rb.c revision 1.8 1 1.8 matt /* $NetBSD: rb.c,v 1.8 2010/09/25 01:42:38 matt Exp $ */
2 1.1 matt
3 1.1 matt /*-
4 1.1 matt * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 1.1 matt * All rights reserved.
6 1.1 matt *
7 1.1 matt * This code is derived from software contributed to The NetBSD Foundation
8 1.1 matt * by Matt Thomas <matt (at) 3am-software.com>.
9 1.1 matt *
10 1.1 matt * Redistribution and use in source and binary forms, with or without
11 1.1 matt * modification, are permitted provided that the following conditions
12 1.1 matt * are met:
13 1.1 matt * 1. Redistributions of source code must retain the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer.
15 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 matt * notice, this list of conditions and the following disclaimer in the
17 1.1 matt * documentation and/or other materials provided with the distribution.
18 1.1 matt *
19 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
30 1.1 matt */
31 1.1 matt
32 1.1 matt #if !defined(_KERNEL) && !defined(_STANDALONE)
33 1.1 matt #include <sys/types.h>
34 1.1 matt #include <stddef.h>
35 1.1 matt #include <assert.h>
36 1.1 matt #include <stdbool.h>
37 1.1 matt #ifdef RBDEBUG
38 1.1 matt #define KASSERT(s) assert(s)
39 1.1 matt #else
40 1.3 matt #define KASSERT(s) do { } while (/*CONSTCOND*/ 0)
41 1.1 matt #endif
42 1.1 matt #else
43 1.1 matt #include <lib/libkern/libkern.h>
44 1.1 matt #endif
45 1.1 matt
46 1.1 matt #ifdef _LIBC
47 1.1 matt __weak_alias(rb_tree_init, _rb_tree_init)
48 1.1 matt __weak_alias(rb_tree_find_node, _rb_tree_find_node)
49 1.1 matt __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
50 1.1 matt __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
51 1.1 matt __weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
52 1.1 matt __weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
53 1.1 matt __weak_alias(rb_tree_iterate, _rb_tree_iterate)
54 1.1 matt #ifdef RBDEBUG
55 1.1 matt __weak_alias(rb_tree_check, _rb_tree_check)
56 1.1 matt __weak_alias(rb_tree_depths, _rb_tree_depths)
57 1.1 matt #endif
58 1.1 matt
59 1.1 matt #define rb_tree_init _rb_tree_init
60 1.1 matt #define rb_tree_find_node _rb_tree_find_node
61 1.1 matt #define rb_tree_find_node_geq _rb_tree_find_node_geq
62 1.1 matt #define rb_tree_find_node_leq _rb_tree_find_node_leq
63 1.1 matt #define rb_tree_insert_node _rb_tree_insert_node
64 1.1 matt #define rb_tree_remove_node _rb_tree_remove_node
65 1.1 matt #define rb_tree_iterate _rb_tree_iterate
66 1.1 matt #ifdef RBDEBUG
67 1.1 matt #define rb_tree_check _rb_tree_check
68 1.1 matt #define rb_tree_depths _rb_tree_depths
69 1.1 matt #endif
70 1.1 matt #endif
71 1.1 matt
72 1.1 matt #ifdef RBTEST
73 1.8 matt #include "rbtree.h"
74 1.1 matt #else
75 1.8 matt #include <sys/rbtree.h>
76 1.1 matt #endif
77 1.1 matt
78 1.1 matt static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
79 1.1 matt static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
80 1.1 matt unsigned int);
81 1.1 matt #ifdef RBDEBUG
82 1.1 matt static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
83 1.1 matt const struct rb_node *, const unsigned int);
84 1.1 matt static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
85 1.1 matt const struct rb_node *, bool);
86 1.1 matt #else
87 1.1 matt #define rb_tree_check_node(a, b, c, d) true
88 1.1 matt #endif
89 1.1 matt
90 1.7 rmind #define RB_NODETOITEM(rbto, rbn) \
91 1.7 rmind ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
92 1.7 rmind #define RB_ITEMTONODE(rbto, rbn) \
93 1.7 rmind ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
94 1.7 rmind
95 1.1 matt #define RB_SENTINEL_NODE NULL
96 1.1 matt
97 1.1 matt void
98 1.7 rmind rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
99 1.1 matt {
100 1.7 rmind
101 1.1 matt rbt->rbt_ops = ops;
102 1.1 matt *((const struct rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
103 1.1 matt RB_TAILQ_INIT(&rbt->rbt_nodes);
104 1.1 matt #ifndef RBSMALL
105 1.1 matt rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root; /* minimum node */
106 1.1 matt rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root; /* maximum node */
107 1.1 matt #endif
108 1.1 matt #ifdef RBSTATS
109 1.1 matt rbt->rbt_count = 0;
110 1.1 matt rbt->rbt_insertions = 0;
111 1.1 matt rbt->rbt_removals = 0;
112 1.1 matt rbt->rbt_insertion_rebalance_calls = 0;
113 1.1 matt rbt->rbt_insertion_rebalance_passes = 0;
114 1.1 matt rbt->rbt_removal_rebalance_calls = 0;
115 1.1 matt rbt->rbt_removal_rebalance_passes = 0;
116 1.1 matt #endif
117 1.1 matt }
118 1.1 matt
119 1.7 rmind void *
120 1.1 matt rb_tree_find_node(struct rb_tree *rbt, const void *key)
121 1.1 matt {
122 1.7 rmind const rb_tree_ops_t *rbto = rbt->rbt_ops;
123 1.7 rmind rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
124 1.1 matt struct rb_node *parent = rbt->rbt_root;
125 1.1 matt
126 1.1 matt while (!RB_SENTINEL_P(parent)) {
127 1.7 rmind void *pobj = RB_NODETOITEM(rbto, parent);
128 1.7 rmind const signed int diff = (*compare_key)(rbto->rbto_context,
129 1.7 rmind pobj, key);
130 1.1 matt if (diff == 0)
131 1.7 rmind return pobj;
132 1.7 rmind parent = parent->rb_nodes[diff < 0];
133 1.1 matt }
134 1.1 matt
135 1.1 matt return NULL;
136 1.1 matt }
137 1.7 rmind
138 1.7 rmind void *
139 1.1 matt rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
140 1.1 matt {
141 1.7 rmind const rb_tree_ops_t *rbto = rbt->rbt_ops;
142 1.7 rmind rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
143 1.7 rmind struct rb_node *parent = rbt->rbt_root, *last = NULL;
144 1.1 matt
145 1.1 matt while (!RB_SENTINEL_P(parent)) {
146 1.7 rmind void *pobj = RB_NODETOITEM(rbto, parent);
147 1.7 rmind const signed int diff = (*compare_key)(rbto->rbto_context,
148 1.7 rmind pobj, key);
149 1.1 matt if (diff == 0)
150 1.7 rmind return pobj;
151 1.7 rmind if (diff > 0)
152 1.1 matt last = parent;
153 1.7 rmind parent = parent->rb_nodes[diff < 0];
154 1.1 matt }
155 1.1 matt
156 1.7 rmind return RB_NODETOITEM(rbto, last);
157 1.1 matt }
158 1.7 rmind
159 1.7 rmind void *
160 1.1 matt rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
161 1.1 matt {
162 1.7 rmind const rb_tree_ops_t *rbto = rbt->rbt_ops;
163 1.7 rmind rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
164 1.7 rmind struct rb_node *parent = rbt->rbt_root, *last = NULL;
165 1.1 matt
166 1.1 matt while (!RB_SENTINEL_P(parent)) {
167 1.7 rmind void *pobj = RB_NODETOITEM(rbto, parent);
168 1.7 rmind const signed int diff = (*compare_key)(rbto->rbto_context,
169 1.7 rmind pobj, key);
170 1.1 matt if (diff == 0)
171 1.7 rmind return pobj;
172 1.7 rmind if (diff < 0)
173 1.1 matt last = parent;
174 1.7 rmind parent = parent->rb_nodes[diff < 0];
175 1.1 matt }
176 1.1 matt
177 1.7 rmind return RB_NODETOITEM(rbto, last);
178 1.1 matt }
179 1.7 rmind
180 1.7 rmind void *
181 1.7 rmind rb_tree_insert_node(struct rb_tree *rbt, void *object)
182 1.1 matt {
183 1.7 rmind const rb_tree_ops_t *rbto = rbt->rbt_ops;
184 1.7 rmind rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
185 1.7 rmind struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
186 1.1 matt unsigned int position;
187 1.1 matt bool rebalance;
188 1.1 matt
189 1.1 matt RBSTAT_INC(rbt->rbt_insertions);
190 1.1 matt
191 1.1 matt tmp = rbt->rbt_root;
192 1.1 matt /*
193 1.1 matt * This is a hack. Because rbt->rbt_root is just a struct rb_node *,
194 1.1 matt * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
195 1.1 matt * avoid a lot of tests for root and know that even at root,
196 1.1 matt * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
197 1.1 matt * update rbt->rbt_root.
198 1.1 matt */
199 1.3 matt parent = (struct rb_node *)(void *)&rbt->rbt_root;
200 1.1 matt position = RB_DIR_LEFT;
201 1.1 matt
202 1.1 matt /*
203 1.1 matt * Find out where to place this new leaf.
204 1.1 matt */
205 1.1 matt while (!RB_SENTINEL_P(tmp)) {
206 1.7 rmind void *tobj = RB_NODETOITEM(rbto, tmp);
207 1.7 rmind const signed int diff = (*compare_nodes)(rbto->rbto_context,
208 1.7 rmind tobj, object);
209 1.1 matt if (__predict_false(diff == 0)) {
210 1.1 matt /*
211 1.7 rmind * Node already exists; return it.
212 1.1 matt */
213 1.7 rmind return tobj;
214 1.1 matt }
215 1.1 matt parent = tmp;
216 1.7 rmind position = (diff < 0);
217 1.1 matt tmp = parent->rb_nodes[position];
218 1.1 matt }
219 1.1 matt
220 1.1 matt #ifdef RBDEBUG
221 1.1 matt {
222 1.1 matt struct rb_node *prev = NULL, *next = NULL;
223 1.1 matt
224 1.1 matt if (position == RB_DIR_RIGHT)
225 1.1 matt prev = parent;
226 1.1 matt else if (tmp != rbt->rbt_root)
227 1.1 matt next = parent;
228 1.1 matt
229 1.1 matt /*
230 1.1 matt * Verify our sequential position
231 1.1 matt */
232 1.1 matt KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
233 1.1 matt KASSERT(next == NULL || !RB_SENTINEL_P(next));
234 1.1 matt if (prev != NULL && next == NULL)
235 1.1 matt next = TAILQ_NEXT(prev, rb_link);
236 1.1 matt if (prev == NULL && next != NULL)
237 1.1 matt prev = TAILQ_PREV(next, rb_node_qh, rb_link);
238 1.1 matt KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
239 1.1 matt KASSERT(next == NULL || !RB_SENTINEL_P(next));
240 1.7 rmind KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
241 1.7 rmind RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
242 1.7 rmind KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
243 1.7 rmind RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
244 1.1 matt }
245 1.1 matt #endif
246 1.1 matt
247 1.1 matt /*
248 1.1 matt * Initialize the node and insert as a leaf into the tree.
249 1.1 matt */
250 1.1 matt RB_SET_FATHER(self, parent);
251 1.1 matt RB_SET_POSITION(self, position);
252 1.3 matt if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
253 1.1 matt RB_MARK_BLACK(self); /* root is always black */
254 1.1 matt #ifndef RBSMALL
255 1.1 matt rbt->rbt_minmax[RB_DIR_LEFT] = self;
256 1.1 matt rbt->rbt_minmax[RB_DIR_RIGHT] = self;
257 1.1 matt #endif
258 1.1 matt rebalance = false;
259 1.1 matt } else {
260 1.1 matt KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
261 1.1 matt #ifndef RBSMALL
262 1.1 matt /*
263 1.1 matt * Keep track of the minimum and maximum nodes. If our
264 1.1 matt * parent is a minmax node and we on their min/max side,
265 1.1 matt * we must be the new min/max node.
266 1.1 matt */
267 1.1 matt if (parent == rbt->rbt_minmax[position])
268 1.1 matt rbt->rbt_minmax[position] = self;
269 1.1 matt #endif /* !RBSMALL */
270 1.1 matt /*
271 1.1 matt * All new nodes are colored red. We only need to rebalance
272 1.1 matt * if our parent is also red.
273 1.1 matt */
274 1.1 matt RB_MARK_RED(self);
275 1.1 matt rebalance = RB_RED_P(parent);
276 1.1 matt }
277 1.1 matt KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
278 1.1 matt self->rb_left = parent->rb_nodes[position];
279 1.1 matt self->rb_right = parent->rb_nodes[position];
280 1.1 matt parent->rb_nodes[position] = self;
281 1.1 matt KASSERT(RB_CHILDLESS_P(self));
282 1.1 matt
283 1.1 matt /*
284 1.1 matt * Insert the new node into a sorted list for easy sequential access
285 1.1 matt */
286 1.1 matt RBSTAT_INC(rbt->rbt_count);
287 1.1 matt #ifdef RBDEBUG
288 1.1 matt if (RB_ROOT_P(rbt, self)) {
289 1.1 matt RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
290 1.1 matt } else if (position == RB_DIR_LEFT) {
291 1.7 rmind KASSERT((*compare_nodes)(rbto->rbto_context,
292 1.7 rmind RB_NODETOITEM(rbto, self),
293 1.7 rmind RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
294 1.1 matt RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
295 1.1 matt } else {
296 1.7 rmind KASSERT((*compare_nodes)(rbto->rbto_context,
297 1.7 rmind RB_NODETOITEM(rbto, RB_FATHER(self)),
298 1.7 rmind RB_NODETOITEM(rbto, self)) < 0);
299 1.1 matt RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
300 1.1 matt self, rb_link);
301 1.1 matt }
302 1.1 matt #endif
303 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
304 1.1 matt
305 1.1 matt /*
306 1.1 matt * Rebalance tree after insertion
307 1.1 matt */
308 1.1 matt if (rebalance) {
309 1.1 matt rb_tree_insert_rebalance(rbt, self);
310 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, true));
311 1.1 matt }
312 1.1 matt
313 1.7 rmind /* Succesfully inserted, return our node pointer. */
314 1.7 rmind return object;
315 1.1 matt }
316 1.7 rmind
317 1.1 matt /*
318 1.1 matt * Swap the location and colors of 'self' and its child @ which. The child
319 1.1 matt * can not be a sentinel node. This is our rotation function. However,
320 1.1 matt * since it preserves coloring, it great simplifies both insertion and
321 1.1 matt * removal since rotation almost always involves the exchanging of colors
322 1.1 matt * as a separate step.
323 1.1 matt */
324 1.3 matt /*ARGSUSED*/
325 1.1 matt static void
326 1.1 matt rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
327 1.1 matt const unsigned int which)
328 1.1 matt {
329 1.1 matt const unsigned int other = which ^ RB_DIR_OTHER;
330 1.1 matt struct rb_node * const grandpa = RB_FATHER(old_father);
331 1.1 matt struct rb_node * const old_child = old_father->rb_nodes[which];
332 1.1 matt struct rb_node * const new_father = old_child;
333 1.1 matt struct rb_node * const new_child = old_father;
334 1.1 matt
335 1.1 matt KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
336 1.1 matt
337 1.1 matt KASSERT(!RB_SENTINEL_P(old_child));
338 1.1 matt KASSERT(RB_FATHER(old_child) == old_father);
339 1.1 matt
340 1.1 matt KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
341 1.1 matt KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
342 1.7 rmind KASSERT(RB_ROOT_P(rbt, old_father) ||
343 1.7 rmind rb_tree_check_node(rbt, grandpa, NULL, false));
344 1.1 matt
345 1.1 matt /*
346 1.1 matt * Exchange descendant linkages.
347 1.1 matt */
348 1.1 matt grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
349 1.1 matt new_child->rb_nodes[which] = old_child->rb_nodes[other];
350 1.1 matt new_father->rb_nodes[other] = new_child;
351 1.1 matt
352 1.1 matt /*
353 1.1 matt * Update ancestor linkages
354 1.1 matt */
355 1.1 matt RB_SET_FATHER(new_father, grandpa);
356 1.1 matt RB_SET_FATHER(new_child, new_father);
357 1.1 matt
358 1.1 matt /*
359 1.1 matt * Exchange properties between new_father and new_child. The only
360 1.1 matt * change is that new_child's position is now on the other side.
361 1.1 matt */
362 1.1 matt #if 0
363 1.1 matt {
364 1.1 matt struct rb_node tmp;
365 1.1 matt tmp.rb_info = 0;
366 1.1 matt RB_COPY_PROPERTIES(&tmp, old_child);
367 1.1 matt RB_COPY_PROPERTIES(new_father, old_father);
368 1.1 matt RB_COPY_PROPERTIES(new_child, &tmp);
369 1.1 matt }
370 1.1 matt #else
371 1.1 matt RB_SWAP_PROPERTIES(new_father, new_child);
372 1.1 matt #endif
373 1.1 matt RB_SET_POSITION(new_child, other);
374 1.1 matt
375 1.1 matt /*
376 1.1 matt * Make sure to reparent the new child to ourself.
377 1.1 matt */
378 1.1 matt if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
379 1.1 matt RB_SET_FATHER(new_child->rb_nodes[which], new_child);
380 1.1 matt RB_SET_POSITION(new_child->rb_nodes[which], which);
381 1.1 matt }
382 1.1 matt
383 1.1 matt KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
384 1.1 matt KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
385 1.7 rmind KASSERT(RB_ROOT_P(rbt, new_father) ||
386 1.7 rmind rb_tree_check_node(rbt, grandpa, NULL, false));
387 1.1 matt }
388 1.7 rmind
389 1.1 matt static void
390 1.1 matt rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
391 1.1 matt {
392 1.1 matt struct rb_node * father = RB_FATHER(self);
393 1.1 matt struct rb_node * grandpa = RB_FATHER(father);
394 1.1 matt struct rb_node * uncle;
395 1.1 matt unsigned int which;
396 1.1 matt unsigned int other;
397 1.1 matt
398 1.1 matt KASSERT(!RB_ROOT_P(rbt, self));
399 1.1 matt KASSERT(RB_RED_P(self));
400 1.1 matt KASSERT(RB_RED_P(father));
401 1.1 matt RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
402 1.1 matt
403 1.1 matt for (;;) {
404 1.1 matt KASSERT(!RB_SENTINEL_P(self));
405 1.1 matt
406 1.1 matt KASSERT(RB_RED_P(self));
407 1.1 matt KASSERT(RB_RED_P(father));
408 1.1 matt /*
409 1.1 matt * We are red and our parent is red, therefore we must have a
410 1.1 matt * grandfather and he must be black.
411 1.1 matt */
412 1.1 matt grandpa = RB_FATHER(father);
413 1.1 matt KASSERT(RB_BLACK_P(grandpa));
414 1.1 matt KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
415 1.1 matt which = (father == grandpa->rb_right);
416 1.1 matt other = which ^ RB_DIR_OTHER;
417 1.1 matt uncle = grandpa->rb_nodes[other];
418 1.1 matt
419 1.1 matt if (RB_BLACK_P(uncle))
420 1.1 matt break;
421 1.1 matt
422 1.1 matt RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
423 1.1 matt /*
424 1.1 matt * Case 1: our uncle is red
425 1.1 matt * Simply invert the colors of our parent and
426 1.1 matt * uncle and make our grandparent red. And
427 1.1 matt * then solve the problem up at his level.
428 1.1 matt */
429 1.1 matt RB_MARK_BLACK(uncle);
430 1.1 matt RB_MARK_BLACK(father);
431 1.1 matt if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
432 1.1 matt /*
433 1.1 matt * If our grandpa is root, don't bother
434 1.1 matt * setting him to red, just return.
435 1.1 matt */
436 1.1 matt KASSERT(RB_BLACK_P(grandpa));
437 1.1 matt return;
438 1.1 matt }
439 1.1 matt RB_MARK_RED(grandpa);
440 1.1 matt self = grandpa;
441 1.1 matt father = RB_FATHER(self);
442 1.1 matt KASSERT(RB_RED_P(self));
443 1.1 matt if (RB_BLACK_P(father)) {
444 1.1 matt /*
445 1.1 matt * If our greatgrandpa is black, we're done.
446 1.1 matt */
447 1.1 matt KASSERT(RB_BLACK_P(rbt->rbt_root));
448 1.1 matt return;
449 1.1 matt }
450 1.1 matt }
451 1.1 matt
452 1.1 matt KASSERT(!RB_ROOT_P(rbt, self));
453 1.1 matt KASSERT(RB_RED_P(self));
454 1.1 matt KASSERT(RB_RED_P(father));
455 1.1 matt KASSERT(RB_BLACK_P(uncle));
456 1.1 matt KASSERT(RB_BLACK_P(grandpa));
457 1.1 matt /*
458 1.1 matt * Case 2&3: our uncle is black.
459 1.1 matt */
460 1.1 matt if (self == father->rb_nodes[other]) {
461 1.1 matt /*
462 1.1 matt * Case 2: we are on the same side as our uncle
463 1.1 matt * Swap ourselves with our parent so this case
464 1.1 matt * becomes case 3. Basically our parent becomes our
465 1.1 matt * child.
466 1.1 matt */
467 1.1 matt rb_tree_reparent_nodes(rbt, father, other);
468 1.1 matt KASSERT(RB_FATHER(father) == self);
469 1.1 matt KASSERT(self->rb_nodes[which] == father);
470 1.1 matt KASSERT(RB_FATHER(self) == grandpa);
471 1.1 matt self = father;
472 1.1 matt father = RB_FATHER(self);
473 1.1 matt }
474 1.1 matt KASSERT(RB_RED_P(self) && RB_RED_P(father));
475 1.1 matt KASSERT(grandpa->rb_nodes[which] == father);
476 1.1 matt /*
477 1.1 matt * Case 3: we are opposite a child of a black uncle.
478 1.1 matt * Swap our parent and grandparent. Since our grandfather
479 1.1 matt * is black, our father will become black and our new sibling
480 1.1 matt * (former grandparent) will become red.
481 1.1 matt */
482 1.1 matt rb_tree_reparent_nodes(rbt, grandpa, which);
483 1.1 matt KASSERT(RB_FATHER(self) == father);
484 1.1 matt KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
485 1.1 matt KASSERT(RB_RED_P(self));
486 1.1 matt KASSERT(RB_BLACK_P(father));
487 1.1 matt KASSERT(RB_RED_P(grandpa));
488 1.1 matt
489 1.1 matt /*
490 1.1 matt * Final step: Set the root to black.
491 1.1 matt */
492 1.1 matt RB_MARK_BLACK(rbt->rbt_root);
493 1.1 matt }
494 1.7 rmind
495 1.1 matt static void
496 1.1 matt rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
497 1.1 matt {
498 1.1 matt const unsigned int which = RB_POSITION(self);
499 1.1 matt struct rb_node *father = RB_FATHER(self);
500 1.5 joerg #ifndef RBSMALL
501 1.1 matt const bool was_root = RB_ROOT_P(rbt, self);
502 1.5 joerg #endif
503 1.1 matt
504 1.1 matt KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
505 1.1 matt KASSERT(!rebalance || RB_BLACK_P(self));
506 1.1 matt KASSERT(RB_CHILDLESS_P(self));
507 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, false));
508 1.1 matt
509 1.1 matt /*
510 1.1 matt * Since we are childless, we know that self->rb_left is pointing
511 1.1 matt * to the sentinel node.
512 1.1 matt */
513 1.1 matt father->rb_nodes[which] = self->rb_left;
514 1.1 matt
515 1.1 matt /*
516 1.1 matt * Remove ourselves from the node list, decrement the count,
517 1.1 matt * and update min/max.
518 1.1 matt */
519 1.1 matt RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
520 1.1 matt RBSTAT_DEC(rbt->rbt_count);
521 1.1 matt #ifndef RBSMALL
522 1.1 matt if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
523 1.1 matt rbt->rbt_minmax[RB_POSITION(self)] = father;
524 1.1 matt /*
525 1.1 matt * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
526 1.1 matt * updated automatically, but we also need to update
527 1.1 matt * rbt->rbt_minmax[RB_DIR_RIGHT];
528 1.1 matt */
529 1.1 matt if (__predict_false(was_root)) {
530 1.1 matt rbt->rbt_minmax[RB_DIR_RIGHT] = father;
531 1.1 matt }
532 1.1 matt }
533 1.1 matt RB_SET_FATHER(self, NULL);
534 1.1 matt #endif
535 1.1 matt
536 1.1 matt /*
537 1.1 matt * Rebalance if requested.
538 1.1 matt */
539 1.1 matt if (rebalance)
540 1.1 matt rb_tree_removal_rebalance(rbt, father, which);
541 1.1 matt KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
542 1.1 matt }
543 1.7 rmind
544 1.1 matt /*
545 1.1 matt * When deleting an interior node
546 1.1 matt */
547 1.1 matt static void
548 1.1 matt rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
549 1.1 matt struct rb_node *standin)
550 1.1 matt {
551 1.1 matt const unsigned int standin_which = RB_POSITION(standin);
552 1.1 matt unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
553 1.1 matt struct rb_node *standin_son;
554 1.1 matt struct rb_node *standin_father = RB_FATHER(standin);
555 1.1 matt bool rebalance = RB_BLACK_P(standin);
556 1.1 matt
557 1.1 matt if (standin_father == self) {
558 1.1 matt /*
559 1.1 matt * As a child of self, any childen would be opposite of
560 1.1 matt * our parent.
561 1.1 matt */
562 1.1 matt KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
563 1.1 matt standin_son = standin->rb_nodes[standin_which];
564 1.1 matt } else {
565 1.1 matt /*
566 1.1 matt * Since we aren't a child of self, any childen would be
567 1.1 matt * on the same side as our parent.
568 1.1 matt */
569 1.1 matt KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
570 1.1 matt standin_son = standin->rb_nodes[standin_other];
571 1.1 matt }
572 1.1 matt
573 1.1 matt /*
574 1.1 matt * the node we are removing must have two children.
575 1.1 matt */
576 1.1 matt KASSERT(RB_TWOCHILDREN_P(self));
577 1.1 matt /*
578 1.1 matt * If standin has a child, it must be red.
579 1.1 matt */
580 1.1 matt KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
581 1.1 matt
582 1.1 matt /*
583 1.1 matt * Verify things are sane.
584 1.1 matt */
585 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, false));
586 1.1 matt KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
587 1.1 matt
588 1.1 matt if (__predict_false(RB_RED_P(standin_son))) {
589 1.1 matt /*
590 1.1 matt * We know we have a red child so if we flip it to black
591 1.1 matt * we don't have to rebalance.
592 1.1 matt */
593 1.1 matt KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
594 1.1 matt RB_MARK_BLACK(standin_son);
595 1.1 matt rebalance = false;
596 1.1 matt
597 1.1 matt if (standin_father == self) {
598 1.1 matt KASSERT(RB_POSITION(standin_son) == standin_which);
599 1.1 matt } else {
600 1.1 matt KASSERT(RB_POSITION(standin_son) == standin_other);
601 1.1 matt /*
602 1.1 matt * Change the son's parentage to point to his grandpa.
603 1.1 matt */
604 1.1 matt RB_SET_FATHER(standin_son, standin_father);
605 1.1 matt RB_SET_POSITION(standin_son, standin_which);
606 1.1 matt }
607 1.1 matt }
608 1.1 matt
609 1.1 matt if (standin_father == self) {
610 1.1 matt /*
611 1.1 matt * If we are about to delete the standin's father, then when
612 1.1 matt * we call rebalance, we need to use ourselves as our father.
613 1.1 matt * Otherwise remember our original father. Also, sincef we are
614 1.1 matt * our standin's father we only need to reparent the standin's
615 1.1 matt * brother.
616 1.1 matt *
617 1.1 matt * | R --> S |
618 1.1 matt * | Q S --> Q T |
619 1.1 matt * | t --> |
620 1.1 matt */
621 1.1 matt KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
622 1.1 matt KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
623 1.1 matt KASSERT(self->rb_nodes[standin_which] == standin);
624 1.1 matt /*
625 1.1 matt * Have our son/standin adopt his brother as his new son.
626 1.1 matt */
627 1.1 matt standin_father = standin;
628 1.1 matt } else {
629 1.1 matt /*
630 1.1 matt * | R --> S . |
631 1.1 matt * | / \ | T --> / \ | / |
632 1.1 matt * | ..... | S --> ..... | T |
633 1.1 matt *
634 1.1 matt * Sever standin's connection to his father.
635 1.1 matt */
636 1.1 matt standin_father->rb_nodes[standin_which] = standin_son;
637 1.1 matt /*
638 1.1 matt * Adopt the far son.
639 1.1 matt */
640 1.1 matt standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
641 1.1 matt RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
642 1.1 matt KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
643 1.1 matt /*
644 1.1 matt * Use standin_other because we need to preserve standin_which
645 1.1 matt * for the removal_rebalance.
646 1.1 matt */
647 1.1 matt standin_other = standin_which;
648 1.1 matt }
649 1.1 matt
650 1.1 matt /*
651 1.1 matt * Move the only remaining son to our standin. If our standin is our
652 1.1 matt * son, this will be the only son needed to be moved.
653 1.1 matt */
654 1.1 matt KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
655 1.1 matt standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
656 1.1 matt RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
657 1.1 matt
658 1.1 matt /*
659 1.1 matt * Now copy the result of self to standin and then replace
660 1.1 matt * self with standin in the tree.
661 1.1 matt */
662 1.1 matt RB_COPY_PROPERTIES(standin, self);
663 1.1 matt RB_SET_FATHER(standin, RB_FATHER(self));
664 1.1 matt RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
665 1.1 matt
666 1.1 matt /*
667 1.1 matt * Remove ourselves from the node list, decrement the count,
668 1.1 matt * and update min/max.
669 1.1 matt */
670 1.1 matt RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
671 1.1 matt RBSTAT_DEC(rbt->rbt_count);
672 1.1 matt #ifndef RBSMALL
673 1.1 matt if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
674 1.1 matt rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
675 1.1 matt RB_SET_FATHER(self, NULL);
676 1.1 matt #endif
677 1.1 matt
678 1.1 matt KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
679 1.1 matt KASSERT(RB_FATHER_SENTINEL_P(standin)
680 1.1 matt || rb_tree_check_node(rbt, standin_father, NULL, false));
681 1.1 matt KASSERT(RB_LEFT_SENTINEL_P(standin)
682 1.1 matt || rb_tree_check_node(rbt, standin->rb_left, NULL, false));
683 1.1 matt KASSERT(RB_RIGHT_SENTINEL_P(standin)
684 1.1 matt || rb_tree_check_node(rbt, standin->rb_right, NULL, false));
685 1.1 matt
686 1.1 matt if (!rebalance)
687 1.1 matt return;
688 1.1 matt
689 1.1 matt rb_tree_removal_rebalance(rbt, standin_father, standin_which);
690 1.1 matt KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
691 1.1 matt }
692 1.1 matt
693 1.1 matt /*
694 1.1 matt * We could do this by doing
695 1.1 matt * rb_tree_node_swap(rbt, self, which);
696 1.1 matt * rb_tree_prune_node(rbt, self, false);
697 1.1 matt *
698 1.1 matt * But it's more efficient to just evalate and recolor the child.
699 1.1 matt */
700 1.1 matt static void
701 1.1 matt rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
702 1.1 matt unsigned int which)
703 1.1 matt {
704 1.1 matt struct rb_node *father = RB_FATHER(self);
705 1.1 matt struct rb_node *son = self->rb_nodes[which];
706 1.5 joerg #ifndef RBSMALL
707 1.1 matt const bool was_root = RB_ROOT_P(rbt, self);
708 1.5 joerg #endif
709 1.1 matt
710 1.1 matt KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
711 1.1 matt KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
712 1.1 matt KASSERT(!RB_TWOCHILDREN_P(son));
713 1.1 matt KASSERT(RB_CHILDLESS_P(son));
714 1.1 matt KASSERT(rb_tree_check_node(rbt, self, NULL, false));
715 1.1 matt KASSERT(rb_tree_check_node(rbt, son, NULL, false));
716 1.1 matt
717 1.1 matt /*
718 1.1 matt * Remove ourselves from the tree and give our former child our
719 1.1 matt * properties (position, color, root).
720 1.1 matt */
721 1.1 matt RB_COPY_PROPERTIES(son, self);
722 1.1 matt father->rb_nodes[RB_POSITION(son)] = son;
723 1.1 matt RB_SET_FATHER(son, father);
724 1.1 matt
725 1.1 matt /*
726 1.1 matt * Remove ourselves from the node list, decrement the count,
727 1.1 matt * and update minmax.
728 1.1 matt */
729 1.1 matt RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
730 1.1 matt RBSTAT_DEC(rbt->rbt_count);
731 1.1 matt #ifndef RBSMALL
732 1.1 matt if (__predict_false(was_root)) {
733 1.1 matt KASSERT(rbt->rbt_minmax[which] == son);
734 1.1 matt rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
735 1.1 matt } else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
736 1.1 matt rbt->rbt_minmax[RB_POSITION(self)] = son;
737 1.1 matt }
738 1.1 matt RB_SET_FATHER(self, NULL);
739 1.1 matt #endif
740 1.1 matt
741 1.1 matt KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
742 1.1 matt KASSERT(rb_tree_check_node(rbt, son, NULL, true));
743 1.1 matt }
744 1.7 rmind
745 1.1 matt void
746 1.7 rmind rb_tree_remove_node(struct rb_tree *rbt, void *object)
747 1.1 matt {
748 1.7 rmind const rb_tree_ops_t *rbto = rbt->rbt_ops;
749 1.7 rmind struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
750 1.1 matt unsigned int which;
751 1.1 matt
752 1.1 matt KASSERT(!RB_SENTINEL_P(self));
753 1.1 matt RBSTAT_INC(rbt->rbt_removals);
754 1.1 matt
755 1.1 matt /*
756 1.1 matt * In the following diagrams, we (the node to be removed) are S. Red
757 1.1 matt * nodes are lowercase. T could be either red or black.
758 1.1 matt *
759 1.1 matt * Remember the major axiom of the red-black tree: the number of
760 1.1 matt * black nodes from the root to each leaf is constant across all
761 1.1 matt * leaves, only the number of red nodes varies.
762 1.1 matt *
763 1.1 matt * Thus removing a red leaf doesn't require any other changes to a
764 1.1 matt * red-black tree. So if we must remove a node, attempt to rearrange
765 1.1 matt * the tree so we can remove a red node.
766 1.1 matt *
767 1.1 matt * The simpliest case is a childless red node or a childless root node:
768 1.1 matt *
769 1.1 matt * | T --> T | or | R --> * |
770 1.1 matt * | s --> * |
771 1.1 matt */
772 1.1 matt if (RB_CHILDLESS_P(self)) {
773 1.1 matt const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
774 1.1 matt rb_tree_prune_node(rbt, self, rebalance);
775 1.1 matt return;
776 1.1 matt }
777 1.1 matt KASSERT(!RB_CHILDLESS_P(self));
778 1.1 matt if (!RB_TWOCHILDREN_P(self)) {
779 1.1 matt /*
780 1.1 matt * The next simpliest case is the node we are deleting is
781 1.1 matt * black and has one red child.
782 1.1 matt *
783 1.1 matt * | T --> T --> T |
784 1.1 matt * | S --> R --> R |
785 1.1 matt * | r --> s --> * |
786 1.1 matt */
787 1.1 matt which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
788 1.1 matt KASSERT(RB_BLACK_P(self));
789 1.1 matt KASSERT(RB_RED_P(self->rb_nodes[which]));
790 1.1 matt KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
791 1.1 matt rb_tree_prune_blackred_branch(rbt, self, which);
792 1.1 matt return;
793 1.1 matt }
794 1.1 matt KASSERT(RB_TWOCHILDREN_P(self));
795 1.1 matt
796 1.1 matt /*
797 1.1 matt * We invert these because we prefer to remove from the inside of
798 1.1 matt * the tree.
799 1.1 matt */
800 1.1 matt which = RB_POSITION(self) ^ RB_DIR_OTHER;
801 1.1 matt
802 1.1 matt /*
803 1.1 matt * Let's find the node closes to us opposite of our parent
804 1.1 matt * Now swap it with ourself, "prune" it, and rebalance, if needed.
805 1.1 matt */
806 1.7 rmind standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
807 1.1 matt rb_tree_swap_prune_and_rebalance(rbt, self, standin);
808 1.1 matt }
809 1.1 matt
810 1.1 matt static void
811 1.1 matt rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
812 1.1 matt unsigned int which)
813 1.1 matt {
814 1.1 matt KASSERT(!RB_SENTINEL_P(parent));
815 1.1 matt KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
816 1.1 matt KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
817 1.1 matt RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
818 1.1 matt
819 1.1 matt while (RB_BLACK_P(parent->rb_nodes[which])) {
820 1.1 matt unsigned int other = which ^ RB_DIR_OTHER;
821 1.1 matt struct rb_node *brother = parent->rb_nodes[other];
822 1.1 matt
823 1.1 matt RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
824 1.1 matt
825 1.1 matt KASSERT(!RB_SENTINEL_P(brother));
826 1.1 matt /*
827 1.1 matt * For cases 1, 2a, and 2b, our brother's children must
828 1.1 matt * be black and our father must be black
829 1.1 matt */
830 1.1 matt if (RB_BLACK_P(parent)
831 1.1 matt && RB_BLACK_P(brother->rb_left)
832 1.1 matt && RB_BLACK_P(brother->rb_right)) {
833 1.1 matt if (RB_RED_P(brother)) {
834 1.1 matt /*
835 1.1 matt * Case 1: Our brother is red, swap its
836 1.1 matt * position (and colors) with our parent.
837 1.1 matt * This should now be case 2b (unless C or E
838 1.1 matt * has a red child which is case 3; thus no
839 1.1 matt * explicit branch to case 2b).
840 1.1 matt *
841 1.1 matt * B -> D
842 1.1 matt * A d -> b E
843 1.1 matt * C E -> A C
844 1.1 matt */
845 1.1 matt KASSERT(RB_BLACK_P(parent));
846 1.1 matt rb_tree_reparent_nodes(rbt, parent, other);
847 1.1 matt brother = parent->rb_nodes[other];
848 1.1 matt KASSERT(!RB_SENTINEL_P(brother));
849 1.1 matt KASSERT(RB_RED_P(parent));
850 1.1 matt KASSERT(RB_BLACK_P(brother));
851 1.1 matt KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
852 1.1 matt KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
853 1.1 matt } else {
854 1.1 matt /*
855 1.1 matt * Both our parent and brother are black.
856 1.1 matt * Change our brother to red, advance up rank
857 1.1 matt * and go through the loop again.
858 1.1 matt *
859 1.1 matt * B -> *B
860 1.1 matt * *A D -> A d
861 1.1 matt * C E -> C E
862 1.1 matt */
863 1.1 matt RB_MARK_RED(brother);
864 1.1 matt KASSERT(RB_BLACK_P(brother->rb_left));
865 1.1 matt KASSERT(RB_BLACK_P(brother->rb_right));
866 1.1 matt if (RB_ROOT_P(rbt, parent))
867 1.1 matt return; /* root == parent == black */
868 1.1 matt KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
869 1.1 matt KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
870 1.1 matt which = RB_POSITION(parent);
871 1.1 matt parent = RB_FATHER(parent);
872 1.1 matt continue;
873 1.1 matt }
874 1.1 matt }
875 1.1 matt /*
876 1.1 matt * Avoid an else here so that case 2a above can hit either
877 1.1 matt * case 2b, 3, or 4.
878 1.1 matt */
879 1.1 matt if (RB_RED_P(parent)
880 1.1 matt && RB_BLACK_P(brother)
881 1.1 matt && RB_BLACK_P(brother->rb_left)
882 1.1 matt && RB_BLACK_P(brother->rb_right)) {
883 1.1 matt KASSERT(RB_RED_P(parent));
884 1.1 matt KASSERT(RB_BLACK_P(brother));
885 1.1 matt KASSERT(RB_BLACK_P(brother->rb_left));
886 1.1 matt KASSERT(RB_BLACK_P(brother->rb_right));
887 1.1 matt /*
888 1.1 matt * We are black, our father is red, our brother and
889 1.1 matt * both nephews are black. Simply invert/exchange the
890 1.1 matt * colors of our father and brother (to black and red
891 1.1 matt * respectively).
892 1.1 matt *
893 1.1 matt * | f --> F |
894 1.1 matt * | * B --> * b |
895 1.1 matt * | N N --> N N |
896 1.1 matt */
897 1.1 matt RB_MARK_BLACK(parent);
898 1.1 matt RB_MARK_RED(brother);
899 1.1 matt KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
900 1.1 matt break; /* We're done! */
901 1.1 matt } else {
902 1.1 matt /*
903 1.1 matt * Our brother must be black and have at least one
904 1.1 matt * red child (it may have two).
905 1.1 matt */
906 1.1 matt KASSERT(RB_BLACK_P(brother));
907 1.1 matt KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
908 1.1 matt RB_RED_P(brother->rb_nodes[other]));
909 1.1 matt if (RB_BLACK_P(brother->rb_nodes[other])) {
910 1.1 matt /*
911 1.1 matt * Case 3: our brother is black, our near
912 1.1 matt * nephew is red, and our far nephew is black.
913 1.1 matt * Swap our brother with our near nephew.
914 1.1 matt * This result in a tree that matches case 4.
915 1.1 matt * (Our father could be red or black).
916 1.1 matt *
917 1.1 matt * | F --> F |
918 1.1 matt * | x B --> x B |
919 1.1 matt * | n --> n |
920 1.1 matt */
921 1.1 matt KASSERT(RB_RED_P(brother->rb_nodes[which]));
922 1.1 matt rb_tree_reparent_nodes(rbt, brother, which);
923 1.1 matt KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
924 1.1 matt brother = parent->rb_nodes[other];
925 1.1 matt KASSERT(RB_RED_P(brother->rb_nodes[other]));
926 1.1 matt }
927 1.1 matt /*
928 1.1 matt * Case 4: our brother is black and our far nephew
929 1.1 matt * is red. Swap our father and brother locations and
930 1.1 matt * change our far nephew to black. (these can be
931 1.1 matt * done in either order so we change the color first).
932 1.1 matt * The result is a valid red-black tree and is a
933 1.1 matt * terminal case. (again we don't care about the
934 1.1 matt * father's color)
935 1.1 matt *
936 1.1 matt * If the father is red, we will get a red-black-black
937 1.1 matt * tree:
938 1.1 matt * | f -> f --> b |
939 1.1 matt * | B -> B --> F N |
940 1.1 matt * | n -> N --> |
941 1.1 matt *
942 1.1 matt * If the father is black, we will get an all black
943 1.1 matt * tree:
944 1.1 matt * | F -> F --> B |
945 1.1 matt * | B -> B --> F N |
946 1.1 matt * | n -> N --> |
947 1.1 matt *
948 1.1 matt * If we had two red nephews, then after the swap,
949 1.1 matt * our former father would have a red grandson.
950 1.1 matt */
951 1.1 matt KASSERT(RB_BLACK_P(brother));
952 1.1 matt KASSERT(RB_RED_P(brother->rb_nodes[other]));
953 1.1 matt RB_MARK_BLACK(brother->rb_nodes[other]);
954 1.1 matt rb_tree_reparent_nodes(rbt, parent, other);
955 1.1 matt break; /* We're done! */
956 1.1 matt }
957 1.1 matt }
958 1.1 matt KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
959 1.1 matt }
960 1.1 matt
961 1.7 rmind void *
962 1.7 rmind rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
963 1.1 matt {
964 1.7 rmind const rb_tree_ops_t *rbto = rbt->rbt_ops;
965 1.1 matt const unsigned int other = direction ^ RB_DIR_OTHER;
966 1.7 rmind struct rb_node *self;
967 1.7 rmind
968 1.1 matt KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
969 1.1 matt
970 1.7 rmind if (object == NULL) {
971 1.1 matt #ifndef RBSMALL
972 1.1 matt if (RB_SENTINEL_P(rbt->rbt_root))
973 1.1 matt return NULL;
974 1.7 rmind return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
975 1.1 matt #else
976 1.1 matt self = rbt->rbt_root;
977 1.1 matt if (RB_SENTINEL_P(self))
978 1.1 matt return NULL;
979 1.6 joerg while (!RB_SENTINEL_P(self->rb_nodes[direction]))
980 1.6 joerg self = self->rb_nodes[direction];
981 1.7 rmind return RB_NODETOITEM(rbto, self);
982 1.1 matt #endif /* !RBSMALL */
983 1.1 matt }
984 1.7 rmind self = RB_ITEMTONODE(rbto, object);
985 1.1 matt KASSERT(!RB_SENTINEL_P(self));
986 1.1 matt /*
987 1.1 matt * We can't go any further in this direction. We proceed up in the
988 1.1 matt * opposite direction until our parent is in direction we want to go.
989 1.1 matt */
990 1.1 matt if (RB_SENTINEL_P(self->rb_nodes[direction])) {
991 1.1 matt while (!RB_ROOT_P(rbt, self)) {
992 1.1 matt if (other == RB_POSITION(self))
993 1.7 rmind return RB_NODETOITEM(rbto, RB_FATHER(self));
994 1.1 matt self = RB_FATHER(self);
995 1.1 matt }
996 1.1 matt return NULL;
997 1.1 matt }
998 1.1 matt
999 1.1 matt /*
1000 1.1 matt * Advance down one in current direction and go down as far as possible
1001 1.1 matt * in the opposite direction.
1002 1.1 matt */
1003 1.1 matt self = self->rb_nodes[direction];
1004 1.1 matt KASSERT(!RB_SENTINEL_P(self));
1005 1.1 matt while (!RB_SENTINEL_P(self->rb_nodes[other]))
1006 1.1 matt self = self->rb_nodes[other];
1007 1.7 rmind return RB_NODETOITEM(rbto, self);
1008 1.1 matt }
1009 1.1 matt
1010 1.1 matt #ifdef RBDEBUG
1011 1.1 matt static const struct rb_node *
1012 1.1 matt rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
1013 1.1 matt const unsigned int direction)
1014 1.1 matt {
1015 1.1 matt const unsigned int other = direction ^ RB_DIR_OTHER;
1016 1.1 matt KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
1017 1.1 matt
1018 1.1 matt if (self == NULL) {
1019 1.1 matt #ifndef RBSMALL
1020 1.1 matt if (RB_SENTINEL_P(rbt->rbt_root))
1021 1.1 matt return NULL;
1022 1.1 matt return rbt->rbt_minmax[direction];
1023 1.1 matt #else
1024 1.1 matt self = rbt->rbt_root;
1025 1.1 matt if (RB_SENTINEL_P(self))
1026 1.1 matt return NULL;
1027 1.6 joerg while (!RB_SENTINEL_P(self->rb_nodes[direction]))
1028 1.6 joerg self = self->rb_nodes[direction];
1029 1.1 matt return self;
1030 1.1 matt #endif /* !RBSMALL */
1031 1.1 matt }
1032 1.1 matt KASSERT(!RB_SENTINEL_P(self));
1033 1.1 matt /*
1034 1.1 matt * We can't go any further in this direction. We proceed up in the
1035 1.1 matt * opposite direction until our parent is in direction we want to go.
1036 1.1 matt */
1037 1.1 matt if (RB_SENTINEL_P(self->rb_nodes[direction])) {
1038 1.1 matt while (!RB_ROOT_P(rbt, self)) {
1039 1.1 matt if (other == RB_POSITION(self))
1040 1.1 matt return RB_FATHER(self);
1041 1.1 matt self = RB_FATHER(self);
1042 1.1 matt }
1043 1.1 matt return NULL;
1044 1.1 matt }
1045 1.1 matt
1046 1.1 matt /*
1047 1.1 matt * Advance down one in current direction and go down as far as possible
1048 1.1 matt * in the opposite direction.
1049 1.1 matt */
1050 1.1 matt self = self->rb_nodes[direction];
1051 1.1 matt KASSERT(!RB_SENTINEL_P(self));
1052 1.1 matt while (!RB_SENTINEL_P(self->rb_nodes[other]))
1053 1.1 matt self = self->rb_nodes[other];
1054 1.1 matt return self;
1055 1.1 matt }
1056 1.1 matt
1057 1.1 matt static unsigned int
1058 1.1 matt rb_tree_count_black(const struct rb_node *self)
1059 1.1 matt {
1060 1.1 matt unsigned int left, right;
1061 1.1 matt
1062 1.1 matt if (RB_SENTINEL_P(self))
1063 1.1 matt return 0;
1064 1.1 matt
1065 1.1 matt left = rb_tree_count_black(self->rb_left);
1066 1.1 matt right = rb_tree_count_black(self->rb_right);
1067 1.1 matt
1068 1.1 matt KASSERT(left == right);
1069 1.1 matt
1070 1.1 matt return left + RB_BLACK_P(self);
1071 1.1 matt }
1072 1.1 matt
1073 1.1 matt static bool
1074 1.1 matt rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
1075 1.1 matt const struct rb_node *prev, bool red_check)
1076 1.1 matt {
1077 1.7 rmind const rb_tree_ops_t *rbto = rbt->rbt_ops;
1078 1.7 rmind rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
1079 1.1 matt
1080 1.1 matt KASSERT(!RB_SENTINEL_P(self));
1081 1.7 rmind KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
1082 1.7 rmind RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
1083 1.1 matt
1084 1.1 matt /*
1085 1.1 matt * Verify our relationship to our parent.
1086 1.1 matt */
1087 1.1 matt if (RB_ROOT_P(rbt, self)) {
1088 1.1 matt KASSERT(self == rbt->rbt_root);
1089 1.1 matt KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
1090 1.1 matt KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1091 1.1 matt KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
1092 1.1 matt } else {
1093 1.7 rmind int diff = (*compare_nodes)(rbto->rbto_context,
1094 1.7 rmind RB_NODETOITEM(rbto, self),
1095 1.7 rmind RB_NODETOITEM(rbto, RB_FATHER(self)));
1096 1.7 rmind
1097 1.1 matt KASSERT(self != rbt->rbt_root);
1098 1.1 matt KASSERT(!RB_FATHER_SENTINEL_P(self));
1099 1.1 matt if (RB_POSITION(self) == RB_DIR_LEFT) {
1100 1.7 rmind KASSERT(diff < 0);
1101 1.1 matt KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1102 1.1 matt } else {
1103 1.7 rmind KASSERT(diff > 0);
1104 1.1 matt KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
1105 1.1 matt }
1106 1.1 matt }
1107 1.1 matt
1108 1.1 matt /*
1109 1.1 matt * Verify our position in the linked list against the tree itself.
1110 1.1 matt */
1111 1.1 matt {
1112 1.1 matt const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1113 1.1 matt const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1114 1.1 matt KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
1115 1.1 matt KASSERT(next0 == TAILQ_NEXT(self, rb_link));
1116 1.1 matt #ifndef RBSMALL
1117 1.1 matt KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
1118 1.1 matt KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
1119 1.1 matt #endif
1120 1.1 matt }
1121 1.1 matt
1122 1.1 matt /*
1123 1.1 matt * The root must be black.
1124 1.1 matt * There can never be two adjacent red nodes.
1125 1.1 matt */
1126 1.1 matt if (red_check) {
1127 1.1 matt KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
1128 1.1 matt (void) rb_tree_count_black(self);
1129 1.1 matt if (RB_RED_P(self)) {
1130 1.1 matt const struct rb_node *brother;
1131 1.1 matt KASSERT(!RB_ROOT_P(rbt, self));
1132 1.1 matt brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
1133 1.1 matt KASSERT(RB_BLACK_P(RB_FATHER(self)));
1134 1.1 matt /*
1135 1.1 matt * I'm red and have no children, then I must either
1136 1.1 matt * have no brother or my brother also be red and
1137 1.1 matt * also have no children. (black count == 0)
1138 1.1 matt */
1139 1.1 matt KASSERT(!RB_CHILDLESS_P(self)
1140 1.1 matt || RB_SENTINEL_P(brother)
1141 1.1 matt || RB_RED_P(brother)
1142 1.1 matt || RB_CHILDLESS_P(brother));
1143 1.1 matt /*
1144 1.1 matt * If I'm not childless, I must have two children
1145 1.1 matt * and they must be both be black.
1146 1.1 matt */
1147 1.1 matt KASSERT(RB_CHILDLESS_P(self)
1148 1.1 matt || (RB_TWOCHILDREN_P(self)
1149 1.1 matt && RB_BLACK_P(self->rb_left)
1150 1.1 matt && RB_BLACK_P(self->rb_right)));
1151 1.1 matt /*
1152 1.1 matt * If I'm not childless, thus I have black children,
1153 1.1 matt * then my brother must either be black or have two
1154 1.1 matt * black children.
1155 1.1 matt */
1156 1.1 matt KASSERT(RB_CHILDLESS_P(self)
1157 1.1 matt || RB_BLACK_P(brother)
1158 1.1 matt || (RB_TWOCHILDREN_P(brother)
1159 1.1 matt && RB_BLACK_P(brother->rb_left)
1160 1.1 matt && RB_BLACK_P(brother->rb_right)));
1161 1.1 matt } else {
1162 1.1 matt /*
1163 1.1 matt * If I'm black and have one child, that child must
1164 1.1 matt * be red and childless.
1165 1.1 matt */
1166 1.1 matt KASSERT(RB_CHILDLESS_P(self)
1167 1.1 matt || RB_TWOCHILDREN_P(self)
1168 1.1 matt || (!RB_LEFT_SENTINEL_P(self)
1169 1.1 matt && RB_RIGHT_SENTINEL_P(self)
1170 1.1 matt && RB_RED_P(self->rb_left)
1171 1.1 matt && RB_CHILDLESS_P(self->rb_left))
1172 1.1 matt || (!RB_RIGHT_SENTINEL_P(self)
1173 1.1 matt && RB_LEFT_SENTINEL_P(self)
1174 1.1 matt && RB_RED_P(self->rb_right)
1175 1.1 matt && RB_CHILDLESS_P(self->rb_right)));
1176 1.1 matt
1177 1.1 matt /*
1178 1.1 matt * If I'm a childless black node and my parent is
1179 1.1 matt * black, my 2nd closet relative away from my parent
1180 1.1 matt * is either red or has a red parent or red children.
1181 1.1 matt */
1182 1.1 matt if (!RB_ROOT_P(rbt, self)
1183 1.1 matt && RB_CHILDLESS_P(self)
1184 1.1 matt && RB_BLACK_P(RB_FATHER(self))) {
1185 1.1 matt const unsigned int which = RB_POSITION(self);
1186 1.1 matt const unsigned int other = which ^ RB_DIR_OTHER;
1187 1.1 matt const struct rb_node *relative0, *relative;
1188 1.1 matt
1189 1.1 matt relative0 = rb_tree_iterate_const(rbt,
1190 1.1 matt self, other);
1191 1.1 matt KASSERT(relative0 != NULL);
1192 1.1 matt relative = rb_tree_iterate_const(rbt,
1193 1.1 matt relative0, other);
1194 1.1 matt KASSERT(relative != NULL);
1195 1.1 matt KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
1196 1.1 matt #if 0
1197 1.1 matt KASSERT(RB_RED_P(relative)
1198 1.1 matt || RB_RED_P(relative->rb_left)
1199 1.1 matt || RB_RED_P(relative->rb_right)
1200 1.1 matt || RB_RED_P(RB_FATHER(relative)));
1201 1.1 matt #endif
1202 1.1 matt }
1203 1.1 matt }
1204 1.1 matt /*
1205 1.1 matt * A grandparent's children must be real nodes and not
1206 1.1 matt * sentinels. First check out grandparent.
1207 1.1 matt */
1208 1.1 matt KASSERT(RB_ROOT_P(rbt, self)
1209 1.1 matt || RB_ROOT_P(rbt, RB_FATHER(self))
1210 1.1 matt || RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
1211 1.1 matt /*
1212 1.1 matt * If we are have grandchildren on our left, then
1213 1.1 matt * we must have a child on our right.
1214 1.1 matt */
1215 1.1 matt KASSERT(RB_LEFT_SENTINEL_P(self)
1216 1.1 matt || RB_CHILDLESS_P(self->rb_left)
1217 1.1 matt || !RB_RIGHT_SENTINEL_P(self));
1218 1.1 matt /*
1219 1.1 matt * If we are have grandchildren on our right, then
1220 1.1 matt * we must have a child on our left.
1221 1.1 matt */
1222 1.1 matt KASSERT(RB_RIGHT_SENTINEL_P(self)
1223 1.1 matt || RB_CHILDLESS_P(self->rb_right)
1224 1.1 matt || !RB_LEFT_SENTINEL_P(self));
1225 1.1 matt
1226 1.1 matt /*
1227 1.1 matt * If we have a child on the left and it doesn't have two
1228 1.1 matt * children make sure we don't have great-great-grandchildren on
1229 1.1 matt * the right.
1230 1.1 matt */
1231 1.1 matt KASSERT(RB_TWOCHILDREN_P(self->rb_left)
1232 1.1 matt || RB_CHILDLESS_P(self->rb_right)
1233 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_left)
1234 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
1235 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
1236 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_right)
1237 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
1238 1.1 matt || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
1239 1.1 matt
1240 1.1 matt /*
1241 1.1 matt * If we have a child on the right and it doesn't have two
1242 1.1 matt * children make sure we don't have great-great-grandchildren on
1243 1.1 matt * the left.
1244 1.1 matt */
1245 1.1 matt KASSERT(RB_TWOCHILDREN_P(self->rb_right)
1246 1.1 matt || RB_CHILDLESS_P(self->rb_left)
1247 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_left)
1248 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
1249 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
1250 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_right)
1251 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
1252 1.1 matt || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
1253 1.1 matt
1254 1.1 matt /*
1255 1.1 matt * If we are fully interior node, then our predecessors and
1256 1.1 matt * successors must have no children in our direction.
1257 1.1 matt */
1258 1.1 matt if (RB_TWOCHILDREN_P(self)) {
1259 1.1 matt const struct rb_node *prev0;
1260 1.1 matt const struct rb_node *next0;
1261 1.1 matt
1262 1.1 matt prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1263 1.1 matt KASSERT(prev0 != NULL);
1264 1.1 matt KASSERT(RB_RIGHT_SENTINEL_P(prev0));
1265 1.1 matt
1266 1.1 matt next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1267 1.1 matt KASSERT(next0 != NULL);
1268 1.1 matt KASSERT(RB_LEFT_SENTINEL_P(next0));
1269 1.1 matt }
1270 1.1 matt }
1271 1.1 matt
1272 1.1 matt return true;
1273 1.1 matt }
1274 1.1 matt
1275 1.1 matt void
1276 1.1 matt rb_tree_check(const struct rb_tree *rbt, bool red_check)
1277 1.1 matt {
1278 1.1 matt const struct rb_node *self;
1279 1.1 matt const struct rb_node *prev;
1280 1.1 matt #ifdef RBSTATS
1281 1.1 matt unsigned int count = 0;
1282 1.1 matt #endif
1283 1.1 matt
1284 1.1 matt KASSERT(rbt->rbt_root != NULL);
1285 1.1 matt KASSERT(RB_LEFT_P(rbt->rbt_root));
1286 1.1 matt
1287 1.1 matt #if defined(RBSTATS) && !defined(RBSMALL)
1288 1.1 matt KASSERT(rbt->rbt_count > 1
1289 1.1 matt || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
1290 1.1 matt #endif
1291 1.1 matt
1292 1.1 matt prev = NULL;
1293 1.1 matt TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1294 1.1 matt rb_tree_check_node(rbt, self, prev, false);
1295 1.1 matt #ifdef RBSTATS
1296 1.1 matt count++;
1297 1.1 matt #endif
1298 1.1 matt }
1299 1.1 matt #ifdef RBSTATS
1300 1.1 matt KASSERT(rbt->rbt_count == count);
1301 1.1 matt #endif
1302 1.1 matt if (red_check) {
1303 1.1 matt KASSERT(RB_BLACK_P(rbt->rbt_root));
1304 1.1 matt KASSERT(RB_SENTINEL_P(rbt->rbt_root)
1305 1.1 matt || rb_tree_count_black(rbt->rbt_root));
1306 1.1 matt
1307 1.1 matt /*
1308 1.1 matt * The root must be black.
1309 1.1 matt * There can never be two adjacent red nodes.
1310 1.1 matt */
1311 1.1 matt TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1312 1.1 matt rb_tree_check_node(rbt, self, NULL, true);
1313 1.1 matt }
1314 1.1 matt }
1315 1.1 matt }
1316 1.1 matt #endif /* RBDEBUG */
1317 1.1 matt
1318 1.1 matt #ifdef RBSTATS
1319 1.1 matt static void
1320 1.1 matt rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
1321 1.1 matt size_t *depths, size_t depth)
1322 1.1 matt {
1323 1.1 matt if (RB_SENTINEL_P(self))
1324 1.1 matt return;
1325 1.1 matt
1326 1.1 matt if (RB_TWOCHILDREN_P(self)) {
1327 1.1 matt rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1328 1.1 matt rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1329 1.1 matt return;
1330 1.1 matt }
1331 1.1 matt depths[depth]++;
1332 1.1 matt if (!RB_LEFT_SENTINEL_P(self)) {
1333 1.1 matt rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1334 1.1 matt }
1335 1.1 matt if (!RB_RIGHT_SENTINEL_P(self)) {
1336 1.1 matt rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1337 1.1 matt }
1338 1.1 matt }
1339 1.1 matt
1340 1.1 matt void
1341 1.1 matt rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
1342 1.1 matt {
1343 1.1 matt rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
1344 1.1 matt }
1345 1.1 matt #endif /* RBSTATS */
1346