Home | History | Annotate | Line # | Download | only in gen
rb.c revision 1.9
      1  1.9   tron /*	$NetBSD: rb.c,v 1.9 2010/11/17 13:19:32 tron Exp $	*/
      2  1.1   matt 
      3  1.1   matt /*-
      4  1.1   matt  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  1.1   matt  * All rights reserved.
      6  1.1   matt  *
      7  1.1   matt  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1   matt  * by Matt Thomas <matt (at) 3am-software.com>.
      9  1.1   matt  *
     10  1.1   matt  * Redistribution and use in source and binary forms, with or without
     11  1.1   matt  * modification, are permitted provided that the following conditions
     12  1.1   matt  * are met:
     13  1.1   matt  * 1. Redistributions of source code must retain the above copyright
     14  1.1   matt  *    notice, this list of conditions and the following disclaimer.
     15  1.1   matt  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1   matt  *    notice, this list of conditions and the following disclaimer in the
     17  1.1   matt  *    documentation and/or other materials provided with the distribution.
     18  1.1   matt  *
     19  1.1   matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.1   matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.1   matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.1   matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.1   matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.1   matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.1   matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.1   matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.1   matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.1   matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.1   matt  * POSSIBILITY OF SUCH DAMAGE.
     30  1.1   matt  */
     31  1.1   matt 
     32  1.1   matt #if !defined(_KERNEL) && !defined(_STANDALONE)
     33  1.1   matt #include <sys/types.h>
     34  1.1   matt #include <stddef.h>
     35  1.1   matt #include <assert.h>
     36  1.1   matt #include <stdbool.h>
     37  1.1   matt #ifdef RBDEBUG
     38  1.1   matt #define	KASSERT(s)	assert(s)
     39  1.1   matt #else
     40  1.3   matt #define KASSERT(s)	do { } while (/*CONSTCOND*/ 0)
     41  1.1   matt #endif
     42  1.1   matt #else
     43  1.1   matt #include <lib/libkern/libkern.h>
     44  1.1   matt #endif
     45  1.1   matt 
     46  1.1   matt #ifdef _LIBC
     47  1.1   matt __weak_alias(rb_tree_init, _rb_tree_init)
     48  1.1   matt __weak_alias(rb_tree_find_node, _rb_tree_find_node)
     49  1.1   matt __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
     50  1.1   matt __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
     51  1.1   matt __weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
     52  1.1   matt __weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
     53  1.1   matt __weak_alias(rb_tree_iterate, _rb_tree_iterate)
     54  1.1   matt #ifdef RBDEBUG
     55  1.1   matt __weak_alias(rb_tree_check, _rb_tree_check)
     56  1.1   matt __weak_alias(rb_tree_depths, _rb_tree_depths)
     57  1.1   matt #endif
     58  1.1   matt 
     59  1.9   tron #include "namespace.h"
     60  1.1   matt #endif
     61  1.1   matt 
     62  1.1   matt #ifdef RBTEST
     63  1.8   matt #include "rbtree.h"
     64  1.1   matt #else
     65  1.8   matt #include <sys/rbtree.h>
     66  1.1   matt #endif
     67  1.1   matt 
     68  1.1   matt static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
     69  1.1   matt static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
     70  1.1   matt 	unsigned int);
     71  1.1   matt #ifdef RBDEBUG
     72  1.1   matt static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
     73  1.1   matt 	const struct rb_node *, const unsigned int);
     74  1.1   matt static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
     75  1.1   matt 	const struct rb_node *, bool);
     76  1.1   matt #else
     77  1.1   matt #define	rb_tree_check_node(a, b, c, d)	true
     78  1.1   matt #endif
     79  1.1   matt 
     80  1.7  rmind #define	RB_NODETOITEM(rbto, rbn)	\
     81  1.7  rmind     ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
     82  1.7  rmind #define	RB_ITEMTONODE(rbto, rbn)	\
     83  1.7  rmind     ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
     84  1.7  rmind 
     85  1.1   matt #define	RB_SENTINEL_NODE	NULL
     86  1.1   matt 
     87  1.1   matt void
     88  1.7  rmind rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
     89  1.1   matt {
     90  1.7  rmind 
     91  1.1   matt 	rbt->rbt_ops = ops;
     92  1.1   matt 	*((const struct rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
     93  1.1   matt 	RB_TAILQ_INIT(&rbt->rbt_nodes);
     94  1.1   matt #ifndef RBSMALL
     95  1.1   matt 	rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;	/* minimum node */
     96  1.1   matt 	rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;	/* maximum node */
     97  1.1   matt #endif
     98  1.1   matt #ifdef RBSTATS
     99  1.1   matt 	rbt->rbt_count = 0;
    100  1.1   matt 	rbt->rbt_insertions = 0;
    101  1.1   matt 	rbt->rbt_removals = 0;
    102  1.1   matt 	rbt->rbt_insertion_rebalance_calls = 0;
    103  1.1   matt 	rbt->rbt_insertion_rebalance_passes = 0;
    104  1.1   matt 	rbt->rbt_removal_rebalance_calls = 0;
    105  1.1   matt 	rbt->rbt_removal_rebalance_passes = 0;
    106  1.1   matt #endif
    107  1.1   matt }
    108  1.1   matt 
    109  1.7  rmind void *
    110  1.1   matt rb_tree_find_node(struct rb_tree *rbt, const void *key)
    111  1.1   matt {
    112  1.7  rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    113  1.7  rmind 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    114  1.1   matt 	struct rb_node *parent = rbt->rbt_root;
    115  1.1   matt 
    116  1.1   matt 	while (!RB_SENTINEL_P(parent)) {
    117  1.7  rmind 		void *pobj = RB_NODETOITEM(rbto, parent);
    118  1.7  rmind 		const signed int diff = (*compare_key)(rbto->rbto_context,
    119  1.7  rmind 		    pobj, key);
    120  1.1   matt 		if (diff == 0)
    121  1.7  rmind 			return pobj;
    122  1.7  rmind 		parent = parent->rb_nodes[diff < 0];
    123  1.1   matt 	}
    124  1.1   matt 
    125  1.1   matt 	return NULL;
    126  1.1   matt }
    127  1.7  rmind 
    128  1.7  rmind void *
    129  1.1   matt rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
    130  1.1   matt {
    131  1.7  rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    132  1.7  rmind 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    133  1.7  rmind 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
    134  1.1   matt 
    135  1.1   matt 	while (!RB_SENTINEL_P(parent)) {
    136  1.7  rmind 		void *pobj = RB_NODETOITEM(rbto, parent);
    137  1.7  rmind 		const signed int diff = (*compare_key)(rbto->rbto_context,
    138  1.7  rmind 		    pobj, key);
    139  1.1   matt 		if (diff == 0)
    140  1.7  rmind 			return pobj;
    141  1.7  rmind 		if (diff > 0)
    142  1.1   matt 			last = parent;
    143  1.7  rmind 		parent = parent->rb_nodes[diff < 0];
    144  1.1   matt 	}
    145  1.1   matt 
    146  1.7  rmind 	return RB_NODETOITEM(rbto, last);
    147  1.1   matt }
    148  1.7  rmind 
    149  1.7  rmind void *
    150  1.1   matt rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
    151  1.1   matt {
    152  1.7  rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    153  1.7  rmind 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    154  1.7  rmind 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
    155  1.1   matt 
    156  1.1   matt 	while (!RB_SENTINEL_P(parent)) {
    157  1.7  rmind 		void *pobj = RB_NODETOITEM(rbto, parent);
    158  1.7  rmind 		const signed int diff = (*compare_key)(rbto->rbto_context,
    159  1.7  rmind 		    pobj, key);
    160  1.1   matt 		if (diff == 0)
    161  1.7  rmind 			return pobj;
    162  1.7  rmind 		if (diff < 0)
    163  1.1   matt 			last = parent;
    164  1.7  rmind 		parent = parent->rb_nodes[diff < 0];
    165  1.1   matt 	}
    166  1.1   matt 
    167  1.7  rmind 	return RB_NODETOITEM(rbto, last);
    168  1.1   matt }
    169  1.7  rmind 
    170  1.7  rmind void *
    171  1.7  rmind rb_tree_insert_node(struct rb_tree *rbt, void *object)
    172  1.1   matt {
    173  1.7  rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    174  1.7  rmind 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
    175  1.7  rmind 	struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
    176  1.1   matt 	unsigned int position;
    177  1.1   matt 	bool rebalance;
    178  1.1   matt 
    179  1.1   matt 	RBSTAT_INC(rbt->rbt_insertions);
    180  1.1   matt 
    181  1.1   matt 	tmp = rbt->rbt_root;
    182  1.1   matt 	/*
    183  1.1   matt 	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
    184  1.1   matt 	 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
    185  1.1   matt 	 * avoid a lot of tests for root and know that even at root,
    186  1.1   matt 	 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
    187  1.1   matt 	 * update rbt->rbt_root.
    188  1.1   matt 	 */
    189  1.3   matt 	parent = (struct rb_node *)(void *)&rbt->rbt_root;
    190  1.1   matt 	position = RB_DIR_LEFT;
    191  1.1   matt 
    192  1.1   matt 	/*
    193  1.1   matt 	 * Find out where to place this new leaf.
    194  1.1   matt 	 */
    195  1.1   matt 	while (!RB_SENTINEL_P(tmp)) {
    196  1.7  rmind 		void *tobj = RB_NODETOITEM(rbto, tmp);
    197  1.7  rmind 		const signed int diff = (*compare_nodes)(rbto->rbto_context,
    198  1.7  rmind 		    tobj, object);
    199  1.1   matt 		if (__predict_false(diff == 0)) {
    200  1.1   matt 			/*
    201  1.7  rmind 			 * Node already exists; return it.
    202  1.1   matt 			 */
    203  1.7  rmind 			return tobj;
    204  1.1   matt 		}
    205  1.1   matt 		parent = tmp;
    206  1.7  rmind 		position = (diff < 0);
    207  1.1   matt 		tmp = parent->rb_nodes[position];
    208  1.1   matt 	}
    209  1.1   matt 
    210  1.1   matt #ifdef RBDEBUG
    211  1.1   matt 	{
    212  1.1   matt 		struct rb_node *prev = NULL, *next = NULL;
    213  1.1   matt 
    214  1.1   matt 		if (position == RB_DIR_RIGHT)
    215  1.1   matt 			prev = parent;
    216  1.1   matt 		else if (tmp != rbt->rbt_root)
    217  1.1   matt 			next = parent;
    218  1.1   matt 
    219  1.1   matt 		/*
    220  1.1   matt 		 * Verify our sequential position
    221  1.1   matt 		 */
    222  1.1   matt 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
    223  1.1   matt 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
    224  1.1   matt 		if (prev != NULL && next == NULL)
    225  1.1   matt 			next = TAILQ_NEXT(prev, rb_link);
    226  1.1   matt 		if (prev == NULL && next != NULL)
    227  1.1   matt 			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
    228  1.1   matt 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
    229  1.1   matt 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
    230  1.7  rmind 		KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
    231  1.7  rmind 		    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
    232  1.7  rmind 		KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
    233  1.7  rmind 		    RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
    234  1.1   matt 	}
    235  1.1   matt #endif
    236  1.1   matt 
    237  1.1   matt 	/*
    238  1.1   matt 	 * Initialize the node and insert as a leaf into the tree.
    239  1.1   matt 	 */
    240  1.1   matt 	RB_SET_FATHER(self, parent);
    241  1.1   matt 	RB_SET_POSITION(self, position);
    242  1.3   matt 	if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
    243  1.1   matt 		RB_MARK_BLACK(self);		/* root is always black */
    244  1.1   matt #ifndef RBSMALL
    245  1.1   matt 		rbt->rbt_minmax[RB_DIR_LEFT] = self;
    246  1.1   matt 		rbt->rbt_minmax[RB_DIR_RIGHT] = self;
    247  1.1   matt #endif
    248  1.1   matt 		rebalance = false;
    249  1.1   matt 	} else {
    250  1.1   matt 		KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
    251  1.1   matt #ifndef RBSMALL
    252  1.1   matt 		/*
    253  1.1   matt 		 * Keep track of the minimum and maximum nodes.  If our
    254  1.1   matt 		 * parent is a minmax node and we on their min/max side,
    255  1.1   matt 		 * we must be the new min/max node.
    256  1.1   matt 		 */
    257  1.1   matt 		if (parent == rbt->rbt_minmax[position])
    258  1.1   matt 			rbt->rbt_minmax[position] = self;
    259  1.1   matt #endif /* !RBSMALL */
    260  1.1   matt 		/*
    261  1.1   matt 		 * All new nodes are colored red.  We only need to rebalance
    262  1.1   matt 		 * if our parent is also red.
    263  1.1   matt 		 */
    264  1.1   matt 		RB_MARK_RED(self);
    265  1.1   matt 		rebalance = RB_RED_P(parent);
    266  1.1   matt 	}
    267  1.1   matt 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
    268  1.1   matt 	self->rb_left = parent->rb_nodes[position];
    269  1.1   matt 	self->rb_right = parent->rb_nodes[position];
    270  1.1   matt 	parent->rb_nodes[position] = self;
    271  1.1   matt 	KASSERT(RB_CHILDLESS_P(self));
    272  1.1   matt 
    273  1.1   matt 	/*
    274  1.1   matt 	 * Insert the new node into a sorted list for easy sequential access
    275  1.1   matt 	 */
    276  1.1   matt 	RBSTAT_INC(rbt->rbt_count);
    277  1.1   matt #ifdef RBDEBUG
    278  1.1   matt 	if (RB_ROOT_P(rbt, self)) {
    279  1.1   matt 		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
    280  1.1   matt 	} else if (position == RB_DIR_LEFT) {
    281  1.7  rmind 		KASSERT((*compare_nodes)(rbto->rbto_context,
    282  1.7  rmind 		    RB_NODETOITEM(rbto, self),
    283  1.7  rmind 		    RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
    284  1.1   matt 		RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
    285  1.1   matt 	} else {
    286  1.7  rmind 		KASSERT((*compare_nodes)(rbto->rbto_context,
    287  1.7  rmind 		    RB_NODETOITEM(rbto, RB_FATHER(self)),
    288  1.7  rmind 		    RB_NODETOITEM(rbto, self)) < 0);
    289  1.1   matt 		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
    290  1.1   matt 		    self, rb_link);
    291  1.1   matt 	}
    292  1.1   matt #endif
    293  1.1   matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
    294  1.1   matt 
    295  1.1   matt 	/*
    296  1.1   matt 	 * Rebalance tree after insertion
    297  1.1   matt 	 */
    298  1.1   matt 	if (rebalance) {
    299  1.1   matt 		rb_tree_insert_rebalance(rbt, self);
    300  1.1   matt 		KASSERT(rb_tree_check_node(rbt, self, NULL, true));
    301  1.1   matt 	}
    302  1.1   matt 
    303  1.7  rmind 	/* Succesfully inserted, return our node pointer. */
    304  1.7  rmind 	return object;
    305  1.1   matt }
    306  1.7  rmind 
    307  1.1   matt /*
    308  1.1   matt  * Swap the location and colors of 'self' and its child @ which.  The child
    309  1.1   matt  * can not be a sentinel node.  This is our rotation function.  However,
    310  1.1   matt  * since it preserves coloring, it great simplifies both insertion and
    311  1.1   matt  * removal since rotation almost always involves the exchanging of colors
    312  1.1   matt  * as a separate step.
    313  1.1   matt  */
    314  1.3   matt /*ARGSUSED*/
    315  1.1   matt static void
    316  1.1   matt rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
    317  1.1   matt 	const unsigned int which)
    318  1.1   matt {
    319  1.1   matt 	const unsigned int other = which ^ RB_DIR_OTHER;
    320  1.1   matt 	struct rb_node * const grandpa = RB_FATHER(old_father);
    321  1.1   matt 	struct rb_node * const old_child = old_father->rb_nodes[which];
    322  1.1   matt 	struct rb_node * const new_father = old_child;
    323  1.1   matt 	struct rb_node * const new_child = old_father;
    324  1.1   matt 
    325  1.1   matt 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    326  1.1   matt 
    327  1.1   matt 	KASSERT(!RB_SENTINEL_P(old_child));
    328  1.1   matt 	KASSERT(RB_FATHER(old_child) == old_father);
    329  1.1   matt 
    330  1.1   matt 	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
    331  1.1   matt 	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
    332  1.7  rmind 	KASSERT(RB_ROOT_P(rbt, old_father) ||
    333  1.7  rmind 	    rb_tree_check_node(rbt, grandpa, NULL, false));
    334  1.1   matt 
    335  1.1   matt 	/*
    336  1.1   matt 	 * Exchange descendant linkages.
    337  1.1   matt 	 */
    338  1.1   matt 	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
    339  1.1   matt 	new_child->rb_nodes[which] = old_child->rb_nodes[other];
    340  1.1   matt 	new_father->rb_nodes[other] = new_child;
    341  1.1   matt 
    342  1.1   matt 	/*
    343  1.1   matt 	 * Update ancestor linkages
    344  1.1   matt 	 */
    345  1.1   matt 	RB_SET_FATHER(new_father, grandpa);
    346  1.1   matt 	RB_SET_FATHER(new_child, new_father);
    347  1.1   matt 
    348  1.1   matt 	/*
    349  1.1   matt 	 * Exchange properties between new_father and new_child.  The only
    350  1.1   matt 	 * change is that new_child's position is now on the other side.
    351  1.1   matt 	 */
    352  1.1   matt #if 0
    353  1.1   matt 	{
    354  1.1   matt 		struct rb_node tmp;
    355  1.1   matt 		tmp.rb_info = 0;
    356  1.1   matt 		RB_COPY_PROPERTIES(&tmp, old_child);
    357  1.1   matt 		RB_COPY_PROPERTIES(new_father, old_father);
    358  1.1   matt 		RB_COPY_PROPERTIES(new_child, &tmp);
    359  1.1   matt 	}
    360  1.1   matt #else
    361  1.1   matt 	RB_SWAP_PROPERTIES(new_father, new_child);
    362  1.1   matt #endif
    363  1.1   matt 	RB_SET_POSITION(new_child, other);
    364  1.1   matt 
    365  1.1   matt 	/*
    366  1.1   matt 	 * Make sure to reparent the new child to ourself.
    367  1.1   matt 	 */
    368  1.1   matt 	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
    369  1.1   matt 		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
    370  1.1   matt 		RB_SET_POSITION(new_child->rb_nodes[which], which);
    371  1.1   matt 	}
    372  1.1   matt 
    373  1.1   matt 	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
    374  1.1   matt 	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
    375  1.7  rmind 	KASSERT(RB_ROOT_P(rbt, new_father) ||
    376  1.7  rmind 	    rb_tree_check_node(rbt, grandpa, NULL, false));
    377  1.1   matt }
    378  1.7  rmind 
    379  1.1   matt static void
    380  1.1   matt rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
    381  1.1   matt {
    382  1.1   matt 	struct rb_node * father = RB_FATHER(self);
    383  1.1   matt 	struct rb_node * grandpa = RB_FATHER(father);
    384  1.1   matt 	struct rb_node * uncle;
    385  1.1   matt 	unsigned int which;
    386  1.1   matt 	unsigned int other;
    387  1.1   matt 
    388  1.1   matt 	KASSERT(!RB_ROOT_P(rbt, self));
    389  1.1   matt 	KASSERT(RB_RED_P(self));
    390  1.1   matt 	KASSERT(RB_RED_P(father));
    391  1.1   matt 	RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
    392  1.1   matt 
    393  1.1   matt 	for (;;) {
    394  1.1   matt 		KASSERT(!RB_SENTINEL_P(self));
    395  1.1   matt 
    396  1.1   matt 		KASSERT(RB_RED_P(self));
    397  1.1   matt 		KASSERT(RB_RED_P(father));
    398  1.1   matt 		/*
    399  1.1   matt 		 * We are red and our parent is red, therefore we must have a
    400  1.1   matt 		 * grandfather and he must be black.
    401  1.1   matt 		 */
    402  1.1   matt 		grandpa = RB_FATHER(father);
    403  1.1   matt 		KASSERT(RB_BLACK_P(grandpa));
    404  1.1   matt 		KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
    405  1.1   matt 		which = (father == grandpa->rb_right);
    406  1.1   matt 		other = which ^ RB_DIR_OTHER;
    407  1.1   matt 		uncle = grandpa->rb_nodes[other];
    408  1.1   matt 
    409  1.1   matt 		if (RB_BLACK_P(uncle))
    410  1.1   matt 			break;
    411  1.1   matt 
    412  1.1   matt 		RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
    413  1.1   matt 		/*
    414  1.1   matt 		 * Case 1: our uncle is red
    415  1.1   matt 		 *   Simply invert the colors of our parent and
    416  1.1   matt 		 *   uncle and make our grandparent red.  And
    417  1.1   matt 		 *   then solve the problem up at his level.
    418  1.1   matt 		 */
    419  1.1   matt 		RB_MARK_BLACK(uncle);
    420  1.1   matt 		RB_MARK_BLACK(father);
    421  1.1   matt 		if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
    422  1.1   matt 			/*
    423  1.1   matt 			 * If our grandpa is root, don't bother
    424  1.1   matt 			 * setting him to red, just return.
    425  1.1   matt 			 */
    426  1.1   matt 			KASSERT(RB_BLACK_P(grandpa));
    427  1.1   matt 			return;
    428  1.1   matt 		}
    429  1.1   matt 		RB_MARK_RED(grandpa);
    430  1.1   matt 		self = grandpa;
    431  1.1   matt 		father = RB_FATHER(self);
    432  1.1   matt 		KASSERT(RB_RED_P(self));
    433  1.1   matt 		if (RB_BLACK_P(father)) {
    434  1.1   matt 			/*
    435  1.1   matt 			 * If our greatgrandpa is black, we're done.
    436  1.1   matt 			 */
    437  1.1   matt 			KASSERT(RB_BLACK_P(rbt->rbt_root));
    438  1.1   matt 			return;
    439  1.1   matt 		}
    440  1.1   matt 	}
    441  1.1   matt 
    442  1.1   matt 	KASSERT(!RB_ROOT_P(rbt, self));
    443  1.1   matt 	KASSERT(RB_RED_P(self));
    444  1.1   matt 	KASSERT(RB_RED_P(father));
    445  1.1   matt 	KASSERT(RB_BLACK_P(uncle));
    446  1.1   matt 	KASSERT(RB_BLACK_P(grandpa));
    447  1.1   matt 	/*
    448  1.1   matt 	 * Case 2&3: our uncle is black.
    449  1.1   matt 	 */
    450  1.1   matt 	if (self == father->rb_nodes[other]) {
    451  1.1   matt 		/*
    452  1.1   matt 		 * Case 2: we are on the same side as our uncle
    453  1.1   matt 		 *   Swap ourselves with our parent so this case
    454  1.1   matt 		 *   becomes case 3.  Basically our parent becomes our
    455  1.1   matt 		 *   child.
    456  1.1   matt 		 */
    457  1.1   matt 		rb_tree_reparent_nodes(rbt, father, other);
    458  1.1   matt 		KASSERT(RB_FATHER(father) == self);
    459  1.1   matt 		KASSERT(self->rb_nodes[which] == father);
    460  1.1   matt 		KASSERT(RB_FATHER(self) == grandpa);
    461  1.1   matt 		self = father;
    462  1.1   matt 		father = RB_FATHER(self);
    463  1.1   matt 	}
    464  1.1   matt 	KASSERT(RB_RED_P(self) && RB_RED_P(father));
    465  1.1   matt 	KASSERT(grandpa->rb_nodes[which] == father);
    466  1.1   matt 	/*
    467  1.1   matt 	 * Case 3: we are opposite a child of a black uncle.
    468  1.1   matt 	 *   Swap our parent and grandparent.  Since our grandfather
    469  1.1   matt 	 *   is black, our father will become black and our new sibling
    470  1.1   matt 	 *   (former grandparent) will become red.
    471  1.1   matt 	 */
    472  1.1   matt 	rb_tree_reparent_nodes(rbt, grandpa, which);
    473  1.1   matt 	KASSERT(RB_FATHER(self) == father);
    474  1.1   matt 	KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
    475  1.1   matt 	KASSERT(RB_RED_P(self));
    476  1.1   matt 	KASSERT(RB_BLACK_P(father));
    477  1.1   matt 	KASSERT(RB_RED_P(grandpa));
    478  1.1   matt 
    479  1.1   matt 	/*
    480  1.1   matt 	 * Final step: Set the root to black.
    481  1.1   matt 	 */
    482  1.1   matt 	RB_MARK_BLACK(rbt->rbt_root);
    483  1.1   matt }
    484  1.7  rmind 
    485  1.1   matt static void
    486  1.1   matt rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
    487  1.1   matt {
    488  1.1   matt 	const unsigned int which = RB_POSITION(self);
    489  1.1   matt 	struct rb_node *father = RB_FATHER(self);
    490  1.5  joerg #ifndef RBSMALL
    491  1.1   matt 	const bool was_root = RB_ROOT_P(rbt, self);
    492  1.5  joerg #endif
    493  1.1   matt 
    494  1.1   matt 	KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
    495  1.1   matt 	KASSERT(!rebalance || RB_BLACK_P(self));
    496  1.1   matt 	KASSERT(RB_CHILDLESS_P(self));
    497  1.1   matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    498  1.1   matt 
    499  1.1   matt 	/*
    500  1.1   matt 	 * Since we are childless, we know that self->rb_left is pointing
    501  1.1   matt 	 * to the sentinel node.
    502  1.1   matt 	 */
    503  1.1   matt 	father->rb_nodes[which] = self->rb_left;
    504  1.1   matt 
    505  1.1   matt 	/*
    506  1.1   matt 	 * Remove ourselves from the node list, decrement the count,
    507  1.1   matt 	 * and update min/max.
    508  1.1   matt 	 */
    509  1.1   matt 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    510  1.1   matt 	RBSTAT_DEC(rbt->rbt_count);
    511  1.1   matt #ifndef RBSMALL
    512  1.1   matt 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
    513  1.1   matt 		rbt->rbt_minmax[RB_POSITION(self)] = father;
    514  1.1   matt 		/*
    515  1.1   matt 		 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
    516  1.1   matt 		 * updated automatically, but we also need to update
    517  1.1   matt 		 * rbt->rbt_minmax[RB_DIR_RIGHT];
    518  1.1   matt 		 */
    519  1.1   matt 		if (__predict_false(was_root)) {
    520  1.1   matt 			rbt->rbt_minmax[RB_DIR_RIGHT] = father;
    521  1.1   matt 		}
    522  1.1   matt 	}
    523  1.1   matt 	RB_SET_FATHER(self, NULL);
    524  1.1   matt #endif
    525  1.1   matt 
    526  1.1   matt 	/*
    527  1.1   matt 	 * Rebalance if requested.
    528  1.1   matt 	 */
    529  1.1   matt 	if (rebalance)
    530  1.1   matt 		rb_tree_removal_rebalance(rbt, father, which);
    531  1.1   matt 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
    532  1.1   matt }
    533  1.7  rmind 
    534  1.1   matt /*
    535  1.1   matt  * When deleting an interior node
    536  1.1   matt  */
    537  1.1   matt static void
    538  1.1   matt rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
    539  1.1   matt 	struct rb_node *standin)
    540  1.1   matt {
    541  1.1   matt 	const unsigned int standin_which = RB_POSITION(standin);
    542  1.1   matt 	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
    543  1.1   matt 	struct rb_node *standin_son;
    544  1.1   matt 	struct rb_node *standin_father = RB_FATHER(standin);
    545  1.1   matt 	bool rebalance = RB_BLACK_P(standin);
    546  1.1   matt 
    547  1.1   matt 	if (standin_father == self) {
    548  1.1   matt 		/*
    549  1.1   matt 		 * As a child of self, any childen would be opposite of
    550  1.1   matt 		 * our parent.
    551  1.1   matt 		 */
    552  1.1   matt 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
    553  1.1   matt 		standin_son = standin->rb_nodes[standin_which];
    554  1.1   matt 	} else {
    555  1.1   matt 		/*
    556  1.1   matt 		 * Since we aren't a child of self, any childen would be
    557  1.1   matt 		 * on the same side as our parent.
    558  1.1   matt 		 */
    559  1.1   matt 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
    560  1.1   matt 		standin_son = standin->rb_nodes[standin_other];
    561  1.1   matt 	}
    562  1.1   matt 
    563  1.1   matt 	/*
    564  1.1   matt 	 * the node we are removing must have two children.
    565  1.1   matt 	 */
    566  1.1   matt 	KASSERT(RB_TWOCHILDREN_P(self));
    567  1.1   matt 	/*
    568  1.1   matt 	 * If standin has a child, it must be red.
    569  1.1   matt 	 */
    570  1.1   matt 	KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
    571  1.1   matt 
    572  1.1   matt 	/*
    573  1.1   matt 	 * Verify things are sane.
    574  1.1   matt 	 */
    575  1.1   matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    576  1.1   matt 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
    577  1.1   matt 
    578  1.1   matt 	if (__predict_false(RB_RED_P(standin_son))) {
    579  1.1   matt 		/*
    580  1.1   matt 		 * We know we have a red child so if we flip it to black
    581  1.1   matt 		 * we don't have to rebalance.
    582  1.1   matt 		 */
    583  1.1   matt 		KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
    584  1.1   matt 		RB_MARK_BLACK(standin_son);
    585  1.1   matt 		rebalance = false;
    586  1.1   matt 
    587  1.1   matt 		if (standin_father == self) {
    588  1.1   matt 			KASSERT(RB_POSITION(standin_son) == standin_which);
    589  1.1   matt 		} else {
    590  1.1   matt 			KASSERT(RB_POSITION(standin_son) == standin_other);
    591  1.1   matt 			/*
    592  1.1   matt 			 * Change the son's parentage to point to his grandpa.
    593  1.1   matt 			 */
    594  1.1   matt 			RB_SET_FATHER(standin_son, standin_father);
    595  1.1   matt 			RB_SET_POSITION(standin_son, standin_which);
    596  1.1   matt 		}
    597  1.1   matt 	}
    598  1.1   matt 
    599  1.1   matt 	if (standin_father == self) {
    600  1.1   matt 		/*
    601  1.1   matt 		 * If we are about to delete the standin's father, then when
    602  1.1   matt 		 * we call rebalance, we need to use ourselves as our father.
    603  1.1   matt 		 * Otherwise remember our original father.  Also, sincef we are
    604  1.1   matt 		 * our standin's father we only need to reparent the standin's
    605  1.1   matt 		 * brother.
    606  1.1   matt 		 *
    607  1.1   matt 		 * |    R      -->     S    |
    608  1.1   matt 		 * |  Q   S    -->   Q   T  |
    609  1.1   matt 		 * |        t  -->          |
    610  1.1   matt 		 */
    611  1.1   matt 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
    612  1.1   matt 		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
    613  1.1   matt 		KASSERT(self->rb_nodes[standin_which] == standin);
    614  1.1   matt 		/*
    615  1.1   matt 		 * Have our son/standin adopt his brother as his new son.
    616  1.1   matt 		 */
    617  1.1   matt 		standin_father = standin;
    618  1.1   matt 	} else {
    619  1.1   matt 		/*
    620  1.1   matt 		 * |    R          -->    S       .  |
    621  1.1   matt 		 * |   / \  |   T  -->   / \  |  /   |
    622  1.1   matt 		 * |  ..... | S    -->  ..... | T    |
    623  1.1   matt 		 *
    624  1.1   matt 		 * Sever standin's connection to his father.
    625  1.1   matt 		 */
    626  1.1   matt 		standin_father->rb_nodes[standin_which] = standin_son;
    627  1.1   matt 		/*
    628  1.1   matt 		 * Adopt the far son.
    629  1.1   matt 		 */
    630  1.1   matt 		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
    631  1.1   matt 		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
    632  1.1   matt 		KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
    633  1.1   matt 		/*
    634  1.1   matt 		 * Use standin_other because we need to preserve standin_which
    635  1.1   matt 		 * for the removal_rebalance.
    636  1.1   matt 		 */
    637  1.1   matt 		standin_other = standin_which;
    638  1.1   matt 	}
    639  1.1   matt 
    640  1.1   matt 	/*
    641  1.1   matt 	 * Move the only remaining son to our standin.  If our standin is our
    642  1.1   matt 	 * son, this will be the only son needed to be moved.
    643  1.1   matt 	 */
    644  1.1   matt 	KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
    645  1.1   matt 	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
    646  1.1   matt 	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
    647  1.1   matt 
    648  1.1   matt 	/*
    649  1.1   matt 	 * Now copy the result of self to standin and then replace
    650  1.1   matt 	 * self with standin in the tree.
    651  1.1   matt 	 */
    652  1.1   matt 	RB_COPY_PROPERTIES(standin, self);
    653  1.1   matt 	RB_SET_FATHER(standin, RB_FATHER(self));
    654  1.1   matt 	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
    655  1.1   matt 
    656  1.1   matt 	/*
    657  1.1   matt 	 * Remove ourselves from the node list, decrement the count,
    658  1.1   matt 	 * and update min/max.
    659  1.1   matt 	 */
    660  1.1   matt 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    661  1.1   matt 	RBSTAT_DEC(rbt->rbt_count);
    662  1.1   matt #ifndef RBSMALL
    663  1.1   matt 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
    664  1.1   matt 		rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
    665  1.1   matt 	RB_SET_FATHER(self, NULL);
    666  1.1   matt #endif
    667  1.1   matt 
    668  1.1   matt 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
    669  1.1   matt 	KASSERT(RB_FATHER_SENTINEL_P(standin)
    670  1.1   matt 		|| rb_tree_check_node(rbt, standin_father, NULL, false));
    671  1.1   matt 	KASSERT(RB_LEFT_SENTINEL_P(standin)
    672  1.1   matt 		|| rb_tree_check_node(rbt, standin->rb_left, NULL, false));
    673  1.1   matt 	KASSERT(RB_RIGHT_SENTINEL_P(standin)
    674  1.1   matt 		|| rb_tree_check_node(rbt, standin->rb_right, NULL, false));
    675  1.1   matt 
    676  1.1   matt 	if (!rebalance)
    677  1.1   matt 		return;
    678  1.1   matt 
    679  1.1   matt 	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
    680  1.1   matt 	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
    681  1.1   matt }
    682  1.1   matt 
    683  1.1   matt /*
    684  1.1   matt  * We could do this by doing
    685  1.1   matt  *	rb_tree_node_swap(rbt, self, which);
    686  1.1   matt  *	rb_tree_prune_node(rbt, self, false);
    687  1.1   matt  *
    688  1.1   matt  * But it's more efficient to just evalate and recolor the child.
    689  1.1   matt  */
    690  1.1   matt static void
    691  1.1   matt rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
    692  1.1   matt 	unsigned int which)
    693  1.1   matt {
    694  1.1   matt 	struct rb_node *father = RB_FATHER(self);
    695  1.1   matt 	struct rb_node *son = self->rb_nodes[which];
    696  1.5  joerg #ifndef RBSMALL
    697  1.1   matt 	const bool was_root = RB_ROOT_P(rbt, self);
    698  1.5  joerg #endif
    699  1.1   matt 
    700  1.1   matt 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    701  1.1   matt 	KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
    702  1.1   matt 	KASSERT(!RB_TWOCHILDREN_P(son));
    703  1.1   matt 	KASSERT(RB_CHILDLESS_P(son));
    704  1.1   matt 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    705  1.1   matt 	KASSERT(rb_tree_check_node(rbt, son, NULL, false));
    706  1.1   matt 
    707  1.1   matt 	/*
    708  1.1   matt 	 * Remove ourselves from the tree and give our former child our
    709  1.1   matt 	 * properties (position, color, root).
    710  1.1   matt 	 */
    711  1.1   matt 	RB_COPY_PROPERTIES(son, self);
    712  1.1   matt 	father->rb_nodes[RB_POSITION(son)] = son;
    713  1.1   matt 	RB_SET_FATHER(son, father);
    714  1.1   matt 
    715  1.1   matt 	/*
    716  1.1   matt 	 * Remove ourselves from the node list, decrement the count,
    717  1.1   matt 	 * and update minmax.
    718  1.1   matt 	 */
    719  1.1   matt 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    720  1.1   matt 	RBSTAT_DEC(rbt->rbt_count);
    721  1.1   matt #ifndef RBSMALL
    722  1.1   matt 	if (__predict_false(was_root)) {
    723  1.1   matt 		KASSERT(rbt->rbt_minmax[which] == son);
    724  1.1   matt 		rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
    725  1.1   matt 	} else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
    726  1.1   matt 		rbt->rbt_minmax[RB_POSITION(self)] = son;
    727  1.1   matt 	}
    728  1.1   matt 	RB_SET_FATHER(self, NULL);
    729  1.1   matt #endif
    730  1.1   matt 
    731  1.1   matt 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
    732  1.1   matt 	KASSERT(rb_tree_check_node(rbt, son, NULL, true));
    733  1.1   matt }
    734  1.7  rmind 
    735  1.1   matt void
    736  1.7  rmind rb_tree_remove_node(struct rb_tree *rbt, void *object)
    737  1.1   matt {
    738  1.7  rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    739  1.7  rmind 	struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
    740  1.1   matt 	unsigned int which;
    741  1.1   matt 
    742  1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
    743  1.1   matt 	RBSTAT_INC(rbt->rbt_removals);
    744  1.1   matt 
    745  1.1   matt 	/*
    746  1.1   matt 	 * In the following diagrams, we (the node to be removed) are S.  Red
    747  1.1   matt 	 * nodes are lowercase.  T could be either red or black.
    748  1.1   matt 	 *
    749  1.1   matt 	 * Remember the major axiom of the red-black tree: the number of
    750  1.1   matt 	 * black nodes from the root to each leaf is constant across all
    751  1.1   matt 	 * leaves, only the number of red nodes varies.
    752  1.1   matt 	 *
    753  1.1   matt 	 * Thus removing a red leaf doesn't require any other changes to a
    754  1.1   matt 	 * red-black tree.  So if we must remove a node, attempt to rearrange
    755  1.1   matt 	 * the tree so we can remove a red node.
    756  1.1   matt 	 *
    757  1.1   matt 	 * The simpliest case is a childless red node or a childless root node:
    758  1.1   matt 	 *
    759  1.1   matt 	 * |    T  -->    T  |    or    |  R  -->  *  |
    760  1.1   matt 	 * |  s    -->  *    |
    761  1.1   matt 	 */
    762  1.1   matt 	if (RB_CHILDLESS_P(self)) {
    763  1.1   matt 		const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
    764  1.1   matt 		rb_tree_prune_node(rbt, self, rebalance);
    765  1.1   matt 		return;
    766  1.1   matt 	}
    767  1.1   matt 	KASSERT(!RB_CHILDLESS_P(self));
    768  1.1   matt 	if (!RB_TWOCHILDREN_P(self)) {
    769  1.1   matt 		/*
    770  1.1   matt 		 * The next simpliest case is the node we are deleting is
    771  1.1   matt 		 * black and has one red child.
    772  1.1   matt 		 *
    773  1.1   matt 		 * |      T  -->      T  -->      T  |
    774  1.1   matt 		 * |    S    -->  R      -->  R      |
    775  1.1   matt 		 * |  r      -->    s    -->    *    |
    776  1.1   matt 		 */
    777  1.1   matt 		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
    778  1.1   matt 		KASSERT(RB_BLACK_P(self));
    779  1.1   matt 		KASSERT(RB_RED_P(self->rb_nodes[which]));
    780  1.1   matt 		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
    781  1.1   matt 		rb_tree_prune_blackred_branch(rbt, self, which);
    782  1.1   matt 		return;
    783  1.1   matt 	}
    784  1.1   matt 	KASSERT(RB_TWOCHILDREN_P(self));
    785  1.1   matt 
    786  1.1   matt 	/*
    787  1.1   matt 	 * We invert these because we prefer to remove from the inside of
    788  1.1   matt 	 * the tree.
    789  1.1   matt 	 */
    790  1.1   matt 	which = RB_POSITION(self) ^ RB_DIR_OTHER;
    791  1.1   matt 
    792  1.1   matt 	/*
    793  1.1   matt 	 * Let's find the node closes to us opposite of our parent
    794  1.1   matt 	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
    795  1.1   matt 	 */
    796  1.7  rmind 	standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
    797  1.1   matt 	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
    798  1.1   matt }
    799  1.1   matt 
    800  1.1   matt static void
    801  1.1   matt rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
    802  1.1   matt 	unsigned int which)
    803  1.1   matt {
    804  1.1   matt 	KASSERT(!RB_SENTINEL_P(parent));
    805  1.1   matt 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
    806  1.1   matt 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    807  1.1   matt 	RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
    808  1.1   matt 
    809  1.1   matt 	while (RB_BLACK_P(parent->rb_nodes[which])) {
    810  1.1   matt 		unsigned int other = which ^ RB_DIR_OTHER;
    811  1.1   matt 		struct rb_node *brother = parent->rb_nodes[other];
    812  1.1   matt 
    813  1.1   matt 		RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
    814  1.1   matt 
    815  1.1   matt 		KASSERT(!RB_SENTINEL_P(brother));
    816  1.1   matt 		/*
    817  1.1   matt 		 * For cases 1, 2a, and 2b, our brother's children must
    818  1.1   matt 		 * be black and our father must be black
    819  1.1   matt 		 */
    820  1.1   matt 		if (RB_BLACK_P(parent)
    821  1.1   matt 		    && RB_BLACK_P(brother->rb_left)
    822  1.1   matt 		    && RB_BLACK_P(brother->rb_right)) {
    823  1.1   matt 			if (RB_RED_P(brother)) {
    824  1.1   matt 				/*
    825  1.1   matt 				 * Case 1: Our brother is red, swap its
    826  1.1   matt 				 * position (and colors) with our parent.
    827  1.1   matt 				 * This should now be case 2b (unless C or E
    828  1.1   matt 				 * has a red child which is case 3; thus no
    829  1.1   matt 				 * explicit branch to case 2b).
    830  1.1   matt 				 *
    831  1.1   matt 				 *    B         ->        D
    832  1.1   matt 				 *  A     d     ->    b     E
    833  1.1   matt 				 *      C   E   ->  A   C
    834  1.1   matt 				 */
    835  1.1   matt 				KASSERT(RB_BLACK_P(parent));
    836  1.1   matt 				rb_tree_reparent_nodes(rbt, parent, other);
    837  1.1   matt 				brother = parent->rb_nodes[other];
    838  1.1   matt 				KASSERT(!RB_SENTINEL_P(brother));
    839  1.1   matt 				KASSERT(RB_RED_P(parent));
    840  1.1   matt 				KASSERT(RB_BLACK_P(brother));
    841  1.1   matt 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
    842  1.1   matt 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
    843  1.1   matt 			} else {
    844  1.1   matt 				/*
    845  1.1   matt 				 * Both our parent and brother are black.
    846  1.1   matt 				 * Change our brother to red, advance up rank
    847  1.1   matt 				 * and go through the loop again.
    848  1.1   matt 				 *
    849  1.1   matt 				 *    B         ->   *B
    850  1.1   matt 				 * *A     D     ->  A     d
    851  1.1   matt 				 *      C   E   ->      C   E
    852  1.1   matt 				 */
    853  1.1   matt 				RB_MARK_RED(brother);
    854  1.1   matt 				KASSERT(RB_BLACK_P(brother->rb_left));
    855  1.1   matt 				KASSERT(RB_BLACK_P(brother->rb_right));
    856  1.1   matt 				if (RB_ROOT_P(rbt, parent))
    857  1.1   matt 					return;	/* root == parent == black */
    858  1.1   matt 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
    859  1.1   matt 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
    860  1.1   matt 				which = RB_POSITION(parent);
    861  1.1   matt 				parent = RB_FATHER(parent);
    862  1.1   matt 				continue;
    863  1.1   matt 			}
    864  1.1   matt 		}
    865  1.1   matt 		/*
    866  1.1   matt 		 * Avoid an else here so that case 2a above can hit either
    867  1.1   matt 		 * case 2b, 3, or 4.
    868  1.1   matt 		 */
    869  1.1   matt 		if (RB_RED_P(parent)
    870  1.1   matt 		    && RB_BLACK_P(brother)
    871  1.1   matt 		    && RB_BLACK_P(brother->rb_left)
    872  1.1   matt 		    && RB_BLACK_P(brother->rb_right)) {
    873  1.1   matt 			KASSERT(RB_RED_P(parent));
    874  1.1   matt 			KASSERT(RB_BLACK_P(brother));
    875  1.1   matt 			KASSERT(RB_BLACK_P(brother->rb_left));
    876  1.1   matt 			KASSERT(RB_BLACK_P(brother->rb_right));
    877  1.1   matt 			/*
    878  1.1   matt 			 * We are black, our father is red, our brother and
    879  1.1   matt 			 * both nephews are black.  Simply invert/exchange the
    880  1.1   matt 			 * colors of our father and brother (to black and red
    881  1.1   matt 			 * respectively).
    882  1.1   matt 			 *
    883  1.1   matt 			 *	|    f        -->    F        |
    884  1.1   matt 			 *	|  *     B    -->  *     b    |
    885  1.1   matt 			 *	|      N   N  -->      N   N  |
    886  1.1   matt 			 */
    887  1.1   matt 			RB_MARK_BLACK(parent);
    888  1.1   matt 			RB_MARK_RED(brother);
    889  1.1   matt 			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
    890  1.1   matt 			break;		/* We're done! */
    891  1.1   matt 		} else {
    892  1.1   matt 			/*
    893  1.1   matt 			 * Our brother must be black and have at least one
    894  1.1   matt 			 * red child (it may have two).
    895  1.1   matt 			 */
    896  1.1   matt 			KASSERT(RB_BLACK_P(brother));
    897  1.1   matt 			KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
    898  1.1   matt 				RB_RED_P(brother->rb_nodes[other]));
    899  1.1   matt 			if (RB_BLACK_P(brother->rb_nodes[other])) {
    900  1.1   matt 				/*
    901  1.1   matt 				 * Case 3: our brother is black, our near
    902  1.1   matt 				 * nephew is red, and our far nephew is black.
    903  1.1   matt 				 * Swap our brother with our near nephew.
    904  1.1   matt 				 * This result in a tree that matches case 4.
    905  1.1   matt 				 * (Our father could be red or black).
    906  1.1   matt 				 *
    907  1.1   matt 				 *	|    F      -->    F      |
    908  1.1   matt 				 *	|  x     B  -->  x   B    |
    909  1.1   matt 				 *	|      n    -->        n  |
    910  1.1   matt 				 */
    911  1.1   matt 				KASSERT(RB_RED_P(brother->rb_nodes[which]));
    912  1.1   matt 				rb_tree_reparent_nodes(rbt, brother, which);
    913  1.1   matt 				KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
    914  1.1   matt 				brother = parent->rb_nodes[other];
    915  1.1   matt 				KASSERT(RB_RED_P(brother->rb_nodes[other]));
    916  1.1   matt 			}
    917  1.1   matt 			/*
    918  1.1   matt 			 * Case 4: our brother is black and our far nephew
    919  1.1   matt 			 * is red.  Swap our father and brother locations and
    920  1.1   matt 			 * change our far nephew to black.  (these can be
    921  1.1   matt 			 * done in either order so we change the color first).
    922  1.1   matt 			 * The result is a valid red-black tree and is a
    923  1.1   matt 			 * terminal case.  (again we don't care about the
    924  1.1   matt 			 * father's color)
    925  1.1   matt 			 *
    926  1.1   matt 			 * If the father is red, we will get a red-black-black
    927  1.1   matt 			 * tree:
    928  1.1   matt 			 *	|  f      ->  f      -->    b    |
    929  1.1   matt 			 *	|    B    ->    B    -->  F   N  |
    930  1.1   matt 			 *	|      n  ->      N  -->         |
    931  1.1   matt 			 *
    932  1.1   matt 			 * If the father is black, we will get an all black
    933  1.1   matt 			 * tree:
    934  1.1   matt 			 *	|  F      ->  F      -->    B    |
    935  1.1   matt 			 *	|    B    ->    B    -->  F   N  |
    936  1.1   matt 			 *	|      n  ->      N  -->         |
    937  1.1   matt 			 *
    938  1.1   matt 			 * If we had two red nephews, then after the swap,
    939  1.1   matt 			 * our former father would have a red grandson.
    940  1.1   matt 			 */
    941  1.1   matt 			KASSERT(RB_BLACK_P(brother));
    942  1.1   matt 			KASSERT(RB_RED_P(brother->rb_nodes[other]));
    943  1.1   matt 			RB_MARK_BLACK(brother->rb_nodes[other]);
    944  1.1   matt 			rb_tree_reparent_nodes(rbt, parent, other);
    945  1.1   matt 			break;		/* We're done! */
    946  1.1   matt 		}
    947  1.1   matt 	}
    948  1.1   matt 	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
    949  1.1   matt }
    950  1.1   matt 
    951  1.7  rmind void *
    952  1.7  rmind rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
    953  1.1   matt {
    954  1.7  rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    955  1.1   matt 	const unsigned int other = direction ^ RB_DIR_OTHER;
    956  1.7  rmind 	struct rb_node *self;
    957  1.7  rmind 
    958  1.1   matt 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
    959  1.1   matt 
    960  1.7  rmind 	if (object == NULL) {
    961  1.1   matt #ifndef RBSMALL
    962  1.1   matt 		if (RB_SENTINEL_P(rbt->rbt_root))
    963  1.1   matt 			return NULL;
    964  1.7  rmind 		return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
    965  1.1   matt #else
    966  1.1   matt 		self = rbt->rbt_root;
    967  1.1   matt 		if (RB_SENTINEL_P(self))
    968  1.1   matt 			return NULL;
    969  1.6  joerg 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
    970  1.6  joerg 			self = self->rb_nodes[direction];
    971  1.7  rmind 		return RB_NODETOITEM(rbto, self);
    972  1.1   matt #endif /* !RBSMALL */
    973  1.1   matt 	}
    974  1.7  rmind 	self = RB_ITEMTONODE(rbto, object);
    975  1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
    976  1.1   matt 	/*
    977  1.1   matt 	 * We can't go any further in this direction.  We proceed up in the
    978  1.1   matt 	 * opposite direction until our parent is in direction we want to go.
    979  1.1   matt 	 */
    980  1.1   matt 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
    981  1.1   matt 		while (!RB_ROOT_P(rbt, self)) {
    982  1.1   matt 			if (other == RB_POSITION(self))
    983  1.7  rmind 				return RB_NODETOITEM(rbto, RB_FATHER(self));
    984  1.1   matt 			self = RB_FATHER(self);
    985  1.1   matt 		}
    986  1.1   matt 		return NULL;
    987  1.1   matt 	}
    988  1.1   matt 
    989  1.1   matt 	/*
    990  1.1   matt 	 * Advance down one in current direction and go down as far as possible
    991  1.1   matt 	 * in the opposite direction.
    992  1.1   matt 	 */
    993  1.1   matt 	self = self->rb_nodes[direction];
    994  1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
    995  1.1   matt 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
    996  1.1   matt 		self = self->rb_nodes[other];
    997  1.7  rmind 	return RB_NODETOITEM(rbto, self);
    998  1.1   matt }
    999  1.1   matt 
   1000  1.1   matt #ifdef RBDEBUG
   1001  1.1   matt static const struct rb_node *
   1002  1.1   matt rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
   1003  1.1   matt 	const unsigned int direction)
   1004  1.1   matt {
   1005  1.1   matt 	const unsigned int other = direction ^ RB_DIR_OTHER;
   1006  1.1   matt 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
   1007  1.1   matt 
   1008  1.1   matt 	if (self == NULL) {
   1009  1.1   matt #ifndef RBSMALL
   1010  1.1   matt 		if (RB_SENTINEL_P(rbt->rbt_root))
   1011  1.1   matt 			return NULL;
   1012  1.1   matt 		return rbt->rbt_minmax[direction];
   1013  1.1   matt #else
   1014  1.1   matt 		self = rbt->rbt_root;
   1015  1.1   matt 		if (RB_SENTINEL_P(self))
   1016  1.1   matt 			return NULL;
   1017  1.6  joerg 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
   1018  1.6  joerg 			self = self->rb_nodes[direction];
   1019  1.1   matt 		return self;
   1020  1.1   matt #endif /* !RBSMALL */
   1021  1.1   matt 	}
   1022  1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
   1023  1.1   matt 	/*
   1024  1.1   matt 	 * We can't go any further in this direction.  We proceed up in the
   1025  1.1   matt 	 * opposite direction until our parent is in direction we want to go.
   1026  1.1   matt 	 */
   1027  1.1   matt 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
   1028  1.1   matt 		while (!RB_ROOT_P(rbt, self)) {
   1029  1.1   matt 			if (other == RB_POSITION(self))
   1030  1.1   matt 				return RB_FATHER(self);
   1031  1.1   matt 			self = RB_FATHER(self);
   1032  1.1   matt 		}
   1033  1.1   matt 		return NULL;
   1034  1.1   matt 	}
   1035  1.1   matt 
   1036  1.1   matt 	/*
   1037  1.1   matt 	 * Advance down one in current direction and go down as far as possible
   1038  1.1   matt 	 * in the opposite direction.
   1039  1.1   matt 	 */
   1040  1.1   matt 	self = self->rb_nodes[direction];
   1041  1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
   1042  1.1   matt 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
   1043  1.1   matt 		self = self->rb_nodes[other];
   1044  1.1   matt 	return self;
   1045  1.1   matt }
   1046  1.1   matt 
   1047  1.1   matt static unsigned int
   1048  1.1   matt rb_tree_count_black(const struct rb_node *self)
   1049  1.1   matt {
   1050  1.1   matt 	unsigned int left, right;
   1051  1.1   matt 
   1052  1.1   matt 	if (RB_SENTINEL_P(self))
   1053  1.1   matt 		return 0;
   1054  1.1   matt 
   1055  1.1   matt 	left = rb_tree_count_black(self->rb_left);
   1056  1.1   matt 	right = rb_tree_count_black(self->rb_right);
   1057  1.1   matt 
   1058  1.1   matt 	KASSERT(left == right);
   1059  1.1   matt 
   1060  1.1   matt 	return left + RB_BLACK_P(self);
   1061  1.1   matt }
   1062  1.1   matt 
   1063  1.1   matt static bool
   1064  1.1   matt rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
   1065  1.1   matt 	const struct rb_node *prev, bool red_check)
   1066  1.1   matt {
   1067  1.7  rmind 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
   1068  1.7  rmind 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
   1069  1.1   matt 
   1070  1.1   matt 	KASSERT(!RB_SENTINEL_P(self));
   1071  1.7  rmind 	KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
   1072  1.7  rmind 	    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
   1073  1.1   matt 
   1074  1.1   matt 	/*
   1075  1.1   matt 	 * Verify our relationship to our parent.
   1076  1.1   matt 	 */
   1077  1.1   matt 	if (RB_ROOT_P(rbt, self)) {
   1078  1.1   matt 		KASSERT(self == rbt->rbt_root);
   1079  1.1   matt 		KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
   1080  1.1   matt 		KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
   1081  1.1   matt 		KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
   1082  1.1   matt 	} else {
   1083  1.7  rmind 		int diff = (*compare_nodes)(rbto->rbto_context,
   1084  1.7  rmind 		    RB_NODETOITEM(rbto, self),
   1085  1.7  rmind 		    RB_NODETOITEM(rbto, RB_FATHER(self)));
   1086  1.7  rmind 
   1087  1.1   matt 		KASSERT(self != rbt->rbt_root);
   1088  1.1   matt 		KASSERT(!RB_FATHER_SENTINEL_P(self));
   1089  1.1   matt 		if (RB_POSITION(self) == RB_DIR_LEFT) {
   1090  1.7  rmind 			KASSERT(diff < 0);
   1091  1.1   matt 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
   1092  1.1   matt 		} else {
   1093  1.7  rmind 			KASSERT(diff > 0);
   1094  1.1   matt 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
   1095  1.1   matt 		}
   1096  1.1   matt 	}
   1097  1.1   matt 
   1098  1.1   matt 	/*
   1099  1.1   matt 	 * Verify our position in the linked list against the tree itself.
   1100  1.1   matt 	 */
   1101  1.1   matt 	{
   1102  1.1   matt 		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
   1103  1.1   matt 		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
   1104  1.1   matt 		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
   1105  1.1   matt 		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
   1106  1.1   matt #ifndef RBSMALL
   1107  1.1   matt 		KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
   1108  1.1   matt 		KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
   1109  1.1   matt #endif
   1110  1.1   matt 	}
   1111  1.1   matt 
   1112  1.1   matt 	/*
   1113  1.1   matt 	 * The root must be black.
   1114  1.1   matt 	 * There can never be two adjacent red nodes.
   1115  1.1   matt 	 */
   1116  1.1   matt 	if (red_check) {
   1117  1.1   matt 		KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
   1118  1.1   matt 		(void) rb_tree_count_black(self);
   1119  1.1   matt 		if (RB_RED_P(self)) {
   1120  1.1   matt 			const struct rb_node *brother;
   1121  1.1   matt 			KASSERT(!RB_ROOT_P(rbt, self));
   1122  1.1   matt 			brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
   1123  1.1   matt 			KASSERT(RB_BLACK_P(RB_FATHER(self)));
   1124  1.1   matt 			/*
   1125  1.1   matt 			 * I'm red and have no children, then I must either
   1126  1.1   matt 			 * have no brother or my brother also be red and
   1127  1.1   matt 			 * also have no children.  (black count == 0)
   1128  1.1   matt 			 */
   1129  1.1   matt 			KASSERT(!RB_CHILDLESS_P(self)
   1130  1.1   matt 				|| RB_SENTINEL_P(brother)
   1131  1.1   matt 				|| RB_RED_P(brother)
   1132  1.1   matt 				|| RB_CHILDLESS_P(brother));
   1133  1.1   matt 			/*
   1134  1.1   matt 			 * If I'm not childless, I must have two children
   1135  1.1   matt 			 * and they must be both be black.
   1136  1.1   matt 			 */
   1137  1.1   matt 			KASSERT(RB_CHILDLESS_P(self)
   1138  1.1   matt 				|| (RB_TWOCHILDREN_P(self)
   1139  1.1   matt 				    && RB_BLACK_P(self->rb_left)
   1140  1.1   matt 				    && RB_BLACK_P(self->rb_right)));
   1141  1.1   matt 			/*
   1142  1.1   matt 			 * If I'm not childless, thus I have black children,
   1143  1.1   matt 			 * then my brother must either be black or have two
   1144  1.1   matt 			 * black children.
   1145  1.1   matt 			 */
   1146  1.1   matt 			KASSERT(RB_CHILDLESS_P(self)
   1147  1.1   matt 				|| RB_BLACK_P(brother)
   1148  1.1   matt 				|| (RB_TWOCHILDREN_P(brother)
   1149  1.1   matt 				    && RB_BLACK_P(brother->rb_left)
   1150  1.1   matt 				    && RB_BLACK_P(brother->rb_right)));
   1151  1.1   matt 		} else {
   1152  1.1   matt 			/*
   1153  1.1   matt 			 * If I'm black and have one child, that child must
   1154  1.1   matt 			 * be red and childless.
   1155  1.1   matt 			 */
   1156  1.1   matt 			KASSERT(RB_CHILDLESS_P(self)
   1157  1.1   matt 				|| RB_TWOCHILDREN_P(self)
   1158  1.1   matt 				|| (!RB_LEFT_SENTINEL_P(self)
   1159  1.1   matt 				    && RB_RIGHT_SENTINEL_P(self)
   1160  1.1   matt 				    && RB_RED_P(self->rb_left)
   1161  1.1   matt 				    && RB_CHILDLESS_P(self->rb_left))
   1162  1.1   matt 				|| (!RB_RIGHT_SENTINEL_P(self)
   1163  1.1   matt 				    && RB_LEFT_SENTINEL_P(self)
   1164  1.1   matt 				    && RB_RED_P(self->rb_right)
   1165  1.1   matt 				    && RB_CHILDLESS_P(self->rb_right)));
   1166  1.1   matt 
   1167  1.1   matt 			/*
   1168  1.1   matt 			 * If I'm a childless black node and my parent is
   1169  1.1   matt 			 * black, my 2nd closet relative away from my parent
   1170  1.1   matt 			 * is either red or has a red parent or red children.
   1171  1.1   matt 			 */
   1172  1.1   matt 			if (!RB_ROOT_P(rbt, self)
   1173  1.1   matt 			    && RB_CHILDLESS_P(self)
   1174  1.1   matt 			    && RB_BLACK_P(RB_FATHER(self))) {
   1175  1.1   matt 				const unsigned int which = RB_POSITION(self);
   1176  1.1   matt 				const unsigned int other = which ^ RB_DIR_OTHER;
   1177  1.1   matt 				const struct rb_node *relative0, *relative;
   1178  1.1   matt 
   1179  1.1   matt 				relative0 = rb_tree_iterate_const(rbt,
   1180  1.1   matt 				    self, other);
   1181  1.1   matt 				KASSERT(relative0 != NULL);
   1182  1.1   matt 				relative = rb_tree_iterate_const(rbt,
   1183  1.1   matt 				    relative0, other);
   1184  1.1   matt 				KASSERT(relative != NULL);
   1185  1.1   matt 				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
   1186  1.1   matt #if 0
   1187  1.1   matt 				KASSERT(RB_RED_P(relative)
   1188  1.1   matt 					|| RB_RED_P(relative->rb_left)
   1189  1.1   matt 					|| RB_RED_P(relative->rb_right)
   1190  1.1   matt 					|| RB_RED_P(RB_FATHER(relative)));
   1191  1.1   matt #endif
   1192  1.1   matt 			}
   1193  1.1   matt 		}
   1194  1.1   matt 		/*
   1195  1.1   matt 		 * A grandparent's children must be real nodes and not
   1196  1.1   matt 		 * sentinels.  First check out grandparent.
   1197  1.1   matt 		 */
   1198  1.1   matt 		KASSERT(RB_ROOT_P(rbt, self)
   1199  1.1   matt 			|| RB_ROOT_P(rbt, RB_FATHER(self))
   1200  1.1   matt 			|| RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
   1201  1.1   matt 		/*
   1202  1.1   matt 		 * If we are have grandchildren on our left, then
   1203  1.1   matt 		 * we must have a child on our right.
   1204  1.1   matt 		 */
   1205  1.1   matt 		KASSERT(RB_LEFT_SENTINEL_P(self)
   1206  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left)
   1207  1.1   matt 			|| !RB_RIGHT_SENTINEL_P(self));
   1208  1.1   matt 		/*
   1209  1.1   matt 		 * If we are have grandchildren on our right, then
   1210  1.1   matt 		 * we must have a child on our left.
   1211  1.1   matt 		 */
   1212  1.1   matt 		KASSERT(RB_RIGHT_SENTINEL_P(self)
   1213  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right)
   1214  1.1   matt 			|| !RB_LEFT_SENTINEL_P(self));
   1215  1.1   matt 
   1216  1.1   matt 		/*
   1217  1.1   matt 		 * If we have a child on the left and it doesn't have two
   1218  1.1   matt 		 * children make sure we don't have great-great-grandchildren on
   1219  1.1   matt 		 * the right.
   1220  1.1   matt 		 */
   1221  1.1   matt 		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
   1222  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right)
   1223  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_left)
   1224  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
   1225  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
   1226  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_right)
   1227  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
   1228  1.1   matt 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
   1229  1.1   matt 
   1230  1.1   matt 		/*
   1231  1.1   matt 		 * If we have a child on the right and it doesn't have two
   1232  1.1   matt 		 * children make sure we don't have great-great-grandchildren on
   1233  1.1   matt 		 * the left.
   1234  1.1   matt 		 */
   1235  1.1   matt 		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
   1236  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left)
   1237  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_left)
   1238  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
   1239  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
   1240  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_right)
   1241  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
   1242  1.1   matt 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
   1243  1.1   matt 
   1244  1.1   matt 		/*
   1245  1.1   matt 		 * If we are fully interior node, then our predecessors and
   1246  1.1   matt 		 * successors must have no children in our direction.
   1247  1.1   matt 		 */
   1248  1.1   matt 		if (RB_TWOCHILDREN_P(self)) {
   1249  1.1   matt 			const struct rb_node *prev0;
   1250  1.1   matt 			const struct rb_node *next0;
   1251  1.1   matt 
   1252  1.1   matt 			prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
   1253  1.1   matt 			KASSERT(prev0 != NULL);
   1254  1.1   matt 			KASSERT(RB_RIGHT_SENTINEL_P(prev0));
   1255  1.1   matt 
   1256  1.1   matt 			next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
   1257  1.1   matt 			KASSERT(next0 != NULL);
   1258  1.1   matt 			KASSERT(RB_LEFT_SENTINEL_P(next0));
   1259  1.1   matt 		}
   1260  1.1   matt 	}
   1261  1.1   matt 
   1262  1.1   matt 	return true;
   1263  1.1   matt }
   1264  1.1   matt 
   1265  1.1   matt void
   1266  1.1   matt rb_tree_check(const struct rb_tree *rbt, bool red_check)
   1267  1.1   matt {
   1268  1.1   matt 	const struct rb_node *self;
   1269  1.1   matt 	const struct rb_node *prev;
   1270  1.1   matt #ifdef RBSTATS
   1271  1.1   matt 	unsigned int count = 0;
   1272  1.1   matt #endif
   1273  1.1   matt 
   1274  1.1   matt 	KASSERT(rbt->rbt_root != NULL);
   1275  1.1   matt 	KASSERT(RB_LEFT_P(rbt->rbt_root));
   1276  1.1   matt 
   1277  1.1   matt #if defined(RBSTATS) && !defined(RBSMALL)
   1278  1.1   matt 	KASSERT(rbt->rbt_count > 1
   1279  1.1   matt 	    || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
   1280  1.1   matt #endif
   1281  1.1   matt 
   1282  1.1   matt 	prev = NULL;
   1283  1.1   matt 	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
   1284  1.1   matt 		rb_tree_check_node(rbt, self, prev, false);
   1285  1.1   matt #ifdef RBSTATS
   1286  1.1   matt 		count++;
   1287  1.1   matt #endif
   1288  1.1   matt 	}
   1289  1.1   matt #ifdef RBSTATS
   1290  1.1   matt 	KASSERT(rbt->rbt_count == count);
   1291  1.1   matt #endif
   1292  1.1   matt 	if (red_check) {
   1293  1.1   matt 		KASSERT(RB_BLACK_P(rbt->rbt_root));
   1294  1.1   matt 		KASSERT(RB_SENTINEL_P(rbt->rbt_root)
   1295  1.1   matt 			|| rb_tree_count_black(rbt->rbt_root));
   1296  1.1   matt 
   1297  1.1   matt 		/*
   1298  1.1   matt 		 * The root must be black.
   1299  1.1   matt 		 * There can never be two adjacent red nodes.
   1300  1.1   matt 		 */
   1301  1.1   matt 		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
   1302  1.1   matt 			rb_tree_check_node(rbt, self, NULL, true);
   1303  1.1   matt 		}
   1304  1.1   matt 	}
   1305  1.1   matt }
   1306  1.1   matt #endif /* RBDEBUG */
   1307  1.1   matt 
   1308  1.1   matt #ifdef RBSTATS
   1309  1.1   matt static void
   1310  1.1   matt rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
   1311  1.1   matt 	size_t *depths, size_t depth)
   1312  1.1   matt {
   1313  1.1   matt 	if (RB_SENTINEL_P(self))
   1314  1.1   matt 		return;
   1315  1.1   matt 
   1316  1.1   matt 	if (RB_TWOCHILDREN_P(self)) {
   1317  1.1   matt 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
   1318  1.1   matt 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
   1319  1.1   matt 		return;
   1320  1.1   matt 	}
   1321  1.1   matt 	depths[depth]++;
   1322  1.1   matt 	if (!RB_LEFT_SENTINEL_P(self)) {
   1323  1.1   matt 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
   1324  1.1   matt 	}
   1325  1.1   matt 	if (!RB_RIGHT_SENTINEL_P(self)) {
   1326  1.1   matt 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
   1327  1.1   matt 	}
   1328  1.1   matt }
   1329  1.1   matt 
   1330  1.1   matt void
   1331  1.1   matt rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
   1332  1.1   matt {
   1333  1.1   matt 	rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
   1334  1.1   matt }
   1335  1.1   matt #endif /* RBSTATS */
   1336