * Since we aren't a child of self, any childen would be
    559   1.1   matt 		 * on the same side as our parent.
    560   1.1   matt 		 */
    561   1.1   matt 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
    562   1.1   matt 		standin_son = standin->rb_nodes[standin_other];
    563   1.1   matt 	}
    564   1.1   matt 
    565   1.1   matt 	/*
    566   1.1   matt 	 * the node we are removing must have two children.
    567   1.1   matt 	 */
    568   1.1   matt 	KASSERT(RB_TWOCHILDREN_P(self));
    569   1.1   matt 	/*
    570   1.1   matt 	 * If standin has a child, it must be red.
    571   1.1   matt 	 */
    572   1.1   matt 	KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
    573   1.1   matt 
    574   1.1   matt 	/*
    575   1.1   matt 	 * Verify things are sane.
    576   1.1   matt 	 */
    577   1.1   matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    578   1.1   matt 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
    579   1.1   matt 
    580   1.1   matt 	if (__predict_false(RB_RED_P(standin_son))) {
    581   1.1   matt 		/*
    582   1.1   matt 		 * We know we have a red child so if we flip it to black
    583   1.1   matt 		 * we don't have to rebalance.
    584   1.1   matt 		 */
    585   1.1   matt 		KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
    586   1.1   matt 		RB_MARK_BLACK(standin_son);
    587   1.1   matt 		rebalance = false;
    588   1.1   matt 
    589   1.1   matt 		if (standin_father == self) {
    590   1.1   matt 			KASSERT(RB_POSITION(standin_son) == standin_which);
    591   1.1   matt 		} else {
    592   1.1   matt 			KASSERT(RB_POSITION(standin_son) == standin_other);
    593   1.1   matt 			/*
    594   1.1   matt 			 * Change the son's parentage to point to his grandpa.
    595   1.1   matt 			 */
    596   1.1   matt 			RB_SET_FATHER(standin_son, standin_father);
    597   1.1   matt 			RB_SET_POSITION(standin_son, standin_which);
    598   1.1   matt 		}
    599   1.1   matt 	}
    600   1.1   matt 
    601   1.1   matt 	if (standin_father == self) {
    602   1.1   matt 		/*
    603   1.1   matt 		 * If we are about to delete the standin's father, then when
    604   1.1   matt 		 * we call rebalance, we need to use ourselves as our father.
    605   1.1   matt 		 * Otherwise remember our original father.  Also, sincef we are
    606   1.1   matt 		 * our standin's father we only need to reparent the standin's
    607   1.1   matt 		 * brother.
    608   1.1   matt 		 *
    609   1.1   matt 		 * |    R      -->     S    |
    610   1.1   matt 		 * |  Q   S    -->   Q   T  |
    611   1.1   matt 		 * |        t  -->          |
    612   1.1   matt 		 */
    613   1.1   matt 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
    614   1.1   matt 		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
    615   1.1   matt 		KASSERT(self->rb_nodes[standin_which] == standin);
    616   1.1   matt 		/*
    617   1.1   matt 		 * Have our son/standin adopt his brother as his new son.
    618   1.1   matt 		 */
    619   1.1   matt 		standin_father = standin;
    620   1.1   matt 	} else {
    621   1.1   matt 		/*
    622   1.1   matt 		 * |    R          -->    S       .  |
    623   1.1   matt 		 * |   / \  |   T  -->   / \  |  /   |
    624   1.1   matt 		 * |  ..... | S    -->  ..... | T    |
    625   1.1   matt 		 *
    626   1.1   matt 		 * Sever standin's connection to his father.
    627   1.1   matt 		 */
    628   1.1   matt 		standin_father->rb_nodes[standin_which] = standin_son;
    629   1.1   matt 		/*
    630   1.1   matt 		 * Adopt the far son.
    631   1.1   matt 		 */
    632   1.1   matt 		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
    633   1.1   matt 		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
    634   1.1   matt 		KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
    635   1.1   matt 		/*
    636   1.1   matt 		 * Use standin_other because we need to preserve standin_which
    637   1.1   matt 		 * for the removal_rebalance.
    638   1.1   matt 		 */
    639   1.1   matt 		standin_other = standin_which;
    640   1.1   matt 	}
    641   1.1   matt 
    642   1.1   matt 	/*
    643   1.1   matt 	 * Move the only remaining son to our standin.  If our standin is our
    644   1.1   matt 	 * son, this will be the only son needed to be moved.
    645   1.1   matt 	 */
    646   1.1   matt 	KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
    647   1.1   matt 	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
    648   1.1   matt 	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
    649   1.1   matt 
    650   1.1   matt 	/*
    651   1.1   matt 	 * Now copy the result of self to standin and then replace
    652   1.1   matt 	 * self with standin in the tree.
    653   1.1   matt 	 */
    654   1.1   matt 	RB_COPY_PROPERTIES(standin, self);
    655   1.1   matt 	RB_SET_FATHER(standin, RB_FATHER(self));
    656   1.1   matt 	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
    657   1.1   matt 
    658   1.1   matt 	/*
    659   1.1   matt 	 * Remove ourselves from the node list, decrement the count,
    660   1.1   matt 	 * and update min/max.
    661   1.1   matt 	 */
    662   1.1   matt 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    663   1.1   matt 	RBSTAT_DEC(rbt->rbt_count);
    664   1.1   matt #ifndef RBSMALL
    665   1.1   matt 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
    666   1.1   matt 		rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
    667   1.1   matt 	RB_SET_FATHER(self, NULL);
    668   1.1   matt #endif
    669   1.1   matt 
    670   1.1   matt 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
    671   1.1   matt 	KASSERT(RB_FATHER_SENTINEL_P(standin)
    672   1.1   matt 		|| rb_tree_check_node(rbt, standin_father, NULL, false));
    673   1.1   matt 	KASSERT(RB_LEFT_SENTINEL_P(standin)
    674   1.1   matt 		|| rb_tree_check_node(rbt, standin->rb_left, NULL, false));
    675   1.1   matt 	KASSERT(RB_RIGHT_SENTINEL_P(standin)
    676   1.1   matt 		|| rb_tree_check_node(rbt, standin->rb_right, NULL, false));
    677   1.1   matt 
    678   1.1   matt 	if (!rebalance)
    679   1.1   matt 		return;
    680   1.1   matt 
    681   1.1   matt 	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
    682   1.1   matt 	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
    683   1.1   matt }
    684   1.1   matt 
    685   1.1   matt /*
    686   1.1   matt  * We could do this by doing
    687   1.1   matt  *	rb_tree_node_swap(rbt, self, which);
    688   1.1   matt  *	rb_tree_prune_node(rbt, self, false);
    689   1.1   matt  *
    690   1.1   matt  * But it's more efficient to just evalate and recolor the child.
    691   1.1   matt  */
    692   1.1   matt static void
    693   1.1   matt rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
    694   1.1   matt 	unsigned int which)
    695   1.1   matt {
    696   1.1   matt 	struct rb_node *father = RB_FATHER(self);
    697   1.1   matt 	struct rb_node *son = self->rb_nodes[which];
    698   1.5  joerg #ifndef RBSMALL
    699   1.1   matt 	const bool was_root = RB_ROOT_P(rbt, self);
    700   1.5  joerg #endif
    701   1.1   matt 
    702   1.1   matt 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    703   1.1   matt 	KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
    704   1.1   matt 	KASSERT(!RB_TWOCHILDREN_P(son));
    705   1.1   matt 	KASSERT(RB_CHILDLESS_P(son));
    706   1.1   matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    707   1.1   matt 	KASSERT(rb_tree_check_node(rbt, son, NULL, false));
    708   1.1   matt 
    709   1.1   matt 	/*
    710   1.1   matt 	 * Remove ourselves from the tree and give our former child our
    711   1.1   matt 	 * properties (position, color, root).
    712   1.1   matt 	 */
    713   1.1   matt 	RB_COPY_PROPERTIES(son, self);
    714   1.1   matt 	father->rb_nodes[RB_POSITION(son)] = son;
    715   1.1   matt 	RB_SET_FATHER(son, father);
    716   1.1   matt 
    717   1.1   matt 	/*
    718   1.1   matt 	 * Remove ourselves from the node list, decrement the count,
    719   1.1   matt 	 * and update minmax.
    720   1.1   matt 	 */
    721   1.1   matt 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    722   1.1   matt 	RBSTAT_DEC(rbt->rbt_count);
    723   1.1   matt #ifndef RBSMALL
    724   1.1   matt 	if (__predict_false(was_root)) {
    725   1.1   matt 		KASSERT(rbt->rbt_minmax[which] == son);
    726   1.1   matt 		rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
    727   1.1   matt 	} else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
    728   1.1   matt 		rbt->rbt_minmax[RB_POSITION(self)] = son;
    729   1.1   matt 	}
    730   1.1   matt 	RB_SET_FATHER(self, NULL);
    731   1.1   matt #endif
    732   1.1   matt 
    733   1.1   matt 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
    734   1.1   matt 	KASSERT(rb_tree_check_node(rbt, son, NULL, true));
    735   1.1   matt }
    736   1.7  rmind 
    737   1.1   matt void
    738   1.7  rmind rb_tree_remove_node(struct rb_tree *rbt, void *object)
    739   1.1   matt {
    740   1.7  rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    741   1.7  rmind 	struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
    742   1.1   matt 	unsigned int which;
    743   1.1   matt 
    744   1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
    745   1.1   matt 	RBSTAT_INC(rbt->rbt_removals);
    746   1.1   matt 
    747   1.1   matt 	/*
    748   1.1   matt 	 * In the following diagrams, we (the node to be removed) are S.  Red
    749   1.1   matt 	 * nodes are lowercase.  T could be either red or black.
    750   1.1   matt 	 *
    751   1.1   matt 	 * Remember the major axiom of the red-black tree: the number of
    752   1.1   matt 	 * black nodes from the root to each leaf is constant across all
    753   1.1   matt 	 * leaves, only the number of red nodes varies.
    754   1.1   matt 	 *
    755   1.1   matt 	 * Thus removing a red leaf doesn't require any other changes to a
    756   1.1   matt 	 * red-black tree.  So if we must remove a node, attempt to rearrange
    757   1.1   matt 	 * the tree so we can remove a red node.
    758   1.1   matt 	 *
    759   1.1   matt 	 * The simpliest case is a childless red node or a childless root node:
    760   1.1   matt 	 *
    761   1.1   matt 	 * |    T  -->    T  |    or    |  R  -->  *  |
    762   1.1   matt 	 * |  s    -->  *    |
    763   1.1   matt 	 */
    764   1.1   matt 	if (RB_CHILDLESS_P(self)) {
    765   1.1   matt 		const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
    766   1.1   matt 		rb_tree_prune_node(rbt, self, rebalance);
    767   1.1   matt 		return;
    768   1.1   matt 	}
    769   1.1   matt 	KASSERT(!RB_CHILDLESS_P(self));
    770   1.1   matt 	if (!RB_TWOCHILDREN_P(self)) {
    771   1.1   matt 		/*
    772   1.1   matt 		 * The next simpliest case is the node we are deleting is
    773   1.1   matt 		 * black and has one red child.
    774   1.1   matt 		 *
    775   1.1   matt 		 * |      T  -->      T  -->      T  |
    776   1.1   matt 		 * |    S    -->  R      -->  R      |
    777   1.1   matt 		 * |  r      -->    s    -->    *    |
    778   1.1   matt 		 */
    779   1.1   matt 		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
    780   1.1   matt 		KASSERT(RB_BLACK_P(self));
    781   1.1   matt 		KASSERT(RB_RED_P(self->rb_nodes[which]));
    782   1.1   matt 		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
    783   1.1   matt 		rb_tree_prune_blackred_branch(rbt, self, which);
    784   1.1   matt 		return;
    785   1.1   matt 	}
    786   1.1   matt 	KASSERT(RB_TWOCHILDREN_P(self));
    787   1.1   matt 
    788   1.1   matt 	/*
    789   1.1   matt 	 * We invert these because we prefer to remove from the inside of
    790   1.1   matt 	 * the tree.
    791   1.1   matt 	 */
    792   1.1   matt 	which = RB_POSITION(self) ^ RB_DIR_OTHER;
    793   1.1   matt 
    794   1.1   matt 	/*
    795   1.1   matt 	 * Let's find the node closes to us opposite of our parent
    796   1.1   matt 	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
    797   1.1   matt 	 */
    798   1.7  rmind 	standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
    799   1.1   matt 	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
    800   1.1   matt }
    801   1.1   matt 
    802   1.1   matt static void
    803   1.1   matt rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
    804   1.1   matt 	unsigned int which)
    805   1.1   matt {
    806   1.1   matt 	KASSERT(!RB_SENTINEL_P(parent));
    807   1.1   matt 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
    808   1.1   matt 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    809   1.1   matt 	RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
    810   1.1   matt 
    811   1.1   matt 	while (RB_BLACK_P(parent->rb_nodes[which])) {
    812   1.1   matt 		unsigned int other = which ^ RB_DIR_OTHER;
    813   1.1   matt 		struct rb_node *brother = parent->rb_nodes[other];
    814   1.1   matt 
    815   1.1   matt 		RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
    816   1.1   matt 
    817   1.1   matt 		KASSERT(!RB_SENTINEL_P(brother));
    818   1.1   matt 		/*
    819   1.1   matt 		 * For cases 1, 2a, and 2b, our brother's children must
    820   1.1   matt 		 * be black and our father must be black
    821   1.1   matt 		 */
    822   1.1   matt 		if (RB_BLACK_P(parent)
    823   1.1   matt 		    && RB_BLACK_P(brother->rb_left)
    824   1.1   matt 		    && RB_BLACK_P(brother->rb_right)) {
    825   1.1   matt 			if (RB_RED_P(brother)) {
    826   1.1   matt 				/*
    827   1.1   matt 				 * Case 1: Our brother is red, swap its
    828   1.1   matt 				 * position (and colors) with our parent.
    829   1.1   matt 				 * This should now be case 2b (unless C or E
    830   1.1   matt 				 * has a red child which is case 3; thus no
    831   1.1   matt 				 * explicit branch to case 2b).
    832   1.1   matt 				 *
    833   1.1   matt 				 *    B         ->        D
    834   1.1   matt 				 *  A     d     ->    b     E
    835   1.1   matt 				 *      C   E   ->  A   C
    836   1.1   matt 				 */
    837   1.1   matt 				KASSERT(RB_BLACK_P(parent));
    838   1.1   matt 				rb_tree_reparent_nodes(rbt, parent, other);
    839   1.1   matt 				brother = parent->rb_nodes[other];
    840   1.1   matt 				KASSERT(!RB_SENTINEL_P(brother));
    841   1.1   matt 				KASSERT(RB_RED_P(parent));
    842   1.1   matt 				KASSERT(RB_BLACK_P(brother));
    843   1.1   matt 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
    844   1.1   matt 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
    845   1.1   matt 			} else {
    846   1.1   matt 				/*
    847   1.1   matt 				 * Both our parent and brother are black.
    848   1.1   matt 				 * Change our brother to red, advance up rank
    849   1.1   matt 				 * and go through the loop again.
    850   1.1   matt 				 *
    851   1.1   matt 				 *    B         ->   *B
    852   1.1   matt 				 * *A     D     ->  A     d
    853   1.1   matt 				 *      C   E   ->      C   E
    854   1.1   matt 				 */
    855   1.1   matt 				RB_MARK_RED(brother);
    856   1.1   matt 				KASSERT(RB_BLACK_P(brother->rb_left));
    857   1.1   matt 				KASSERT(RB_BLACK_P(brother->rb_right));
    858   1.1   matt 				if (RB_ROOT_P(rbt, parent))
    859   1.1   matt 					return;	/* root == parent == black */
    860   1.1   matt 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
    861   1.1   matt 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
    862   1.1   matt 				which = RB_POSITION(parent);
    863   1.1   matt 				parent = RB_FATHER(parent);
    864   1.1   matt 				continue;
    865   1.1   matt 			}
    866   1.1   matt 		}
    867   1.1   matt 		/*
    868   1.1   matt 		 * Avoid an else here so that case 2a above can hit either
    869   1.1   matt 		 * case 2b, 3, or 4.
    870   1.1   matt 		 */
    871   1.1   matt 		if (RB_RED_P(parent)
    872   1.1   matt 		    && RB_BLACK_P(brother)
    873   1.1   matt 		    && RB_BLACK_P(brother->rb_left)
    874   1.1   matt 		    && RB_BLACK_P(brother->rb_right)) {
    875   1.1   matt 			KASSERT(RB_RED_P(parent));
    876   1.1   matt 			KASSERT(RB_BLACK_P(brother));
    877   1.1   matt 			KASSERT(RB_BLACK_P(brother->rb_left));
    878   1.1   matt 			KASSERT(RB_BLACK_P(brother->rb_right));
    879   1.1   matt 			/*
    880   1.1   matt 			 * We are black, our father is red, our brother and
    881   1.1   matt 			 * both nephews are black.  Simply invert/exchange the
    882   1.1   matt 			 * colors of our father and brother (to black and red
    883   1.1   matt 			 * respectively).
    884   1.1   matt 			 *
    885   1.1   matt 			 *	|    f        -->    F        |
    886   1.1   matt 			 *	|  *     B    -->  *     b    |
    887   1.1   matt 			 *	|      N   N  -->      N   N  |
    888   1.1   matt 			 */
    889   1.1   matt 			RB_MARK_BLACK(parent);
    890   1.1   matt 			RB_MARK_RED(brother);
    891   1.1   matt 			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
    892   1.1   matt 			break;		/* We're done! */
    893   1.1   matt 		} else {
    894   1.1   matt 			/*
    895   1.1   matt 			 * Our brother must be black and have at least one
    896   1.1   matt 			 * red child (it may have two).
    897   1.1   matt 			 */
    898   1.1   matt 			KASSERT(RB_BLACK_P(brother));
    899   1.1   matt 			KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
    900   1.1   matt 				RB_RED_P(brother->rb_nodes[other]));
    901   1.1   matt 			if (RB_BLACK_P(brother->rb_nodes[other])) {
    902   1.1   matt 				/*
    903   1.1   matt 				 * Case 3: our brother is black, our near
    904   1.1   matt 				 * nephew is red, and our far nephew is black.
    905   1.1   matt 				 * Swap our brother with our near nephew.
    906   1.1   matt 				 * This result in a tree that matches case 4.
    907   1.1   matt 				 * (Our father could be red or black).
    908   1.1   matt 				 *
    909   1.1   matt 				 *	|    F      -->    F      |
    910   1.1   matt 				 *	|  x     B  -->  x   B    |
    911   1.1   matt 				 *	|      n    -->        n  |
    912   1.1   matt 				 */
    913   1.1   matt 				KASSERT(RB_RED_P(brother->rb_nodes[which]));
    914   1.1   matt 				rb_tree_reparent_nodes(rbt, brother, which);
    915   1.1   matt 				KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
    916   1.1   matt 				brother = parent->rb_nodes[other];
    917   1.1   matt 				KASSERT(RB_RED_P(brother->rb_nodes[other]));
    918   1.1   matt 			}
    919   1.1   matt 			/*
    920   1.1   matt 			 * Case 4: our brother is black and our far nephew
    921   1.1   matt 			 * is red.  Swap our father and brother locations and
    922   1.1   matt 			 * change our far nephew to black.  (these can be
    923   1.1   matt 			 * done in either order so we change the color first).
    924   1.1   matt 			 * The result is a valid red-black tree and is a
    925   1.1   matt 			 * terminal case.  (again we don't care about the
    926   1.1   matt 			 * father's color)
    927   1.1   matt 			 *
    928   1.1   matt 			 * If the father is red, we will get a red-black-black
    929   1.1   matt 			 * tree:
    930   1.1   matt 			 *	|  f      ->  f      -->    b    |
    931   1.1   matt 			 *	|    B    ->    B    -->  F   N  |
    932   1.1   matt 			 *	|      n  ->      N  -->         |
    933   1.1   matt 			 *
    934   1.1   matt 			 * If the father is black, we will get an all black
    935   1.1   matt 			 * tree:
    936   1.1   matt 			 *	|  F      ->  F      -->    B    |
    937   1.1   matt 			 *	|    B    ->    B    -->  F   N  |
    938   1.1   matt 			 *	|      n  ->      N  -->         |
    939   1.1   matt 			 *
    940   1.1   matt 			 * If we had two red nephews, then after the swap,
    941   1.1   matt 			 * our former father would have a red grandson.
    942   1.1   matt 			 */
    943   1.1   matt 			KASSERT(RB_BLACK_P(brother));
    944   1.1   matt 			KASSERT(RB_RED_P(brother->rb_nodes[other]));
    945   1.1   matt 			RB_MARK_BLACK(brother->rb_nodes[other]);
    946   1.1   matt 			rb_tree_reparent_nodes(rbt, parent, other);
    947   1.1   matt 			break;		/* We're done! */
    948   1.1   matt 		}
    949   1.1   matt 	}
    950   1.1   matt 	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
    951   1.1   matt }
    952   1.1   matt 
    953   1.7  rmind void *
    954   1.7  rmind rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
    955   1.1   matt {
    956   1.7  rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    957   1.1   matt 	const unsigned int other = direction ^ RB_DIR_OTHER;
    958   1.7  rmind 	struct rb_node *self;
    959   1.7  rmind 
    960   1.1   matt 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
    961   1.1   matt 
    962   1.7  rmind 	if (object == NULL) {
    963   1.1   matt #ifndef RBSMALL
    964   1.1   matt 		if (RB_SENTINEL_P(rbt->rbt_root))
    965   1.1   matt 			return NULL;
    966   1.7  rmind 		return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
    967   1.1   matt #else
    968   1.1   matt 		self = rbt->rbt_root;
    969   1.1   matt 		if (RB_SENTINEL_P(self))
    970   1.1   matt 			return NULL;
    971   1.6  joerg 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
    972   1.6  joerg 			self = self->rb_nodes[direction];
    973   1.7  rmind 		return RB_NODETOITEM(rbto, self);
    974   1.1   matt #endif /* !RBSMALL */
    975   1.1   matt 	}
    976   1.7  rmind 	self = RB_ITEMTONODE(rbto, object);
    977   1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
    978   1.1   matt 	/*
    979   1.1   matt 	 * We can't go any further in this direction.  We proceed up in the
    980   1.1   matt 	 * opposite direction until our parent is in direction we want to go.
    981   1.1   matt 	 */
    982   1.1   matt 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
    983   1.1   matt 		while (!RB_ROOT_P(rbt, self)) {
    984   1.1   matt 			if (other == RB_POSITION(self))
    985   1.7  rmind 				return RB_NODETOITEM(rbto, RB_FATHER(self));
    986   1.1   matt 			self = RB_FATHER(self);
    987   1.1   matt 		}
    988   1.1   matt 		return NULL;
    989   1.1   matt 	}
    990   1.1   matt 
    991   1.1   matt 	/*
    992   1.1   matt 	 * Advance down one in current direction and go down as far as possible
    993   1.1   matt 	 * in the opposite direction.
    994   1.1   matt 	 */
    995   1.1   matt 	self = self->rb_nodes[direction];
    996   1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
    997   1.1   matt 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
    998   1.1   matt 		self = self->rb_nodes[other];
    999   1.7  rmind 	return RB_NODETOITEM(rbto, self);
   1000   1.1   matt }
   1001   1.1   matt 
   1002   1.1   matt #ifdef RBDEBUG
   1003   1.1   matt static const struct rb_node *
   1004   1.1   matt rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
   1005   1.1   matt 	const unsigned int direction)
   1006   1.1   matt {
   1007   1.1   matt 	const unsigned int other = direction ^ RB_DIR_OTHER;
   1008   1.1   matt 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
   1009   1.1   matt 
   1010   1.1   matt 	if (self == NULL) {
   1011   1.1   matt #ifndef RBSMALL
   1012   1.1   matt 		if (RB_SENTINEL_P(rbt->rbt_root))
   1013   1.1   matt 			return NULL;
   1014   1.1   matt 		return rbt->rbt_minmax[direction];
   1015   1.1   matt #else
   1016   1.1   matt 		self = rbt->rbt_root;
   1017   1.1   matt 		if (RB_SENTINEL_P(self))
   1018   1.1   matt 			return NULL;
   1019   1.6  joerg 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
   1020   1.6  joerg 			self = self->rb_nodes[direction];
   1021   1.1   matt 		return self;
   1022   1.1   matt #endif /* !RBSMALL */
   1023   1.1   matt 	}
   1024   1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
   1025   1.1   matt 	/*
   1026   1.1   matt 	 * We can't go any further in this direction.  We proceed up in the
   1027   1.1   matt 	 * opposite direction until our parent is in direction we want to go.
   1028   1.1   matt 	 */
   1029   1.1   matt 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
   1030   1.1   matt 		while (!RB_ROOT_P(rbt, self)) {
   1031   1.1   matt 			if (other == RB_POSITION(self))
   1032   1.1   matt 				return RB_FATHER(self);
   1033   1.1   matt 			self = RB_FATHER(self);
   1034   1.1   matt 		}
   1035   1.1   matt 		return NULL;
   1036   1.1   matt 	}
   1037   1.1   matt 
   1038   1.1   matt 	/*
   1039   1.1   matt 	 * Advance down one in current direction and go down as far as possible
   1040   1.1   matt 	 * in the opposite direction.
   1041   1.1   matt 	 */
   1042   1.1   matt 	self = self->rb_nodes[direction];
   1043   1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
   1044   1.1   matt 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
   1045   1.1   matt 		self = self->rb_nodes[other];
   1046   1.1   matt 	return self;
   1047   1.1   matt }
   1048   1.1   matt 
   1049   1.1   matt static unsigned int
   1050   1.1   matt rb_tree_count_black(const struct rb_node *self)
   1051   1.1   matt {
   1052   1.1   matt 	unsigned int left, right;
   1053   1.1   matt 
   1054   1.1   matt 	if (RB_SENTINEL_P(self))
   1055   1.1   matt 		return 0;
   1056   1.1   matt 
   1057   1.1   matt 	left = rb_tree_count_black(self->rb_left);
   1058   1.1   matt 	right = rb_tree_count_black(self->rb_right);
   1059   1.1   matt 
   1060   1.1   matt 	KASSERT(left == right);
   1061   1.1   matt 
   1062   1.1   matt 	return left + RB_BLACK_P(self);
   1063   1.1   matt }
   1064   1.1   matt 
   1065   1.1   matt static bool
   1066   1.1   matt rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
   1067   1.1   matt 	const struct rb_node *prev, bool red_check)
   1068   1.1   matt {
   1069   1.7  rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
   1070   1.7  rmind 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
   1071   1.1   matt 
   1072   1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
   1073   1.7  rmind 	KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
   1074   1.7  rmind 	    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
   1075   1.1   matt 
   1076   1.1   matt 	/*
   1077   1.1   matt 	 * Verify our relationship to our parent.
   1078   1.1   matt 	 */
   1079   1.1   matt 	if (RB_ROOT_P(rbt, self)) {
   1080   1.1   matt 		KASSERT(self == rbt->rbt_root);
   1081   1.1   matt 		KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
   1082   1.1   matt 		KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
   1083   1.1   matt 		KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
   1084   1.1   matt 	} else {
   1085   1.7  rmind 		int diff = (*compare_nodes)(rbto->rbto_context,
   1086   1.7  rmind 		    RB_NODETOITEM(rbto, self),
   1087   1.7  rmind 		    RB_NODETOITEM(rbto, RB_FATHER(self)));
   1088   1.7  rmind 
   1089   1.1   matt 		KASSERT(self != rbt->rbt_root);
   1090   1.1   matt 		KASSERT(!RB_FATHER_SENTINEL_P(self));
   1091   1.1   matt 		if (RB_POSITION(self) == RB_DIR_LEFT) {
   1092   1.7  rmind 			KASSERT(diff < 0);
   1093   1.1   matt 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
   1094   1.1   matt 		} else {
   1095   1.7  rmind 			KASSERT(diff > 0);
   1096   1.1   matt 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
   1097   1.1   matt 		}
   1098   1.1   matt 	}
   1099   1.1   matt 
   1100   1.1   matt 	/*
   1101   1.1   matt 	 * Verify our position in the linked list against the tree itself.
   1102   1.1   matt 	 */
   1103   1.1   matt 	{
   1104   1.1   matt 		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
   1105   1.1   matt 		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
   1106   1.1   matt 		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
   1107   1.1   matt 		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
   1108   1.1   matt #ifndef RBSMALL
   1109   1.1   matt 		KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
   1110   1.1   matt 		KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
   1111   1.1   matt #endif
   1112   1.1   matt 	}
   1113   1.1   matt 
   1114   1.1   matt 	/*
   1115   1.1   matt 	 * The root must be black.
   1116   1.1   matt 	 * There can never be two adjacent red nodes.
   1117   1.1   matt 	 */
   1118   1.1   matt 	if (red_check) {
   1119   1.1   matt 		KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
   1120   1.1   matt 		(void) rb_tree_count_black(self);
   1121   1.1   matt 		if (RB_RED_P(self)) {
   1122   1.1   matt 			const struct rb_node *brother;
   1123   1.1   matt 			KASSERT(!RB_ROOT_P(rbt, self));
   1124   1.1   matt 			brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
   1125   1.1   matt 			KASSERT(RB_BLACK_P(RB_FATHER(self)));
   1126   1.1   matt 			/*
   1127   1.1   matt 			 * I'm red and have no children, then I must either
   1128   1.1   matt 			 * have no brother or my brother also be red and
   1129   1.1   matt 			 * also have no children.  (black count == 0)
   1130   1.1   matt 			 */
   1131   1.1   matt 			KASSERT(!RB_CHILDLESS_P(self)
   1132   1.1   matt 				|| RB_SENTINEL_P(brother)
   1133   1.1   matt 				|| RB_RED_P(brother)
   1134   1.1   matt 				|| RB_CHILDLESS_P(brother));
   1135   1.1   matt 			/*
   1136   1.1   matt 			 * If I'm not childless, I must have two children
   1137   1.1   matt 			 * and they must be both be black.
   1138   1.1   matt 			 */
   1139   1.1   matt 			KASSERT(RB_CHILDLESS_P(self)
   1140   1.1   matt 				|| (RB_TWOCHILDREN_P(self)
   1141   1.1   matt 				    && RB_BLACK_P(self->rb_left)
   1142   1.1   matt 				    && RB_BLACK_P(self->rb_right)));
   1143   1.1   matt 			/*
   1144   1.1   matt 			 * If I'm not childless, thus I have black children,
   1145   1.1   matt 			 * then my brother must either be black or have two
   1146   1.1   matt 			 * black children.
   1147   1.1   matt 			 */
   1148   1.1   matt 			KASSERT(RB_CHILDLESS_P(self)
   1149   1.1   matt 				|| RB_BLACK_P(brother)
   1150   1.1   matt 				|| (RB_TWOCHILDREN_P(brother)
   1151   1.1   matt 				    && RB_BLACK_P(brother->rb_left)
   1152   1.1   matt 				    && RB_BLACK_P(brother->rb_right)));
   1153   1.1   matt 		} else {
   1154   1.1   matt 			/*
   1155   1.1   matt 			 * If I'm black and have one child, that child must
   1156   1.1   matt 			 * be red and childless.
   1157   1.1   matt 			 */
   1158   1.1   matt 			KASSERT(RB_CHILDLESS_P(self)
   1159   1.1   matt 				|| RB_TWOCHILDREN_P(self)
   1160   1.1   matt 				|| (!RB_LEFT_SENTINEL_P(self)
   1161   1.1   matt 				    && RB_RIGHT_SENTINEL_P(self)
   1162   1.1   matt 				    && RB_RED_P(self->rb_left)
   1163   1.1   matt 				    && RB_CHILDLESS_P(self->rb_left))
   1164   1.1   matt 				|| (!RB_RIGHT_SENTINEL_P(self)
   1165   1.1   matt 				    && RB_LEFT_SENTINEL_P(self)
   1166   1.1   matt 				    && RB_RED_P(self->rb_right)
   1167   1.1   matt 				    && RB_CHILDLESS_P(self->rb_right)));
   1168   1.1   matt 
   1169   1.1   matt 			/*
   1170   1.1   matt 			 * If I'm a childless black node and my parent is
   1171   1.1   matt 			 * black, my 2nd closet relative away from my parent
   1172   1.1   matt 			 * is either red or has a red parent or red children.
   1173   1.1   matt 			 */
   1174   1.1   matt 			if (!RB_ROOT_P(rbt, self)
   1175   1.1   matt 			    && RB_CHILDLESS_P(self)
   1176   1.1   matt 			    && RB_BLACK_P(RB_FATHER(self))) {
   1177   1.1   matt 				const unsigned int which = RB_POSITION(self);
   1178   1.1   matt 				const unsigned int other = which ^ RB_DIR_OTHER;
   1179   1.1   matt 				const struct rb_node *relative0, *relative;
   1180   1.1   matt 
   1181   1.1   matt 				relative0 = rb_tree_iterate_const(rbt,
   1182   1.1   matt 				    self, other);
   1183   1.1   matt 				KASSERT(relative0 != NULL);
   1184   1.1   matt 				relative = rb_tree_iterate_const(rbt,
   1185   1.1   matt 				    relative0, other);
   1186   1.1   matt 				KASSERT(relative != NULL);
   1187   1.1   matt 				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
   1188   1.1   matt #if 0
   1189   1.1   matt 				KASSERT(RB_RED_P(relative)
   1190   1.1   matt 					|| RB_RED_P(relative->rb_left)
   1191   1.1   matt 					|| RB_RED_P(relative->rb_right)
   1192   1.1   matt 					|| RB_RED_P(RB_FATHER(relative)));
   1193   1.1   matt #endif
   1194   1.1   matt 			}
   1195   1.1   matt 		}
   1196   1.1   matt 		/*
   1197   1.1   matt 		 * A grandparent's children must be real nodes and not
   1198   1.1   matt 		 * sentinels.  First check out grandparent.
   1199   1.1   matt 		 */
   1200   1.1   matt 		KASSERT(RB_ROOT_P(rbt, self)
   1201   1.1   matt 			|| RB_ROOT_P(rbt, RB_FATHER(self))
   1202   1.1   matt 			|| RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
   1203   1.1   matt 		/*
   1204   1.1   matt 		 * If we are have grandchildren on our left, then
   1205   1.1   matt 		 * we must have a child on our right.
   1206   1.1   matt 		 */
   1207   1.1   matt 		KASSERT(RB_LEFT_SENTINEL_P(self)
   1208   1.1   matt 			|| RB_CHILDLESS_P(self->rb_left)
   1209   1.1   matt 			|| !RB_RIGHT_SENTINEL_P(self));
   1210   1.1   matt 		/*
   1211   1.1   matt 		 * If we are have grandchildren on our right, then
   1212   1.1   matt 		 * we must have a child on our left.
   1213   1.1   matt 		 */
   1214   1.1   matt 		KASSERT(RB_RIGHT_SENTINEL_P(self)
   1215   1.1   matt 			|| RB_CHILDLESS_P(self->rb_right)
   1216   1.1   matt 			|| !RB_LEFT_SENTINEL_P(self));
   1217   1.1   matt 
   1218   1.1   matt 		/*
   1219   1.1   matt 		 * If we have a child on the left and it doesn't have two
   1220   1.1   matt 		 * children make sure we don't have great-great-grandchildren on
   1221   1.1   matt 		 * the right.
   1222   1.1   matt 		 */
   1223   1.1   matt 		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
   1224   1.1   matt 			|| RB_CHILDLESS_P(self->rb_right)
   1225   1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_left)
   1226   1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
   1227   1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
   1228   1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_right)
   1229   1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
   1230   1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
   1231   1.1   matt 
   1232   1.1   matt 		/*
   1233   1.1   matt 		 * If we have a child on the right and it doesn't have two
   1234   1.1   matt 		 * children make sure we don't have great-great-grandchildren on
   1235   1.1   matt 		 * the left.
   1236   1.1   matt 		 */
   1237   1.1   matt 		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
   1238   1.1   matt 			|| RB_CHILDLESS_P(self->rb_left)
   1239   1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_left)
   1240   1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
   1241   1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
   1242   1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_right)
   1243   1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
   1244   1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
   1245   1.1   matt 
   1246   1.1   matt 		/*
   1247   1.1   matt 		 * If we are fully interior node, then our predecessors and
   1248   1.1   matt 		 * successors must have no children in our direction.
   1249   1.1   matt 		 */
   1250   1.1   matt 		if (RB_TWOCHILDREN_P(self)) {
   1251   1.1   matt 			const struct rb_node *prev0;
   1252   1.1   matt 			const struct rb_node *next0;
   1253   1.1   matt 
   1254   1.1   matt 			prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
   1255   1.1   matt 			KASSERT(prev0 != NULL);
   1256   1.1   matt 			KASSERT(RB_RIGHT_SENTINEL_P(prev0));
   1257   1.1   matt 
   1258   1.1   matt 			next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
   1259   1.1   matt 			KASSERT(next0 != NULL);
   1260   1.1   matt 			KASSERT(RB_LEFT_SENTINEL_P(next0));
   1261   1.1   matt 		}
   1262   1.1   matt 	}
   1263   1.1   matt 
   1264   1.1   matt 	return true;
   1265   1.1   matt }
   1266   1.1   matt 
   1267   1.1   matt void
   1268   1.1   matt rb_tree_check(const struct rb_tree *rbt, bool red_check)
   1269   1.1   matt {
   1270   1.1   matt 	const struct rb_node *self;
   1271   1.1   matt 	const struct rb_node *prev;
   1272   1.1   matt #ifdef RBSTATS
   1273   1.1   matt 	unsigned int count = 0;
   1274   1.1   matt #endif
   1275   1.1   matt 
   1276   1.1   matt 	KASSERT(rbt->rbt_root != NULL);
   1277   1.1   matt 	KASSERT(RB_LEFT_P(rbt->rbt_root));
   1278   1.1   matt 
   1279   1.1   matt #if defined(RBSTATS) && !defined(RBSMALL)
   1280   1.1   matt 	KASSERT(rbt->rbt_count > 1
   1281   1.1   matt 	    || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
   1282   1.1   matt #endif
   1283   1.1   matt 
   1284   1.1   matt 	prev = NULL;
   1285   1.1   matt 	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
   1286   1.1   matt 		rb_tree_check_node(rbt, self, prev, false);
   1287   1.1   matt #ifdef RBSTATS
   1288   1.1   matt 		count++;
   1289   1.1   matt #endif
   1290   1.1   matt 	}
   1291   1.1   matt #ifdef RBSTATS
   1292   1.1   matt 	KASSERT(rbt->rbt_count == count);
   1293   1.1   matt #endif
   1294   1.1   matt 	if (red_check) {
   1295   1.1   matt 		KASSERT(RB_BLACK_P(rbt->rbt_root));
   1296   1.1   matt 		KASSERT(RB_SENTINEL_P(rbt->rbt_root)
   1297   1.1   matt 			|| rb_tree_count_black(rbt->rbt_root));
   1298   1.1   matt 
   1299   1.1   matt 		/*
   1300   1.1   matt 		 * The root must be black.
   1301   1.1   matt 		 * There can never be two adjacent red nodes.
   1302   1.1   matt 		 */
   1303   1.1   matt 		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
   1304   1.1   matt 			rb_tree_check_node(rbt, self, NULL, true);
   1305   1.1   matt 		}
   1306   1.1   matt 	}
   1307   1.1   matt }
   1308   1.1   matt #endif /* RBDEBUG */
   1309   1.1   matt 
   1310   1.1   matt #ifdef RBSTATS
   1311   1.1   matt static void
   1312   1.1   matt rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
   1313   1.1   matt 	size_t *depths, size_t depth)
   1314   1.1   matt {
   1315   1.1   matt 	if (RB_SENTINEL_P(self))
   1316   1.1   matt 		return;
   1317   1.1   matt 
   1318   1.1   matt 	if (RB_TWOCHILDREN_P(self)) {
   1319   1.1   matt 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
   1320   1.1   matt 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
   1321   1.1   matt 		return;
   1322   1.1   matt 	}
   1323   1.1   matt 	depths[depth]++;
   1324   1.1   matt 	if (!RB_LEFT_SENTINEL_P(self)) {
   1325   1.1   matt 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
   1326   1.1   matt 	}
   1327   1.1   matt 	if (!RB_RIGHT_SENTINEL_P(self)) {
   1328   1.1   matt 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
   1329   1.1   matt 	}
   1330   1.1   matt }
   1331   1.1   matt 
   1332   1.1   matt void
   1333   1.1   matt rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
   1334   1.1   matt {
   1335   1.1   matt 	rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
   1336   1.1   matt }
   1337   1.1   matt #endif /* RBSTATS */
   1338