Home | History | Annotate | Line # | Download | only in gen
rb.c revision 1.13
      1 /*	$NetBSD: rb.c,v 1.13 2014/08/22 17:19:48 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Matt Thomas <matt (at) 3am-software.com>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #if !defined(_KERNEL) && !defined(_STANDALONE)
     33 #include <sys/types.h>
     34 #include <stddef.h>
     35 #include <assert.h>
     36 #include <stdbool.h>
     37 #ifdef RBDEBUG
     38 #define	KASSERT(s)	assert(s)
     39 #else
     40 #define KASSERT(s)	do { } while (/*CONSTCOND*/ 0)
     41 #endif
     42 __RCSID("$NetBSD: rb.c,v 1.13 2014/08/22 17:19:48 matt Exp $");
     43 #else
     44 #include <lib/libkern/libkern.h>
     45 __KERNEL_RCSID(0, "$NetBSD: rb.c,v 1.13 2014/08/22 17:19:48 matt Exp $");
     46 #endif
     47 
     48 #ifdef _LIBC
     49 __weak_alias(rb_tree_init, _rb_tree_init)
     50 __weak_alias(rb_tree_find_node, _rb_tree_find_node)
     51 __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
     52 __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
     53 __weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
     54 __weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
     55 __weak_alias(rb_tree_iterate, _rb_tree_iterate)
     56 #ifdef RBDEBUG
     57 __weak_alias(rb_tree_check, _rb_tree_check)
     58 __weak_alias(rb_tree_depths, _rb_tree_depths)
     59 #endif
     60 
     61 #include "namespace.h"
     62 #endif
     63 
     64 #ifdef RBTEST
     65 #include "rbtree.h"
     66 #else
     67 #include <sys/rbtree.h>
     68 #endif
     69 
     70 static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
     71 static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
     72 	unsigned int);
     73 #ifdef RBDEBUG
     74 static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
     75 	const struct rb_node *, const unsigned int);
     76 static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
     77 	const struct rb_node *, bool);
     78 #else
     79 #define	rb_tree_check_node(a, b, c, d)	true
     80 #endif
     81 
     82 #define	RB_NODETOITEM(rbto, rbn)	\
     83     ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
     84 #define	RB_ITEMTONODE(rbto, rbn)	\
     85     ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
     86 
     87 #define	RB_SENTINEL_NODE	NULL
     88 
     89 void
     90 rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
     91 {
     92 
     93 	rbt->rbt_ops = ops;
     94 	rbt->rbt_root = RB_SENTINEL_NODE;
     95 	RB_TAILQ_INIT(&rbt->rbt_nodes);
     96 #ifndef RBSMALL
     97 	rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;	/* minimum node */
     98 	rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;	/* maximum node */
     99 #endif
    100 #ifdef RBSTATS
    101 	rbt->rbt_count = 0;
    102 	rbt->rbt_insertions = 0;
    103 	rbt->rbt_removals = 0;
    104 	rbt->rbt_insertion_rebalance_calls = 0;
    105 	rbt->rbt_insertion_rebalance_passes = 0;
    106 	rbt->rbt_removal_rebalance_calls = 0;
    107 	rbt->rbt_removal_rebalance_passes = 0;
    108 #endif
    109 }
    110 
    111 void *
    112 rb_tree_find_node(struct rb_tree *rbt, const void *key)
    113 {
    114 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    115 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    116 	struct rb_node *parent = rbt->rbt_root;
    117 
    118 	while (!RB_SENTINEL_P(parent)) {
    119 		void *pobj = RB_NODETOITEM(rbto, parent);
    120 		const signed int diff = (*compare_key)(rbto->rbto_context,
    121 		    pobj, key);
    122 		if (diff == 0)
    123 			return pobj;
    124 		parent = parent->rb_nodes[diff < 0];
    125 	}
    126 
    127 	return NULL;
    128 }
    129 
    130 void *
    131 rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
    132 {
    133 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    134 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    135 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
    136 
    137 	while (!RB_SENTINEL_P(parent)) {
    138 		void *pobj = RB_NODETOITEM(rbto, parent);
    139 		const signed int diff = (*compare_key)(rbto->rbto_context,
    140 		    pobj, key);
    141 		if (diff == 0)
    142 			return pobj;
    143 		if (diff > 0)
    144 			last = parent;
    145 		parent = parent->rb_nodes[diff < 0];
    146 	}
    147 
    148 	return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
    149 }
    150 
    151 void *
    152 rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
    153 {
    154 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    155 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    156 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
    157 
    158 	while (!RB_SENTINEL_P(parent)) {
    159 		void *pobj = RB_NODETOITEM(rbto, parent);
    160 		const signed int diff = (*compare_key)(rbto->rbto_context,
    161 		    pobj, key);
    162 		if (diff == 0)
    163 			return pobj;
    164 		if (diff < 0)
    165 			last = parent;
    166 		parent = parent->rb_nodes[diff < 0];
    167 	}
    168 
    169 	return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
    170 }
    171 
    172 void *
    173 rb_tree_insert_node(struct rb_tree *rbt, void *object)
    174 {
    175 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    176 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
    177 	struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
    178 	unsigned int position;
    179 	bool rebalance;
    180 
    181 	RBSTAT_INC(rbt->rbt_insertions);
    182 
    183 	tmp = rbt->rbt_root;
    184 	/*
    185 	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
    186 	 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
    187 	 * avoid a lot of tests for root and know that even at root,
    188 	 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
    189 	 * update rbt->rbt_root.
    190 	 */
    191 	parent = (struct rb_node *)(void *)&rbt->rbt_root;
    192 	position = RB_DIR_LEFT;
    193 
    194 	/*
    195 	 * Find out where to place this new leaf.
    196 	 */
    197 	while (!RB_SENTINEL_P(tmp)) {
    198 		void *tobj = RB_NODETOITEM(rbto, tmp);
    199 		const signed int diff = (*compare_nodes)(rbto->rbto_context,
    200 		    tobj, object);
    201 		if (__predict_false(diff == 0)) {
    202 			/*
    203 			 * Node already exists; return it.
    204 			 */
    205 			return tobj;
    206 		}
    207 		parent = tmp;
    208 		position = (diff < 0);
    209 		tmp = parent->rb_nodes[position];
    210 	}
    211 
    212 #ifdef RBDEBUG
    213 	{
    214 		struct rb_node *prev = NULL, *next = NULL;
    215 
    216 		if (position == RB_DIR_RIGHT)
    217 			prev = parent;
    218 		else if (tmp != rbt->rbt_root)
    219 			next = parent;
    220 
    221 		/*
    222 		 * Verify our sequential position
    223 		 */
    224 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
    225 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
    226 		if (prev != NULL && next == NULL)
    227 			next = TAILQ_NEXT(prev, rb_link);
    228 		if (prev == NULL && next != NULL)
    229 			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
    230 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
    231 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
    232 		KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
    233 		    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
    234 		KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
    235 		    RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
    236 	}
    237 #endif
    238 
    239 	/*
    240 	 * Initialize the node and insert as a leaf into the tree.
    241 	 */
    242 	RB_SET_FATHER(self, parent);
    243 	RB_SET_POSITION(self, position);
    244 	if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
    245 		RB_MARK_BLACK(self);		/* root is always black */
    246 #ifndef RBSMALL
    247 		rbt->rbt_minmax[RB_DIR_LEFT] = self;
    248 		rbt->rbt_minmax[RB_DIR_RIGHT] = self;
    249 #endif
    250 		rebalance = false;
    251 	} else {
    252 		KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
    253 #ifndef RBSMALL
    254 		/*
    255 		 * Keep track of the minimum and maximum nodes.  If our
    256 		 * parent is a minmax node and we on their min/max side,
    257 		 * we must be the new min/max node.
    258 		 */
    259 		if (parent == rbt->rbt_minmax[position])
    260 			rbt->rbt_minmax[position] = self;
    261 #endif /* !RBSMALL */
    262 		/*
    263 		 * All new nodes are colored red.  We only need to rebalance
    264 		 * if our parent is also red.
    265 		 */
    266 		RB_MARK_RED(self);
    267 		rebalance = RB_RED_P(parent);
    268 	}
    269 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
    270 	self->rb_left = parent->rb_nodes[position];
    271 	self->rb_right = parent->rb_nodes[position];
    272 	parent->rb_nodes[position] = self;
    273 	KASSERT(RB_CHILDLESS_P(self));
    274 
    275 	/*
    276 	 * Insert the new node into a sorted list for easy sequential access
    277 	 */
    278 	RBSTAT_INC(rbt->rbt_count);
    279 #ifdef RBDEBUG
    280 	if (RB_ROOT_P(rbt, self)) {
    281 		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
    282 	} else if (position == RB_DIR_LEFT) {
    283 		KASSERT((*compare_nodes)(rbto->rbto_context,
    284 		    RB_NODETOITEM(rbto, self),
    285 		    RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
    286 		RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
    287 	} else {
    288 		KASSERT((*compare_nodes)(rbto->rbto_context,
    289 		    RB_NODETOITEM(rbto, RB_FATHER(self)),
    290 		    RB_NODETOITEM(rbto, self)) < 0);
    291 		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
    292 		    self, rb_link);
    293 	}
    294 #endif
    295 	KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
    296 
    297 	/*
    298 	 * Rebalance tree after insertion
    299 	 */
    300 	if (rebalance) {
    301 		rb_tree_insert_rebalance(rbt, self);
    302 		KASSERT(rb_tree_check_node(rbt, self, NULL, true));
    303 	}
    304 
    305 	/* Succesfully inserted, return our node pointer. */
    306 	return object;
    307 }
    308 
    309 /*
    310  * Swap the location and colors of 'self' and its child @ which.  The child
    311  * can not be a sentinel node.  This is our rotation function.  However,
    312  * since it preserves coloring, it great simplifies both insertion and
    313  * removal since rotation almost always involves the exchanging of colors
    314  * as a separate step.
    315  */
    316 /*ARGSUSED*/
    317 static void
    318 rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
    319 	const unsigned int which)
    320 {
    321 	const unsigned int other = which ^ RB_DIR_OTHER;
    322 	struct rb_node * const grandpa = RB_FATHER(old_father);
    323 	struct rb_node * const old_child = old_father->rb_nodes[which];
    324 	struct rb_node * const new_father = old_child;
    325 	struct rb_node * const new_child = old_father;
    326 
    327 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    328 
    329 	KASSERT(!RB_SENTINEL_P(old_child));
    330 	KASSERT(RB_FATHER(old_child) == old_father);
    331 
    332 	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
    333 	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
    334 	KASSERT(RB_ROOT_P(rbt, old_father) ||
    335 	    rb_tree_check_node(rbt, grandpa, NULL, false));
    336 
    337 	/*
    338 	 * Exchange descendant linkages.
    339 	 */
    340 	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
    341 	new_child->rb_nodes[which] = old_child->rb_nodes[other];
    342 	new_father->rb_nodes[other] = new_child;
    343 
    344 	/*
    345 	 * Update ancestor linkages
    346 	 */
    347 	RB_SET_FATHER(new_father, grandpa);
    348 	RB_SET_FATHER(new_child, new_father);
    349 
    350 	/*
    351 	 * Exchange properties between new_father and new_child.  The only
    352 	 * change is that new_child's position is now on the other side.
    353 	 */
    354 #if 0
    355 	{
    356 		struct rb_node tmp;
    357 		tmp.rb_info = 0;
    358 		RB_COPY_PROPERTIES(&tmp, old_child);
    359 		RB_COPY_PROPERTIES(new_father, old_father);
    360 		RB_COPY_PROPERTIES(new_child, &tmp);
    361 	}
    362 #else
    363 	RB_SWAP_PROPERTIES(new_father, new_child);
    364 #endif
    365 	RB_SET_POSITION(new_child, other);
    366 
    367 	/*
    368 	 * Make sure to reparent the new child to ourself.
    369 	 */
    370 	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
    371 		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
    372 		RB_SET_POSITION(new_child->rb_nodes[which], which);
    373 	}
    374 
    375 	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
    376 	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
    377 	KASSERT(RB_ROOT_P(rbt, new_father) ||
    378 	    rb_tree_check_node(rbt, grandpa, NULL, false));
    379 }
    380 
    381 static void
    382 rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
    383 {
    384 	struct rb_node * father = RB_FATHER(self);
    385 	struct rb_node * grandpa = RB_FATHER(father);
    386 	struct rb_node * uncle;
    387 	unsigned int which;
    388 	unsigned int other;
    389 
    390 	KASSERT(!RB_ROOT_P(rbt, self));
    391 	KASSERT(RB_RED_P(self));
    392 	KASSERT(RB_RED_P(father));
    393 	RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
    394 
    395 	for (;;) {
    396 		KASSERT(!RB_SENTINEL_P(self));
    397 
    398 		KASSERT(RB_RED_P(self));
    399 		KASSERT(RB_RED_P(father));
    400 		/*
    401 		 * We are red and our parent is red, therefore we must have a
    402 		 * grandfather and he must be black.
    403 		 */
    404 		grandpa = RB_FATHER(father);
    405 		KASSERT(RB_BLACK_P(grandpa));
    406 		KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
    407 		which = (father == grandpa->rb_right);
    408 		other = which ^ RB_DIR_OTHER;
    409 		uncle = grandpa->rb_nodes[other];
    410 
    411 		if (RB_BLACK_P(uncle))
    412 			break;
    413 
    414 		RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
    415 		/*
    416 		 * Case 1: our uncle is red
    417 		 *   Simply invert the colors of our parent and
    418 		 *   uncle and make our grandparent red.  And
    419 		 *   then solve the problem up at his level.
    420 		 */
    421 		RB_MARK_BLACK(uncle);
    422 		RB_MARK_BLACK(father);
    423 		if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
    424 			/*
    425 			 * If our grandpa is root, don't bother
    426 			 * setting him to red, just return.
    427 			 */
    428 			KASSERT(RB_BLACK_P(grandpa));
    429 			return;
    430 		}
    431 		RB_MARK_RED(grandpa);
    432 		self = grandpa;
    433 		father = RB_FATHER(self);
    434 		KASSERT(RB_RED_P(self));
    435 		if (RB_BLACK_P(father)) {
    436 			/*
    437 			 * If our greatgrandpa is black, we're done.
    438 			 */
    439 			KASSERT(RB_BLACK_P(rbt->rbt_root));
    440 			return;
    441 		}
    442 	}
    443 
    444 	KASSERT(!RB_ROOT_P(rbt, self));
    445 	KASSERT(RB_RED_P(self));
    446 	KASSERT(RB_RED_P(father));
    447 	KASSERT(RB_BLACK_P(uncle));
    448 	KASSERT(RB_BLACK_P(grandpa));
    449 	/*
    450 	 * Case 2&3: our uncle is black.
    451 	 */
    452 	if (self == father->rb_nodes[other]) {
    453 		/*
    454 		 * Case 2: we are on the same side as our uncle
    455 		 *   Swap ourselves with our parent so this case
    456 		 *   becomes case 3.  Basically our parent becomes our
    457 		 *   child.
    458 		 */
    459 		rb_tree_reparent_nodes(rbt, father, other);
    460 		KASSERT(RB_FATHER(father) == self);
    461 		KASSERT(self->rb_nodes[which] == father);
    462 		KASSERT(RB_FATHER(self) == grandpa);
    463 		self = father;
    464 		father = RB_FATHER(self);
    465 	}
    466 	KASSERT(RB_RED_P(self) && RB_RED_P(father));
    467 	KASSERT(grandpa->rb_nodes[which] == father);
    468 	/*
    469 	 * Case 3: we are opposite a child of a black uncle.
    470 	 *   Swap our parent and grandparent.  Since our grandfather
    471 	 *   is black, our father will become black and our new sibling
    472 	 *   (former grandparent) will become red.
    473 	 */
    474 	rb_tree_reparent_nodes(rbt, grandpa, which);
    475 	KASSERT(RB_FATHER(self) == father);
    476 	KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
    477 	KASSERT(RB_RED_P(self));
    478 	KASSERT(RB_BLACK_P(father));
    479 	KASSERT(RB_RED_P(grandpa));
    480 
    481 	/*
    482 	 * Final step: Set the root to black.
    483 	 */
    484 	RB_MARK_BLACK(rbt->rbt_root);
    485 }
    486 
    487 static void
    488 rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
    489 {
    490 	const unsigned int which = RB_POSITION(self);
    491 	struct rb_node *father = RB_FATHER(self);
    492 #ifndef RBSMALL
    493 	const bool was_root = RB_ROOT_P(rbt, self);
    494 #endif
    495 
    496 	KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
    497 	KASSERT(!rebalance || RB_BLACK_P(self));
    498 	KASSERT(RB_CHILDLESS_P(self));
    499 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    500 
    501 	/*
    502 	 * Since we are childless, we know that self->rb_left is pointing
    503 	 * to the sentinel node.
    504 	 */
    505 	father->rb_nodes[which] = self->rb_left;
    506 
    507 	/*
    508 	 * Remove ourselves from the node list, decrement the count,
    509 	 * and update min/max.
    510 	 */
    511 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    512 	RBSTAT_DEC(rbt->rbt_count);
    513 #ifndef RBSMALL
    514 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
    515 		rbt->rbt_minmax[RB_POSITION(self)] = father;
    516 		/*
    517 		 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
    518 		 * updated automatically, but we also need to update
    519 		 * rbt->rbt_minmax[RB_DIR_RIGHT];
    520 		 */
    521 		if (__predict_false(was_root)) {
    522 			rbt->rbt_minmax[RB_DIR_RIGHT] = father;
    523 		}
    524 	}
    525 	RB_SET_FATHER(self, NULL);
    526 #endif
    527 
    528 	/*
    529 	 * Rebalance if requested.
    530 	 */
    531 	if (rebalance)
    532 		rb_tree_removal_rebalance(rbt, father, which);
    533 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
    534 }
    535 
    536 /*
    537  * When deleting an interior node
    538  */
    539 static void
    540 rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
    541 	struct rb_node *standin)
    542 {
    543 	const unsigned int standin_which = RB_POSITION(standin);
    544 	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
    545 	struct rb_node *standin_son;
    546 	struct rb_node *standin_father = RB_FATHER(standin);
    547 	bool rebalance = RB_BLACK_P(standin);
    548 
    549 	if (standin_father == self) {
    550 		/*
    551 		 * As a child of self, any childen would be opposite of
    552 		 * our parent.
    553 		 */
    554 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
    555 		standin_son = standin->rb_nodes[standin_which];
    556 	} else {
    557 		/*
    558 		 * Since we aren't a child of self, any childen would be
    559 		 * on the same side as our parent.
    560 		 */
    561 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
    562 		standin_son = standin->rb_nodes[standin_other];
    563 	}
    564 
    565 	/*
    566 	 * the node we are removing must have two children.
    567 	 */
    568 	KASSERT(RB_TWOCHILDREN_P(self));
    569 	/*
    570 	 * If standin has a child, it must be red.
    571 	 */
    572 	KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
    573 
    574 	/*
    575 	 * Verify things are sane.
    576 	 */
    577 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    578 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
    579 
    580 	if (__predict_false(RB_RED_P(standin_son))) {
    581 		/*
    582 		 * We know we have a red child so if we flip it to black
    583 		 * we don't have to rebalance.
    584 		 */
    585 		KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
    586 		RB_MARK_BLACK(standin_son);
    587 		rebalance = false;
    588 
    589 		if (standin_father == self) {
    590 			KASSERT(RB_POSITION(standin_son) == standin_which);
    591 		} else {
    592 			KASSERT(RB_POSITION(standin_son) == standin_other);
    593 			/*
    594 			 * Change the son's parentage to point to his grandpa.
    595 			 */
    596 			RB_SET_FATHER(standin_son, standin_father);
    597 			RB_SET_POSITION(standin_son, standin_which);
    598 		}
    599 	}
    600 
    601 	if (standin_father == self) {
    602 		/*
    603 		 * If we are about to delete the standin's father, then when
    604 		 * we call rebalance, we need to use ourselves as our father.
    605 		 * Otherwise remember our original father.  Also, sincef we are
    606 		 * our standin's father we only need to reparent the standin's
    607 		 * brother.
    608 		 *
    609 		 * |    R      -->     S    |
    610 		 * |  Q   S    -->   Q   T  |
    611 		 * |        t  -->          |
    612 		 */
    613 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
    614 		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
    615 		KASSERT(self->rb_nodes[standin_which] == standin);
    616 		/*
    617 		 * Have our son/standin adopt his brother as his new son.
    618 		 */
    619 		standin_father = standin;
    620 	} else {
    621 		/*
    622 		 * |    R          -->    S       .  |
    623 		 * |   / \  |   T  -->   / \  |  /   |
    624 		 * |  ..... | S    -->  ..... | T    |
    625 		 *
    626 		 * Sever standin's connection to his father.
    627 		 */
    628 		standin_father->rb_nodes[standin_which] = standin_son;
    629 		/*
    630 		 * Adopt the far son.
    631 		 */
    632 		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
    633 		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
    634 		KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
    635 		/*
    636 		 * Use standin_other because we need to preserve standin_which
    637 		 * for the removal_rebalance.
    638 		 */
    639 		standin_other = standin_which;
    640 	}
    641 
    642 	/*
    643 	 * Move the only remaining son to our standin.  If our standin is our
    644 	 * son, this will be the only son needed to be moved.
    645 	 */
    646 	KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
    647 	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
    648 	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
    649 
    650 	/*
    651 	 * Now copy the result of self to standin and then replace
    652 	 * self with standin in the tree.
    653 	 */
    654 	RB_COPY_PROPERTIES(standin, self);
    655 	RB_SET_FATHER(standin, RB_FATHER(self));
    656 	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
    657 
    658 	/*
    659 	 * Remove ourselves from the node list, decrement the count,
    660 	 * and update min/max.
    661 	 */
    662 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    663 	RBSTAT_DEC(rbt->rbt_count);
    664 #ifndef RBSMALL
    665 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
    666 		rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
    667 	RB_SET_FATHER(self, NULL);
    668 #endif
    669 
    670 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
    671 	KASSERT(RB_FATHER_SENTINEL_P(standin)
    672 		|| rb_tree_check_node(rbt, standin_father, NULL, false));
    673 	KASSERT(RB_LEFT_SENTINEL_P(standin)
    674 		|| rb_tree_check_node(rbt, standin->rb_left, NULL, false));
    675 	KASSERT(RB_RIGHT_SENTINEL_P(standin)
    676 		|| rb_tree_check_node(rbt, standin->rb_right, NULL, false));
    677 
    678 	if (!rebalance)
    679 		return;
    680 
    681 	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
    682 	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
    683 }
    684 
    685 /*
    686  * We could do this by doing
    687  *	rb_tree_node_swap(rbt, self, which);
    688  *	rb_tree_prune_node(rbt, self, false);
    689  *
    690  * But it's more efficient to just evalate and recolor the child.
    691  */
    692 static void
    693 rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
    694 	unsigned int which)
    695 {
    696 	struct rb_node *father = RB_FATHER(self);
    697 	struct rb_node *son = self->rb_nodes[which];
    698 #ifndef RBSMALL
    699 	const bool was_root = RB_ROOT_P(rbt, self);
    700 #endif
    701 
    702 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    703 	KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
    704 	KASSERT(!RB_TWOCHILDREN_P(son));
    705 	KASSERT(RB_CHILDLESS_P(son));
    706 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    707 	KASSERT(rb_tree_check_node(rbt, son, NULL, false));
    708 
    709 	/*
    710 	 * Remove ourselves from the tree and give our former child our
    711 	 * properties (position, color, root).
    712 	 */
    713 	RB_COPY_PROPERTIES(son, self);
    714 	father->rb_nodes[RB_POSITION(son)] = son;
    715 	RB_SET_FATHER(son, father);
    716 
    717 	/*
    718 	 * Remove ourselves from the node list, decrement the count,
    719 	 * and update minmax.
    720 	 */
    721 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    722 	RBSTAT_DEC(rbt->rbt_count);
    723 #ifndef RBSMALL
    724 	if (__predict_false(was_root)) {
    725 		KASSERT(rbt->rbt_minmax[which] == son);
    726 		rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
    727 	} else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
    728 		rbt->rbt_minmax[RB_POSITION(self)] = son;
    729 	}
    730 	RB_SET_FATHER(self, NULL);
    731 #endif
    732 
    733 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
    734 	KASSERT(rb_tree_check_node(rbt, son, NULL, true));
    735 }
    736 
    737 void
    738 rb_tree_remove_node(struct rb_tree *rbt, void *object)
    739 {
    740 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    741 	struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
    742 	unsigned int which;
    743 
    744 	KASSERT(!RB_SENTINEL_P(self));
    745 	RBSTAT_INC(rbt->rbt_removals);
    746 
    747 	/*
    748 	 * In the following diagrams, we (the node to be removed) are S.  Red
    749 	 * nodes are lowercase.  T could be either red or black.
    750 	 *
    751 	 * Remember the major axiom of the red-black tree: the number of
    752 	 * black nodes from the root to each leaf is constant across all
    753 	 * leaves, only the number of red nodes varies.
    754 	 *
    755 	 * Thus removing a red leaf doesn't require any other changes to a
    756 	 * red-black tree.  So if we must remove a node, attempt to rearrange
    757 	 * the tree so we can remove a red node.
    758 	 *
    759 	 * The simpliest case is a childless red node or a childless root node:
    760 	 *
    761 	 * |    T  -->    T  |    or    |  R  -->  *  |
    762 	 * |  s    -->  *    |
    763 	 */
    764 	if (RB_CHILDLESS_P(self)) {
    765 		const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
    766 		rb_tree_prune_node(rbt, self, rebalance);
    767 		return;
    768 	}
    769 	KASSERT(!RB_CHILDLESS_P(self));
    770 	if (!RB_TWOCHILDREN_P(self)) {
    771 		/*
    772 		 * The next simpliest case is the node we are deleting is
    773 		 * black and has one red child.
    774 		 *
    775 		 * |      T  -->      T  -->      T  |
    776 		 * |    S    -->  R      -->  R      |
    777 		 * |  r      -->    s    -->    *    |
    778 		 */
    779 		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
    780 		KASSERT(RB_BLACK_P(self));
    781 		KASSERT(RB_RED_P(self->rb_nodes[which]));
    782 		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
    783 		rb_tree_prune_blackred_branch(rbt, self, which);
    784 		return;
    785 	}
    786 	KASSERT(RB_TWOCHILDREN_P(self));
    787 
    788 	/*
    789 	 * We invert these because we prefer to remove from the inside of
    790 	 * the tree.
    791 	 */
    792 	which = RB_POSITION(self) ^ RB_DIR_OTHER;
    793 
    794 	/*
    795 	 * Let's find the node closes to us opposite of our parent
    796 	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
    797 	 */
    798 	standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
    799 	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
    800 }
    801 
    802 static void
    803 rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
    804 	unsigned int which)
    805 {
    806 	KASSERT(!RB_SENTINEL_P(parent));
    807 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
    808 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    809 	RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
    810 
    811 	while (RB_BLACK_P(parent->rb_nodes[which])) {
    812 		unsigned int other = which ^ RB_DIR_OTHER;
    813 		struct rb_node *brother = parent->rb_nodes[other];
    814 
    815 		RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
    816 
    817 		KASSERT(!RB_SENTINEL_P(brother));
    818 		/*
    819 		 * For cases 1, 2a, and 2b, our brother's children must
    820 		 * be black and our father must be black
    821 		 */
    822 		if (RB_BLACK_P(parent)
    823 		    && RB_BLACK_P(brother->rb_left)
    824 		    && RB_BLACK_P(brother->rb_right)) {
    825 			if (RB_RED_P(brother)) {
    826 				/*
    827 				 * Case 1: Our brother is red, swap its
    828 				 * position (and colors) with our parent.
    829 				 * This should now be case 2b (unless C or E
    830 				 * has a red child which is case 3; thus no
    831 				 * explicit branch to case 2b).
    832 				 *
    833 				 *    B         ->        D
    834 				 *  A     d     ->    b     E
    835 				 *      C   E   ->  A   C
    836 				 */
    837 				KASSERT(RB_BLACK_P(parent));
    838 				rb_tree_reparent_nodes(rbt, parent, other);
    839 				brother = parent->rb_nodes[other];
    840 				KASSERT(!RB_SENTINEL_P(brother));
    841 				KASSERT(RB_RED_P(parent));
    842 				KASSERT(RB_BLACK_P(brother));
    843 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
    844 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
    845 			} else {
    846 				/*
    847 				 * Both our parent and brother are black.
    848 				 * Change our brother to red, advance up rank
    849 				 * and go through the loop again.
    850 				 *
    851 				 *    B         ->   *B
    852 				 * *A     D     ->  A     d
    853 				 *      C   E   ->      C   E
    854 				 */
    855 				RB_MARK_RED(brother);
    856 				KASSERT(RB_BLACK_P(brother->rb_left));
    857 				KASSERT(RB_BLACK_P(brother->rb_right));
    858 				if (RB_ROOT_P(rbt, parent))
    859 					return;	/* root == parent == black */
    860 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
    861 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
    862 				which = RB_POSITION(parent);
    863 				parent = RB_FATHER(parent);
    864 				continue;
    865 			}
    866 		}
    867 		/*
    868 		 * Avoid an else here so that case 2a above can hit either
    869 		 * case 2b, 3, or 4.
    870 		 */
    871 		if (RB_RED_P(parent)
    872 		    && RB_BLACK_P(brother)
    873 		    && RB_BLACK_P(brother->rb_left)
    874 		    && RB_BLACK_P(brother->rb_right)) {
    875 			KASSERT(RB_RED_P(parent));
    876 			KASSERT(RB_BLACK_P(brother));
    877 			KASSERT(RB_BLACK_P(brother->rb_left));
    878 			KASSERT(RB_BLACK_P(brother->rb_right));
    879 			/*
    880 			 * We are black, our father is red, our brother and
    881 			 * both nephews are black.  Simply invert/exchange the
    882 			 * colors of our father and brother (to black and red
    883 			 * respectively).
    884 			 *
    885 			 *	|    f        -->    F        |
    886 			 *	|  *     B    -->  *     b    |
    887 			 *	|      N   N  -->      N   N  |
    888 			 */
    889 			RB_MARK_BLACK(parent);
    890 			RB_MARK_RED(brother);
    891 			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
    892 			break;		/* We're done! */
    893 		} else {
    894 			/*
    895 			 * Our brother must be black and have at least one
    896 			 * red child (it may have two).
    897 			 */
    898 			KASSERT(RB_BLACK_P(brother));
    899 			KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
    900 				RB_RED_P(brother->rb_nodes[other]));
    901 			if (RB_BLACK_P(brother->rb_nodes[other])) {
    902 				/*
    903 				 * Case 3: our brother is black, our near
    904 				 * nephew is red, and our far nephew is black.
    905 				 * Swap our brother with our near nephew.
    906 				 * This result in a tree that matches case 4.
    907 				 * (Our father could be red or black).
    908 				 *
    909 				 *	|    F      -->    F      |
    910 				 *	|  x     B  -->  x   B    |
    911 				 *	|      n    -->        n  |
    912 				 */
    913 				KASSERT(RB_RED_P(brother->rb_nodes[which]));
    914 				rb_tree_reparent_nodes(rbt, brother, which);
    915 				KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
    916 				brother = parent->rb_nodes[other];
    917 				KASSERT(RB_RED_P(brother->rb_nodes[other]));
    918 			}
    919 			/*
    920 			 * Case 4: our brother is black and our far nephew
    921 			 * is red.  Swap our father and brother locations and
    922 			 * change our far nephew to black.  (these can be
    923 			 * done in either order so we change the color first).
    924 			 * The result is a valid red-black tree and is a
    925 			 * terminal case.  (again we don't care about the
    926 			 * father's color)
    927 			 *
    928 			 * If the father is red, we will get a red-black-black
    929 			 * tree:
    930 			 *	|  f      ->  f      -->    b    |
    931 			 *	|    B    ->    B    -->  F   N  |
    932 			 *	|      n  ->      N  -->         |
    933 			 *
    934 			 * If the father is black, we will get an all black
    935 			 * tree:
    936 			 *	|  F      ->  F      -->    B    |
    937 			 *	|    B    ->    B    -->  F   N  |
    938 			 *	|      n  ->      N  -->         |
    939 			 *
    940 			 * If we had two red nephews, then after the swap,
    941 			 * our former father would have a red grandson.
    942 			 */
    943 			KASSERT(RB_BLACK_P(brother));
    944 			KASSERT(RB_RED_P(brother->rb_nodes[other]));
    945 			RB_MARK_BLACK(brother->rb_nodes[other]);
    946 			rb_tree_reparent_nodes(rbt, parent, other);
    947 			break;		/* We're done! */
    948 		}
    949 	}
    950 	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
    951 }
    952 
    953 void *
    954 rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
    955 {
    956 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    957 	const unsigned int other = direction ^ RB_DIR_OTHER;
    958 	struct rb_node *self;
    959 
    960 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
    961 
    962 	if (object == NULL) {
    963 #ifndef RBSMALL
    964 		if (RB_SENTINEL_P(rbt->rbt_root))
    965 			return NULL;
    966 		return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
    967 #else
    968 		self = rbt->rbt_root;
    969 		if (RB_SENTINEL_P(self))
    970 			return NULL;
    971 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
    972 			self = self->rb_nodes[direction];
    973 		return RB_NODETOITEM(rbto, self);
    974 #endif /* !RBSMALL */
    975 	}
    976 	self = RB_ITEMTONODE(rbto, object);
    977 	KASSERT(!RB_SENTINEL_P(self));
    978 	/*
    979 	 * We can't go any further in this direction.  We proceed up in the
    980 	 * opposite direction until our parent is in direction we want to go.
    981 	 */
    982 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
    983 		while (!RB_ROOT_P(rbt, self)) {
    984 			if (other == RB_POSITION(self))
    985 				return RB_NODETOITEM(rbto, RB_FATHER(self));
    986 			self = RB_FATHER(self);
    987 		}
    988 		return NULL;
    989 	}
    990 
    991 	/*
    992 	 * Advance down one in current direction and go down as far as possible
    993 	 * in the opposite direction.
    994 	 */
    995 	self = self->rb_nodes[direction];
    996 	KASSERT(!RB_SENTINEL_P(self));
    997 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
    998 		self = self->rb_nodes[other];
    999 	return RB_NODETOITEM(rbto, self);
   1000 }
   1001 
   1002 #ifdef RBDEBUG
   1003 static const struct rb_node *
   1004 rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
   1005 	const unsigned int direction)
   1006 {
   1007 	const unsigned int other = direction ^ RB_DIR_OTHER;
   1008 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
   1009 
   1010 	if (self == NULL) {
   1011 #ifndef RBSMALL
   1012 		if (RB_SENTINEL_P(rbt->rbt_root))
   1013 			return NULL;
   1014 		return rbt->rbt_minmax[direction];
   1015 #else
   1016 		self = rbt->rbt_root;
   1017 		if (RB_SENTINEL_P(self))
   1018 			return NULL;
   1019 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
   1020 			self = self->rb_nodes[direction];
   1021 		return self;
   1022 #endif /* !RBSMALL */
   1023 	}
   1024 	KASSERT(!RB_SENTINEL_P(self));
   1025 	/*
   1026 	 * We can't go any further in this direction.  We proceed up in the
   1027 	 * opposite direction until our parent is in direction we want to go.
   1028 	 */
   1029 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
   1030 		while (!RB_ROOT_P(rbt, self)) {
   1031 			if (other == RB_POSITION(self))
   1032 				return RB_FATHER(self);
   1033 			self = RB_FATHER(self);
   1034 		}
   1035 		return NULL;
   1036 	}
   1037 
   1038 	/*
   1039 	 * Advance down one in current direction and go down as far as possible
   1040 	 * in the opposite direction.
   1041 	 */
   1042 	self = self->rb_nodes[direction];
   1043 	KASSERT(!RB_SENTINEL_P(self));
   1044 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
   1045 		self = self->rb_nodes[other];
   1046 	return self;
   1047 }
   1048 
   1049 static unsigned int
   1050 rb_tree_count_black(const struct rb_node *self)
   1051 {
   1052 	unsigned int left, right;
   1053 
   1054 	if (RB_SENTINEL_P(self))
   1055 		return 0;
   1056 
   1057 	left = rb_tree_count_black(self->rb_left);
   1058 	right = rb_tree_count_black(self->rb_right);
   1059 
   1060 	KASSERT(left == right);
   1061 
   1062 	return left + RB_BLACK_P(self);
   1063 }
   1064 
   1065 static bool
   1066 rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
   1067 	const struct rb_node *prev, bool red_check)
   1068 {
   1069 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
   1070 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
   1071 
   1072 	KASSERT(!RB_SENTINEL_P(self));
   1073 	KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
   1074 	    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
   1075 
   1076 	/*
   1077 	 * Verify our relationship to our parent.
   1078 	 */
   1079 	if (RB_ROOT_P(rbt, self)) {
   1080 		KASSERT(self == rbt->rbt_root);
   1081 		KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
   1082 		KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
   1083 		KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
   1084 	} else {
   1085 		int diff = (*compare_nodes)(rbto->rbto_context,
   1086 		    RB_NODETOITEM(rbto, self),
   1087 		    RB_NODETOITEM(rbto, RB_FATHER(self)));
   1088 
   1089 		KASSERT(self != rbt->rbt_root);
   1090 		KASSERT(!RB_FATHER_SENTINEL_P(self));
   1091 		if (RB_POSITION(self) == RB_DIR_LEFT) {
   1092 			KASSERT(diff < 0);
   1093 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
   1094 		} else {
   1095 			KASSERT(diff > 0);
   1096 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
   1097 		}
   1098 	}
   1099 
   1100 	/*
   1101 	 * Verify our position in the linked list against the tree itself.
   1102 	 */
   1103 	{
   1104 		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
   1105 		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
   1106 		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
   1107 		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
   1108 #ifndef RBSMALL
   1109 		KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
   1110 		KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
   1111 #endif
   1112 	}
   1113 
   1114 	/*
   1115 	 * The root must be black.
   1116 	 * There can never be two adjacent red nodes.
   1117 	 */
   1118 	if (red_check) {
   1119 		KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
   1120 		(void) rb_tree_count_black(self);
   1121 		if (RB_RED_P(self)) {
   1122 			const struct rb_node *brother;
   1123 			KASSERT(!RB_ROOT_P(rbt, self));
   1124 			brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
   1125 			KASSERT(RB_BLACK_P(RB_FATHER(self)));
   1126 			/*
   1127 			 * I'm red and have no children, then I must either
   1128 			 * have no brother or my brother also be red and
   1129 			 * also have no children.  (black count == 0)
   1130 			 */
   1131 			KASSERT(!RB_CHILDLESS_P(self)
   1132 				|| RB_SENTINEL_P(brother)
   1133 				|| RB_RED_P(brother)
   1134 				|| RB_CHILDLESS_P(brother));
   1135 			/*
   1136 			 * If I'm not childless, I must have two children
   1137 			 * and they must be both be black.
   1138 			 */
   1139 			KASSERT(RB_CHILDLESS_P(self)
   1140 				|| (RB_TWOCHILDREN_P(self)
   1141 				    && RB_BLACK_P(self->rb_left)
   1142 				    && RB_BLACK_P(self->rb_right)));
   1143 			/*
   1144 			 * If I'm not childless, thus I have black children,
   1145 			 * then my brother must either be black or have two
   1146 			 * black children.
   1147 			 */
   1148 			KASSERT(RB_CHILDLESS_P(self)
   1149 				|| RB_BLACK_P(brother)
   1150 				|| (RB_TWOCHILDREN_P(brother)
   1151 				    && RB_BLACK_P(brother->rb_left)
   1152 				    && RB_BLACK_P(brother->rb_right)));
   1153 		} else {
   1154 			/*
   1155 			 * If I'm black and have one child, that child must
   1156 			 * be red and childless.
   1157 			 */
   1158 			KASSERT(RB_CHILDLESS_P(self)
   1159 				|| RB_TWOCHILDREN_P(self)
   1160 				|| (!RB_LEFT_SENTINEL_P(self)
   1161 				    && RB_RIGHT_SENTINEL_P(self)
   1162 				    && RB_RED_P(self->rb_left)
   1163 				    && RB_CHILDLESS_P(self->rb_left))
   1164 				|| (!RB_RIGHT_SENTINEL_P(self)
   1165 				    && RB_LEFT_SENTINEL_P(self)
   1166 				    && RB_RED_P(self->rb_right)
   1167 				    && RB_CHILDLESS_P(self->rb_right)));
   1168 
   1169 			/*
   1170 			 * If I'm a childless black node and my parent is
   1171 			 * black, my 2nd closet relative away from my parent
   1172 			 * is either red or has a red parent or red children.
   1173 			 */
   1174 			if (!RB_ROOT_P(rbt, self)
   1175 			    && RB_CHILDLESS_P(self)
   1176 			    && RB_BLACK_P(RB_FATHER(self))) {
   1177 				const unsigned int which = RB_POSITION(self);
   1178 				const unsigned int other = which ^ RB_DIR_OTHER;
   1179 				const struct rb_node *relative0, *relative;
   1180 
   1181 				relative0 = rb_tree_iterate_const(rbt,
   1182 				    self, other);
   1183 				KASSERT(relative0 != NULL);
   1184 				relative = rb_tree_iterate_const(rbt,
   1185 				    relative0, other);
   1186 				KASSERT(relative != NULL);
   1187 				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
   1188 #if 0
   1189 				KASSERT(RB_RED_P(relative)
   1190 					|| RB_RED_P(relative->rb_left)
   1191 					|| RB_RED_P(relative->rb_right)
   1192 					|| RB_RED_P(RB_FATHER(relative)));
   1193 #endif
   1194 			}
   1195 		}
   1196 		/*
   1197 		 * A grandparent's children must be real nodes and not
   1198 		 * sentinels.  First check out grandparent.
   1199 		 */
   1200 		KASSERT(RB_ROOT_P(rbt, self)
   1201 			|| RB_ROOT_P(rbt, RB_FATHER(self))
   1202 			|| RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
   1203 		/*
   1204 		 * If we are have grandchildren on our left, then
   1205 		 * we must have a child on our right.
   1206 		 */
   1207 		KASSERT(RB_LEFT_SENTINEL_P(self)
   1208 			|| RB_CHILDLESS_P(self->rb_left)
   1209 			|| !RB_RIGHT_SENTINEL_P(self));
   1210 		/*
   1211 		 * If we are have grandchildren on our right, then
   1212 		 * we must have a child on our left.
   1213 		 */
   1214 		KASSERT(RB_RIGHT_SENTINEL_P(self)
   1215 			|| RB_CHILDLESS_P(self->rb_right)
   1216 			|| !RB_LEFT_SENTINEL_P(self));
   1217 
   1218 		/*
   1219 		 * If we have a child on the left and it doesn't have two
   1220 		 * children make sure we don't have great-great-grandchildren on
   1221 		 * the right.
   1222 		 */
   1223 		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
   1224 			|| RB_CHILDLESS_P(self->rb_right)
   1225 			|| RB_CHILDLESS_P(self->rb_right->rb_left)
   1226 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
   1227 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
   1228 			|| RB_CHILDLESS_P(self->rb_right->rb_right)
   1229 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
   1230 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
   1231 
   1232 		/*
   1233 		 * If we have a child on the right and it doesn't have two
   1234 		 * children make sure we don't have great-great-grandchildren on
   1235 		 * the left.
   1236 		 */
   1237 		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
   1238 			|| RB_CHILDLESS_P(self->rb_left)
   1239 			|| RB_CHILDLESS_P(self->rb_left->rb_left)
   1240 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
   1241 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
   1242 			|| RB_CHILDLESS_P(self->rb_left->rb_right)
   1243 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
   1244 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
   1245 
   1246 		/*
   1247 		 * If we are fully interior node, then our predecessors and
   1248 		 * successors must have no children in our direction.
   1249 		 */
   1250 		if (RB_TWOCHILDREN_P(self)) {
   1251 			const struct rb_node *prev0;
   1252 			const struct rb_node *next0;
   1253 
   1254 			prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
   1255 			KASSERT(prev0 != NULL);
   1256 			KASSERT(RB_RIGHT_SENTINEL_P(prev0));
   1257 
   1258 			next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
   1259 			KASSERT(next0 != NULL);
   1260 			KASSERT(RB_LEFT_SENTINEL_P(next0));
   1261 		}
   1262 	}
   1263 
   1264 	return true;
   1265 }
   1266 
   1267 void
   1268 rb_tree_check(const struct rb_tree *rbt, bool red_check)
   1269 {
   1270 	const struct rb_node *self;
   1271 	const struct rb_node *prev;
   1272 #ifdef RBSTATS
   1273 	unsigned int count = 0;
   1274 #endif
   1275 
   1276 	KASSERT(rbt->rbt_root != NULL);
   1277 	KASSERT(RB_LEFT_P(rbt->rbt_root));
   1278 
   1279 #if defined(RBSTATS) && !defined(RBSMALL)
   1280 	KASSERT(rbt->rbt_count > 1
   1281 	    || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
   1282 #endif
   1283 
   1284 	prev = NULL;
   1285 	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
   1286 		rb_tree_check_node(rbt, self, prev, false);
   1287 #ifdef RBSTATS
   1288 		count++;
   1289 #endif
   1290 	}
   1291 #ifdef RBSTATS
   1292 	KASSERT(rbt->rbt_count == count);
   1293 #endif
   1294 	if (red_check) {
   1295 		KASSERT(RB_BLACK_P(rbt->rbt_root));
   1296 		KASSERT(RB_SENTINEL_P(rbt->rbt_root)
   1297 			|| rb_tree_count_black(rbt->rbt_root));
   1298 
   1299 		/*
   1300 		 * The root must be black.
   1301 		 * There can never be two adjacent red nodes.
   1302 		 */
   1303 		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
   1304 			rb_tree_check_node(rbt, self, NULL, true);
   1305 		}
   1306 	}
   1307 }
   1308 #endif /* RBDEBUG */
   1309 
   1310 #ifdef RBSTATS
   1311 static void
   1312 rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
   1313 	size_t *depths, size_t depth)
   1314 {
   1315 	if (RB_SENTINEL_P(self))
   1316 		return;
   1317 
   1318 	if (RB_TWOCHILDREN_P(self)) {
   1319 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
   1320 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
   1321 		return;
   1322 	}
   1323 	depths[depth]++;
   1324 	if (!RB_LEFT_SENTINEL_P(self)) {
   1325 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
   1326 	}
   1327 	if (!RB_RIGHT_SENTINEL_P(self)) {
   1328 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
   1329 	}
   1330 }
   1331 
   1332 void
   1333 rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
   1334 {
   1335 	rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
   1336 }
   1337 #endif /* RBSTATS */
   1338