Home | History | Annotate | Line # | Download | only in gen
rb.c revision 1.5
      1  1.5  joerg /* $NetBSD: rb.c,v 1.5 2010/04/28 17:23:33 joerg Exp $ */
      2  1.1   matt 
      3  1.1   matt /*-
      4  1.1   matt  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  1.1   matt  * All rights reserved.
      6  1.1   matt  *
      7  1.1   matt  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1   matt  * by Matt Thomas <matt (at) 3am-software.com>.
      9  1.1   matt  *
     10  1.1   matt  * Redistribution and use in source and binary forms, with or without
     11  1.1   matt  * modification, are permitted provided that the following conditions
     12  1.1   matt  * are met:
     13  1.1   matt  * 1. Redistributions of source code must retain the above copyright
     14  1.1   matt  *    notice, this list of conditions and the following disclaimer.
     15  1.1   matt  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1   matt  *    notice, this list of conditions and the following disclaimer in the
     17  1.1   matt  *    documentation and/or other materials provided with the distribution.
     18  1.1   matt  *
     19  1.1   matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.1   matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.1   matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.1   matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.1   matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.1   matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.1   matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.1   matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.1   matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.1   matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.1   matt  * POSSIBILITY OF SUCH DAMAGE.
     30  1.1   matt  */
     31  1.1   matt 
     32  1.1   matt #if !defined(_KERNEL) && !defined(_STANDALONE)
     33  1.1   matt #include <sys/types.h>
     34  1.1   matt #include <stddef.h>
     35  1.1   matt #include <assert.h>
     36  1.1   matt #include <stdbool.h>
     37  1.1   matt #ifdef RBDEBUG
     38  1.1   matt #define	KASSERT(s)	assert(s)
     39  1.1   matt #else
     40  1.3   matt #define KASSERT(s)	do { } while (/*CONSTCOND*/ 0)
     41  1.1   matt #endif
     42  1.1   matt #else
     43  1.1   matt #include <lib/libkern/libkern.h>
     44  1.1   matt #endif
     45  1.1   matt 
     46  1.1   matt #ifdef _LIBC
     47  1.1   matt __weak_alias(rb_tree_init, _rb_tree_init)
     48  1.1   matt __weak_alias(rb_tree_find_node, _rb_tree_find_node)
     49  1.1   matt __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
     50  1.1   matt __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
     51  1.1   matt __weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
     52  1.1   matt __weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
     53  1.1   matt __weak_alias(rb_tree_iterate, _rb_tree_iterate)
     54  1.1   matt #ifdef RBDEBUG
     55  1.1   matt __weak_alias(rb_tree_check, _rb_tree_check)
     56  1.1   matt __weak_alias(rb_tree_depths, _rb_tree_depths)
     57  1.1   matt #endif
     58  1.1   matt 
     59  1.1   matt #define	rb_tree_init		_rb_tree_init
     60  1.1   matt #define	rb_tree_find_node	_rb_tree_find_node
     61  1.1   matt #define	rb_tree_find_node_geq	_rb_tree_find_node_geq
     62  1.1   matt #define	rb_tree_find_node_leq	_rb_tree_find_node_leq
     63  1.1   matt #define	rb_tree_insert_node	_rb_tree_insert_node
     64  1.1   matt #define	rb_tree_remove_node	_rb_tree_remove_node
     65  1.1   matt #define	rb_tree_iterate		_rb_tree_iterate
     66  1.1   matt #ifdef RBDEBUG
     67  1.1   matt #define	rb_tree_check		_rb_tree_check
     68  1.1   matt #define	rb_tree_depths		_rb_tree_depths
     69  1.1   matt #endif
     70  1.1   matt #endif
     71  1.1   matt 
     72  1.1   matt #ifdef RBTEST
     73  1.1   matt #include "rb.h"
     74  1.1   matt #else
     75  1.1   matt #include <sys/rb.h>
     76  1.1   matt #endif
     77  1.1   matt 
     78  1.1   matt static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
     79  1.1   matt static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
     80  1.1   matt 	unsigned int);
     81  1.1   matt #ifdef RBDEBUG
     82  1.1   matt static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
     83  1.1   matt 	const struct rb_node *, const unsigned int);
     84  1.1   matt static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
     85  1.1   matt 	const struct rb_node *, bool);
     86  1.1   matt #else
     87  1.1   matt #define	rb_tree_check_node(a, b, c, d)	true
     88  1.1   matt #endif
     89  1.1   matt 
     90  1.1   matt #define	RB_SENTINEL_NODE	NULL
     91  1.1   matt 
     92  1.1   matt void
     93  1.1   matt rb_tree_init(struct rb_tree *rbt, const struct rb_tree_ops *ops)
     94  1.1   matt {
     95  1.1   matt 	rbt->rbt_ops = ops;
     96  1.1   matt 	*((const struct rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
     97  1.1   matt 	RB_TAILQ_INIT(&rbt->rbt_nodes);
     98  1.1   matt #ifndef RBSMALL
     99  1.1   matt 	rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;	/* minimum node */
    100  1.1   matt 	rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;	/* maximum node */
    101  1.1   matt #endif
    102  1.1   matt #ifdef RBSTATS
    103  1.1   matt 	rbt->rbt_count = 0;
    104  1.1   matt 	rbt->rbt_insertions = 0;
    105  1.1   matt 	rbt->rbt_removals = 0;
    106  1.1   matt 	rbt->rbt_insertion_rebalance_calls = 0;
    107  1.1   matt 	rbt->rbt_insertion_rebalance_passes = 0;
    108  1.1   matt 	rbt->rbt_removal_rebalance_calls = 0;
    109  1.1   matt 	rbt->rbt_removal_rebalance_passes = 0;
    110  1.1   matt #endif
    111  1.1   matt }
    112  1.1   matt 
    113  1.1   matt struct rb_node *
    114  1.1   matt rb_tree_find_node(struct rb_tree *rbt, const void *key)
    115  1.1   matt {
    116  1.2   matt 	rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
    117  1.1   matt 	struct rb_node *parent = rbt->rbt_root;
    118  1.1   matt 
    119  1.1   matt 	while (!RB_SENTINEL_P(parent)) {
    120  1.1   matt 		const signed int diff = (*compare_key)(parent, key);
    121  1.1   matt 		if (diff == 0)
    122  1.1   matt 			return parent;
    123  1.1   matt 		parent = parent->rb_nodes[diff > 0];
    124  1.1   matt 	}
    125  1.1   matt 
    126  1.1   matt 	return NULL;
    127  1.1   matt }
    128  1.1   matt 
    129  1.1   matt struct rb_node *
    130  1.1   matt rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
    131  1.1   matt {
    132  1.2   matt 	rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
    133  1.1   matt 	struct rb_node *parent = rbt->rbt_root;
    134  1.1   matt 	struct rb_node *last = NULL;
    135  1.1   matt 
    136  1.1   matt 	while (!RB_SENTINEL_P(parent)) {
    137  1.1   matt 		const signed int diff = (*compare_key)(parent, key);
    138  1.1   matt 		if (diff == 0)
    139  1.1   matt 			return parent;
    140  1.1   matt 		if (diff < 0)
    141  1.1   matt 			last = parent;
    142  1.1   matt 		parent = parent->rb_nodes[diff > 0];
    143  1.1   matt 	}
    144  1.1   matt 
    145  1.1   matt 	return last;
    146  1.1   matt }
    147  1.1   matt 
    148  1.1   matt struct rb_node *
    149  1.1   matt rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
    150  1.1   matt {
    151  1.2   matt 	rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
    152  1.1   matt 	struct rb_node *parent = rbt->rbt_root;
    153  1.1   matt 	struct rb_node *last = NULL;
    154  1.1   matt 
    155  1.1   matt 	while (!RB_SENTINEL_P(parent)) {
    156  1.1   matt 		const signed int diff = (*compare_key)(parent, key);
    157  1.1   matt 		if (diff == 0)
    158  1.1   matt 			return parent;
    159  1.1   matt 		if (diff > 0)
    160  1.1   matt 			last = parent;
    161  1.1   matt 		parent = parent->rb_nodes[diff > 0];
    162  1.1   matt 	}
    163  1.1   matt 
    164  1.1   matt 	return last;
    165  1.1   matt }
    166  1.1   matt 
    167  1.1   matt bool
    169  1.1   matt rb_tree_insert_node(struct rb_tree *rbt, struct rb_node *self)
    170  1.2   matt {
    171  1.1   matt 	rbto_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
    172  1.1   matt 	struct rb_node *parent, *tmp;
    173  1.1   matt 	unsigned int position;
    174  1.1   matt 	bool rebalance;
    175  1.1   matt 
    176  1.1   matt 	RBSTAT_INC(rbt->rbt_insertions);
    177  1.1   matt 
    178  1.1   matt 	tmp = rbt->rbt_root;
    179  1.1   matt 	/*
    180  1.1   matt 	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
    181  1.1   matt 	 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
    182  1.1   matt 	 * avoid a lot of tests for root and know that even at root,
    183  1.1   matt 	 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
    184  1.1   matt 	 * update rbt->rbt_root.
    185  1.3   matt 	 */
    186  1.1   matt 	parent = (struct rb_node *)(void *)&rbt->rbt_root;
    187  1.1   matt 	position = RB_DIR_LEFT;
    188  1.1   matt 
    189  1.1   matt 	/*
    190  1.1   matt 	 * Find out where to place this new leaf.
    191  1.1   matt 	 */
    192  1.1   matt 	while (!RB_SENTINEL_P(tmp)) {
    193  1.1   matt 		const signed int diff = (*compare_nodes)(tmp, self);
    194  1.1   matt 		if (__predict_false(diff == 0)) {
    195  1.1   matt 			/*
    196  1.1   matt 			 * Node already exists; don't insert.
    197  1.1   matt 			 */
    198  1.1   matt 			return false;
    199  1.1   matt 		}
    200  1.1   matt 		parent = tmp;
    201  1.1   matt 		position = (diff > 0);
    202  1.1   matt 		tmp = parent->rb_nodes[position];
    203  1.1   matt 	}
    204  1.1   matt 
    205  1.1   matt #ifdef RBDEBUG
    206  1.1   matt 	{
    207  1.1   matt 		struct rb_node *prev = NULL, *next = NULL;
    208  1.1   matt 
    209  1.1   matt 		if (position == RB_DIR_RIGHT)
    210  1.1   matt 			prev = parent;
    211  1.1   matt 		else if (tmp != rbt->rbt_root)
    212  1.1   matt 			next = parent;
    213  1.1   matt 
    214  1.1   matt 		/*
    215  1.1   matt 		 * Verify our sequential position
    216  1.1   matt 		 */
    217  1.1   matt 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
    218  1.1   matt 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
    219  1.1   matt 		if (prev != NULL && next == NULL)
    220  1.1   matt 			next = TAILQ_NEXT(prev, rb_link);
    221  1.1   matt 		if (prev == NULL && next != NULL)
    222  1.1   matt 			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
    223  1.1   matt 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
    224  1.1   matt 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
    225  1.1   matt 		KASSERT(prev == NULL || (*compare_nodes)(prev, self) > 0);
    226  1.1   matt 		KASSERT(next == NULL || (*compare_nodes)(self, next) > 0);
    227  1.1   matt 	}
    228  1.1   matt #endif
    229  1.1   matt 
    230  1.1   matt 	/*
    231  1.1   matt 	 * Initialize the node and insert as a leaf into the tree.
    232  1.1   matt 	 */
    233  1.1   matt 	RB_SET_FATHER(self, parent);
    234  1.3   matt 	RB_SET_POSITION(self, position);
    235  1.1   matt 	if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
    236  1.1   matt 		RB_MARK_BLACK(self);		/* root is always black */
    237  1.1   matt #ifndef RBSMALL
    238  1.1   matt 		rbt->rbt_minmax[RB_DIR_LEFT] = self;
    239  1.1   matt 		rbt->rbt_minmax[RB_DIR_RIGHT] = self;
    240  1.1   matt #endif
    241  1.1   matt 		rebalance = false;
    242  1.1   matt 	} else {
    243  1.1   matt 		KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
    244  1.1   matt #ifndef RBSMALL
    245  1.1   matt 		/*
    246  1.1   matt 		 * Keep track of the minimum and maximum nodes.  If our
    247  1.1   matt 		 * parent is a minmax node and we on their min/max side,
    248  1.1   matt 		 * we must be the new min/max node.
    249  1.1   matt 		 */
    250  1.1   matt 		if (parent == rbt->rbt_minmax[position])
    251  1.1   matt 			rbt->rbt_minmax[position] = self;
    252  1.1   matt #endif /* !RBSMALL */
    253  1.1   matt 		/*
    254  1.1   matt 		 * All new nodes are colored red.  We only need to rebalance
    255  1.1   matt 		 * if our parent is also red.
    256  1.1   matt 		 */
    257  1.1   matt 		RB_MARK_RED(self);
    258  1.1   matt 		rebalance = RB_RED_P(parent);
    259  1.1   matt 	}
    260  1.1   matt 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
    261  1.1   matt 	self->rb_left = parent->rb_nodes[position];
    262  1.1   matt 	self->rb_right = parent->rb_nodes[position];
    263  1.1   matt 	parent->rb_nodes[position] = self;
    264  1.1   matt 	KASSERT(RB_CHILDLESS_P(self));
    265  1.1   matt 
    266  1.1   matt 	/*
    267  1.1   matt 	 * Insert the new node into a sorted list for easy sequential access
    268  1.1   matt 	 */
    269  1.1   matt 	RBSTAT_INC(rbt->rbt_count);
    270  1.1   matt #ifdef RBDEBUG
    271  1.1   matt 	if (RB_ROOT_P(rbt, self)) {
    272  1.1   matt 		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
    273  1.1   matt 	} else if (position == RB_DIR_LEFT) {
    274  1.1   matt 		KASSERT((*compare_nodes)(self, RB_FATHER(self)) > 0);
    275  1.1   matt 		RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
    276  1.1   matt 	} else {
    277  1.1   matt 		KASSERT((*compare_nodes)(RB_FATHER(self), self) > 0);
    278  1.1   matt 		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
    279  1.1   matt 		    self, rb_link);
    280  1.1   matt 	}
    281  1.1   matt #endif
    282  1.1   matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
    283  1.1   matt 
    284  1.1   matt 	/*
    285  1.1   matt 	 * Rebalance tree after insertion
    286  1.1   matt 	 */
    287  1.1   matt 	if (rebalance) {
    288  1.1   matt 		rb_tree_insert_rebalance(rbt, self);
    289  1.1   matt 		KASSERT(rb_tree_check_node(rbt, self, NULL, true));
    290  1.1   matt 	}
    291  1.1   matt 
    292  1.1   matt 	return true;
    293  1.1   matt }
    294  1.1   matt 
    295  1.1   matt /*
    297  1.1   matt  * Swap the location and colors of 'self' and its child @ which.  The child
    298  1.1   matt  * can not be a sentinel node.  This is our rotation function.  However,
    299  1.1   matt  * since it preserves coloring, it great simplifies both insertion and
    300  1.1   matt  * removal since rotation almost always involves the exchanging of colors
    301  1.3   matt  * as a separate step.
    302  1.1   matt  */
    303  1.1   matt /*ARGSUSED*/
    304  1.1   matt static void
    305  1.1   matt rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
    306  1.1   matt 	const unsigned int which)
    307  1.1   matt {
    308  1.1   matt 	const unsigned int other = which ^ RB_DIR_OTHER;
    309  1.1   matt 	struct rb_node * const grandpa = RB_FATHER(old_father);
    310  1.1   matt 	struct rb_node * const old_child = old_father->rb_nodes[which];
    311  1.1   matt 	struct rb_node * const new_father = old_child;
    312  1.1   matt 	struct rb_node * const new_child = old_father;
    313  1.1   matt 
    314  1.1   matt 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    315  1.1   matt 
    316  1.1   matt 	KASSERT(!RB_SENTINEL_P(old_child));
    317  1.1   matt 	KASSERT(RB_FATHER(old_child) == old_father);
    318  1.1   matt 
    319  1.1   matt 	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
    320  1.1   matt 	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
    321  1.1   matt 	KASSERT(RB_ROOT_P(rbt, old_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
    322  1.1   matt 
    323  1.1   matt 	/*
    324  1.1   matt 	 * Exchange descendant linkages.
    325  1.1   matt 	 */
    326  1.1   matt 	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
    327  1.1   matt 	new_child->rb_nodes[which] = old_child->rb_nodes[other];
    328  1.1   matt 	new_father->rb_nodes[other] = new_child;
    329  1.1   matt 
    330  1.1   matt 	/*
    331  1.1   matt 	 * Update ancestor linkages
    332  1.1   matt 	 */
    333  1.1   matt 	RB_SET_FATHER(new_father, grandpa);
    334  1.1   matt 	RB_SET_FATHER(new_child, new_father);
    335  1.1   matt 
    336  1.1   matt 	/*
    337  1.1   matt 	 * Exchange properties between new_father and new_child.  The only
    338  1.1   matt 	 * change is that new_child's position is now on the other side.
    339  1.1   matt 	 */
    340  1.1   matt #if 0
    341  1.1   matt 	{
    342  1.1   matt 		struct rb_node tmp;
    343  1.1   matt 		tmp.rb_info = 0;
    344  1.1   matt 		RB_COPY_PROPERTIES(&tmp, old_child);
    345  1.1   matt 		RB_COPY_PROPERTIES(new_father, old_father);
    346  1.1   matt 		RB_COPY_PROPERTIES(new_child, &tmp);
    347  1.1   matt 	}
    348  1.1   matt #else
    349  1.1   matt 	RB_SWAP_PROPERTIES(new_father, new_child);
    350  1.1   matt #endif
    351  1.1   matt 	RB_SET_POSITION(new_child, other);
    352  1.1   matt 
    353  1.1   matt 	/*
    354  1.1   matt 	 * Make sure to reparent the new child to ourself.
    355  1.1   matt 	 */
    356  1.1   matt 	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
    357  1.1   matt 		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
    358  1.1   matt 		RB_SET_POSITION(new_child->rb_nodes[which], which);
    359  1.1   matt 	}
    360  1.1   matt 
    361  1.1   matt 	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
    362  1.1   matt 	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
    363  1.1   matt 	KASSERT(RB_ROOT_P(rbt, new_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
    364  1.1   matt }
    365  1.1   matt 
    366  1.1   matt static void
    368  1.1   matt rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
    369  1.1   matt {
    370  1.1   matt 	struct rb_node * father = RB_FATHER(self);
    371  1.1   matt 	struct rb_node * grandpa = RB_FATHER(father);
    372  1.1   matt 	struct rb_node * uncle;
    373  1.1   matt 	unsigned int which;
    374  1.1   matt 	unsigned int other;
    375  1.1   matt 
    376  1.1   matt 	KASSERT(!RB_ROOT_P(rbt, self));
    377  1.1   matt 	KASSERT(RB_RED_P(self));
    378  1.1   matt 	KASSERT(RB_RED_P(father));
    379  1.1   matt 	RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
    380  1.1   matt 
    381  1.1   matt 	for (;;) {
    382  1.1   matt 		KASSERT(!RB_SENTINEL_P(self));
    383  1.1   matt 
    384  1.1   matt 		KASSERT(RB_RED_P(self));
    385  1.1   matt 		KASSERT(RB_RED_P(father));
    386  1.1   matt 		/*
    387  1.1   matt 		 * We are red and our parent is red, therefore we must have a
    388  1.1   matt 		 * grandfather and he must be black.
    389  1.1   matt 		 */
    390  1.1   matt 		grandpa = RB_FATHER(father);
    391  1.1   matt 		KASSERT(RB_BLACK_P(grandpa));
    392  1.1   matt 		KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
    393  1.1   matt 		which = (father == grandpa->rb_right);
    394  1.1   matt 		other = which ^ RB_DIR_OTHER;
    395  1.1   matt 		uncle = grandpa->rb_nodes[other];
    396  1.1   matt 
    397  1.1   matt 		if (RB_BLACK_P(uncle))
    398  1.1   matt 			break;
    399  1.1   matt 
    400  1.1   matt 		RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
    401  1.1   matt 		/*
    402  1.1   matt 		 * Case 1: our uncle is red
    403  1.1   matt 		 *   Simply invert the colors of our parent and
    404  1.1   matt 		 *   uncle and make our grandparent red.  And
    405  1.1   matt 		 *   then solve the problem up at his level.
    406  1.1   matt 		 */
    407  1.1   matt 		RB_MARK_BLACK(uncle);
    408  1.1   matt 		RB_MARK_BLACK(father);
    409  1.1   matt 		if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
    410  1.1   matt 			/*
    411  1.1   matt 			 * If our grandpa is root, don't bother
    412  1.1   matt 			 * setting him to red, just return.
    413  1.1   matt 			 */
    414  1.1   matt 			KASSERT(RB_BLACK_P(grandpa));
    415  1.1   matt 			return;
    416  1.1   matt 		}
    417  1.1   matt 		RB_MARK_RED(grandpa);
    418  1.1   matt 		self = grandpa;
    419  1.1   matt 		father = RB_FATHER(self);
    420  1.1   matt 		KASSERT(RB_RED_P(self));
    421  1.1   matt 		if (RB_BLACK_P(father)) {
    422  1.1   matt 			/*
    423  1.1   matt 			 * If our greatgrandpa is black, we're done.
    424  1.1   matt 			 */
    425  1.1   matt 			KASSERT(RB_BLACK_P(rbt->rbt_root));
    426  1.1   matt 			return;
    427  1.1   matt 		}
    428  1.1   matt 	}
    429  1.1   matt 
    430  1.1   matt 	KASSERT(!RB_ROOT_P(rbt, self));
    431  1.1   matt 	KASSERT(RB_RED_P(self));
    432  1.1   matt 	KASSERT(RB_RED_P(father));
    433  1.1   matt 	KASSERT(RB_BLACK_P(uncle));
    434  1.1   matt 	KASSERT(RB_BLACK_P(grandpa));
    435  1.1   matt 	/*
    436  1.1   matt 	 * Case 2&3: our uncle is black.
    437  1.1   matt 	 */
    438  1.1   matt 	if (self == father->rb_nodes[other]) {
    439  1.1   matt 		/*
    440  1.1   matt 		 * Case 2: we are on the same side as our uncle
    441  1.1   matt 		 *   Swap ourselves with our parent so this case
    442  1.1   matt 		 *   becomes case 3.  Basically our parent becomes our
    443  1.1   matt 		 *   child.
    444  1.1   matt 		 */
    445  1.1   matt 		rb_tree_reparent_nodes(rbt, father, other);
    446  1.1   matt 		KASSERT(RB_FATHER(father) == self);
    447  1.1   matt 		KASSERT(self->rb_nodes[which] == father);
    448  1.1   matt 		KASSERT(RB_FATHER(self) == grandpa);
    449  1.1   matt 		self = father;
    450  1.1   matt 		father = RB_FATHER(self);
    451  1.1   matt 	}
    452  1.1   matt 	KASSERT(RB_RED_P(self) && RB_RED_P(father));
    453  1.1   matt 	KASSERT(grandpa->rb_nodes[which] == father);
    454  1.1   matt 	/*
    455  1.1   matt 	 * Case 3: we are opposite a child of a black uncle.
    456  1.1   matt 	 *   Swap our parent and grandparent.  Since our grandfather
    457  1.1   matt 	 *   is black, our father will become black and our new sibling
    458  1.1   matt 	 *   (former grandparent) will become red.
    459  1.1   matt 	 */
    460  1.1   matt 	rb_tree_reparent_nodes(rbt, grandpa, which);
    461  1.1   matt 	KASSERT(RB_FATHER(self) == father);
    462  1.1   matt 	KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
    463  1.1   matt 	KASSERT(RB_RED_P(self));
    464  1.1   matt 	KASSERT(RB_BLACK_P(father));
    465  1.1   matt 	KASSERT(RB_RED_P(grandpa));
    466  1.1   matt 
    467  1.1   matt 	/*
    468  1.1   matt 	 * Final step: Set the root to black.
    469  1.1   matt 	 */
    470  1.1   matt 	RB_MARK_BLACK(rbt->rbt_root);
    471  1.1   matt }
    472  1.1   matt 
    473  1.1   matt static void
    475  1.5  joerg rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
    476  1.1   matt {
    477  1.5  joerg 	const unsigned int which = RB_POSITION(self);
    478  1.1   matt 	struct rb_node *father = RB_FATHER(self);
    479  1.1   matt #ifndef RBSMALL
    480  1.1   matt 	const bool was_root = RB_ROOT_P(rbt, self);
    481  1.1   matt #endif
    482  1.1   matt 
    483  1.1   matt 	KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
    484  1.1   matt 	KASSERT(!rebalance || RB_BLACK_P(self));
    485  1.1   matt 	KASSERT(RB_CHILDLESS_P(self));
    486  1.1   matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    487  1.1   matt 
    488  1.1   matt 	/*
    489  1.1   matt 	 * Since we are childless, we know that self->rb_left is pointing
    490  1.1   matt 	 * to the sentinel node.
    491  1.1   matt 	 */
    492  1.1   matt 	father->rb_nodes[which] = self->rb_left;
    493  1.1   matt 
    494  1.1   matt 	/*
    495  1.1   matt 	 * Remove ourselves from the node list, decrement the count,
    496  1.1   matt 	 * and update min/max.
    497  1.1   matt 	 */
    498  1.1   matt 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    499  1.1   matt 	RBSTAT_DEC(rbt->rbt_count);
    500  1.1   matt #ifndef RBSMALL
    501  1.1   matt 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
    502  1.1   matt 		rbt->rbt_minmax[RB_POSITION(self)] = father;
    503  1.1   matt 		/*
    504  1.1   matt 		 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
    505  1.1   matt 		 * updated automatically, but we also need to update
    506  1.1   matt 		 * rbt->rbt_minmax[RB_DIR_RIGHT];
    507  1.1   matt 		 */
    508  1.1   matt 		if (__predict_false(was_root)) {
    509  1.1   matt 			rbt->rbt_minmax[RB_DIR_RIGHT] = father;
    510  1.1   matt 		}
    511  1.1   matt 	}
    512  1.1   matt 	RB_SET_FATHER(self, NULL);
    513  1.1   matt #endif
    514  1.1   matt 
    515  1.1   matt 	/*
    516  1.1   matt 	 * Rebalance if requested.
    517  1.1   matt 	 */
    518  1.1   matt 	if (rebalance)
    519  1.1   matt 		rb_tree_removal_rebalance(rbt, father, which);
    520  1.1   matt 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
    521  1.1   matt }
    522  1.1   matt 
    523  1.1   matt /*
    525  1.1   matt  * When deleting an interior node
    526  1.1   matt  */
    527  1.1   matt static void
    528  1.1   matt rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
    529  1.1   matt 	struct rb_node *standin)
    530  1.1   matt {
    531  1.1   matt 	const unsigned int standin_which = RB_POSITION(standin);
    532  1.1   matt 	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
    533  1.1   matt 	struct rb_node *standin_son;
    534  1.1   matt 	struct rb_node *standin_father = RB_FATHER(standin);
    535  1.1   matt 	bool rebalance = RB_BLACK_P(standin);
    536  1.1   matt 
    537  1.1   matt 	if (standin_father == self) {
    538  1.1   matt 		/*
    539  1.1   matt 		 * As a child of self, any childen would be opposite of
    540  1.1   matt 		 * our parent.
    541  1.1   matt 		 */
    542  1.1   matt 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
    543  1.1   matt 		standin_son = standin->rb_nodes[standin_which];
    544  1.1   matt 	} else {
    545  1.1   matt 		/*
    546  1.1   matt 		 * Since we aren't a child of self, any childen would be
    547  1.1   matt 		 * on the same side as our parent.
    548  1.1   matt 		 */
    549  1.1   matt 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
    550  1.1   matt 		standin_son = standin->rb_nodes[standin_other];
    551  1.1   matt 	}
    552  1.1   matt 
    553  1.1   matt 	/*
    554  1.1   matt 	 * the node we are removing must have two children.
    555  1.1   matt 	 */
    556  1.1   matt 	KASSERT(RB_TWOCHILDREN_P(self));
    557  1.1   matt 	/*
    558  1.1   matt 	 * If standin has a child, it must be red.
    559  1.1   matt 	 */
    560  1.1   matt 	KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
    561  1.1   matt 
    562  1.1   matt 	/*
    563  1.1   matt 	 * Verify things are sane.
    564  1.1   matt 	 */
    565  1.1   matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    566  1.1   matt 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
    567  1.1   matt 
    568  1.1   matt 	if (__predict_false(RB_RED_P(standin_son))) {
    569  1.1   matt 		/*
    570  1.1   matt 		 * We know we have a red child so if we flip it to black
    571  1.1   matt 		 * we don't have to rebalance.
    572  1.1   matt 		 */
    573  1.1   matt 		KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
    574  1.1   matt 		RB_MARK_BLACK(standin_son);
    575  1.1   matt 		rebalance = false;
    576  1.1   matt 
    577  1.1   matt 		if (standin_father == self) {
    578  1.1   matt 			KASSERT(RB_POSITION(standin_son) == standin_which);
    579  1.1   matt 		} else {
    580  1.1   matt 			KASSERT(RB_POSITION(standin_son) == standin_other);
    581  1.1   matt 			/*
    582  1.1   matt 			 * Change the son's parentage to point to his grandpa.
    583  1.1   matt 			 */
    584  1.1   matt 			RB_SET_FATHER(standin_son, standin_father);
    585  1.1   matt 			RB_SET_POSITION(standin_son, standin_which);
    586  1.1   matt 		}
    587  1.1   matt 	}
    588  1.1   matt 
    589  1.1   matt 	if (standin_father == self) {
    590  1.1   matt 		/*
    591  1.1   matt 		 * If we are about to delete the standin's father, then when
    592  1.1   matt 		 * we call rebalance, we need to use ourselves as our father.
    593  1.1   matt 		 * Otherwise remember our original father.  Also, sincef we are
    594  1.1   matt 		 * our standin's father we only need to reparent the standin's
    595  1.1   matt 		 * brother.
    596  1.1   matt 		 *
    597  1.1   matt 		 * |    R      -->     S    |
    598  1.1   matt 		 * |  Q   S    -->   Q   T  |
    599  1.1   matt 		 * |        t  -->          |
    600  1.1   matt 		 */
    601  1.1   matt 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
    602  1.1   matt 		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
    603  1.1   matt 		KASSERT(self->rb_nodes[standin_which] == standin);
    604  1.1   matt 		/*
    605  1.1   matt 		 * Have our son/standin adopt his brother as his new son.
    606  1.1   matt 		 */
    607  1.1   matt 		standin_father = standin;
    608  1.1   matt 	} else {
    609  1.1   matt 		/*
    610  1.1   matt 		 * |    R          -->    S       .  |
    611  1.1   matt 		 * |   / \  |   T  -->   / \  |  /   |
    612  1.1   matt 		 * |  ..... | S    -->  ..... | T    |
    613  1.1   matt 		 *
    614  1.1   matt 		 * Sever standin's connection to his father.
    615  1.1   matt 		 */
    616  1.1   matt 		standin_father->rb_nodes[standin_which] = standin_son;
    617  1.1   matt 		/*
    618  1.1   matt 		 * Adopt the far son.
    619  1.1   matt 		 */
    620  1.1   matt 		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
    621  1.1   matt 		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
    622  1.1   matt 		KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
    623  1.1   matt 		/*
    624  1.1   matt 		 * Use standin_other because we need to preserve standin_which
    625  1.1   matt 		 * for the removal_rebalance.
    626  1.1   matt 		 */
    627  1.1   matt 		standin_other = standin_which;
    628  1.1   matt 	}
    629  1.1   matt 
    630  1.1   matt 	/*
    631  1.1   matt 	 * Move the only remaining son to our standin.  If our standin is our
    632  1.1   matt 	 * son, this will be the only son needed to be moved.
    633  1.1   matt 	 */
    634  1.1   matt 	KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
    635  1.1   matt 	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
    636  1.1   matt 	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
    637  1.1   matt 
    638  1.1   matt 	/*
    639  1.1   matt 	 * Now copy the result of self to standin and then replace
    640  1.1   matt 	 * self with standin in the tree.
    641  1.1   matt 	 */
    642  1.1   matt 	RB_COPY_PROPERTIES(standin, self);
    643  1.1   matt 	RB_SET_FATHER(standin, RB_FATHER(self));
    644  1.1   matt 	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
    645  1.1   matt 
    646  1.1   matt 	/*
    647  1.1   matt 	 * Remove ourselves from the node list, decrement the count,
    648  1.1   matt 	 * and update min/max.
    649  1.1   matt 	 */
    650  1.1   matt 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    651  1.1   matt 	RBSTAT_DEC(rbt->rbt_count);
    652  1.1   matt #ifndef RBSMALL
    653  1.1   matt 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
    654  1.1   matt 		rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
    655  1.1   matt 	RB_SET_FATHER(self, NULL);
    656  1.1   matt #endif
    657  1.1   matt 
    658  1.1   matt 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
    659  1.1   matt 	KASSERT(RB_FATHER_SENTINEL_P(standin)
    660  1.1   matt 		|| rb_tree_check_node(rbt, standin_father, NULL, false));
    661  1.1   matt 	KASSERT(RB_LEFT_SENTINEL_P(standin)
    662  1.1   matt 		|| rb_tree_check_node(rbt, standin->rb_left, NULL, false));
    663  1.1   matt 	KASSERT(RB_RIGHT_SENTINEL_P(standin)
    664  1.1   matt 		|| rb_tree_check_node(rbt, standin->rb_right, NULL, false));
    665  1.1   matt 
    666  1.1   matt 	if (!rebalance)
    667  1.1   matt 		return;
    668  1.1   matt 
    669  1.1   matt 	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
    670  1.1   matt 	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
    671  1.1   matt }
    672  1.1   matt 
    673  1.1   matt /*
    674  1.1   matt  * We could do this by doing
    675  1.1   matt  *	rb_tree_node_swap(rbt, self, which);
    676  1.1   matt  *	rb_tree_prune_node(rbt, self, false);
    677  1.1   matt  *
    678  1.1   matt  * But it's more efficient to just evalate and recolor the child.
    679  1.1   matt  */
    680  1.1   matt static void
    681  1.5  joerg rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
    682  1.1   matt 	unsigned int which)
    683  1.5  joerg {
    684  1.1   matt 	struct rb_node *father = RB_FATHER(self);
    685  1.1   matt 	struct rb_node *son = self->rb_nodes[which];
    686  1.1   matt #ifndef RBSMALL
    687  1.1   matt 	const bool was_root = RB_ROOT_P(rbt, self);
    688  1.1   matt #endif
    689  1.1   matt 
    690  1.1   matt 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    691  1.1   matt 	KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
    692  1.1   matt 	KASSERT(!RB_TWOCHILDREN_P(son));
    693  1.1   matt 	KASSERT(RB_CHILDLESS_P(son));
    694  1.1   matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    695  1.1   matt 	KASSERT(rb_tree_check_node(rbt, son, NULL, false));
    696  1.1   matt 
    697  1.1   matt 	/*
    698  1.1   matt 	 * Remove ourselves from the tree and give our former child our
    699  1.1   matt 	 * properties (position, color, root).
    700  1.1   matt 	 */
    701  1.1   matt 	RB_COPY_PROPERTIES(son, self);
    702  1.1   matt 	father->rb_nodes[RB_POSITION(son)] = son;
    703  1.1   matt 	RB_SET_FATHER(son, father);
    704  1.1   matt 
    705  1.1   matt 	/*
    706  1.1   matt 	 * Remove ourselves from the node list, decrement the count,
    707  1.1   matt 	 * and update minmax.
    708  1.1   matt 	 */
    709  1.1   matt 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    710  1.1   matt 	RBSTAT_DEC(rbt->rbt_count);
    711  1.1   matt #ifndef RBSMALL
    712  1.1   matt 	if (__predict_false(was_root)) {
    713  1.1   matt 		KASSERT(rbt->rbt_minmax[which] == son);
    714  1.1   matt 		rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
    715  1.1   matt 	} else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
    716  1.1   matt 		rbt->rbt_minmax[RB_POSITION(self)] = son;
    717  1.1   matt 	}
    718  1.1   matt 	RB_SET_FATHER(self, NULL);
    719  1.1   matt #endif
    720  1.1   matt 
    721  1.1   matt 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
    722  1.1   matt 	KASSERT(rb_tree_check_node(rbt, son, NULL, true));
    723  1.1   matt }
    724  1.1   matt /*
    725  1.1   matt  *
    726  1.1   matt  */
    727  1.1   matt void
    728  1.1   matt rb_tree_remove_node(struct rb_tree *rbt, struct rb_node *self)
    729  1.1   matt {
    730  1.1   matt 	struct rb_node *standin;
    731  1.1   matt 	unsigned int which;
    732  1.1   matt 
    733  1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
    734  1.1   matt 	RBSTAT_INC(rbt->rbt_removals);
    735  1.1   matt 
    736  1.1   matt 	/*
    737  1.1   matt 	 * In the following diagrams, we (the node to be removed) are S.  Red
    738  1.1   matt 	 * nodes are lowercase.  T could be either red or black.
    739  1.1   matt 	 *
    740  1.1   matt 	 * Remember the major axiom of the red-black tree: the number of
    741  1.1   matt 	 * black nodes from the root to each leaf is constant across all
    742  1.1   matt 	 * leaves, only the number of red nodes varies.
    743  1.1   matt 	 *
    744  1.1   matt 	 * Thus removing a red leaf doesn't require any other changes to a
    745  1.1   matt 	 * red-black tree.  So if we must remove a node, attempt to rearrange
    746  1.1   matt 	 * the tree so we can remove a red node.
    747  1.1   matt 	 *
    748  1.1   matt 	 * The simpliest case is a childless red node or a childless root node:
    749  1.1   matt 	 *
    750  1.1   matt 	 * |    T  -->    T  |    or    |  R  -->  *  |
    751  1.1   matt 	 * |  s    -->  *    |
    752  1.1   matt 	 */
    753  1.1   matt 	if (RB_CHILDLESS_P(self)) {
    754  1.1   matt 		const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
    755  1.1   matt 		rb_tree_prune_node(rbt, self, rebalance);
    756  1.1   matt 		return;
    757  1.1   matt 	}
    758  1.1   matt 	KASSERT(!RB_CHILDLESS_P(self));
    759  1.1   matt 	if (!RB_TWOCHILDREN_P(self)) {
    760  1.1   matt 		/*
    761  1.1   matt 		 * The next simpliest case is the node we are deleting is
    762  1.1   matt 		 * black and has one red child.
    763  1.1   matt 		 *
    764  1.1   matt 		 * |      T  -->      T  -->      T  |
    765  1.1   matt 		 * |    S    -->  R      -->  R      |
    766  1.1   matt 		 * |  r      -->    s    -->    *    |
    767  1.1   matt 		 */
    768  1.1   matt 		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
    769  1.1   matt 		KASSERT(RB_BLACK_P(self));
    770  1.1   matt 		KASSERT(RB_RED_P(self->rb_nodes[which]));
    771  1.1   matt 		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
    772  1.1   matt 		rb_tree_prune_blackred_branch(rbt, self, which);
    773  1.1   matt 		return;
    774  1.1   matt 	}
    775  1.1   matt 	KASSERT(RB_TWOCHILDREN_P(self));
    776  1.1   matt 
    777  1.1   matt 	/*
    778  1.1   matt 	 * We invert these because we prefer to remove from the inside of
    779  1.1   matt 	 * the tree.
    780  1.1   matt 	 */
    781  1.1   matt 	which = RB_POSITION(self) ^ RB_DIR_OTHER;
    782  1.1   matt 
    783  1.1   matt 	/*
    784  1.1   matt 	 * Let's find the node closes to us opposite of our parent
    785  1.1   matt 	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
    786  1.1   matt 	 */
    787  1.1   matt 	standin = rb_tree_iterate(rbt, self, which);
    788  1.1   matt 	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
    789  1.1   matt }
    790  1.1   matt 
    791  1.1   matt static void
    792  1.1   matt rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
    793  1.1   matt 	unsigned int which)
    794  1.1   matt {
    795  1.1   matt 	KASSERT(!RB_SENTINEL_P(parent));
    796  1.1   matt 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
    797  1.1   matt 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    798  1.1   matt 	RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
    799  1.1   matt 
    800  1.1   matt 	while (RB_BLACK_P(parent->rb_nodes[which])) {
    801  1.1   matt 		unsigned int other = which ^ RB_DIR_OTHER;
    802  1.1   matt 		struct rb_node *brother = parent->rb_nodes[other];
    803  1.1   matt 
    804  1.1   matt 		RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
    805  1.1   matt 
    806  1.1   matt 		KASSERT(!RB_SENTINEL_P(brother));
    807  1.1   matt 		/*
    808  1.1   matt 		 * For cases 1, 2a, and 2b, our brother's children must
    809  1.1   matt 		 * be black and our father must be black
    810  1.1   matt 		 */
    811  1.1   matt 		if (RB_BLACK_P(parent)
    812  1.1   matt 		    && RB_BLACK_P(brother->rb_left)
    813  1.1   matt 		    && RB_BLACK_P(brother->rb_right)) {
    814  1.1   matt 			if (RB_RED_P(brother)) {
    815  1.1   matt 				/*
    816  1.1   matt 				 * Case 1: Our brother is red, swap its
    817  1.1   matt 				 * position (and colors) with our parent.
    818  1.1   matt 				 * This should now be case 2b (unless C or E
    819  1.1   matt 				 * has a red child which is case 3; thus no
    820  1.1   matt 				 * explicit branch to case 2b).
    821  1.1   matt 				 *
    822  1.1   matt 				 *    B         ->        D
    823  1.1   matt 				 *  A     d     ->    b     E
    824  1.1   matt 				 *      C   E   ->  A   C
    825  1.1   matt 				 */
    826  1.1   matt 				KASSERT(RB_BLACK_P(parent));
    827  1.1   matt 				rb_tree_reparent_nodes(rbt, parent, other);
    828  1.1   matt 				brother = parent->rb_nodes[other];
    829  1.1   matt 				KASSERT(!RB_SENTINEL_P(brother));
    830  1.1   matt 				KASSERT(RB_RED_P(parent));
    831  1.1   matt 				KASSERT(RB_BLACK_P(brother));
    832  1.1   matt 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
    833  1.1   matt 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
    834  1.1   matt 			} else {
    835  1.1   matt 				/*
    836  1.1   matt 				 * Both our parent and brother are black.
    837  1.1   matt 				 * Change our brother to red, advance up rank
    838  1.1   matt 				 * and go through the loop again.
    839  1.1   matt 				 *
    840  1.1   matt 				 *    B         ->   *B
    841  1.1   matt 				 * *A     D     ->  A     d
    842  1.1   matt 				 *      C   E   ->      C   E
    843  1.1   matt 				 */
    844  1.1   matt 				RB_MARK_RED(brother);
    845  1.1   matt 				KASSERT(RB_BLACK_P(brother->rb_left));
    846  1.1   matt 				KASSERT(RB_BLACK_P(brother->rb_right));
    847  1.1   matt 				if (RB_ROOT_P(rbt, parent))
    848  1.1   matt 					return;	/* root == parent == black */
    849  1.1   matt 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
    850  1.1   matt 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
    851  1.1   matt 				which = RB_POSITION(parent);
    852  1.1   matt 				parent = RB_FATHER(parent);
    853  1.1   matt 				continue;
    854  1.1   matt 			}
    855  1.1   matt 		}
    856  1.1   matt 		/*
    857  1.1   matt 		 * Avoid an else here so that case 2a above can hit either
    858  1.1   matt 		 * case 2b, 3, or 4.
    859  1.1   matt 		 */
    860  1.1   matt 		if (RB_RED_P(parent)
    861  1.1   matt 		    && RB_BLACK_P(brother)
    862  1.1   matt 		    && RB_BLACK_P(brother->rb_left)
    863  1.1   matt 		    && RB_BLACK_P(brother->rb_right)) {
    864  1.1   matt 			KASSERT(RB_RED_P(parent));
    865  1.1   matt 			KASSERT(RB_BLACK_P(brother));
    866  1.1   matt 			KASSERT(RB_BLACK_P(brother->rb_left));
    867  1.1   matt 			KASSERT(RB_BLACK_P(brother->rb_right));
    868  1.1   matt 			/*
    869  1.1   matt 			 * We are black, our father is red, our brother and
    870  1.1   matt 			 * both nephews are black.  Simply invert/exchange the
    871  1.1   matt 			 * colors of our father and brother (to black and red
    872  1.1   matt 			 * respectively).
    873  1.1   matt 			 *
    874  1.1   matt 			 *	|    f        -->    F        |
    875  1.1   matt 			 *	|  *     B    -->  *     b    |
    876  1.1   matt 			 *	|      N   N  -->      N   N  |
    877  1.1   matt 			 */
    878  1.1   matt 			RB_MARK_BLACK(parent);
    879  1.1   matt 			RB_MARK_RED(brother);
    880  1.1   matt 			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
    881  1.1   matt 			break;		/* We're done! */
    882  1.1   matt 		} else {
    883  1.1   matt 			/*
    884  1.1   matt 			 * Our brother must be black and have at least one
    885  1.1   matt 			 * red child (it may have two).
    886  1.1   matt 			 */
    887  1.1   matt 			KASSERT(RB_BLACK_P(brother));
    888  1.1   matt 			KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
    889  1.1   matt 				RB_RED_P(brother->rb_nodes[other]));
    890  1.1   matt 			if (RB_BLACK_P(brother->rb_nodes[other])) {
    891  1.1   matt 				/*
    892  1.1   matt 				 * Case 3: our brother is black, our near
    893  1.1   matt 				 * nephew is red, and our far nephew is black.
    894  1.1   matt 				 * Swap our brother with our near nephew.
    895  1.1   matt 				 * This result in a tree that matches case 4.
    896  1.1   matt 				 * (Our father could be red or black).
    897  1.1   matt 				 *
    898  1.1   matt 				 *	|    F      -->    F      |
    899  1.1   matt 				 *	|  x     B  -->  x   B    |
    900  1.1   matt 				 *	|      n    -->        n  |
    901  1.1   matt 				 */
    902  1.1   matt 				KASSERT(RB_RED_P(brother->rb_nodes[which]));
    903  1.1   matt 				rb_tree_reparent_nodes(rbt, brother, which);
    904  1.1   matt 				KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
    905  1.1   matt 				brother = parent->rb_nodes[other];
    906  1.1   matt 				KASSERT(RB_RED_P(brother->rb_nodes[other]));
    907  1.1   matt 			}
    908  1.1   matt 			/*
    909  1.1   matt 			 * Case 4: our brother is black and our far nephew
    910  1.1   matt 			 * is red.  Swap our father and brother locations and
    911  1.1   matt 			 * change our far nephew to black.  (these can be
    912  1.1   matt 			 * done in either order so we change the color first).
    913  1.1   matt 			 * The result is a valid red-black tree and is a
    914  1.1   matt 			 * terminal case.  (again we don't care about the
    915  1.1   matt 			 * father's color)
    916  1.1   matt 			 *
    917  1.1   matt 			 * If the father is red, we will get a red-black-black
    918  1.1   matt 			 * tree:
    919  1.1   matt 			 *	|  f      ->  f      -->    b    |
    920  1.1   matt 			 *	|    B    ->    B    -->  F   N  |
    921  1.1   matt 			 *	|      n  ->      N  -->         |
    922  1.1   matt 			 *
    923  1.1   matt 			 * If the father is black, we will get an all black
    924  1.1   matt 			 * tree:
    925  1.1   matt 			 *	|  F      ->  F      -->    B    |
    926  1.1   matt 			 *	|    B    ->    B    -->  F   N  |
    927  1.1   matt 			 *	|      n  ->      N  -->         |
    928  1.1   matt 			 *
    929  1.1   matt 			 * If we had two red nephews, then after the swap,
    930  1.1   matt 			 * our former father would have a red grandson.
    931  1.1   matt 			 */
    932  1.1   matt 			KASSERT(RB_BLACK_P(brother));
    933  1.1   matt 			KASSERT(RB_RED_P(brother->rb_nodes[other]));
    934  1.1   matt 			RB_MARK_BLACK(brother->rb_nodes[other]);
    935  1.1   matt 			rb_tree_reparent_nodes(rbt, parent, other);
    936  1.1   matt 			break;		/* We're done! */
    937  1.1   matt 		}
    938  1.1   matt 	}
    939  1.1   matt 	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
    940  1.1   matt }
    941  1.1   matt 
    942  1.1   matt struct rb_node *
    943  1.1   matt rb_tree_iterate(struct rb_tree *rbt, struct rb_node *self,
    944  1.1   matt 	const unsigned int direction)
    945  1.1   matt {
    946  1.1   matt 	const unsigned int other = direction ^ RB_DIR_OTHER;
    947  1.1   matt 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
    948  1.1   matt 
    949  1.1   matt 	if (self == NULL) {
    950  1.1   matt #ifndef RBSMALL
    951  1.1   matt 		if (RB_SENTINEL_P(rbt->rbt_root))
    952  1.1   matt 			return NULL;
    953  1.1   matt 		return rbt->rbt_minmax[direction];
    954  1.1   matt #else
    955  1.1   matt 		self = rbt->rbt_root;
    956  1.1   matt 		if (RB_SENTINEL_P(self))
    957  1.1   matt 			return NULL;
    958  1.1   matt 		while (!RB_SENTINEL_P(self->rb_nodes[other]))
    959  1.1   matt 			self = self->rb_nodes[other];
    960  1.1   matt 		return self;
    961  1.1   matt #endif /* !RBSMALL */
    962  1.1   matt 	}
    963  1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
    964  1.1   matt 	/*
    965  1.1   matt 	 * We can't go any further in this direction.  We proceed up in the
    966  1.1   matt 	 * opposite direction until our parent is in direction we want to go.
    967  1.1   matt 	 */
    968  1.1   matt 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
    969  1.1   matt 		while (!RB_ROOT_P(rbt, self)) {
    970  1.1   matt 			if (other == RB_POSITION(self))
    971  1.1   matt 				return RB_FATHER(self);
    972  1.1   matt 			self = RB_FATHER(self);
    973  1.1   matt 		}
    974  1.1   matt 		return NULL;
    975  1.1   matt 	}
    976  1.1   matt 
    977  1.1   matt 	/*
    978  1.1   matt 	 * Advance down one in current direction and go down as far as possible
    979  1.1   matt 	 * in the opposite direction.
    980  1.1   matt 	 */
    981  1.1   matt 	self = self->rb_nodes[direction];
    982  1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
    983  1.1   matt 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
    984  1.1   matt 		self = self->rb_nodes[other];
    985  1.1   matt 	return self;
    986  1.1   matt }
    987  1.1   matt 
    988  1.1   matt #ifdef RBDEBUG
    989  1.1   matt static const struct rb_node *
    990  1.1   matt rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
    991  1.1   matt 	const unsigned int direction)
    992  1.1   matt {
    993  1.1   matt 	const unsigned int other = direction ^ RB_DIR_OTHER;
    994  1.1   matt 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
    995  1.1   matt 
    996  1.1   matt 	if (self == NULL) {
    997  1.1   matt #ifndef RBSMALL
    998  1.1   matt 		if (RB_SENTINEL_P(rbt->rbt_root))
    999  1.1   matt 			return NULL;
   1000  1.1   matt 		return rbt->rbt_minmax[direction];
   1001  1.1   matt #else
   1002  1.1   matt 		self = rbt->rbt_root;
   1003  1.1   matt 		if (RB_SENTINEL_P(self))
   1004  1.1   matt 			return NULL;
   1005  1.1   matt 		while (!RB_SENTINEL_P(self->rb_nodes[other]))
   1006  1.1   matt 			self = self->rb_nodes[other];
   1007  1.1   matt 		return self;
   1008  1.1   matt #endif /* !RBSMALL */
   1009  1.1   matt 	}
   1010  1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
   1011  1.1   matt 	/*
   1012  1.1   matt 	 * We can't go any further in this direction.  We proceed up in the
   1013  1.1   matt 	 * opposite direction until our parent is in direction we want to go.
   1014  1.1   matt 	 */
   1015  1.1   matt 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
   1016  1.1   matt 		while (!RB_ROOT_P(rbt, self)) {
   1017  1.1   matt 			if (other == RB_POSITION(self))
   1018  1.1   matt 				return RB_FATHER(self);
   1019  1.1   matt 			self = RB_FATHER(self);
   1020  1.1   matt 		}
   1021  1.1   matt 		return NULL;
   1022  1.1   matt 	}
   1023  1.1   matt 
   1024  1.1   matt 	/*
   1025  1.1   matt 	 * Advance down one in current direction and go down as far as possible
   1026  1.1   matt 	 * in the opposite direction.
   1027  1.1   matt 	 */
   1028  1.1   matt 	self = self->rb_nodes[direction];
   1029  1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
   1030  1.1   matt 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
   1031  1.1   matt 		self = self->rb_nodes[other];
   1032  1.1   matt 	return self;
   1033  1.1   matt }
   1034  1.1   matt 
   1035  1.1   matt static unsigned int
   1036  1.1   matt rb_tree_count_black(const struct rb_node *self)
   1037  1.1   matt {
   1038  1.1   matt 	unsigned int left, right;
   1039  1.1   matt 
   1040  1.1   matt 	if (RB_SENTINEL_P(self))
   1041  1.1   matt 		return 0;
   1042  1.1   matt 
   1043  1.1   matt 	left = rb_tree_count_black(self->rb_left);
   1044  1.1   matt 	right = rb_tree_count_black(self->rb_right);
   1045  1.1   matt 
   1046  1.1   matt 	KASSERT(left == right);
   1047  1.1   matt 
   1048  1.1   matt 	return left + RB_BLACK_P(self);
   1049  1.1   matt }
   1050  1.2   matt 
   1051  1.1   matt static bool
   1052  1.1   matt rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
   1053  1.1   matt 	const struct rb_node *prev, bool red_check)
   1054  1.1   matt {
   1055  1.1   matt 	rbto_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
   1056  1.1   matt 
   1057  1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
   1058  1.1   matt 	KASSERT(prev == NULL || (*compare_nodes)(prev, self) > 0);
   1059  1.1   matt 
   1060  1.1   matt 	/*
   1061  1.1   matt 	 * Verify our relationship to our parent.
   1062  1.1   matt 	 */
   1063  1.1   matt 	if (RB_ROOT_P(rbt, self)) {
   1064  1.1   matt 		KASSERT(self == rbt->rbt_root);
   1065  1.1   matt 		KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
   1066  1.1   matt 		KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
   1067  1.1   matt 		KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
   1068  1.1   matt 	} else {
   1069  1.1   matt 		KASSERT(self != rbt->rbt_root);
   1070  1.1   matt 		KASSERT(!RB_FATHER_SENTINEL_P(self));
   1071  1.1   matt 		if (RB_POSITION(self) == RB_DIR_LEFT) {
   1072  1.1   matt 			KASSERT((*compare_nodes)(self, RB_FATHER(self)) > 0);
   1073  1.1   matt 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
   1074  1.1   matt 		} else {
   1075  1.1   matt 			KASSERT((*compare_nodes)(self, RB_FATHER(self)) < 0);
   1076  1.1   matt 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
   1077  1.1   matt 		}
   1078  1.1   matt 	}
   1079  1.1   matt 
   1080  1.1   matt 	/*
   1081  1.1   matt 	 * Verify our position in the linked list against the tree itself.
   1082  1.1   matt 	 */
   1083  1.1   matt 	{
   1084  1.1   matt 		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
   1085  1.1   matt 		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
   1086  1.1   matt 		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
   1087  1.1   matt 		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
   1088  1.1   matt #ifndef RBSMALL
   1089  1.1   matt 		KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
   1090  1.1   matt 		KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
   1091  1.1   matt #endif
   1092  1.1   matt 	}
   1093  1.1   matt 
   1094  1.1   matt 	/*
   1095  1.1   matt 	 * The root must be black.
   1096  1.1   matt 	 * There can never be two adjacent red nodes.
   1097  1.1   matt 	 */
   1098  1.1   matt 	if (red_check) {
   1099  1.1   matt 		KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
   1100  1.1   matt 		(void) rb_tree_count_black(self);
   1101  1.1   matt 		if (RB_RED_P(self)) {
   1102  1.1   matt 			const struct rb_node *brother;
   1103  1.1   matt 			KASSERT(!RB_ROOT_P(rbt, self));
   1104  1.1   matt 			brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
   1105  1.1   matt 			KASSERT(RB_BLACK_P(RB_FATHER(self)));
   1106  1.1   matt 			/*
   1107  1.1   matt 			 * I'm red and have no children, then I must either
   1108  1.1   matt 			 * have no brother or my brother also be red and
   1109  1.1   matt 			 * also have no children.  (black count == 0)
   1110  1.1   matt 			 */
   1111  1.1   matt 			KASSERT(!RB_CHILDLESS_P(self)
   1112  1.1   matt 				|| RB_SENTINEL_P(brother)
   1113  1.1   matt 				|| RB_RED_P(brother)
   1114  1.1   matt 				|| RB_CHILDLESS_P(brother));
   1115  1.1   matt 			/*
   1116  1.1   matt 			 * If I'm not childless, I must have two children
   1117  1.1   matt 			 * and they must be both be black.
   1118  1.1   matt 			 */
   1119  1.1   matt 			KASSERT(RB_CHILDLESS_P(self)
   1120  1.1   matt 				|| (RB_TWOCHILDREN_P(self)
   1121  1.1   matt 				    && RB_BLACK_P(self->rb_left)
   1122  1.1   matt 				    && RB_BLACK_P(self->rb_right)));
   1123  1.1   matt 			/*
   1124  1.1   matt 			 * If I'm not childless, thus I have black children,
   1125  1.1   matt 			 * then my brother must either be black or have two
   1126  1.1   matt 			 * black children.
   1127  1.1   matt 			 */
   1128  1.1   matt 			KASSERT(RB_CHILDLESS_P(self)
   1129  1.1   matt 				|| RB_BLACK_P(brother)
   1130  1.1   matt 				|| (RB_TWOCHILDREN_P(brother)
   1131  1.1   matt 				    && RB_BLACK_P(brother->rb_left)
   1132  1.1   matt 				    && RB_BLACK_P(brother->rb_right)));
   1133  1.1   matt 		} else {
   1134  1.1   matt 			/*
   1135  1.1   matt 			 * If I'm black and have one child, that child must
   1136  1.1   matt 			 * be red and childless.
   1137  1.1   matt 			 */
   1138  1.1   matt 			KASSERT(RB_CHILDLESS_P(self)
   1139  1.1   matt 				|| RB_TWOCHILDREN_P(self)
   1140  1.1   matt 				|| (!RB_LEFT_SENTINEL_P(self)
   1141  1.1   matt 				    && RB_RIGHT_SENTINEL_P(self)
   1142  1.1   matt 				    && RB_RED_P(self->rb_left)
   1143  1.1   matt 				    && RB_CHILDLESS_P(self->rb_left))
   1144  1.1   matt 				|| (!RB_RIGHT_SENTINEL_P(self)
   1145  1.1   matt 				    && RB_LEFT_SENTINEL_P(self)
   1146  1.1   matt 				    && RB_RED_P(self->rb_right)
   1147  1.1   matt 				    && RB_CHILDLESS_P(self->rb_right)));
   1148  1.1   matt 
   1149  1.1   matt 			/*
   1150  1.1   matt 			 * If I'm a childless black node and my parent is
   1151  1.1   matt 			 * black, my 2nd closet relative away from my parent
   1152  1.1   matt 			 * is either red or has a red parent or red children.
   1153  1.1   matt 			 */
   1154  1.1   matt 			if (!RB_ROOT_P(rbt, self)
   1155  1.1   matt 			    && RB_CHILDLESS_P(self)
   1156  1.1   matt 			    && RB_BLACK_P(RB_FATHER(self))) {
   1157  1.1   matt 				const unsigned int which = RB_POSITION(self);
   1158  1.1   matt 				const unsigned int other = which ^ RB_DIR_OTHER;
   1159  1.1   matt 				const struct rb_node *relative0, *relative;
   1160  1.1   matt 
   1161  1.1   matt 				relative0 = rb_tree_iterate_const(rbt,
   1162  1.1   matt 				    self, other);
   1163  1.1   matt 				KASSERT(relative0 != NULL);
   1164  1.1   matt 				relative = rb_tree_iterate_const(rbt,
   1165  1.1   matt 				    relative0, other);
   1166  1.1   matt 				KASSERT(relative != NULL);
   1167  1.1   matt 				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
   1168  1.1   matt #if 0
   1169  1.1   matt 				KASSERT(RB_RED_P(relative)
   1170  1.1   matt 					|| RB_RED_P(relative->rb_left)
   1171  1.1   matt 					|| RB_RED_P(relative->rb_right)
   1172  1.1   matt 					|| RB_RED_P(RB_FATHER(relative)));
   1173  1.1   matt #endif
   1174  1.1   matt 			}
   1175  1.1   matt 		}
   1176  1.1   matt 		/*
   1177  1.1   matt 		 * A grandparent's children must be real nodes and not
   1178  1.1   matt 		 * sentinels.  First check out grandparent.
   1179  1.1   matt 		 */
   1180  1.1   matt 		KASSERT(RB_ROOT_P(rbt, self)
   1181  1.1   matt 			|| RB_ROOT_P(rbt, RB_FATHER(self))
   1182  1.1   matt 			|| RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
   1183  1.1   matt 		/*
   1184  1.1   matt 		 * If we are have grandchildren on our left, then
   1185  1.1   matt 		 * we must have a child on our right.
   1186  1.1   matt 		 */
   1187  1.1   matt 		KASSERT(RB_LEFT_SENTINEL_P(self)
   1188  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left)
   1189  1.1   matt 			|| !RB_RIGHT_SENTINEL_P(self));
   1190  1.1   matt 		/*
   1191  1.1   matt 		 * If we are have grandchildren on our right, then
   1192  1.1   matt 		 * we must have a child on our left.
   1193  1.1   matt 		 */
   1194  1.1   matt 		KASSERT(RB_RIGHT_SENTINEL_P(self)
   1195  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right)
   1196  1.1   matt 			|| !RB_LEFT_SENTINEL_P(self));
   1197  1.1   matt 
   1198  1.1   matt 		/*
   1199  1.1   matt 		 * If we have a child on the left and it doesn't have two
   1200  1.1   matt 		 * children make sure we don't have great-great-grandchildren on
   1201  1.1   matt 		 * the right.
   1202  1.1   matt 		 */
   1203  1.1   matt 		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
   1204  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right)
   1205  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_left)
   1206  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
   1207  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
   1208  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_right)
   1209  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
   1210  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
   1211  1.1   matt 
   1212  1.1   matt 		/*
   1213  1.1   matt 		 * If we have a child on the right and it doesn't have two
   1214  1.1   matt 		 * children make sure we don't have great-great-grandchildren on
   1215  1.1   matt 		 * the left.
   1216  1.1   matt 		 */
   1217  1.1   matt 		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
   1218  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left)
   1219  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_left)
   1220  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
   1221  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
   1222  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_right)
   1223  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
   1224  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
   1225  1.1   matt 
   1226  1.1   matt 		/*
   1227  1.1   matt 		 * If we are fully interior node, then our predecessors and
   1228  1.1   matt 		 * successors must have no children in our direction.
   1229  1.1   matt 		 */
   1230  1.1   matt 		if (RB_TWOCHILDREN_P(self)) {
   1231  1.1   matt 			const struct rb_node *prev0;
   1232  1.1   matt 			const struct rb_node *next0;
   1233  1.1   matt 
   1234  1.1   matt 			prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
   1235  1.1   matt 			KASSERT(prev0 != NULL);
   1236  1.1   matt 			KASSERT(RB_RIGHT_SENTINEL_P(prev0));
   1237  1.1   matt 
   1238  1.1   matt 			next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
   1239  1.1   matt 			KASSERT(next0 != NULL);
   1240  1.1   matt 			KASSERT(RB_LEFT_SENTINEL_P(next0));
   1241  1.1   matt 		}
   1242  1.1   matt 	}
   1243  1.1   matt 
   1244  1.1   matt 	return true;
   1245  1.1   matt }
   1246  1.1   matt 
   1247  1.1   matt void
   1248  1.1   matt rb_tree_check(const struct rb_tree *rbt, bool red_check)
   1249  1.1   matt {
   1250  1.1   matt 	const struct rb_node *self;
   1251  1.1   matt 	const struct rb_node *prev;
   1252  1.1   matt #ifdef RBSTATS
   1253  1.1   matt 	unsigned int count = 0;
   1254  1.1   matt #endif
   1255  1.1   matt 
   1256  1.1   matt 	KASSERT(rbt->rbt_root != NULL);
   1257  1.1   matt 	KASSERT(RB_LEFT_P(rbt->rbt_root));
   1258  1.1   matt 
   1259  1.1   matt #if defined(RBSTATS) && !defined(RBSMALL)
   1260  1.1   matt 	KASSERT(rbt->rbt_count > 1
   1261  1.1   matt 	    || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
   1262  1.1   matt #endif
   1263  1.1   matt 
   1264  1.1   matt 	prev = NULL;
   1265  1.1   matt 	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
   1266  1.1   matt 		rb_tree_check_node(rbt, self, prev, false);
   1267  1.1   matt #ifdef RBSTATS
   1268  1.1   matt 		count++;
   1269  1.1   matt #endif
   1270  1.1   matt 	}
   1271  1.1   matt #ifdef RBSTATS
   1272  1.1   matt 	KASSERT(rbt->rbt_count == count);
   1273  1.1   matt #endif
   1274  1.1   matt 	if (red_check) {
   1275  1.1   matt 		KASSERT(RB_BLACK_P(rbt->rbt_root));
   1276  1.1   matt 		KASSERT(RB_SENTINEL_P(rbt->rbt_root)
   1277  1.1   matt 			|| rb_tree_count_black(rbt->rbt_root));
   1278  1.1   matt 
   1279  1.1   matt 		/*
   1280  1.1   matt 		 * The root must be black.
   1281  1.1   matt 		 * There can never be two adjacent red nodes.
   1282  1.1   matt 		 */
   1283  1.1   matt 		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
   1284  1.1   matt 			rb_tree_check_node(rbt, self, NULL, true);
   1285  1.1   matt 		}
   1286  1.1   matt 	}
   1287  1.1   matt }
   1288  1.1   matt #endif /* RBDEBUG */
   1289  1.1   matt 
   1290  1.1   matt #ifdef RBSTATS
   1291  1.1   matt static void
   1292  1.1   matt rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
   1293  1.1   matt 	size_t *depths, size_t depth)
   1294  1.1   matt {
   1295  1.1   matt 	if (RB_SENTINEL_P(self))
   1296  1.1   matt 		return;
   1297  1.1   matt 
   1298  1.1   matt 	if (RB_TWOCHILDREN_P(self)) {
   1299  1.1   matt 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
   1300  1.1   matt 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
   1301  1.1   matt 		return;
   1302  1.1   matt 	}
   1303  1.1   matt 	depths[depth]++;
   1304  1.1   matt 	if (!RB_LEFT_SENTINEL_P(self)) {
   1305  1.1   matt 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
   1306  1.1   matt 	}
   1307  1.1   matt 	if (!RB_RIGHT_SENTINEL_P(self)) {
   1308  1.1   matt 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
   1309  1.1   matt 	}
   1310  1.1   matt }
   1311  1.1   matt 
   1312  1.1   matt void
   1313             rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
   1314             {
   1315             	rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
   1316             }
   1317             #endif /* RBSTATS */
   1318