rb.c revision 1.5 1 /* $NetBSD: rb.c,v 1.5 2010/04/28 17:23:33 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas <matt (at) 3am-software.com>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #if !defined(_KERNEL) && !defined(_STANDALONE)
33 #include <sys/types.h>
34 #include <stddef.h>
35 #include <assert.h>
36 #include <stdbool.h>
37 #ifdef RBDEBUG
38 #define KASSERT(s) assert(s)
39 #else
40 #define KASSERT(s) do { } while (/*CONSTCOND*/ 0)
41 #endif
42 #else
43 #include <lib/libkern/libkern.h>
44 #endif
45
46 #ifdef _LIBC
47 __weak_alias(rb_tree_init, _rb_tree_init)
48 __weak_alias(rb_tree_find_node, _rb_tree_find_node)
49 __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
50 __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
51 __weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
52 __weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
53 __weak_alias(rb_tree_iterate, _rb_tree_iterate)
54 #ifdef RBDEBUG
55 __weak_alias(rb_tree_check, _rb_tree_check)
56 __weak_alias(rb_tree_depths, _rb_tree_depths)
57 #endif
58
59 #define rb_tree_init _rb_tree_init
60 #define rb_tree_find_node _rb_tree_find_node
61 #define rb_tree_find_node_geq _rb_tree_find_node_geq
62 #define rb_tree_find_node_leq _rb_tree_find_node_leq
63 #define rb_tree_insert_node _rb_tree_insert_node
64 #define rb_tree_remove_node _rb_tree_remove_node
65 #define rb_tree_iterate _rb_tree_iterate
66 #ifdef RBDEBUG
67 #define rb_tree_check _rb_tree_check
68 #define rb_tree_depths _rb_tree_depths
69 #endif
70 #endif
71
72 #ifdef RBTEST
73 #include "rb.h"
74 #else
75 #include <sys/rb.h>
76 #endif
77
78 static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
79 static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
80 unsigned int);
81 #ifdef RBDEBUG
82 static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
83 const struct rb_node *, const unsigned int);
84 static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
85 const struct rb_node *, bool);
86 #else
87 #define rb_tree_check_node(a, b, c, d) true
88 #endif
89
90 #define RB_SENTINEL_NODE NULL
91
92 void
93 rb_tree_init(struct rb_tree *rbt, const struct rb_tree_ops *ops)
94 {
95 rbt->rbt_ops = ops;
96 *((const struct rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
97 RB_TAILQ_INIT(&rbt->rbt_nodes);
98 #ifndef RBSMALL
99 rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root; /* minimum node */
100 rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root; /* maximum node */
101 #endif
102 #ifdef RBSTATS
103 rbt->rbt_count = 0;
104 rbt->rbt_insertions = 0;
105 rbt->rbt_removals = 0;
106 rbt->rbt_insertion_rebalance_calls = 0;
107 rbt->rbt_insertion_rebalance_passes = 0;
108 rbt->rbt_removal_rebalance_calls = 0;
109 rbt->rbt_removal_rebalance_passes = 0;
110 #endif
111 }
112
113 struct rb_node *
114 rb_tree_find_node(struct rb_tree *rbt, const void *key)
115 {
116 rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
117 struct rb_node *parent = rbt->rbt_root;
118
119 while (!RB_SENTINEL_P(parent)) {
120 const signed int diff = (*compare_key)(parent, key);
121 if (diff == 0)
122 return parent;
123 parent = parent->rb_nodes[diff > 0];
124 }
125
126 return NULL;
127 }
128
129 struct rb_node *
130 rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
131 {
132 rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
133 struct rb_node *parent = rbt->rbt_root;
134 struct rb_node *last = NULL;
135
136 while (!RB_SENTINEL_P(parent)) {
137 const signed int diff = (*compare_key)(parent, key);
138 if (diff == 0)
139 return parent;
140 if (diff < 0)
141 last = parent;
142 parent = parent->rb_nodes[diff > 0];
143 }
144
145 return last;
146 }
147
148 struct rb_node *
149 rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
150 {
151 rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
152 struct rb_node *parent = rbt->rbt_root;
153 struct rb_node *last = NULL;
154
155 while (!RB_SENTINEL_P(parent)) {
156 const signed int diff = (*compare_key)(parent, key);
157 if (diff == 0)
158 return parent;
159 if (diff > 0)
160 last = parent;
161 parent = parent->rb_nodes[diff > 0];
162 }
163
164 return last;
165 }
166
167 bool
169 rb_tree_insert_node(struct rb_tree *rbt, struct rb_node *self)
170 {
171 rbto_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
172 struct rb_node *parent, *tmp;
173 unsigned int position;
174 bool rebalance;
175
176 RBSTAT_INC(rbt->rbt_insertions);
177
178 tmp = rbt->rbt_root;
179 /*
180 * This is a hack. Because rbt->rbt_root is just a struct rb_node *,
181 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
182 * avoid a lot of tests for root and know that even at root,
183 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
184 * update rbt->rbt_root.
185 */
186 parent = (struct rb_node *)(void *)&rbt->rbt_root;
187 position = RB_DIR_LEFT;
188
189 /*
190 * Find out where to place this new leaf.
191 */
192 while (!RB_SENTINEL_P(tmp)) {
193 const signed int diff = (*compare_nodes)(tmp, self);
194 if (__predict_false(diff == 0)) {
195 /*
196 * Node already exists; don't insert.
197 */
198 return false;
199 }
200 parent = tmp;
201 position = (diff > 0);
202 tmp = parent->rb_nodes[position];
203 }
204
205 #ifdef RBDEBUG
206 {
207 struct rb_node *prev = NULL, *next = NULL;
208
209 if (position == RB_DIR_RIGHT)
210 prev = parent;
211 else if (tmp != rbt->rbt_root)
212 next = parent;
213
214 /*
215 * Verify our sequential position
216 */
217 KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
218 KASSERT(next == NULL || !RB_SENTINEL_P(next));
219 if (prev != NULL && next == NULL)
220 next = TAILQ_NEXT(prev, rb_link);
221 if (prev == NULL && next != NULL)
222 prev = TAILQ_PREV(next, rb_node_qh, rb_link);
223 KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
224 KASSERT(next == NULL || !RB_SENTINEL_P(next));
225 KASSERT(prev == NULL || (*compare_nodes)(prev, self) > 0);
226 KASSERT(next == NULL || (*compare_nodes)(self, next) > 0);
227 }
228 #endif
229
230 /*
231 * Initialize the node and insert as a leaf into the tree.
232 */
233 RB_SET_FATHER(self, parent);
234 RB_SET_POSITION(self, position);
235 if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
236 RB_MARK_BLACK(self); /* root is always black */
237 #ifndef RBSMALL
238 rbt->rbt_minmax[RB_DIR_LEFT] = self;
239 rbt->rbt_minmax[RB_DIR_RIGHT] = self;
240 #endif
241 rebalance = false;
242 } else {
243 KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
244 #ifndef RBSMALL
245 /*
246 * Keep track of the minimum and maximum nodes. If our
247 * parent is a minmax node and we on their min/max side,
248 * we must be the new min/max node.
249 */
250 if (parent == rbt->rbt_minmax[position])
251 rbt->rbt_minmax[position] = self;
252 #endif /* !RBSMALL */
253 /*
254 * All new nodes are colored red. We only need to rebalance
255 * if our parent is also red.
256 */
257 RB_MARK_RED(self);
258 rebalance = RB_RED_P(parent);
259 }
260 KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
261 self->rb_left = parent->rb_nodes[position];
262 self->rb_right = parent->rb_nodes[position];
263 parent->rb_nodes[position] = self;
264 KASSERT(RB_CHILDLESS_P(self));
265
266 /*
267 * Insert the new node into a sorted list for easy sequential access
268 */
269 RBSTAT_INC(rbt->rbt_count);
270 #ifdef RBDEBUG
271 if (RB_ROOT_P(rbt, self)) {
272 RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
273 } else if (position == RB_DIR_LEFT) {
274 KASSERT((*compare_nodes)(self, RB_FATHER(self)) > 0);
275 RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
276 } else {
277 KASSERT((*compare_nodes)(RB_FATHER(self), self) > 0);
278 RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
279 self, rb_link);
280 }
281 #endif
282 KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
283
284 /*
285 * Rebalance tree after insertion
286 */
287 if (rebalance) {
288 rb_tree_insert_rebalance(rbt, self);
289 KASSERT(rb_tree_check_node(rbt, self, NULL, true));
290 }
291
292 return true;
293 }
294
295 /*
297 * Swap the location and colors of 'self' and its child @ which. The child
298 * can not be a sentinel node. This is our rotation function. However,
299 * since it preserves coloring, it great simplifies both insertion and
300 * removal since rotation almost always involves the exchanging of colors
301 * as a separate step.
302 */
303 /*ARGSUSED*/
304 static void
305 rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
306 const unsigned int which)
307 {
308 const unsigned int other = which ^ RB_DIR_OTHER;
309 struct rb_node * const grandpa = RB_FATHER(old_father);
310 struct rb_node * const old_child = old_father->rb_nodes[which];
311 struct rb_node * const new_father = old_child;
312 struct rb_node * const new_child = old_father;
313
314 KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
315
316 KASSERT(!RB_SENTINEL_P(old_child));
317 KASSERT(RB_FATHER(old_child) == old_father);
318
319 KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
320 KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
321 KASSERT(RB_ROOT_P(rbt, old_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
322
323 /*
324 * Exchange descendant linkages.
325 */
326 grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
327 new_child->rb_nodes[which] = old_child->rb_nodes[other];
328 new_father->rb_nodes[other] = new_child;
329
330 /*
331 * Update ancestor linkages
332 */
333 RB_SET_FATHER(new_father, grandpa);
334 RB_SET_FATHER(new_child, new_father);
335
336 /*
337 * Exchange properties between new_father and new_child. The only
338 * change is that new_child's position is now on the other side.
339 */
340 #if 0
341 {
342 struct rb_node tmp;
343 tmp.rb_info = 0;
344 RB_COPY_PROPERTIES(&tmp, old_child);
345 RB_COPY_PROPERTIES(new_father, old_father);
346 RB_COPY_PROPERTIES(new_child, &tmp);
347 }
348 #else
349 RB_SWAP_PROPERTIES(new_father, new_child);
350 #endif
351 RB_SET_POSITION(new_child, other);
352
353 /*
354 * Make sure to reparent the new child to ourself.
355 */
356 if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
357 RB_SET_FATHER(new_child->rb_nodes[which], new_child);
358 RB_SET_POSITION(new_child->rb_nodes[which], which);
359 }
360
361 KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
362 KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
363 KASSERT(RB_ROOT_P(rbt, new_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
364 }
365
366 static void
368 rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
369 {
370 struct rb_node * father = RB_FATHER(self);
371 struct rb_node * grandpa = RB_FATHER(father);
372 struct rb_node * uncle;
373 unsigned int which;
374 unsigned int other;
375
376 KASSERT(!RB_ROOT_P(rbt, self));
377 KASSERT(RB_RED_P(self));
378 KASSERT(RB_RED_P(father));
379 RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
380
381 for (;;) {
382 KASSERT(!RB_SENTINEL_P(self));
383
384 KASSERT(RB_RED_P(self));
385 KASSERT(RB_RED_P(father));
386 /*
387 * We are red and our parent is red, therefore we must have a
388 * grandfather and he must be black.
389 */
390 grandpa = RB_FATHER(father);
391 KASSERT(RB_BLACK_P(grandpa));
392 KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
393 which = (father == grandpa->rb_right);
394 other = which ^ RB_DIR_OTHER;
395 uncle = grandpa->rb_nodes[other];
396
397 if (RB_BLACK_P(uncle))
398 break;
399
400 RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
401 /*
402 * Case 1: our uncle is red
403 * Simply invert the colors of our parent and
404 * uncle and make our grandparent red. And
405 * then solve the problem up at his level.
406 */
407 RB_MARK_BLACK(uncle);
408 RB_MARK_BLACK(father);
409 if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
410 /*
411 * If our grandpa is root, don't bother
412 * setting him to red, just return.
413 */
414 KASSERT(RB_BLACK_P(grandpa));
415 return;
416 }
417 RB_MARK_RED(grandpa);
418 self = grandpa;
419 father = RB_FATHER(self);
420 KASSERT(RB_RED_P(self));
421 if (RB_BLACK_P(father)) {
422 /*
423 * If our greatgrandpa is black, we're done.
424 */
425 KASSERT(RB_BLACK_P(rbt->rbt_root));
426 return;
427 }
428 }
429
430 KASSERT(!RB_ROOT_P(rbt, self));
431 KASSERT(RB_RED_P(self));
432 KASSERT(RB_RED_P(father));
433 KASSERT(RB_BLACK_P(uncle));
434 KASSERT(RB_BLACK_P(grandpa));
435 /*
436 * Case 2&3: our uncle is black.
437 */
438 if (self == father->rb_nodes[other]) {
439 /*
440 * Case 2: we are on the same side as our uncle
441 * Swap ourselves with our parent so this case
442 * becomes case 3. Basically our parent becomes our
443 * child.
444 */
445 rb_tree_reparent_nodes(rbt, father, other);
446 KASSERT(RB_FATHER(father) == self);
447 KASSERT(self->rb_nodes[which] == father);
448 KASSERT(RB_FATHER(self) == grandpa);
449 self = father;
450 father = RB_FATHER(self);
451 }
452 KASSERT(RB_RED_P(self) && RB_RED_P(father));
453 KASSERT(grandpa->rb_nodes[which] == father);
454 /*
455 * Case 3: we are opposite a child of a black uncle.
456 * Swap our parent and grandparent. Since our grandfather
457 * is black, our father will become black and our new sibling
458 * (former grandparent) will become red.
459 */
460 rb_tree_reparent_nodes(rbt, grandpa, which);
461 KASSERT(RB_FATHER(self) == father);
462 KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
463 KASSERT(RB_RED_P(self));
464 KASSERT(RB_BLACK_P(father));
465 KASSERT(RB_RED_P(grandpa));
466
467 /*
468 * Final step: Set the root to black.
469 */
470 RB_MARK_BLACK(rbt->rbt_root);
471 }
472
473 static void
475 rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
476 {
477 const unsigned int which = RB_POSITION(self);
478 struct rb_node *father = RB_FATHER(self);
479 #ifndef RBSMALL
480 const bool was_root = RB_ROOT_P(rbt, self);
481 #endif
482
483 KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
484 KASSERT(!rebalance || RB_BLACK_P(self));
485 KASSERT(RB_CHILDLESS_P(self));
486 KASSERT(rb_tree_check_node(rbt, self, NULL, false));
487
488 /*
489 * Since we are childless, we know that self->rb_left is pointing
490 * to the sentinel node.
491 */
492 father->rb_nodes[which] = self->rb_left;
493
494 /*
495 * Remove ourselves from the node list, decrement the count,
496 * and update min/max.
497 */
498 RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
499 RBSTAT_DEC(rbt->rbt_count);
500 #ifndef RBSMALL
501 if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
502 rbt->rbt_minmax[RB_POSITION(self)] = father;
503 /*
504 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
505 * updated automatically, but we also need to update
506 * rbt->rbt_minmax[RB_DIR_RIGHT];
507 */
508 if (__predict_false(was_root)) {
509 rbt->rbt_minmax[RB_DIR_RIGHT] = father;
510 }
511 }
512 RB_SET_FATHER(self, NULL);
513 #endif
514
515 /*
516 * Rebalance if requested.
517 */
518 if (rebalance)
519 rb_tree_removal_rebalance(rbt, father, which);
520 KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
521 }
522
523 /*
525 * When deleting an interior node
526 */
527 static void
528 rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
529 struct rb_node *standin)
530 {
531 const unsigned int standin_which = RB_POSITION(standin);
532 unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
533 struct rb_node *standin_son;
534 struct rb_node *standin_father = RB_FATHER(standin);
535 bool rebalance = RB_BLACK_P(standin);
536
537 if (standin_father == self) {
538 /*
539 * As a child of self, any childen would be opposite of
540 * our parent.
541 */
542 KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
543 standin_son = standin->rb_nodes[standin_which];
544 } else {
545 /*
546 * Since we aren't a child of self, any childen would be
547 * on the same side as our parent.
548 */
549 KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
550 standin_son = standin->rb_nodes[standin_other];
551 }
552
553 /*
554 * the node we are removing must have two children.
555 */
556 KASSERT(RB_TWOCHILDREN_P(self));
557 /*
558 * If standin has a child, it must be red.
559 */
560 KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
561
562 /*
563 * Verify things are sane.
564 */
565 KASSERT(rb_tree_check_node(rbt, self, NULL, false));
566 KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
567
568 if (__predict_false(RB_RED_P(standin_son))) {
569 /*
570 * We know we have a red child so if we flip it to black
571 * we don't have to rebalance.
572 */
573 KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
574 RB_MARK_BLACK(standin_son);
575 rebalance = false;
576
577 if (standin_father == self) {
578 KASSERT(RB_POSITION(standin_son) == standin_which);
579 } else {
580 KASSERT(RB_POSITION(standin_son) == standin_other);
581 /*
582 * Change the son's parentage to point to his grandpa.
583 */
584 RB_SET_FATHER(standin_son, standin_father);
585 RB_SET_POSITION(standin_son, standin_which);
586 }
587 }
588
589 if (standin_father == self) {
590 /*
591 * If we are about to delete the standin's father, then when
592 * we call rebalance, we need to use ourselves as our father.
593 * Otherwise remember our original father. Also, sincef we are
594 * our standin's father we only need to reparent the standin's
595 * brother.
596 *
597 * | R --> S |
598 * | Q S --> Q T |
599 * | t --> |
600 */
601 KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
602 KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
603 KASSERT(self->rb_nodes[standin_which] == standin);
604 /*
605 * Have our son/standin adopt his brother as his new son.
606 */
607 standin_father = standin;
608 } else {
609 /*
610 * | R --> S . |
611 * | / \ | T --> / \ | / |
612 * | ..... | S --> ..... | T |
613 *
614 * Sever standin's connection to his father.
615 */
616 standin_father->rb_nodes[standin_which] = standin_son;
617 /*
618 * Adopt the far son.
619 */
620 standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
621 RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
622 KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
623 /*
624 * Use standin_other because we need to preserve standin_which
625 * for the removal_rebalance.
626 */
627 standin_other = standin_which;
628 }
629
630 /*
631 * Move the only remaining son to our standin. If our standin is our
632 * son, this will be the only son needed to be moved.
633 */
634 KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
635 standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
636 RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
637
638 /*
639 * Now copy the result of self to standin and then replace
640 * self with standin in the tree.
641 */
642 RB_COPY_PROPERTIES(standin, self);
643 RB_SET_FATHER(standin, RB_FATHER(self));
644 RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
645
646 /*
647 * Remove ourselves from the node list, decrement the count,
648 * and update min/max.
649 */
650 RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
651 RBSTAT_DEC(rbt->rbt_count);
652 #ifndef RBSMALL
653 if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
654 rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
655 RB_SET_FATHER(self, NULL);
656 #endif
657
658 KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
659 KASSERT(RB_FATHER_SENTINEL_P(standin)
660 || rb_tree_check_node(rbt, standin_father, NULL, false));
661 KASSERT(RB_LEFT_SENTINEL_P(standin)
662 || rb_tree_check_node(rbt, standin->rb_left, NULL, false));
663 KASSERT(RB_RIGHT_SENTINEL_P(standin)
664 || rb_tree_check_node(rbt, standin->rb_right, NULL, false));
665
666 if (!rebalance)
667 return;
668
669 rb_tree_removal_rebalance(rbt, standin_father, standin_which);
670 KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
671 }
672
673 /*
674 * We could do this by doing
675 * rb_tree_node_swap(rbt, self, which);
676 * rb_tree_prune_node(rbt, self, false);
677 *
678 * But it's more efficient to just evalate and recolor the child.
679 */
680 static void
681 rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
682 unsigned int which)
683 {
684 struct rb_node *father = RB_FATHER(self);
685 struct rb_node *son = self->rb_nodes[which];
686 #ifndef RBSMALL
687 const bool was_root = RB_ROOT_P(rbt, self);
688 #endif
689
690 KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
691 KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
692 KASSERT(!RB_TWOCHILDREN_P(son));
693 KASSERT(RB_CHILDLESS_P(son));
694 KASSERT(rb_tree_check_node(rbt, self, NULL, false));
695 KASSERT(rb_tree_check_node(rbt, son, NULL, false));
696
697 /*
698 * Remove ourselves from the tree and give our former child our
699 * properties (position, color, root).
700 */
701 RB_COPY_PROPERTIES(son, self);
702 father->rb_nodes[RB_POSITION(son)] = son;
703 RB_SET_FATHER(son, father);
704
705 /*
706 * Remove ourselves from the node list, decrement the count,
707 * and update minmax.
708 */
709 RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
710 RBSTAT_DEC(rbt->rbt_count);
711 #ifndef RBSMALL
712 if (__predict_false(was_root)) {
713 KASSERT(rbt->rbt_minmax[which] == son);
714 rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
715 } else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
716 rbt->rbt_minmax[RB_POSITION(self)] = son;
717 }
718 RB_SET_FATHER(self, NULL);
719 #endif
720
721 KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
722 KASSERT(rb_tree_check_node(rbt, son, NULL, true));
723 }
724 /*
725 *
726 */
727 void
728 rb_tree_remove_node(struct rb_tree *rbt, struct rb_node *self)
729 {
730 struct rb_node *standin;
731 unsigned int which;
732
733 KASSERT(!RB_SENTINEL_P(self));
734 RBSTAT_INC(rbt->rbt_removals);
735
736 /*
737 * In the following diagrams, we (the node to be removed) are S. Red
738 * nodes are lowercase. T could be either red or black.
739 *
740 * Remember the major axiom of the red-black tree: the number of
741 * black nodes from the root to each leaf is constant across all
742 * leaves, only the number of red nodes varies.
743 *
744 * Thus removing a red leaf doesn't require any other changes to a
745 * red-black tree. So if we must remove a node, attempt to rearrange
746 * the tree so we can remove a red node.
747 *
748 * The simpliest case is a childless red node or a childless root node:
749 *
750 * | T --> T | or | R --> * |
751 * | s --> * |
752 */
753 if (RB_CHILDLESS_P(self)) {
754 const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
755 rb_tree_prune_node(rbt, self, rebalance);
756 return;
757 }
758 KASSERT(!RB_CHILDLESS_P(self));
759 if (!RB_TWOCHILDREN_P(self)) {
760 /*
761 * The next simpliest case is the node we are deleting is
762 * black and has one red child.
763 *
764 * | T --> T --> T |
765 * | S --> R --> R |
766 * | r --> s --> * |
767 */
768 which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
769 KASSERT(RB_BLACK_P(self));
770 KASSERT(RB_RED_P(self->rb_nodes[which]));
771 KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
772 rb_tree_prune_blackred_branch(rbt, self, which);
773 return;
774 }
775 KASSERT(RB_TWOCHILDREN_P(self));
776
777 /*
778 * We invert these because we prefer to remove from the inside of
779 * the tree.
780 */
781 which = RB_POSITION(self) ^ RB_DIR_OTHER;
782
783 /*
784 * Let's find the node closes to us opposite of our parent
785 * Now swap it with ourself, "prune" it, and rebalance, if needed.
786 */
787 standin = rb_tree_iterate(rbt, self, which);
788 rb_tree_swap_prune_and_rebalance(rbt, self, standin);
789 }
790
791 static void
792 rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
793 unsigned int which)
794 {
795 KASSERT(!RB_SENTINEL_P(parent));
796 KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
797 KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
798 RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
799
800 while (RB_BLACK_P(parent->rb_nodes[which])) {
801 unsigned int other = which ^ RB_DIR_OTHER;
802 struct rb_node *brother = parent->rb_nodes[other];
803
804 RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
805
806 KASSERT(!RB_SENTINEL_P(brother));
807 /*
808 * For cases 1, 2a, and 2b, our brother's children must
809 * be black and our father must be black
810 */
811 if (RB_BLACK_P(parent)
812 && RB_BLACK_P(brother->rb_left)
813 && RB_BLACK_P(brother->rb_right)) {
814 if (RB_RED_P(brother)) {
815 /*
816 * Case 1: Our brother is red, swap its
817 * position (and colors) with our parent.
818 * This should now be case 2b (unless C or E
819 * has a red child which is case 3; thus no
820 * explicit branch to case 2b).
821 *
822 * B -> D
823 * A d -> b E
824 * C E -> A C
825 */
826 KASSERT(RB_BLACK_P(parent));
827 rb_tree_reparent_nodes(rbt, parent, other);
828 brother = parent->rb_nodes[other];
829 KASSERT(!RB_SENTINEL_P(brother));
830 KASSERT(RB_RED_P(parent));
831 KASSERT(RB_BLACK_P(brother));
832 KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
833 KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
834 } else {
835 /*
836 * Both our parent and brother are black.
837 * Change our brother to red, advance up rank
838 * and go through the loop again.
839 *
840 * B -> *B
841 * *A D -> A d
842 * C E -> C E
843 */
844 RB_MARK_RED(brother);
845 KASSERT(RB_BLACK_P(brother->rb_left));
846 KASSERT(RB_BLACK_P(brother->rb_right));
847 if (RB_ROOT_P(rbt, parent))
848 return; /* root == parent == black */
849 KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
850 KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
851 which = RB_POSITION(parent);
852 parent = RB_FATHER(parent);
853 continue;
854 }
855 }
856 /*
857 * Avoid an else here so that case 2a above can hit either
858 * case 2b, 3, or 4.
859 */
860 if (RB_RED_P(parent)
861 && RB_BLACK_P(brother)
862 && RB_BLACK_P(brother->rb_left)
863 && RB_BLACK_P(brother->rb_right)) {
864 KASSERT(RB_RED_P(parent));
865 KASSERT(RB_BLACK_P(brother));
866 KASSERT(RB_BLACK_P(brother->rb_left));
867 KASSERT(RB_BLACK_P(brother->rb_right));
868 /*
869 * We are black, our father is red, our brother and
870 * both nephews are black. Simply invert/exchange the
871 * colors of our father and brother (to black and red
872 * respectively).
873 *
874 * | f --> F |
875 * | * B --> * b |
876 * | N N --> N N |
877 */
878 RB_MARK_BLACK(parent);
879 RB_MARK_RED(brother);
880 KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
881 break; /* We're done! */
882 } else {
883 /*
884 * Our brother must be black and have at least one
885 * red child (it may have two).
886 */
887 KASSERT(RB_BLACK_P(brother));
888 KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
889 RB_RED_P(brother->rb_nodes[other]));
890 if (RB_BLACK_P(brother->rb_nodes[other])) {
891 /*
892 * Case 3: our brother is black, our near
893 * nephew is red, and our far nephew is black.
894 * Swap our brother with our near nephew.
895 * This result in a tree that matches case 4.
896 * (Our father could be red or black).
897 *
898 * | F --> F |
899 * | x B --> x B |
900 * | n --> n |
901 */
902 KASSERT(RB_RED_P(brother->rb_nodes[which]));
903 rb_tree_reparent_nodes(rbt, brother, which);
904 KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
905 brother = parent->rb_nodes[other];
906 KASSERT(RB_RED_P(brother->rb_nodes[other]));
907 }
908 /*
909 * Case 4: our brother is black and our far nephew
910 * is red. Swap our father and brother locations and
911 * change our far nephew to black. (these can be
912 * done in either order so we change the color first).
913 * The result is a valid red-black tree and is a
914 * terminal case. (again we don't care about the
915 * father's color)
916 *
917 * If the father is red, we will get a red-black-black
918 * tree:
919 * | f -> f --> b |
920 * | B -> B --> F N |
921 * | n -> N --> |
922 *
923 * If the father is black, we will get an all black
924 * tree:
925 * | F -> F --> B |
926 * | B -> B --> F N |
927 * | n -> N --> |
928 *
929 * If we had two red nephews, then after the swap,
930 * our former father would have a red grandson.
931 */
932 KASSERT(RB_BLACK_P(brother));
933 KASSERT(RB_RED_P(brother->rb_nodes[other]));
934 RB_MARK_BLACK(brother->rb_nodes[other]);
935 rb_tree_reparent_nodes(rbt, parent, other);
936 break; /* We're done! */
937 }
938 }
939 KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
940 }
941
942 struct rb_node *
943 rb_tree_iterate(struct rb_tree *rbt, struct rb_node *self,
944 const unsigned int direction)
945 {
946 const unsigned int other = direction ^ RB_DIR_OTHER;
947 KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
948
949 if (self == NULL) {
950 #ifndef RBSMALL
951 if (RB_SENTINEL_P(rbt->rbt_root))
952 return NULL;
953 return rbt->rbt_minmax[direction];
954 #else
955 self = rbt->rbt_root;
956 if (RB_SENTINEL_P(self))
957 return NULL;
958 while (!RB_SENTINEL_P(self->rb_nodes[other]))
959 self = self->rb_nodes[other];
960 return self;
961 #endif /* !RBSMALL */
962 }
963 KASSERT(!RB_SENTINEL_P(self));
964 /*
965 * We can't go any further in this direction. We proceed up in the
966 * opposite direction until our parent is in direction we want to go.
967 */
968 if (RB_SENTINEL_P(self->rb_nodes[direction])) {
969 while (!RB_ROOT_P(rbt, self)) {
970 if (other == RB_POSITION(self))
971 return RB_FATHER(self);
972 self = RB_FATHER(self);
973 }
974 return NULL;
975 }
976
977 /*
978 * Advance down one in current direction and go down as far as possible
979 * in the opposite direction.
980 */
981 self = self->rb_nodes[direction];
982 KASSERT(!RB_SENTINEL_P(self));
983 while (!RB_SENTINEL_P(self->rb_nodes[other]))
984 self = self->rb_nodes[other];
985 return self;
986 }
987
988 #ifdef RBDEBUG
989 static const struct rb_node *
990 rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
991 const unsigned int direction)
992 {
993 const unsigned int other = direction ^ RB_DIR_OTHER;
994 KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
995
996 if (self == NULL) {
997 #ifndef RBSMALL
998 if (RB_SENTINEL_P(rbt->rbt_root))
999 return NULL;
1000 return rbt->rbt_minmax[direction];
1001 #else
1002 self = rbt->rbt_root;
1003 if (RB_SENTINEL_P(self))
1004 return NULL;
1005 while (!RB_SENTINEL_P(self->rb_nodes[other]))
1006 self = self->rb_nodes[other];
1007 return self;
1008 #endif /* !RBSMALL */
1009 }
1010 KASSERT(!RB_SENTINEL_P(self));
1011 /*
1012 * We can't go any further in this direction. We proceed up in the
1013 * opposite direction until our parent is in direction we want to go.
1014 */
1015 if (RB_SENTINEL_P(self->rb_nodes[direction])) {
1016 while (!RB_ROOT_P(rbt, self)) {
1017 if (other == RB_POSITION(self))
1018 return RB_FATHER(self);
1019 self = RB_FATHER(self);
1020 }
1021 return NULL;
1022 }
1023
1024 /*
1025 * Advance down one in current direction and go down as far as possible
1026 * in the opposite direction.
1027 */
1028 self = self->rb_nodes[direction];
1029 KASSERT(!RB_SENTINEL_P(self));
1030 while (!RB_SENTINEL_P(self->rb_nodes[other]))
1031 self = self->rb_nodes[other];
1032 return self;
1033 }
1034
1035 static unsigned int
1036 rb_tree_count_black(const struct rb_node *self)
1037 {
1038 unsigned int left, right;
1039
1040 if (RB_SENTINEL_P(self))
1041 return 0;
1042
1043 left = rb_tree_count_black(self->rb_left);
1044 right = rb_tree_count_black(self->rb_right);
1045
1046 KASSERT(left == right);
1047
1048 return left + RB_BLACK_P(self);
1049 }
1050
1051 static bool
1052 rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
1053 const struct rb_node *prev, bool red_check)
1054 {
1055 rbto_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
1056
1057 KASSERT(!RB_SENTINEL_P(self));
1058 KASSERT(prev == NULL || (*compare_nodes)(prev, self) > 0);
1059
1060 /*
1061 * Verify our relationship to our parent.
1062 */
1063 if (RB_ROOT_P(rbt, self)) {
1064 KASSERT(self == rbt->rbt_root);
1065 KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
1066 KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1067 KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
1068 } else {
1069 KASSERT(self != rbt->rbt_root);
1070 KASSERT(!RB_FATHER_SENTINEL_P(self));
1071 if (RB_POSITION(self) == RB_DIR_LEFT) {
1072 KASSERT((*compare_nodes)(self, RB_FATHER(self)) > 0);
1073 KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1074 } else {
1075 KASSERT((*compare_nodes)(self, RB_FATHER(self)) < 0);
1076 KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
1077 }
1078 }
1079
1080 /*
1081 * Verify our position in the linked list against the tree itself.
1082 */
1083 {
1084 const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1085 const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1086 KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
1087 KASSERT(next0 == TAILQ_NEXT(self, rb_link));
1088 #ifndef RBSMALL
1089 KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
1090 KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
1091 #endif
1092 }
1093
1094 /*
1095 * The root must be black.
1096 * There can never be two adjacent red nodes.
1097 */
1098 if (red_check) {
1099 KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
1100 (void) rb_tree_count_black(self);
1101 if (RB_RED_P(self)) {
1102 const struct rb_node *brother;
1103 KASSERT(!RB_ROOT_P(rbt, self));
1104 brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
1105 KASSERT(RB_BLACK_P(RB_FATHER(self)));
1106 /*
1107 * I'm red and have no children, then I must either
1108 * have no brother or my brother also be red and
1109 * also have no children. (black count == 0)
1110 */
1111 KASSERT(!RB_CHILDLESS_P(self)
1112 || RB_SENTINEL_P(brother)
1113 || RB_RED_P(brother)
1114 || RB_CHILDLESS_P(brother));
1115 /*
1116 * If I'm not childless, I must have two children
1117 * and they must be both be black.
1118 */
1119 KASSERT(RB_CHILDLESS_P(self)
1120 || (RB_TWOCHILDREN_P(self)
1121 && RB_BLACK_P(self->rb_left)
1122 && RB_BLACK_P(self->rb_right)));
1123 /*
1124 * If I'm not childless, thus I have black children,
1125 * then my brother must either be black or have two
1126 * black children.
1127 */
1128 KASSERT(RB_CHILDLESS_P(self)
1129 || RB_BLACK_P(brother)
1130 || (RB_TWOCHILDREN_P(brother)
1131 && RB_BLACK_P(brother->rb_left)
1132 && RB_BLACK_P(brother->rb_right)));
1133 } else {
1134 /*
1135 * If I'm black and have one child, that child must
1136 * be red and childless.
1137 */
1138 KASSERT(RB_CHILDLESS_P(self)
1139 || RB_TWOCHILDREN_P(self)
1140 || (!RB_LEFT_SENTINEL_P(self)
1141 && RB_RIGHT_SENTINEL_P(self)
1142 && RB_RED_P(self->rb_left)
1143 && RB_CHILDLESS_P(self->rb_left))
1144 || (!RB_RIGHT_SENTINEL_P(self)
1145 && RB_LEFT_SENTINEL_P(self)
1146 && RB_RED_P(self->rb_right)
1147 && RB_CHILDLESS_P(self->rb_right)));
1148
1149 /*
1150 * If I'm a childless black node and my parent is
1151 * black, my 2nd closet relative away from my parent
1152 * is either red or has a red parent or red children.
1153 */
1154 if (!RB_ROOT_P(rbt, self)
1155 && RB_CHILDLESS_P(self)
1156 && RB_BLACK_P(RB_FATHER(self))) {
1157 const unsigned int which = RB_POSITION(self);
1158 const unsigned int other = which ^ RB_DIR_OTHER;
1159 const struct rb_node *relative0, *relative;
1160
1161 relative0 = rb_tree_iterate_const(rbt,
1162 self, other);
1163 KASSERT(relative0 != NULL);
1164 relative = rb_tree_iterate_const(rbt,
1165 relative0, other);
1166 KASSERT(relative != NULL);
1167 KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
1168 #if 0
1169 KASSERT(RB_RED_P(relative)
1170 || RB_RED_P(relative->rb_left)
1171 || RB_RED_P(relative->rb_right)
1172 || RB_RED_P(RB_FATHER(relative)));
1173 #endif
1174 }
1175 }
1176 /*
1177 * A grandparent's children must be real nodes and not
1178 * sentinels. First check out grandparent.
1179 */
1180 KASSERT(RB_ROOT_P(rbt, self)
1181 || RB_ROOT_P(rbt, RB_FATHER(self))
1182 || RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
1183 /*
1184 * If we are have grandchildren on our left, then
1185 * we must have a child on our right.
1186 */
1187 KASSERT(RB_LEFT_SENTINEL_P(self)
1188 || RB_CHILDLESS_P(self->rb_left)
1189 || !RB_RIGHT_SENTINEL_P(self));
1190 /*
1191 * If we are have grandchildren on our right, then
1192 * we must have a child on our left.
1193 */
1194 KASSERT(RB_RIGHT_SENTINEL_P(self)
1195 || RB_CHILDLESS_P(self->rb_right)
1196 || !RB_LEFT_SENTINEL_P(self));
1197
1198 /*
1199 * If we have a child on the left and it doesn't have two
1200 * children make sure we don't have great-great-grandchildren on
1201 * the right.
1202 */
1203 KASSERT(RB_TWOCHILDREN_P(self->rb_left)
1204 || RB_CHILDLESS_P(self->rb_right)
1205 || RB_CHILDLESS_P(self->rb_right->rb_left)
1206 || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
1207 || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
1208 || RB_CHILDLESS_P(self->rb_right->rb_right)
1209 || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
1210 || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
1211
1212 /*
1213 * If we have a child on the right and it doesn't have two
1214 * children make sure we don't have great-great-grandchildren on
1215 * the left.
1216 */
1217 KASSERT(RB_TWOCHILDREN_P(self->rb_right)
1218 || RB_CHILDLESS_P(self->rb_left)
1219 || RB_CHILDLESS_P(self->rb_left->rb_left)
1220 || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
1221 || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
1222 || RB_CHILDLESS_P(self->rb_left->rb_right)
1223 || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
1224 || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
1225
1226 /*
1227 * If we are fully interior node, then our predecessors and
1228 * successors must have no children in our direction.
1229 */
1230 if (RB_TWOCHILDREN_P(self)) {
1231 const struct rb_node *prev0;
1232 const struct rb_node *next0;
1233
1234 prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1235 KASSERT(prev0 != NULL);
1236 KASSERT(RB_RIGHT_SENTINEL_P(prev0));
1237
1238 next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1239 KASSERT(next0 != NULL);
1240 KASSERT(RB_LEFT_SENTINEL_P(next0));
1241 }
1242 }
1243
1244 return true;
1245 }
1246
1247 void
1248 rb_tree_check(const struct rb_tree *rbt, bool red_check)
1249 {
1250 const struct rb_node *self;
1251 const struct rb_node *prev;
1252 #ifdef RBSTATS
1253 unsigned int count = 0;
1254 #endif
1255
1256 KASSERT(rbt->rbt_root != NULL);
1257 KASSERT(RB_LEFT_P(rbt->rbt_root));
1258
1259 #if defined(RBSTATS) && !defined(RBSMALL)
1260 KASSERT(rbt->rbt_count > 1
1261 || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
1262 #endif
1263
1264 prev = NULL;
1265 TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1266 rb_tree_check_node(rbt, self, prev, false);
1267 #ifdef RBSTATS
1268 count++;
1269 #endif
1270 }
1271 #ifdef RBSTATS
1272 KASSERT(rbt->rbt_count == count);
1273 #endif
1274 if (red_check) {
1275 KASSERT(RB_BLACK_P(rbt->rbt_root));
1276 KASSERT(RB_SENTINEL_P(rbt->rbt_root)
1277 || rb_tree_count_black(rbt->rbt_root));
1278
1279 /*
1280 * The root must be black.
1281 * There can never be two adjacent red nodes.
1282 */
1283 TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1284 rb_tree_check_node(rbt, self, NULL, true);
1285 }
1286 }
1287 }
1288 #endif /* RBDEBUG */
1289
1290 #ifdef RBSTATS
1291 static void
1292 rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
1293 size_t *depths, size_t depth)
1294 {
1295 if (RB_SENTINEL_P(self))
1296 return;
1297
1298 if (RB_TWOCHILDREN_P(self)) {
1299 rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1300 rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1301 return;
1302 }
1303 depths[depth]++;
1304 if (!RB_LEFT_SENTINEL_P(self)) {
1305 rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1306 }
1307 if (!RB_RIGHT_SENTINEL_P(self)) {
1308 rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1309 }
1310 }
1311
1312 void
1313 rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
1314 {
1315 rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
1316 }
1317 #endif /* RBSTATS */
1318