rb.c revision 1.7 1 /* $NetBSD: rb.c,v 1.7 2010/09/24 22:51:51 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas <matt (at) 3am-software.com>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #if !defined(_KERNEL) && !defined(_STANDALONE)
33 #include <sys/types.h>
34 #include <stddef.h>
35 #include <assert.h>
36 #include <stdbool.h>
37 #ifdef RBDEBUG
38 #define KASSERT(s) assert(s)
39 #else
40 #define KASSERT(s) do { } while (/*CONSTCOND*/ 0)
41 #endif
42 #else
43 #include <lib/libkern/libkern.h>
44 #endif
45
46 #ifdef _LIBC
47 __weak_alias(rb_tree_init, _rb_tree_init)
48 __weak_alias(rb_tree_find_node, _rb_tree_find_node)
49 __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
50 __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
51 __weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
52 __weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
53 __weak_alias(rb_tree_iterate, _rb_tree_iterate)
54 #ifdef RBDEBUG
55 __weak_alias(rb_tree_check, _rb_tree_check)
56 __weak_alias(rb_tree_depths, _rb_tree_depths)
57 #endif
58
59 #define rb_tree_init _rb_tree_init
60 #define rb_tree_find_node _rb_tree_find_node
61 #define rb_tree_find_node_geq _rb_tree_find_node_geq
62 #define rb_tree_find_node_leq _rb_tree_find_node_leq
63 #define rb_tree_insert_node _rb_tree_insert_node
64 #define rb_tree_remove_node _rb_tree_remove_node
65 #define rb_tree_iterate _rb_tree_iterate
66 #ifdef RBDEBUG
67 #define rb_tree_check _rb_tree_check
68 #define rb_tree_depths _rb_tree_depths
69 #endif
70 #endif
71
72 #ifdef RBTEST
73 #include "rb.h"
74 #else
75 #include <sys/rb.h>
76 #endif
77
78 static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
79 static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
80 unsigned int);
81 #ifdef RBDEBUG
82 static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
83 const struct rb_node *, const unsigned int);
84 static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
85 const struct rb_node *, bool);
86 #else
87 #define rb_tree_check_node(a, b, c, d) true
88 #endif
89
90 #define RB_NODETOITEM(rbto, rbn) \
91 ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
92 #define RB_ITEMTONODE(rbto, rbn) \
93 ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
94
95 #define RB_SENTINEL_NODE NULL
96
97 void
98 rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
99 {
100
101 rbt->rbt_ops = ops;
102 *((const struct rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
103 RB_TAILQ_INIT(&rbt->rbt_nodes);
104 #ifndef RBSMALL
105 rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root; /* minimum node */
106 rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root; /* maximum node */
107 #endif
108 #ifdef RBSTATS
109 rbt->rbt_count = 0;
110 rbt->rbt_insertions = 0;
111 rbt->rbt_removals = 0;
112 rbt->rbt_insertion_rebalance_calls = 0;
113 rbt->rbt_insertion_rebalance_passes = 0;
114 rbt->rbt_removal_rebalance_calls = 0;
115 rbt->rbt_removal_rebalance_passes = 0;
116 #endif
117 }
118
119 void *
120 rb_tree_find_node(struct rb_tree *rbt, const void *key)
121 {
122 const rb_tree_ops_t *rbto = rbt->rbt_ops;
123 rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
124 struct rb_node *parent = rbt->rbt_root;
125
126 while (!RB_SENTINEL_P(parent)) {
127 void *pobj = RB_NODETOITEM(rbto, parent);
128 const signed int diff = (*compare_key)(rbto->rbto_context,
129 pobj, key);
130 if (diff == 0)
131 return pobj;
132 parent = parent->rb_nodes[diff < 0];
133 }
134
135 return NULL;
136 }
137
138 void *
139 rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
140 {
141 const rb_tree_ops_t *rbto = rbt->rbt_ops;
142 rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
143 struct rb_node *parent = rbt->rbt_root, *last = NULL;
144
145 while (!RB_SENTINEL_P(parent)) {
146 void *pobj = RB_NODETOITEM(rbto, parent);
147 const signed int diff = (*compare_key)(rbto->rbto_context,
148 pobj, key);
149 if (diff == 0)
150 return pobj;
151 if (diff > 0)
152 last = parent;
153 parent = parent->rb_nodes[diff < 0];
154 }
155
156 return RB_NODETOITEM(rbto, last);
157 }
158
159 void *
160 rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
161 {
162 const rb_tree_ops_t *rbto = rbt->rbt_ops;
163 rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
164 struct rb_node *parent = rbt->rbt_root, *last = NULL;
165
166 while (!RB_SENTINEL_P(parent)) {
167 void *pobj = RB_NODETOITEM(rbto, parent);
168 const signed int diff = (*compare_key)(rbto->rbto_context,
169 pobj, key);
170 if (diff == 0)
171 return pobj;
172 if (diff < 0)
173 last = parent;
174 parent = parent->rb_nodes[diff < 0];
175 }
176
177 return RB_NODETOITEM(rbto, last);
178 }
179
180 void *
181 rb_tree_insert_node(struct rb_tree *rbt, void *object)
182 {
183 const rb_tree_ops_t *rbto = rbt->rbt_ops;
184 rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
185 struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
186 unsigned int position;
187 bool rebalance;
188
189 RBSTAT_INC(rbt->rbt_insertions);
190
191 tmp = rbt->rbt_root;
192 /*
193 * This is a hack. Because rbt->rbt_root is just a struct rb_node *,
194 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
195 * avoid a lot of tests for root and know that even at root,
196 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
197 * update rbt->rbt_root.
198 */
199 parent = (struct rb_node *)(void *)&rbt->rbt_root;
200 position = RB_DIR_LEFT;
201
202 /*
203 * Find out where to place this new leaf.
204 */
205 while (!RB_SENTINEL_P(tmp)) {
206 void *tobj = RB_NODETOITEM(rbto, tmp);
207 const signed int diff = (*compare_nodes)(rbto->rbto_context,
208 tobj, object);
209 if (__predict_false(diff == 0)) {
210 /*
211 * Node already exists; return it.
212 */
213 return tobj;
214 }
215 parent = tmp;
216 position = (diff < 0);
217 tmp = parent->rb_nodes[position];
218 }
219
220 #ifdef RBDEBUG
221 {
222 struct rb_node *prev = NULL, *next = NULL;
223
224 if (position == RB_DIR_RIGHT)
225 prev = parent;
226 else if (tmp != rbt->rbt_root)
227 next = parent;
228
229 /*
230 * Verify our sequential position
231 */
232 KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
233 KASSERT(next == NULL || !RB_SENTINEL_P(next));
234 if (prev != NULL && next == NULL)
235 next = TAILQ_NEXT(prev, rb_link);
236 if (prev == NULL && next != NULL)
237 prev = TAILQ_PREV(next, rb_node_qh, rb_link);
238 KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
239 KASSERT(next == NULL || !RB_SENTINEL_P(next));
240 KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
241 RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
242 KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
243 RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
244 }
245 #endif
246
247 /*
248 * Initialize the node and insert as a leaf into the tree.
249 */
250 RB_SET_FATHER(self, parent);
251 RB_SET_POSITION(self, position);
252 if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
253 RB_MARK_BLACK(self); /* root is always black */
254 #ifndef RBSMALL
255 rbt->rbt_minmax[RB_DIR_LEFT] = self;
256 rbt->rbt_minmax[RB_DIR_RIGHT] = self;
257 #endif
258 rebalance = false;
259 } else {
260 KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
261 #ifndef RBSMALL
262 /*
263 * Keep track of the minimum and maximum nodes. If our
264 * parent is a minmax node and we on their min/max side,
265 * we must be the new min/max node.
266 */
267 if (parent == rbt->rbt_minmax[position])
268 rbt->rbt_minmax[position] = self;
269 #endif /* !RBSMALL */
270 /*
271 * All new nodes are colored red. We only need to rebalance
272 * if our parent is also red.
273 */
274 RB_MARK_RED(self);
275 rebalance = RB_RED_P(parent);
276 }
277 KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
278 self->rb_left = parent->rb_nodes[position];
279 self->rb_right = parent->rb_nodes[position];
280 parent->rb_nodes[position] = self;
281 KASSERT(RB_CHILDLESS_P(self));
282
283 /*
284 * Insert the new node into a sorted list for easy sequential access
285 */
286 RBSTAT_INC(rbt->rbt_count);
287 #ifdef RBDEBUG
288 if (RB_ROOT_P(rbt, self)) {
289 RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
290 } else if (position == RB_DIR_LEFT) {
291 KASSERT((*compare_nodes)(rbto->rbto_context,
292 RB_NODETOITEM(rbto, self),
293 RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
294 RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
295 } else {
296 KASSERT((*compare_nodes)(rbto->rbto_context,
297 RB_NODETOITEM(rbto, RB_FATHER(self)),
298 RB_NODETOITEM(rbto, self)) < 0);
299 RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
300 self, rb_link);
301 }
302 #endif
303 KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
304
305 /*
306 * Rebalance tree after insertion
307 */
308 if (rebalance) {
309 rb_tree_insert_rebalance(rbt, self);
310 KASSERT(rb_tree_check_node(rbt, self, NULL, true));
311 }
312
313 /* Succesfully inserted, return our node pointer. */
314 return object;
315 }
316
317 /*
318 * Swap the location and colors of 'self' and its child @ which. The child
319 * can not be a sentinel node. This is our rotation function. However,
320 * since it preserves coloring, it great simplifies both insertion and
321 * removal since rotation almost always involves the exchanging of colors
322 * as a separate step.
323 */
324 /*ARGSUSED*/
325 static void
326 rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
327 const unsigned int which)
328 {
329 const unsigned int other = which ^ RB_DIR_OTHER;
330 struct rb_node * const grandpa = RB_FATHER(old_father);
331 struct rb_node * const old_child = old_father->rb_nodes[which];
332 struct rb_node * const new_father = old_child;
333 struct rb_node * const new_child = old_father;
334
335 KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
336
337 KASSERT(!RB_SENTINEL_P(old_child));
338 KASSERT(RB_FATHER(old_child) == old_father);
339
340 KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
341 KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
342 KASSERT(RB_ROOT_P(rbt, old_father) ||
343 rb_tree_check_node(rbt, grandpa, NULL, false));
344
345 /*
346 * Exchange descendant linkages.
347 */
348 grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
349 new_child->rb_nodes[which] = old_child->rb_nodes[other];
350 new_father->rb_nodes[other] = new_child;
351
352 /*
353 * Update ancestor linkages
354 */
355 RB_SET_FATHER(new_father, grandpa);
356 RB_SET_FATHER(new_child, new_father);
357
358 /*
359 * Exchange properties between new_father and new_child. The only
360 * change is that new_child's position is now on the other side.
361 */
362 #if 0
363 {
364 struct rb_node tmp;
365 tmp.rb_info = 0;
366 RB_COPY_PROPERTIES(&tmp, old_child);
367 RB_COPY_PROPERTIES(new_father, old_father);
368 RB_COPY_PROPERTIES(new_child, &tmp);
369 }
370 #else
371 RB_SWAP_PROPERTIES(new_father, new_child);
372 #endif
373 RB_SET_POSITION(new_child, other);
374
375 /*
376 * Make sure to reparent the new child to ourself.
377 */
378 if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
379 RB_SET_FATHER(new_child->rb_nodes[which], new_child);
380 RB_SET_POSITION(new_child->rb_nodes[which], which);
381 }
382
383 KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
384 KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
385 KASSERT(RB_ROOT_P(rbt, new_father) ||
386 rb_tree_check_node(rbt, grandpa, NULL, false));
387 }
388
389 static void
390 rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
391 {
392 struct rb_node * father = RB_FATHER(self);
393 struct rb_node * grandpa = RB_FATHER(father);
394 struct rb_node * uncle;
395 unsigned int which;
396 unsigned int other;
397
398 KASSERT(!RB_ROOT_P(rbt, self));
399 KASSERT(RB_RED_P(self));
400 KASSERT(RB_RED_P(father));
401 RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
402
403 for (;;) {
404 KASSERT(!RB_SENTINEL_P(self));
405
406 KASSERT(RB_RED_P(self));
407 KASSERT(RB_RED_P(father));
408 /*
409 * We are red and our parent is red, therefore we must have a
410 * grandfather and he must be black.
411 */
412 grandpa = RB_FATHER(father);
413 KASSERT(RB_BLACK_P(grandpa));
414 KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
415 which = (father == grandpa->rb_right);
416 other = which ^ RB_DIR_OTHER;
417 uncle = grandpa->rb_nodes[other];
418
419 if (RB_BLACK_P(uncle))
420 break;
421
422 RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
423 /*
424 * Case 1: our uncle is red
425 * Simply invert the colors of our parent and
426 * uncle and make our grandparent red. And
427 * then solve the problem up at his level.
428 */
429 RB_MARK_BLACK(uncle);
430 RB_MARK_BLACK(father);
431 if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
432 /*
433 * If our grandpa is root, don't bother
434 * setting him to red, just return.
435 */
436 KASSERT(RB_BLACK_P(grandpa));
437 return;
438 }
439 RB_MARK_RED(grandpa);
440 self = grandpa;
441 father = RB_FATHER(self);
442 KASSERT(RB_RED_P(self));
443 if (RB_BLACK_P(father)) {
444 /*
445 * If our greatgrandpa is black, we're done.
446 */
447 KASSERT(RB_BLACK_P(rbt->rbt_root));
448 return;
449 }
450 }
451
452 KASSERT(!RB_ROOT_P(rbt, self));
453 KASSERT(RB_RED_P(self));
454 KASSERT(RB_RED_P(father));
455 KASSERT(RB_BLACK_P(uncle));
456 KASSERT(RB_BLACK_P(grandpa));
457 /*
458 * Case 2&3: our uncle is black.
459 */
460 if (self == father->rb_nodes[other]) {
461 /*
462 * Case 2: we are on the same side as our uncle
463 * Swap ourselves with our parent so this case
464 * becomes case 3. Basically our parent becomes our
465 * child.
466 */
467 rb_tree_reparent_nodes(rbt, father, other);
468 KASSERT(RB_FATHER(father) == self);
469 KASSERT(self->rb_nodes[which] == father);
470 KASSERT(RB_FATHER(self) == grandpa);
471 self = father;
472 father = RB_FATHER(self);
473 }
474 KASSERT(RB_RED_P(self) && RB_RED_P(father));
475 KASSERT(grandpa->rb_nodes[which] == father);
476 /*
477 * Case 3: we are opposite a child of a black uncle.
478 * Swap our parent and grandparent. Since our grandfather
479 * is black, our father will become black and our new sibling
480 * (former grandparent) will become red.
481 */
482 rb_tree_reparent_nodes(rbt, grandpa, which);
483 KASSERT(RB_FATHER(self) == father);
484 KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
485 KASSERT(RB_RED_P(self));
486 KASSERT(RB_BLACK_P(father));
487 KASSERT(RB_RED_P(grandpa));
488
489 /*
490 * Final step: Set the root to black.
491 */
492 RB_MARK_BLACK(rbt->rbt_root);
493 }
494
495 static void
496 rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
497 {
498 const unsigned int which = RB_POSITION(self);
499 struct rb_node *father = RB_FATHER(self);
500 #ifndef RBSMALL
501 const bool was_root = RB_ROOT_P(rbt, self);
502 #endif
503
504 KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
505 KASSERT(!rebalance || RB_BLACK_P(self));
506 KASSERT(RB_CHILDLESS_P(self));
507 KASSERT(rb_tree_check_node(rbt, self, NULL, false));
508
509 /*
510 * Since we are childless, we know that self->rb_left is pointing
511 * to the sentinel node.
512 */
513 father->rb_nodes[which] = self->rb_left;
514
515 /*
516 * Remove ourselves from the node list, decrement the count,
517 * and update min/max.
518 */
519 RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
520 RBSTAT_DEC(rbt->rbt_count);
521 #ifndef RBSMALL
522 if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
523 rbt->rbt_minmax[RB_POSITION(self)] = father;
524 /*
525 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
526 * updated automatically, but we also need to update
527 * rbt->rbt_minmax[RB_DIR_RIGHT];
528 */
529 if (__predict_false(was_root)) {
530 rbt->rbt_minmax[RB_DIR_RIGHT] = father;
531 }
532 }
533 RB_SET_FATHER(self, NULL);
534 #endif
535
536 /*
537 * Rebalance if requested.
538 */
539 if (rebalance)
540 rb_tree_removal_rebalance(rbt, father, which);
541 KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
542 }
543
544 /*
545 * When deleting an interior node
546 */
547 static void
548 rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
549 struct rb_node *standin)
550 {
551 const unsigned int standin_which = RB_POSITION(standin);
552 unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
553 struct rb_node *standin_son;
554 struct rb_node *standin_father = RB_FATHER(standin);
555 bool rebalance = RB_BLACK_P(standin);
556
557 if (standin_father == self) {
558 /*
559 * As a child of self, any childen would be opposite of
560 * our parent.
561 */
562 KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
563 standin_son = standin->rb_nodes[standin_which];
564 } else {
565 /*
566 * Since we aren't a child of self, any childen would be
567 * on the same side as our parent.
568 */
569 KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
570 standin_son = standin->rb_nodes[standin_other];
571 }
572
573 /*
574 * the node we are removing must have two children.
575 */
576 KASSERT(RB_TWOCHILDREN_P(self));
577 /*
578 * If standin has a child, it must be red.
579 */
580 KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
581
582 /*
583 * Verify things are sane.
584 */
585 KASSERT(rb_tree_check_node(rbt, self, NULL, false));
586 KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
587
588 if (__predict_false(RB_RED_P(standin_son))) {
589 /*
590 * We know we have a red child so if we flip it to black
591 * we don't have to rebalance.
592 */
593 KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
594 RB_MARK_BLACK(standin_son);
595 rebalance = false;
596
597 if (standin_father == self) {
598 KASSERT(RB_POSITION(standin_son) == standin_which);
599 } else {
600 KASSERT(RB_POSITION(standin_son) == standin_other);
601 /*
602 * Change the son's parentage to point to his grandpa.
603 */
604 RB_SET_FATHER(standin_son, standin_father);
605 RB_SET_POSITION(standin_son, standin_which);
606 }
607 }
608
609 if (standin_father == self) {
610 /*
611 * If we are about to delete the standin's father, then when
612 * we call rebalance, we need to use ourselves as our father.
613 * Otherwise remember our original father. Also, sincef we are
614 * our standin's father we only need to reparent the standin's
615 * brother.
616 *
617 * | R --> S |
618 * | Q S --> Q T |
619 * | t --> |
620 */
621 KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
622 KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
623 KASSERT(self->rb_nodes[standin_which] == standin);
624 /*
625 * Have our son/standin adopt his brother as his new son.
626 */
627 standin_father = standin;
628 } else {
629 /*
630 * | R --> S . |
631 * | / \ | T --> / \ | / |
632 * | ..... | S --> ..... | T |
633 *
634 * Sever standin's connection to his father.
635 */
636 standin_father->rb_nodes[standin_which] = standin_son;
637 /*
638 * Adopt the far son.
639 */
640 standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
641 RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
642 KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
643 /*
644 * Use standin_other because we need to preserve standin_which
645 * for the removal_rebalance.
646 */
647 standin_other = standin_which;
648 }
649
650 /*
651 * Move the only remaining son to our standin. If our standin is our
652 * son, this will be the only son needed to be moved.
653 */
654 KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
655 standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
656 RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
657
658 /*
659 * Now copy the result of self to standin and then replace
660 * self with standin in the tree.
661 */
662 RB_COPY_PROPERTIES(standin, self);
663 RB_SET_FATHER(standin, RB_FATHER(self));
664 RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
665
666 /*
667 * Remove ourselves from the node list, decrement the count,
668 * and update min/max.
669 */
670 RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
671 RBSTAT_DEC(rbt->rbt_count);
672 #ifndef RBSMALL
673 if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
674 rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
675 RB_SET_FATHER(self, NULL);
676 #endif
677
678 KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
679 KASSERT(RB_FATHER_SENTINEL_P(standin)
680 || rb_tree_check_node(rbt, standin_father, NULL, false));
681 KASSERT(RB_LEFT_SENTINEL_P(standin)
682 || rb_tree_check_node(rbt, standin->rb_left, NULL, false));
683 KASSERT(RB_RIGHT_SENTINEL_P(standin)
684 || rb_tree_check_node(rbt, standin->rb_right, NULL, false));
685
686 if (!rebalance)
687 return;
688
689 rb_tree_removal_rebalance(rbt, standin_father, standin_which);
690 KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
691 }
692
693 /*
694 * We could do this by doing
695 * rb_tree_node_swap(rbt, self, which);
696 * rb_tree_prune_node(rbt, self, false);
697 *
698 * But it's more efficient to just evalate and recolor the child.
699 */
700 static void
701 rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
702 unsigned int which)
703 {
704 struct rb_node *father = RB_FATHER(self);
705 struct rb_node *son = self->rb_nodes[which];
706 #ifndef RBSMALL
707 const bool was_root = RB_ROOT_P(rbt, self);
708 #endif
709
710 KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
711 KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
712 KASSERT(!RB_TWOCHILDREN_P(son));
713 KASSERT(RB_CHILDLESS_P(son));
714 KASSERT(rb_tree_check_node(rbt, self, NULL, false));
715 KASSERT(rb_tree_check_node(rbt, son, NULL, false));
716
717 /*
718 * Remove ourselves from the tree and give our former child our
719 * properties (position, color, root).
720 */
721 RB_COPY_PROPERTIES(son, self);
722 father->rb_nodes[RB_POSITION(son)] = son;
723 RB_SET_FATHER(son, father);
724
725 /*
726 * Remove ourselves from the node list, decrement the count,
727 * and update minmax.
728 */
729 RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
730 RBSTAT_DEC(rbt->rbt_count);
731 #ifndef RBSMALL
732 if (__predict_false(was_root)) {
733 KASSERT(rbt->rbt_minmax[which] == son);
734 rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
735 } else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
736 rbt->rbt_minmax[RB_POSITION(self)] = son;
737 }
738 RB_SET_FATHER(self, NULL);
739 #endif
740
741 KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
742 KASSERT(rb_tree_check_node(rbt, son, NULL, true));
743 }
744
745 void
746 rb_tree_remove_node(struct rb_tree *rbt, void *object)
747 {
748 const rb_tree_ops_t *rbto = rbt->rbt_ops;
749 struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
750 unsigned int which;
751
752 KASSERT(!RB_SENTINEL_P(self));
753 RBSTAT_INC(rbt->rbt_removals);
754
755 /*
756 * In the following diagrams, we (the node to be removed) are S. Red
757 * nodes are lowercase. T could be either red or black.
758 *
759 * Remember the major axiom of the red-black tree: the number of
760 * black nodes from the root to each leaf is constant across all
761 * leaves, only the number of red nodes varies.
762 *
763 * Thus removing a red leaf doesn't require any other changes to a
764 * red-black tree. So if we must remove a node, attempt to rearrange
765 * the tree so we can remove a red node.
766 *
767 * The simpliest case is a childless red node or a childless root node:
768 *
769 * | T --> T | or | R --> * |
770 * | s --> * |
771 */
772 if (RB_CHILDLESS_P(self)) {
773 const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
774 rb_tree_prune_node(rbt, self, rebalance);
775 return;
776 }
777 KASSERT(!RB_CHILDLESS_P(self));
778 if (!RB_TWOCHILDREN_P(self)) {
779 /*
780 * The next simpliest case is the node we are deleting is
781 * black and has one red child.
782 *
783 * | T --> T --> T |
784 * | S --> R --> R |
785 * | r --> s --> * |
786 */
787 which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
788 KASSERT(RB_BLACK_P(self));
789 KASSERT(RB_RED_P(self->rb_nodes[which]));
790 KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
791 rb_tree_prune_blackred_branch(rbt, self, which);
792 return;
793 }
794 KASSERT(RB_TWOCHILDREN_P(self));
795
796 /*
797 * We invert these because we prefer to remove from the inside of
798 * the tree.
799 */
800 which = RB_POSITION(self) ^ RB_DIR_OTHER;
801
802 /*
803 * Let's find the node closes to us opposite of our parent
804 * Now swap it with ourself, "prune" it, and rebalance, if needed.
805 */
806 standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
807 rb_tree_swap_prune_and_rebalance(rbt, self, standin);
808 }
809
810 static void
811 rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
812 unsigned int which)
813 {
814 KASSERT(!RB_SENTINEL_P(parent));
815 KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
816 KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
817 RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
818
819 while (RB_BLACK_P(parent->rb_nodes[which])) {
820 unsigned int other = which ^ RB_DIR_OTHER;
821 struct rb_node *brother = parent->rb_nodes[other];
822
823 RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
824
825 KASSERT(!RB_SENTINEL_P(brother));
826 /*
827 * For cases 1, 2a, and 2b, our brother's children must
828 * be black and our father must be black
829 */
830 if (RB_BLACK_P(parent)
831 && RB_BLACK_P(brother->rb_left)
832 && RB_BLACK_P(brother->rb_right)) {
833 if (RB_RED_P(brother)) {
834 /*
835 * Case 1: Our brother is red, swap its
836 * position (and colors) with our parent.
837 * This should now be case 2b (unless C or E
838 * has a red child which is case 3; thus no
839 * explicit branch to case 2b).
840 *
841 * B -> D
842 * A d -> b E
843 * C E -> A C
844 */
845 KASSERT(RB_BLACK_P(parent));
846 rb_tree_reparent_nodes(rbt, parent, other);
847 brother = parent->rb_nodes[other];
848 KASSERT(!RB_SENTINEL_P(brother));
849 KASSERT(RB_RED_P(parent));
850 KASSERT(RB_BLACK_P(brother));
851 KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
852 KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
853 } else {
854 /*
855 * Both our parent and brother are black.
856 * Change our brother to red, advance up rank
857 * and go through the loop again.
858 *
859 * B -> *B
860 * *A D -> A d
861 * C E -> C E
862 */
863 RB_MARK_RED(brother);
864 KASSERT(RB_BLACK_P(brother->rb_left));
865 KASSERT(RB_BLACK_P(brother->rb_right));
866 if (RB_ROOT_P(rbt, parent))
867 return; /* root == parent == black */
868 KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
869 KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
870 which = RB_POSITION(parent);
871 parent = RB_FATHER(parent);
872 continue;
873 }
874 }
875 /*
876 * Avoid an else here so that case 2a above can hit either
877 * case 2b, 3, or 4.
878 */
879 if (RB_RED_P(parent)
880 && RB_BLACK_P(brother)
881 && RB_BLACK_P(brother->rb_left)
882 && RB_BLACK_P(brother->rb_right)) {
883 KASSERT(RB_RED_P(parent));
884 KASSERT(RB_BLACK_P(brother));
885 KASSERT(RB_BLACK_P(brother->rb_left));
886 KASSERT(RB_BLACK_P(brother->rb_right));
887 /*
888 * We are black, our father is red, our brother and
889 * both nephews are black. Simply invert/exchange the
890 * colors of our father and brother (to black and red
891 * respectively).
892 *
893 * | f --> F |
894 * | * B --> * b |
895 * | N N --> N N |
896 */
897 RB_MARK_BLACK(parent);
898 RB_MARK_RED(brother);
899 KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
900 break; /* We're done! */
901 } else {
902 /*
903 * Our brother must be black and have at least one
904 * red child (it may have two).
905 */
906 KASSERT(RB_BLACK_P(brother));
907 KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
908 RB_RED_P(brother->rb_nodes[other]));
909 if (RB_BLACK_P(brother->rb_nodes[other])) {
910 /*
911 * Case 3: our brother is black, our near
912 * nephew is red, and our far nephew is black.
913 * Swap our brother with our near nephew.
914 * This result in a tree that matches case 4.
915 * (Our father could be red or black).
916 *
917 * | F --> F |
918 * | x B --> x B |
919 * | n --> n |
920 */
921 KASSERT(RB_RED_P(brother->rb_nodes[which]));
922 rb_tree_reparent_nodes(rbt, brother, which);
923 KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
924 brother = parent->rb_nodes[other];
925 KASSERT(RB_RED_P(brother->rb_nodes[other]));
926 }
927 /*
928 * Case 4: our brother is black and our far nephew
929 * is red. Swap our father and brother locations and
930 * change our far nephew to black. (these can be
931 * done in either order so we change the color first).
932 * The result is a valid red-black tree and is a
933 * terminal case. (again we don't care about the
934 * father's color)
935 *
936 * If the father is red, we will get a red-black-black
937 * tree:
938 * | f -> f --> b |
939 * | B -> B --> F N |
940 * | n -> N --> |
941 *
942 * If the father is black, we will get an all black
943 * tree:
944 * | F -> F --> B |
945 * | B -> B --> F N |
946 * | n -> N --> |
947 *
948 * If we had two red nephews, then after the swap,
949 * our former father would have a red grandson.
950 */
951 KASSERT(RB_BLACK_P(brother));
952 KASSERT(RB_RED_P(brother->rb_nodes[other]));
953 RB_MARK_BLACK(brother->rb_nodes[other]);
954 rb_tree_reparent_nodes(rbt, parent, other);
955 break; /* We're done! */
956 }
957 }
958 KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
959 }
960
961 void *
962 rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
963 {
964 const rb_tree_ops_t *rbto = rbt->rbt_ops;
965 const unsigned int other = direction ^ RB_DIR_OTHER;
966 struct rb_node *self;
967
968 KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
969
970 if (object == NULL) {
971 #ifndef RBSMALL
972 if (RB_SENTINEL_P(rbt->rbt_root))
973 return NULL;
974 return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
975 #else
976 self = rbt->rbt_root;
977 if (RB_SENTINEL_P(self))
978 return NULL;
979 while (!RB_SENTINEL_P(self->rb_nodes[direction]))
980 self = self->rb_nodes[direction];
981 return RB_NODETOITEM(rbto, self);
982 #endif /* !RBSMALL */
983 }
984 self = RB_ITEMTONODE(rbto, object);
985 KASSERT(!RB_SENTINEL_P(self));
986 /*
987 * We can't go any further in this direction. We proceed up in the
988 * opposite direction until our parent is in direction we want to go.
989 */
990 if (RB_SENTINEL_P(self->rb_nodes[direction])) {
991 while (!RB_ROOT_P(rbt, self)) {
992 if (other == RB_POSITION(self))
993 return RB_NODETOITEM(rbto, RB_FATHER(self));
994 self = RB_FATHER(self);
995 }
996 return NULL;
997 }
998
999 /*
1000 * Advance down one in current direction and go down as far as possible
1001 * in the opposite direction.
1002 */
1003 self = self->rb_nodes[direction];
1004 KASSERT(!RB_SENTINEL_P(self));
1005 while (!RB_SENTINEL_P(self->rb_nodes[other]))
1006 self = self->rb_nodes[other];
1007 return RB_NODETOITEM(rbto, self);
1008 }
1009
1010 #ifdef RBDEBUG
1011 static const struct rb_node *
1012 rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
1013 const unsigned int direction)
1014 {
1015 const unsigned int other = direction ^ RB_DIR_OTHER;
1016 KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
1017
1018 if (self == NULL) {
1019 #ifndef RBSMALL
1020 if (RB_SENTINEL_P(rbt->rbt_root))
1021 return NULL;
1022 return rbt->rbt_minmax[direction];
1023 #else
1024 self = rbt->rbt_root;
1025 if (RB_SENTINEL_P(self))
1026 return NULL;
1027 while (!RB_SENTINEL_P(self->rb_nodes[direction]))
1028 self = self->rb_nodes[direction];
1029 return self;
1030 #endif /* !RBSMALL */
1031 }
1032 KASSERT(!RB_SENTINEL_P(self));
1033 /*
1034 * We can't go any further in this direction. We proceed up in the
1035 * opposite direction until our parent is in direction we want to go.
1036 */
1037 if (RB_SENTINEL_P(self->rb_nodes[direction])) {
1038 while (!RB_ROOT_P(rbt, self)) {
1039 if (other == RB_POSITION(self))
1040 return RB_FATHER(self);
1041 self = RB_FATHER(self);
1042 }
1043 return NULL;
1044 }
1045
1046 /*
1047 * Advance down one in current direction and go down as far as possible
1048 * in the opposite direction.
1049 */
1050 self = self->rb_nodes[direction];
1051 KASSERT(!RB_SENTINEL_P(self));
1052 while (!RB_SENTINEL_P(self->rb_nodes[other]))
1053 self = self->rb_nodes[other];
1054 return self;
1055 }
1056
1057 static unsigned int
1058 rb_tree_count_black(const struct rb_node *self)
1059 {
1060 unsigned int left, right;
1061
1062 if (RB_SENTINEL_P(self))
1063 return 0;
1064
1065 left = rb_tree_count_black(self->rb_left);
1066 right = rb_tree_count_black(self->rb_right);
1067
1068 KASSERT(left == right);
1069
1070 return left + RB_BLACK_P(self);
1071 }
1072
1073 static bool
1074 rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
1075 const struct rb_node *prev, bool red_check)
1076 {
1077 const rb_tree_ops_t *rbto = rbt->rbt_ops;
1078 rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
1079
1080 KASSERT(!RB_SENTINEL_P(self));
1081 KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
1082 RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
1083
1084 /*
1085 * Verify our relationship to our parent.
1086 */
1087 if (RB_ROOT_P(rbt, self)) {
1088 KASSERT(self == rbt->rbt_root);
1089 KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
1090 KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1091 KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
1092 } else {
1093 int diff = (*compare_nodes)(rbto->rbto_context,
1094 RB_NODETOITEM(rbto, self),
1095 RB_NODETOITEM(rbto, RB_FATHER(self)));
1096
1097 KASSERT(self != rbt->rbt_root);
1098 KASSERT(!RB_FATHER_SENTINEL_P(self));
1099 if (RB_POSITION(self) == RB_DIR_LEFT) {
1100 KASSERT(diff < 0);
1101 KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1102 } else {
1103 KASSERT(diff > 0);
1104 KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
1105 }
1106 }
1107
1108 /*
1109 * Verify our position in the linked list against the tree itself.
1110 */
1111 {
1112 const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1113 const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1114 KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
1115 KASSERT(next0 == TAILQ_NEXT(self, rb_link));
1116 #ifndef RBSMALL
1117 KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
1118 KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
1119 #endif
1120 }
1121
1122 /*
1123 * The root must be black.
1124 * There can never be two adjacent red nodes.
1125 */
1126 if (red_check) {
1127 KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
1128 (void) rb_tree_count_black(self);
1129 if (RB_RED_P(self)) {
1130 const struct rb_node *brother;
1131 KASSERT(!RB_ROOT_P(rbt, self));
1132 brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
1133 KASSERT(RB_BLACK_P(RB_FATHER(self)));
1134 /*
1135 * I'm red and have no children, then I must either
1136 * have no brother or my brother also be red and
1137 * also have no children. (black count == 0)
1138 */
1139 KASSERT(!RB_CHILDLESS_P(self)
1140 || RB_SENTINEL_P(brother)
1141 || RB_RED_P(brother)
1142 || RB_CHILDLESS_P(brother));
1143 /*
1144 * If I'm not childless, I must have two children
1145 * and they must be both be black.
1146 */
1147 KASSERT(RB_CHILDLESS_P(self)
1148 || (RB_TWOCHILDREN_P(self)
1149 && RB_BLACK_P(self->rb_left)
1150 && RB_BLACK_P(self->rb_right)));
1151 /*
1152 * If I'm not childless, thus I have black children,
1153 * then my brother must either be black or have two
1154 * black children.
1155 */
1156 KASSERT(RB_CHILDLESS_P(self)
1157 || RB_BLACK_P(brother)
1158 || (RB_TWOCHILDREN_P(brother)
1159 && RB_BLACK_P(brother->rb_left)
1160 && RB_BLACK_P(brother->rb_right)));
1161 } else {
1162 /*
1163 * If I'm black and have one child, that child must
1164 * be red and childless.
1165 */
1166 KASSERT(RB_CHILDLESS_P(self)
1167 || RB_TWOCHILDREN_P(self)
1168 || (!RB_LEFT_SENTINEL_P(self)
1169 && RB_RIGHT_SENTINEL_P(self)
1170 && RB_RED_P(self->rb_left)
1171 && RB_CHILDLESS_P(self->rb_left))
1172 || (!RB_RIGHT_SENTINEL_P(self)
1173 && RB_LEFT_SENTINEL_P(self)
1174 && RB_RED_P(self->rb_right)
1175 && RB_CHILDLESS_P(self->rb_right)));
1176
1177 /*
1178 * If I'm a childless black node and my parent is
1179 * black, my 2nd closet relative away from my parent
1180 * is either red or has a red parent or red children.
1181 */
1182 if (!RB_ROOT_P(rbt, self)
1183 && RB_CHILDLESS_P(self)
1184 && RB_BLACK_P(RB_FATHER(self))) {
1185 const unsigned int which = RB_POSITION(self);
1186 const unsigned int other = which ^ RB_DIR_OTHER;
1187 const struct rb_node *relative0, *relative;
1188
1189 relative0 = rb_tree_iterate_const(rbt,
1190 self, other);
1191 KASSERT(relative0 != NULL);
1192 relative = rb_tree_iterate_const(rbt,
1193 relative0, other);
1194 KASSERT(relative != NULL);
1195 KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
1196 #if 0
1197 KASSERT(RB_RED_P(relative)
1198 || RB_RED_P(relative->rb_left)
1199 || RB_RED_P(relative->rb_right)
1200 || RB_RED_P(RB_FATHER(relative)));
1201 #endif
1202 }
1203 }
1204 /*
1205 * A grandparent's children must be real nodes and not
1206 * sentinels. First check out grandparent.
1207 */
1208 KASSERT(RB_ROOT_P(rbt, self)
1209 || RB_ROOT_P(rbt, RB_FATHER(self))
1210 || RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
1211 /*
1212 * If we are have grandchildren on our left, then
1213 * we must have a child on our right.
1214 */
1215 KASSERT(RB_LEFT_SENTINEL_P(self)
1216 || RB_CHILDLESS_P(self->rb_left)
1217 || !RB_RIGHT_SENTINEL_P(self));
1218 /*
1219 * If we are have grandchildren on our right, then
1220 * we must have a child on our left.
1221 */
1222 KASSERT(RB_RIGHT_SENTINEL_P(self)
1223 || RB_CHILDLESS_P(self->rb_right)
1224 || !RB_LEFT_SENTINEL_P(self));
1225
1226 /*
1227 * If we have a child on the left and it doesn't have two
1228 * children make sure we don't have great-great-grandchildren on
1229 * the right.
1230 */
1231 KASSERT(RB_TWOCHILDREN_P(self->rb_left)
1232 || RB_CHILDLESS_P(self->rb_right)
1233 || RB_CHILDLESS_P(self->rb_right->rb_left)
1234 || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
1235 || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
1236 || RB_CHILDLESS_P(self->rb_right->rb_right)
1237 || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
1238 || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
1239
1240 /*
1241 * If we have a child on the right and it doesn't have two
1242 * children make sure we don't have great-great-grandchildren on
1243 * the left.
1244 */
1245 KASSERT(RB_TWOCHILDREN_P(self->rb_right)
1246 || RB_CHILDLESS_P(self->rb_left)
1247 || RB_CHILDLESS_P(self->rb_left->rb_left)
1248 || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
1249 || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
1250 || RB_CHILDLESS_P(self->rb_left->rb_right)
1251 || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
1252 || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
1253
1254 /*
1255 * If we are fully interior node, then our predecessors and
1256 * successors must have no children in our direction.
1257 */
1258 if (RB_TWOCHILDREN_P(self)) {
1259 const struct rb_node *prev0;
1260 const struct rb_node *next0;
1261
1262 prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1263 KASSERT(prev0 != NULL);
1264 KASSERT(RB_RIGHT_SENTINEL_P(prev0));
1265
1266 next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1267 KASSERT(next0 != NULL);
1268 KASSERT(RB_LEFT_SENTINEL_P(next0));
1269 }
1270 }
1271
1272 return true;
1273 }
1274
1275 void
1276 rb_tree_check(const struct rb_tree *rbt, bool red_check)
1277 {
1278 const struct rb_node *self;
1279 const struct rb_node *prev;
1280 #ifdef RBSTATS
1281 unsigned int count = 0;
1282 #endif
1283
1284 KASSERT(rbt->rbt_root != NULL);
1285 KASSERT(RB_LEFT_P(rbt->rbt_root));
1286
1287 #if defined(RBSTATS) && !defined(RBSMALL)
1288 KASSERT(rbt->rbt_count > 1
1289 || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
1290 #endif
1291
1292 prev = NULL;
1293 TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1294 rb_tree_check_node(rbt, self, prev, false);
1295 #ifdef RBSTATS
1296 count++;
1297 #endif
1298 }
1299 #ifdef RBSTATS
1300 KASSERT(rbt->rbt_count == count);
1301 #endif
1302 if (red_check) {
1303 KASSERT(RB_BLACK_P(rbt->rbt_root));
1304 KASSERT(RB_SENTINEL_P(rbt->rbt_root)
1305 || rb_tree_count_black(rbt->rbt_root));
1306
1307 /*
1308 * The root must be black.
1309 * There can never be two adjacent red nodes.
1310 */
1311 TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1312 rb_tree_check_node(rbt, self, NULL, true);
1313 }
1314 }
1315 }
1316 #endif /* RBDEBUG */
1317
1318 #ifdef RBSTATS
1319 static void
1320 rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
1321 size_t *depths, size_t depth)
1322 {
1323 if (RB_SENTINEL_P(self))
1324 return;
1325
1326 if (RB_TWOCHILDREN_P(self)) {
1327 rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1328 rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1329 return;
1330 }
1331 depths[depth]++;
1332 if (!RB_LEFT_SENTINEL_P(self)) {
1333 rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1334 }
1335 if (!RB_RIGHT_SENTINEL_P(self)) {
1336 rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1337 }
1338 }
1339
1340 void
1341 rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
1342 {
1343 rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
1344 }
1345 #endif /* RBSTATS */
1346